JP2014110710A - Welding power supply device - Google Patents

Welding power supply device Download PDF

Info

Publication number
JP2014110710A
JP2014110710A JP2012264832A JP2012264832A JP2014110710A JP 2014110710 A JP2014110710 A JP 2014110710A JP 2012264832 A JP2012264832 A JP 2012264832A JP 2012264832 A JP2012264832 A JP 2012264832A JP 2014110710 A JP2014110710 A JP 2014110710A
Authority
JP
Japan
Prior art keywords
power supply
charging
welding
load switch
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012264832A
Other languages
Japanese (ja)
Inventor
Hikaru Mizushima
光 水島
Song Jie Hou
松杰 侯
Masahiro Inoue
雅博 井上
Kazuki Yoshida
和記 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2012264832A priority Critical patent/JP2014110710A/en
Publication of JP2014110710A publication Critical patent/JP2014110710A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem that, in the conventional welding power supply device, although a bleeder resistor is provided between output terminals and applied with a current to stabilize an output voltage, a no-load voltage is reduced, which causes deterioration in start performance of arcs.SOLUTION: A welding power supply device comprises: a power supply main circuit having positive and negative terminals; a main control circuit; a DC reactor connected in series to the positive terminal; a charging switching element to which the DC reactor is connected at an output side; a charge and discharge capacitor; a discharge diode connected to the charge and discharge capacitor; and a bleeder resistor connected between output terminals. In the welding power supply device, a no-load switch connected in series to the bleeder resistor is provided. Upon receipt of a welding start signal, the no-load switch is shut off to make the power supply main circuit start outputting and to start feeding a welding wire, and simultaneously, the charging switching element is made electroconductive to charge the charge and discharge capacitor. After a lapse of a predetermined shut-off time period in which the charging of the charge and discharge capacitor is completed, the no-load switch is made electroconductive.

Description

本発明は、溶接電源装置のアークスタート性に関するものである。   The present invention relates to an arc start property of a welding power source device.

従来では、出力電圧をフィードバック制御するとき溶接電源装置の出力端子間にブリーダ抵抗を設けて出力電圧の安定を図っていた。   Conventionally, when feedback control of the output voltage is performed, a bleeder resistor is provided between the output terminals of the welding power supply device to stabilize the output voltage.

図4に示す1次整流回路DR1及び平滑コンデンサC1で、商用交流電源ACを全波整流及び平滑して直流電圧を出力する直流電源回路と、直流電圧を高周波交流電圧に変換して出力するインバータ回路INVと、インバータ回路INVによって変換された高周波交流電圧をアーク加工に適した高周波交流電圧に変換する主変圧器INTと、主変圧器INTからの出力を全波整流する2次整流回路DR2とで電源主回路を形成する。   The DC power supply circuit that outputs the DC voltage by full-wave rectifying and smoothing the commercial AC power supply AC with the primary rectifier circuit DR1 and the smoothing capacitor C1 shown in FIG. 4, and the inverter that converts the DC voltage into a high-frequency AC voltage and outputs it. A circuit INV, a main transformer INT that converts the high-frequency AC voltage converted by the inverter circuit INV into a high-frequency AC voltage suitable for arc machining, and a secondary rectifier circuit DR2 that full-wave rectifies the output from the main transformer INT The power supply main circuit is formed by

直流リアクトルDLは、図4に示す電源主回路を形成する2次整流回路DR2の正側に直列接続し2次整流回路DR2からの全波整流を平滑して出力する。充電用スイッチング素子SCRは、入力側(アノード側)を直流リアクトルDLの出力側に接続して電流を通電する。充放電コンデンサC2は、充電用スイッチング素子SCRの出力側(カソード側)に正極端子を接続し、2次整流回路DR2の負電圧端子に負極端子を接続し、充電用スイッチング素子SCRを介して電荷を充電する。放電ダイオードD3は、充放電コンデンサC2の正極端子にアノードを接続し直流リアクトルDLの出力側にカソードを接続する。   The DC reactor DL is connected in series to the positive side of the secondary rectifier circuit DR2 forming the power supply main circuit shown in FIG. 4, and smoothes and outputs the full-wave rectification from the secondary rectifier circuit DR2. Charging switching element SCR connects the input side (anode side) to the output side of DC reactor DL and conducts current. The charge / discharge capacitor C2 has a positive terminal connected to the output side (cathode side) of the charging switching element SCR, a negative terminal connected to the negative voltage terminal of the secondary rectifier circuit DR2, and is charged via the charging switching element SCR. To charge. The discharge diode D3 has an anode connected to the positive terminal of the charge / discharge capacitor C2 and a cathode connected to the output side of the DC reactor DL.

図4に示す電圧検出回路VDは、溶接電圧を検出して電圧検出信号Vdとして出力する。電流検出回路IDは、溶接電流を検出して電流検出信号Idとして出力する。主制御回路SCは、電圧検出信号Vdに応じてインバータ回路INVを制御し、電流検出信号Idに応じて溶接ワイヤWWの送給速度を制御する。   The voltage detection circuit VD shown in FIG. 4 detects the welding voltage and outputs it as a voltage detection signal Vd. The current detection circuit ID detects the welding current and outputs it as a current detection signal Id. The main control circuit SC controls the inverter circuit INV according to the voltage detection signal Vd, and controls the feeding speed of the welding wire WW according to the current detection signal Id.

図4に示すブリーダ抵抗R1は、直流リアクトルDLの出力側と2次整流回路DR2の負電圧端子との間に接続され、ブリーダ電流を流して出力電圧を安定させる。   The bleeder resistor R1 shown in FIG. 4 is connected between the output side of the DC reactor DL and the negative voltage terminal of the secondary rectifier circuit DR2, and allows the bleeder current to flow to stabilize the output voltage.

図5は、従来技術の溶接電源装置の動作を説明する波形図である。
図4において、同図(A)は、溶接開始信号Tsを示し、同図(B)は、充電制御信号Scrを示し、同図(C)は、出力電圧検出信号Vdを示し、同図(D)は、充放電コンデンサC2の充電電圧を示し、同図(E)は、出力電流検出信号Idを示し、同図(F)は、溶接ワイヤWWと被加工物Mと距離Lwを示す。
FIG. 5 is a waveform diagram for explaining the operation of the conventional welding power source apparatus.
4A shows the welding start signal Ts, FIG. 4B shows the charging control signal Scr, FIG. 4C shows the output voltage detection signal Vd, and FIG. D) shows the charging voltage of the charging / discharging capacitor C2, FIG. 9E shows the output current detection signal Id, and FIG. 9F shows the welding wire WW, the workpiece M, and the distance Lw.

次に、図4及び図5を用いて従来技術の動作について説明する。
図5(A)に示す時刻t=t1において、溶接開始信号TsがHighレベルになると、主制御回路SCは、インバータ回路INVを制御して同図(C)に示す出力電圧検出信号Vdを出力する共に、送給モータVMを回転させて溶接ワイヤWWの送給が開始される。このとき、同図(B)に示す充電制御信号ScrもHighレベルになり、図3に示す充電用スイッチング素子(例えば、サイリスタ素子)SCRが通電し、充放電コンデンサC2は充電を開始し、同図(D)に示すように充電電圧が上昇する。このとき、図3に示すブリーダ抵抗R1により電流が流れると充放電コンデンサC2の充電が遅くなる、と共に無負荷電圧がブリーダ抵抗R1により平滑されて同図(C)に示す出力電圧検出信号Vdの値(無負荷電圧)が低下する。そして、時刻t=t3において、充放電コンデンサC2の充電が完了する。
Next, the operation of the prior art will be described with reference to FIGS.
When the welding start signal Ts becomes High level at time t = t1 shown in FIG. 5A, the main control circuit SC outputs the output voltage detection signal Vd shown in FIG. 5C by controlling the inverter circuit INV. At the same time, the feeding motor VM is rotated to start feeding the welding wire WW. At this time, the charge control signal Scr shown in FIG. 3B also becomes High level, the charging switching element (for example, thyristor element) SCR shown in FIG. 3 is energized, and the charge / discharge capacitor C2 starts charging. As shown in FIG. (D), the charging voltage increases. At this time, when a current flows through the bleeder resistor R1 shown in FIG. 3, charging of the charge / discharge capacitor C2 is delayed, and the no-load voltage is smoothed by the bleeder resistor R1, and the output voltage detection signal Vd shown in FIG. The value (no load voltage) decreases. At time t = t3, charging of the charge / discharge capacitor C2 is completed.

図5(F)に示すように、時刻t=t1から送給モータVMの回転により溶接ワイヤWWは被加工物Mに近づき距離Lwは小さくなる。次に、同図(B)に示す充電制御信号Scrは、所定時間T1が経過する時刻t=t4において、HighレベルからLowレベルになり、充電用スイッチング素子SCRは、通電から遮断になり充放電コンデンサC2の充電を停止する。   As shown in FIG. 5 (F), the welding wire WW approaches the workpiece M by the rotation of the feed motor VM from time t = t1, and the distance Lw becomes small. Next, the charge control signal Scr shown in FIG. 5B changes from the High level to the Low level at the time t = t4 when the predetermined time T1 elapses, and the charging switching element SCR is cut off from energization and charged / discharged. The charging of the capacitor C2 is stopped.

図5(F)に示すように、送給モータVMの回転によって溶接ワイヤWWは被加工物Mに近づき、ワイヤ先端と被加工物Mとの距離Lwが零となり、時刻t=t5において、溶接ワイヤWWと被加工物Mとが接触すると、同図(D)に示す充放電コンデンサC2の充電電圧は、急激に放電される。   As shown in FIG. 5 (F), the welding wire WW approaches the workpiece M by the rotation of the feed motor VM, the distance Lw between the wire tip and the workpiece M becomes zero, and welding is performed at time t = t5. When the wire WW comes into contact with the workpiece M, the charging voltage of the charging / discharging capacitor C2 shown in FIG.

時刻t=t5〜t6の充放電コンデンサC2の放電時間T3は、図5(E)に示すように、出力電流Ioに充放電コンデンサC2からの放電電流が重畳する。この充放電コンデンサC2のように、溶接ワイヤWWが被加工物Mに接触した瞬間に充放電コンデンサC2か電流を放電してアークを発生させていた。例えば、特許文献1   In the discharge time T3 of the charge / discharge capacitor C2 at time t = t5 to t6, as shown in FIG. 5E, the discharge current from the charge / discharge capacitor C2 is superimposed on the output current Io. Like this charging / discharging capacitor C2, the arc was generated by discharging the charging / discharging capacitor C2 or the current at the moment when the welding wire WW contacts the workpiece M. For example, Patent Document 1

特開2008−312314号公報JP 2008-31314 A

従来技術の溶接電源装置では、図6に示す、例えば、出力電流が50A以上では安定した定電圧制御を行うが、出力電流が、例えば、20A以下の小電流領域では定電圧制御が崩れて出力電圧が急激に増加しアークが不安定になる。この対策として出力端子間にブリーダ抵抗を設けてブリーダ電流を流し、例えば、出力電圧が図6に示す太線の電圧を越えないようにしていた。しかし、ブリーダ抵抗を設けると無負荷時の無負荷電圧が低下し、アークのスタート性が低下してしまう。
そこで、本発明では上記の課題を解決する溶接電源装置を供給することを目的とする。
In the welding power source device of the prior art, as shown in FIG. 6, for example, stable constant voltage control is performed when the output current is 50 A or more, but in the small current region where the output current is, for example, 20 A or less, constant voltage control is disrupted and output. The voltage increases rapidly and the arc becomes unstable. As a countermeasure, a bleeder resistance is provided between the output terminals to allow a bleeder current to flow, for example, so that the output voltage does not exceed the bold line voltage shown in FIG. However, if a bleeder resistance is provided, the no-load voltage at no load is lowered, and the arc startability is lowered.
Therefore, an object of the present invention is to supply a welding power supply device that solves the above-described problems.

上述した課題を解決するために、第1の発明は、商用交流電源を溶接に適した直流電圧へ変換して出力する正電圧端子と負電圧端子とを有する電源主回路と、前記電源主回路の出力電力を制御する主制御回路と、前記正電圧端子に直列に接続される直流リアクトルと、前記直流リアクトルを出力側に接続し充電電流を通電又は遮断する充電用スイッチング素子と、前記充電用スイッチング素子の出力側に正極端子を接続し前記負電圧端子に負極端子を接続する充放電コンデンサと、前記充放電コンデンサの正極端子にアノードを接続し前記直流リアクトルの出力側にカソードを接続し放電電流を通電する放電ダイオードと、前記直流リアクトルの出力側と前記電源主回路の負電圧端子との間に接続するブリーダ抵抗と、を備えた溶接電源装置において、
前記直流リアクトルの出力側と前記ブリーダ抵抗との間に無負荷用スイッチを設け、前記主制御回路は、溶接開始信号が入力されると、前記無負荷用スイッチを遮断状態にして前記電源主回路の出力を開始すると共に溶接ワイヤの送給を開始し、同時に前記充電用スイッチング素子を通電させて前記充放電コンデンサを充電し、前記充放電コンデンサの充電が完了する予め定めた遮断時間が経過すると前記無負荷用スイッチを通電にする、ことを特徴とする溶接電源装置である。
In order to solve the above-described problems, the first invention provides a power supply main circuit having a positive voltage terminal and a negative voltage terminal for converting a commercial AC power supply into a DC voltage suitable for welding and outputting the power, and the power supply main circuit. A main control circuit for controlling the output power of the power supply, a DC reactor connected in series to the positive voltage terminal, a charging switching element for connecting or disconnecting a charging current by connecting the DC reactor to the output side, and the charging A charge / discharge capacitor having a positive terminal connected to the output side of the switching element and a negative terminal connected to the negative voltage terminal, an anode connected to the positive terminal of the charge / discharge capacitor, and a cathode connected to the output side of the DC reactor A welding power supply apparatus comprising: a discharge diode for energizing current; and a bleeder resistor connected between the output side of the DC reactor and the negative voltage terminal of the power supply main circuit. Oite,
A no-load switch is provided between the output side of the DC reactor and the bleeder resistor, and the main control circuit shuts off the no-load switch when the welding start signal is input, and the power source main circuit And starting the feeding of the welding wire, and simultaneously charging the charging / discharging capacitor by energizing the charging switching element, and when a predetermined interruption time elapses to complete charging of the charging / discharging capacitor. The welding power supply device, wherein the no-load switch is energized.

第2の発明は、前記溶接ワイヤが被加工物に接触すると前記無負荷用スイッチを遮断から通電にする、ことを特徴とする請求項1記載の溶接電源装置である。   According to a second aspect of the present invention, in the welding power supply device according to claim 1, the no-load switch is turned on when the welding wire comes into contact with a workpiece.

第3の発明は、前記主制御回路は、前記溶接ワイヤが前記被加工物に接触しアーク電流が予め定めた電流基準値を超えたとき前記無負荷用スイッチを遮断から通電にする、ことを特徴とする請求項2記載の溶接電源装置である。   According to a third aspect of the present invention, the main control circuit is configured such that when the welding wire contacts the workpiece and the arc current exceeds a predetermined current reference value, the no-load switch is turned off and energized. The welding power supply device according to claim 2.

本発明では、溶接電源装置の出力端子間に無負荷用スイッチを介してブリーダ抵抗を接続し、溶接開始信号に応じて無負荷用スイッチを遮断し、出力端子間に接続したブリーダ抵抗を離脱させて無負荷電圧が高い状態で充放電コンデンサを充電させと充分に充電され、充電された後に無負荷用スイッチを通電させてブリーダ抵抗を出力端子間に接続させ、充放電コンデンサが充分に充電された状態で溶接ワイヤが被加工物に接触すると、放電電流の値が大きくなりアークのスタート性が向上する。   In the present invention, a bleeder resistor is connected between the output terminals of the welding power source device via a no-load switch, the no-load switch is cut off according to the welding start signal, and the bleeder resistor connected between the output terminals is disconnected. The charging / discharging capacitor is fully charged when the no-load voltage is high, and after charging, the no-load switch is energized to connect the bleeder resistor between the output terminals, and the charging / discharging capacitor is fully charged. When the welding wire comes into contact with the work piece in a state of being in a state, the value of the discharge current is increased and the arc startability is improved.

本発明の実施形態1に係る溶接電源装置の電気接続図である。It is an electrical connection figure of the welding power supply device concerning Embodiment 1 of the present invention. 実施形態1の動作を説明する波形図である。FIG. 6 is a waveform diagram for explaining the operation of the first embodiment. 実施形態2、3の動作を説明する波形図である。6 is a waveform diagram for explaining the operation of Embodiments 2 and 3. FIG. 従来技術の溶接電源装置の電気接続図である。It is an electrical connection figure of the welding power supply device of a prior art. 従来技術の動作を説明する波形図である。It is a wave form diagram explaining operation | movement of a prior art. 動作を説明する波形図である。It is a wave form diagram explaining operation | movement.

図1、図2を参照して本発明の実施形態1の動作について説明する。
図1は、本発明の実施形態1に係る溶接電源装置の電気接続図である。同図において、図4に示す従来技術の溶接電源装置の電気接続図と同一符号の構成物は、同一動作を行うので説明は省略し、符号の相違する構成物についてのみ説明する。
The operation of Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 is an electrical connection diagram of a welding power source apparatus according to Embodiment 1 of the present invention. In the figure, components having the same reference numerals as those in the electrical connection diagram of the conventional welding power source apparatus shown in FIG. 4 perform the same operations, and thus description thereof will be omitted. Only components having different reference numerals will be described.

図1に示す出力制御回路SCは、パルス周波数が一定でパルス幅を変調するPWM制御を行ない、出力電圧検出信号Vdに応じて出力制御信号Scを出力し、出力電流検出信号Idに応じてモータ制御信号Sdを出力する。そして、溶接開始信号TsのHighレベルに応じて充電制御信号ScrをHighレベルにし、図2(B)に示す予め定めた時間T1の間、充電制御信号ScrをHighレベルにする。また、溶接開始信号TsのHighレベルに応じて同図(C)に示す無負荷用スイッチ信号Sw1をHighレベルからLowレベルにする。   The output control circuit SC shown in FIG. 1 performs PWM control that modulates the pulse width with a constant pulse frequency, outputs an output control signal Sc according to the output voltage detection signal Vd, and motors according to the output current detection signal Id. A control signal Sd is output. Then, the charging control signal Scr is set to a high level in accordance with the high level of the welding start signal Ts, and the charging control signal Scr is set to a high level for a predetermined time T1 shown in FIG. Further, the no-load switch signal Sw1 shown in FIG. 5C is changed from the High level to the Low level according to the High level of the welding start signal Ts.

直流リアクトルDLは、入力側を図1に示す電源主回路の正電圧端子+に接続し全波整流出力を平滑して出力する。充電用スイッチング素子SCRは、直流リアクトルDLの出力側にアノードを接続し、カソード側を充放電コンデンサC2に接続し、充電制御信号ScrのHighレベルに応じて充電用スイッチング素子SCRは通電し、充放電コンデンサC2を充電させる。放電ダイオードD3は、アノード側を充電用スイッチング素子SCRのカソード側に接続し、カソード側は直流リアクトルDLの出力側に接続し、溶接ワイヤWWと被加工物Mとが接触すると放電ダイオードD3を介して充放電コンデンサC2が放電する。   The DC reactor DL connects the input side to the positive voltage terminal + of the power supply main circuit shown in FIG. 1 and smoothes and outputs the full-wave rectified output. The charging switching element SCR has an anode connected to the output side of the DC reactor DL, a cathode connected to the charge / discharge capacitor C2, and the charging switching element SCR is energized and charged according to the high level of the charging control signal Scr. The discharge capacitor C2 is charged. The discharge diode D3 has an anode side connected to the cathode side of the charging switching element SCR, and a cathode side connected to the output side of the DC reactor DL. Thus, the charge / discharge capacitor C2 is discharged.

図1に示す直流リアクトルDLの出力側と電源主回路の負電圧端子−との間に直列接続して設けられた無負荷用スイッチSW1とブリーダ抵抗R1とは、無負荷用スイッチ信号Sw1に応じて無負荷用スイッチSW1を通電又は遮断する。また、無負荷用スイッチSW1には、通常トランジスタを使用するが、FET、IGBT等の種々のスイチチング素子を使用してもよい。   The no-load switch SW1 and the bleeder resistor R1 connected in series between the output side of the DC reactor DL shown in FIG. 1 and the negative voltage terminal − of the power supply main circuit correspond to the no-load switch signal Sw1. To turn on or off the no-load switch SW1. The no-load switch SW1 normally uses a transistor, but various switching elements such as an FET and an IGBT may be used.

図2は、本発明の溶接電源装置の動作を説明する波形図である。
図2において、同図(A)は、溶接開始信号Tsを示し、同図(B)は、充電制御信号Scrを示し、同図(C)は、無負荷用スイッチ信号Sw1を示し、同図(D)は、出力電圧検出信号Vdを示し、同図(E)は、充放電コンデンサC2の充電電圧Vcを示し、同図(F)は、出力電流検出信号Idを示し、同図(G)は、溶接ワイヤWWと被加工物Mと距離Lwを示し、同図(F)は、溶接電流検出信号Wcrを示す。
FIG. 2 is a waveform diagram for explaining the operation of the welding power source apparatus of the present invention.
2A shows the welding start signal Ts, FIG. 2B shows the charging control signal Scr, FIG. 2C shows the no-load switch signal Sw1, and FIG. (D) shows the output voltage detection signal Vd, (E) shows the charging voltage Vc of the charging / discharging capacitor C2, (F) shows the output current detection signal Id, (G) ) Shows the welding wire WW, the workpiece M, and the distance Lw, and FIG. 8F shows the welding current detection signal Wcr.

次に、図1及び図2を用いて動作について説明する。
図2(A)に示す時刻t=t1において、溶接開始信号TsがHighレベルになると、図1に示す主制御回路SCは、主制御信号Scを出力してインバータ回路INVを駆動させると共に、モータ駆動信号Sdを出力して送給モータVMを駆動させ溶接ワイヤWWの送給を開始させる。このとき、同図(B)に示す充電制御信号ScrもHighレベルになり、図1に示す充電用スイッチング素子(例えば、サイリスタ素子)SCRが通電し、充放電コンデンサC2は充電を開始し同図(E)に示す充電電圧Vcが上昇する。
Next, the operation will be described with reference to FIGS.
When the welding start signal Ts becomes High level at time t = t1 shown in FIG. 2A, the main control circuit SC shown in FIG. 1 outputs the main control signal Sc to drive the inverter circuit INV, and the motor A drive signal Sd is output to drive the feed motor VM to start feeding the welding wire WW. At this time, the charge control signal Scr shown in FIG. 5B also becomes High level, the charging switching element (eg, thyristor element) SCR shown in FIG. 1 is energized, and the charge / discharge capacitor C2 starts charging. The charging voltage Vc shown in (E) increases.

図2(A)に示す時刻t=t1において、溶接開始信号TsがHighレベルになると、同図(C)に示す無負荷用スイッチ信号Sw1がHighレベルからLowレベルになり、無負荷用スイッチSW1が遮断し、図1に示すブリーダ抵抗R1に流れるブリーダ電流が停止する。そして、充放電コンデンサC2の充電が充分完了する予め定めた時間T2の間、無負荷用スイッチ信号Sw1をLowレベルにし、時間T1が経過する時刻t=t3のとき、無負荷用スイッチ信号Sw1をHighレベルにし、無負荷用スイッチSW1を通電させる。 When the welding start signal Ts becomes High level at time t = t1 shown in FIG. 2A, the no-load switch signal Sw1 shown in FIG. 2C changes from High level to Low level, and the no-load switch SW1. Is cut off, and the bleeder current flowing through the bleeder resistor R1 shown in FIG. 1 is stopped. Then, during a predetermined time T2 when the charging / discharging capacitor C2 is fully charged, the no-load switch signal Sw1 is set to the low level, and when the time T1 elapses, the no-load switch signal Sw1 is set. The high level is set and the no-load switch SW1 is energized.

ブリーダ電流を停止した状態で充放電コンデンサC2を充電すると、充分に充電され出力電圧(無負荷電圧)は高くなる。例えば、ブリーダ電流が流れているときの無負荷電圧約60Vに対して約70Vになる。そして、時刻t=t4において、同図(B)に示す充電制御信号ScrをHighレベルからLowレベルになり、充電用スイッチング素子SCRは通電から遮断し充放電コンデンサC2の充電は完了する。   If the charging / discharging capacitor C2 is charged in a state where the bleeder current is stopped, it is sufficiently charged and the output voltage (no load voltage) becomes high. For example, it becomes about 70V with respect to about 60V of no-load voltage when the bleeder current is flowing. At time t = t4, the charge control signal Scr shown in FIG. 4B changes from the High level to the Low level, the charging switching element SCR is cut off from energization, and the charging of the charging / discharging capacitor C2 is completed.

図2(c)に示す遮断時間T2が経過する時刻t=t5において、無負荷用スイッチ信号Sw1がLowレベルからHighレベルになり、無負荷用スイッチSW1が通電しブリーダ抵抗R1に流れるブリーダ電流が流れる。   At time t = t5 when the cutoff time T2 shown in FIG. 2C elapses, the no-load switch signal Sw1 changes from the low level to the high level, the no-load switch SW1 is energized, and the bleeder current flowing through the bleeder resistor R1 is increased. Flowing.

図2(G)に示すように、送給によって溶接ワイヤWWは被加工物Mに次第に近づき、ワイヤ先端と被加工物Mとの距離Lwが零となる時刻t=t6において、溶接ワイヤWWと被加工物とが接触すると、高電圧に充電された充放電コンデンサC2が放電を開始する。このとき、既に、時刻t=t5において、ブリーダ電流が流れているので無負荷電圧は若干低下する。また、この低下を抑制するには遮断時間T2を長くし、溶接ワイヤWWが被加工物Mに接触した後に無負荷用スイッチSW1が通電するようにすればよい。   As shown in FIG. 2G, the welding wire WW gradually approaches the workpiece M by feeding, and at time t = t6 when the distance Lw between the wire tip and the workpiece M becomes zero, the welding wire WW When the workpiece comes into contact, the charge / discharge capacitor C2 charged to a high voltage starts discharging. At this time, since the bleeder current has already flowed at time t = t5, the no-load voltage slightly decreases. Further, in order to suppress this decrease, the interruption time T2 is lengthened, and the no-load switch SW1 is energized after the welding wire WW contacts the workpiece M.

時刻t=t6〜t7の放電時間T3は、図2(F)に示すように、出力電流検出信号Idに充放電コンデンサC2から急峻な放電電流が重畳する。このように、溶接ワイヤWWが被加工物Mに接触した瞬間に急峻な放電電流が通電すると、溶接ワイヤの燃え上がりが大きくなりアークが発生しやすくなり、アークスタート性が向上する。   In the discharge time T3 from time t = t6 to t7, as shown in FIG. 2F, the steep discharge current from the charge / discharge capacitor C2 is superimposed on the output current detection signal Id. Thus, when a steep discharge current is applied at the moment when the welding wire WW comes into contact with the workpiece M, the burning of the welding wire increases and an arc is likely to be generated, thereby improving arc start performance.

上述より、放電コンデンサC2の充電が完了する予め定めた遮断時間T2(時刻t=t5)が経過すると無負荷用スイッチSW1を通電にする。このとき、ワイヤ先端と被加工物Mとの距離Lwが零となる時刻t=t6より、若干はやい時刻t=t5に無負荷用スイッチSW1が通電にすると、図2(D)に示す出力電圧検出信号Vdの無負荷電圧が若干低下するが、予め定めた遮断時間T2を時刻=t5より長い時刻t=t6〜t7の間にしてもよい。このとき、無負荷電圧の若干の低下は無くなる。   As described above, when a predetermined cutoff time T2 (time t = t5) when the charging of the discharge capacitor C2 is completed, the no-load switch SW1 is energized. At this time, when the no-load switch SW1 is energized at time t = t5, which is slightly shorter than time t = t6 when the distance Lw between the wire tip and the workpiece M becomes zero, the output voltage shown in FIG. Although the no-load voltage of the detection signal Vd slightly decreases, the predetermined cutoff time T2 may be between time t = t6 and t7 longer than time = t5. At this time, there is no slight decrease in the no-load voltage.

つぎに、図3を参照して本発明の実施形態2の動作について説明する。
図3において、同図(A)は、溶接開始信号Tsを示し、同図(B)は、充電制御信号Scrを示し、同図(C)は、無負荷用スイッチ信号Sw1を示し、同図(D)は、出力電圧検出信号Vdを示し、同図(E)は、充放電コンデンサC2の充電電圧Vcを示し、同図(F)は、出力電流検出信号Idを示し、同図(G)は、溶接ワイヤWWと被加工物Mと距離Lwを示し、同図(F)は、溶接電流検出信号Wcrを示す。
Next, the operation of Embodiment 2 of the present invention will be described with reference to FIG.
3A shows the welding start signal Ts, FIG. 3B shows the charging control signal Scr, FIG. 3C shows the no-load switch signal Sw1, and FIG. (D) shows the output voltage detection signal Vd, (E) shows the charging voltage Vc of the charging / discharging capacitor C2, (F) shows the output current detection signal Id, (G) ) Shows the welding wire WW, the workpiece M, and the distance Lw, and FIG. 8F shows the welding current detection signal Wcr.

図3において、実施形態1と同一動作であり説明は省略し、相違する動作についてのみ説明する。 In FIG. 3, since the operation is the same as that of the first embodiment, the description is omitted, and only the operation that is different will be described.

図3(A)に示す時刻t=t1において、溶接開始信号TsがHighレベルになると、同図(C)に示す無負荷用スイッチ信号Sw1がHighレベルからLowレベルになり、無負荷用スイッチSW1が遮断し、図1に示すブリーダ抵抗R1に流れるブリーダ電流が停止する。そして、ブリーダ電流を停止した状態で充放電コンデンサC2を充電すると、充分に充電され出力電圧(無負荷電圧)は高くなる。 When the welding start signal Ts becomes High level at time t = t1 shown in FIG. 3A, the no-load switch signal Sw1 shown in FIG. 3C changes from High level to Low level, and the no-load switch SW1. Is cut off, and the bleeder current flowing through the bleeder resistor R1 shown in FIG. 1 is stopped. When the charge / discharge capacitor C2 is charged in a state where the bleeder current is stopped, it is sufficiently charged and the output voltage (no load voltage) becomes high.

図3(G)に示すように、送給によって溶接ワイヤWWは被加工物Mに次第に近づき、ワイヤ先端と被加工物Mとの距離Lwが零となる時刻t=t5において、溶接ワイヤWWと被加工物とが接触すると、無負荷用スイッチ信号Sw1がLowレベルからHighレベルになり、無負荷用スイッチSW1が通電しブリーダ抵抗R1に流れるブリーダ電流が流れる。   As shown in FIG. 3G, the welding wire WW gradually approaches the workpiece M by feeding, and at time t = t5 when the distance Lw between the wire tip and the workpiece M becomes zero, the welding wire WW When the workpiece comes into contact with the workpiece, the no-load switch signal Sw1 changes from the Low level to the High level, and the no-load switch SW1 is energized, and a bleeder current flowing through the bleeder resistor R1 flows.

溶接ワイヤWWと被加工物とが接触すると、高電圧に充電された充放電コンデンサC2が放電を開始する。このとき、放電開始直前まで無負荷電圧が高い電圧、例えば約70Vを維持しているので、溶接ワイヤWWが被加工物Mに接触した瞬間に、高い無負荷電圧に加えて急峻な放電電流が通電するので、アークが発生しやすくなり、アークのスタート性が大きく向上する。   When the welding wire WW and the workpiece are in contact with each other, the charge / discharge capacitor C2 charged to a high voltage starts discharging. At this time, since the no-load voltage is maintained at a high voltage, for example, about 70 V, immediately before the start of discharge, a steep discharge current is added in addition to the high no-load voltage at the moment when the welding wire WW contacts the workpiece M. Since energization is performed, arcing is likely to occur, and arc startability is greatly improved.

さらに、図3を参照して本発明の実施形態3の動作について説明する。
図3(A)に示す時刻t=t1において、溶接開始信号TsがHighレベルになると、同図(C)に示す無負荷用スイッチ信号Sw1がHighレベルからLowレベルになり、無負荷用スイッチSW1が遮断し、図1に示すブリーダ抵抗R1に流れるブリーダ電流が停止する。そして、ブリーダ電流を停止した状態で充放電コンデンサC2を充電すると、充分に充電され出力電圧(無負荷電圧)は高くなる。
Furthermore, the operation of Embodiment 3 of the present invention will be described with reference to FIG.
When the welding start signal Ts becomes High level at time t = t1 shown in FIG. 3A, the no-load switch signal Sw1 shown in FIG. 3C changes from High level to Low level, and the no-load switch SW1. Is cut off, and the bleeder current flowing through the bleeder resistor R1 shown in FIG. 1 is stopped. When the charge / discharge capacitor C2 is charged in a state where the bleeder current is stopped, it is sufficiently charged and the output voltage (no load voltage) becomes high.

図3(G)に示すように、送給によって溶接ワイヤWWは被加工物Mに近づき接触すると、高電圧に充電された充放電コンデンサC2が放電を開始する。そして、アークが発生した後に出力電流(アーク電流)が予め定めた電流基準値を超えたとき、無負荷用スイッチ信号Sw1がLowレベルからHighレベルになり、無負荷用スイッチSW1が通電しブリーダ抵抗R1に流れるブリーダ電流が流れる。
また、図示省略のアーク発生中に出力電流(アーク電流)が電流基準値より低くなったとき、無負荷用スイッチ信号Sw1がHighレベルからLowレベルになり、無負荷用スイッチSW1が遮断されブリーダ抵抗R1に流れるブリーダ電流が停止する。
As shown in FIG. 3G, when the welding wire WW approaches and contacts the workpiece M by feeding, the charge / discharge capacitor C2 charged to a high voltage starts discharging. When the output current (arc current) exceeds a predetermined current reference value after the arc is generated, the no-load switch signal Sw1 changes from the low level to the high level, the no-load switch SW1 is energized, and the bleeder resistance A bleeder current flows through R1.
Further, when the output current (arc current) becomes lower than the current reference value during arc generation (not shown), the no-load switch signal Sw1 changes from the High level to the Low level, the no-load switch SW1 is cut off, and the bleeder resistance The bleeder current flowing through R1 stops.

図6に示す、出力電流が小電流領域(例えば、30A以下)では、アーク切れが起こりやすく、アーク切れに応じて図3(C)に示す無負荷用スイッチ信号Sw1がHighレベルからLowレベルになり、無負荷用スイッチSW1が遮断しブリーダ抵抗R1に流れるブリーダ電流が停止するので、無負荷電圧がすばやく高くなり、アーク切れから再アークが発生しやすくなる。   When the output current shown in FIG. 6 is in a small current region (for example, 30 A or less), an arc break is likely to occur, and the no-load switch signal Sw1 shown in FIG. 3C changes from a high level to a low level in response to the arc break. Thus, since the no-load switch SW1 is cut off and the bleeder current flowing through the bleeder resistor R1 is stopped, the no-load voltage is quickly increased and re-arcing is likely to occur due to arc breakage.

次に、本実施形態の特徴的な効果を記載する。
(a)実施形態1、2では、溶接開始信号が入力されると、ブリーダ抵抗を離脱させた状態で電源主回路の出力を開始するので、溶接ワイヤが被加工物に接触するまでの無負荷電圧が高くなり、この高い無負荷電圧の状態で溶接ワイヤWWを被加工物Mに接触すると、急峻な放電電流が通電されるので溶接ワイヤの燃え上がりが良くなりアークのスタート性が良くなる。
(b)実施形態3では、上述のアークのスタート性の向上に加えて、アーク発生中に出力電流(アーク電流)が電流基準値より低くなったとき、アーク切れと判別しブリーダ抵抗に流れるブリーダ電流が停止するので、無負荷電圧がすばやく高くなり、アーク切れが発生しても再アークが容易に発生する。
Next, characteristic effects of the present embodiment will be described.
(A) In the first and second embodiments, when the welding start signal is input, the output of the power supply main circuit is started in a state where the bleeder resistance is released, so that no load is applied until the welding wire comes into contact with the workpiece. When the voltage is increased and the welding wire WW is brought into contact with the workpiece M in the state of this high no-load voltage, since a steep discharge current is applied, the welding wire burns up and the arc start property is improved.
(B) In the third embodiment, in addition to the improvement of the arc startability described above, when the output current (arc current) becomes lower than the current reference value during arc generation, it is determined that the arc is out and the bleeder that flows to the bleeder resistance is detected. Since the current stops, the no-load voltage increases quickly, and re-arcing easily occurs even if an arc break occurs.

C1 平滑コンデンサ
C2 充放電コンデンサ
DL 直流リアクトル
D3 放電ダイオード
DR1 1次整流回路
DR2 2次整流回路
ID 出力電流検出回路
Id 出力電流検出信号
INT 主変圧器
INV インバータ回路
VD 出力電圧検出回路
Vd 出力電圧検出信号
M 被加工物
R1 ブリーダ抵抗
SC 主制御回路
Sc 主制御信号
Sd モータ駆動信号
SCR 充電用スイッチング素子
Scr 充電制御信号
SW1 無負荷用スイッチ
TH トーチ
VM 送給モータ
WW 溶接ワイヤ
C1 smoothing capacitor C2 charge / discharge capacitor DL DC reactor D3 discharge diode DR1 primary rectifier circuit DR2 secondary rectifier circuit ID output current detection circuit Id output current detection signal INT main transformer INV inverter circuit VD output voltage detection circuit Vd output voltage detection signal M Workpiece R1 Bleeder resistance SC Main control circuit Sc Main control signal Sd Motor drive signal SCR Charging switching element Scr Charging control signal SW1 No load switch TH Torch VM Feeding motor WW Welding wire

Claims (3)

商用交流電源を溶接に適した直流電圧へ変換して出力する正電圧端子と負電圧端子とを有する電源主回路と、前記電源主回路の出力電力を制御する主制御回路と、前記正電圧端子に直列に接続される直流リアクトルと、前記直流リアクトルを出力側に接続し充電電流を通電又は遮断する充電用スイッチング素子と、前記充電用スイッチング素子の出力側に正極端子を接続し前記負電圧端子に負極端子を接続する充放電コンデンサと、前記充放電コンデンサの正極端子にアノードを接続し前記直流リアクトルの出力側にカソードを接続し放電電流を通電する放電ダイオードと、前記直流リアクトルを出力側と前記電源主回路の負電圧端子との間に接続するブリーダ抵抗と、を備えた溶接電源装置において、
前記直流リアクトルの出力側と前記ブリーダ抵抗との間に無負荷用スイッチを設け、前記主制御回路は、溶接開始信号が入力されると、前記無負荷用スイッチを遮断状態にして前記電源主回路の出力を開始すると共に溶接ワイヤの送給を開始し、同時に前記充電用スイッチング素子を通電させて前記充放電コンデンサを充電し、前記充放電コンデンサの充電が完了する予め定めた遮断時間が経過すると前記無負荷用スイッチを通電にする、ことを特徴とする溶接電源装置。
A power supply main circuit having a positive voltage terminal and a negative voltage terminal for converting a commercial AC power supply into a DC voltage suitable for welding and outputting, a main control circuit for controlling output power of the power supply main circuit, and the positive voltage terminal A DC reactor connected in series, a charging switching element for connecting or disconnecting a charging current by connecting the DC reactor to the output side, a positive terminal connected to the output side of the charging switching element, and the negative voltage terminal A charge / discharge capacitor connected to the negative electrode terminal, a discharge diode that connects an anode to the positive electrode terminal of the charge / discharge capacitor, connects a cathode to the output side of the DC reactor, and conducts a discharge current; and the DC reactor is connected to the output side. In a welding power supply device comprising a bleeder resistor connected between the negative voltage terminal of the power supply main circuit,
A no-load switch is provided between the output side of the DC reactor and the bleeder resistor, and the main control circuit shuts off the no-load switch when the welding start signal is input, and the power source main circuit And starting the feeding of the welding wire, and simultaneously charging the charging / discharging capacitor by energizing the charging switching element, and when a predetermined interruption time elapses to complete charging of the charging / discharging capacitor. A welding power supply device, wherein the no-load switch is energized.
前記溶接ワイヤが被加工物に接触すると前記無負荷用スイッチを遮断から通電にする、ことを特徴とする請求項1記載の溶接電源装置。 2. The welding power source device according to claim 1, wherein when the welding wire comes into contact with a workpiece, the no-load switch is turned off and energized. 前記主制御回路は、前記溶接ワイヤが前記被加工物に接触しアーク電流が予め定めた電流基準値を超えたとき前記無負荷用スイッチを遮断から通電にする、ことを特徴とする請求項2記載の溶接電源装置。   3. The main control circuit, wherein when the welding wire contacts the workpiece and the arc current exceeds a predetermined current reference value, the no-load switch is turned off and energized. The welding power supply apparatus of description.
JP2012264832A 2012-12-04 2012-12-04 Welding power supply device Pending JP2014110710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264832A JP2014110710A (en) 2012-12-04 2012-12-04 Welding power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264832A JP2014110710A (en) 2012-12-04 2012-12-04 Welding power supply device

Publications (1)

Publication Number Publication Date
JP2014110710A true JP2014110710A (en) 2014-06-12

Family

ID=51031040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264832A Pending JP2014110710A (en) 2012-12-04 2012-12-04 Welding power supply device

Country Status (1)

Country Link
JP (1) JP2014110710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980626A (en) * 2017-11-20 2019-07-05 本田技研工业株式会社 The control method of power-supply system and power-supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980626A (en) * 2017-11-20 2019-07-05 本田技研工业株式会社 The control method of power-supply system and power-supply system
CN109980626B (en) * 2017-11-20 2022-10-28 本田技研工业株式会社 Power supply system and control method of power supply system

Similar Documents

Publication Publication Date Title
WO2015045196A1 (en) Voltage-type dc power supply and control method of voltage-type dc power supply
JP2008048485A (en) Dc/ac converter and its overcurrent protedction method
JP6161998B2 (en) Power supply device and power supply device for arc machining
EP3482863B1 (en) Welding power source apparatus
JP2010075944A (en) Ac arc welding machine
CN107538106B (en) Arc maintaining device of welding machine
JP2014110710A (en) Welding power supply device
JP6116920B2 (en) Arc machining power supply
JP5584101B2 (en) Arc machining power supply
WO2018193843A1 (en) Welding power supply device
CN110605459B (en) Welding power supply device
CN210633088U (en) Welding machine control device and welding machine
JP6880436B2 (en) Welding power supply
JP2013132658A (en) Method of controlling arc start of consumable electrode arc welding
JP2012157215A (en) Driving circuit and switching power supply device
JP5758115B2 (en) Arc welding machine
JP5257403B2 (en) Consumable electrode arc welding equipment
JP2018187645A (en) Welding power supply device
JP2007245190A (en) Consumable electrode type arc welding machine
JP5996377B2 (en) Power supply for arc welding
JPH05245635A (en) Consumable electrode dc arc welding machine
JP6958785B2 (en) Shielded metal arc welding system and welding power supply for shielded metal arc welding
JP4436077B2 (en) Arc start control method for consumable electrode gas shielded arc welding
KR200321780Y1 (en) Power Factor Compensation Circuit of Arc Welding Machine
JP5718754B2 (en) High frequency generator