JP3834304B2 - Liquid crystal display element - Google Patents
Liquid crystal display element Download PDFInfo
- Publication number
- JP3834304B2 JP3834304B2 JP2003278140A JP2003278140A JP3834304B2 JP 3834304 B2 JP3834304 B2 JP 3834304B2 JP 2003278140 A JP2003278140 A JP 2003278140A JP 2003278140 A JP2003278140 A JP 2003278140A JP 3834304 B2 JP3834304 B2 JP 3834304B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- slit
- display
- display element
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134327—Segmented, e.g. alpha numeric display
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134336—Matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
Description
本発明は、特に視角特性を改善した液晶表示素子に関するものである。 The present invention particularly relates to a liquid crystal display element having improved viewing angle characteristics.
液晶表示素子の視角特性を改善するためには、電極にスリットを設けることが有効である。TN‐LCDに関しては具体的に提案されており(例えば、特許文献1参照。)、また、垂直配向LCDにおいても既に提案されている(特願平2003−044262号(2003.2.21))。これらの中で、スリット配置の特徴及びスリットの役割について、次のように示されている。 In order to improve the viewing angle characteristics of the liquid crystal display element, it is effective to provide slits in the electrodes. A TN-LCD has been specifically proposed (see, for example, Patent Document 1), and has also been proposed for a vertical alignment LCD (Japanese Patent Application No. 2003-044262 (2003.2.21)). . Among these, the feature of the slit arrangement and the role of the slit are shown as follows.
対向配置された一対の基板と、前記一対の基板上に設けられ、液晶層を挟んで互いに重なり合って表示領域を形成する一対の透明電極と、前記一対の透明電極の各々の前記表示領域における透明電極の一部が取り除かれた長方形型のスリットとを有し、前記一対の透明電極の一方の透明電極の前記スリットと他方の透明電極の前記スリットとが前記表示領域内でスリット長手方向と直交する方向において交互に配置される。 A pair of substrates disposed opposite to each other, a pair of transparent electrodes provided on the pair of substrates and overlapping each other with a liquid crystal layer interposed therebetween, and transparent in the display region of each of the pair of transparent electrodes A rectangular slit from which a part of the electrode is removed, and the slit of one transparent electrode of the pair of transparent electrodes and the slit of the other transparent electrode are orthogonal to the slit longitudinal direction in the display region Are alternately arranged in the direction of
上記のスリットを表示領域に設けたことによって、電圧印加時にはスリットのエッジ付近に斜め電界(電界の方向が基板法線方向から傾いた電界)が生じ、液晶分子の倒れ込む方向を制御することができる。しかもスリットが一対の透明電極間で交互に配置されるため、スリットに囲まれたそれぞれの表示領域の両端での斜め電界の方向は同じ方向(互いに平行)になる。そして隣り合ったスリットで区切られた表示領域間では、その斜め電界の方向が逆になる。この様子を図示すると、図10に示すようになる。 By providing the slit in the display region, an oblique electric field (an electric field whose direction is inclined from the normal direction of the substrate) is generated near the edge of the slit when a voltage is applied, and the direction in which the liquid crystal molecules fall can be controlled. . Moreover, since the slits are alternately arranged between the pair of transparent electrodes, the directions of the oblique electric fields at both ends of each display region surrounded by the slits are the same direction (parallel to each other). The direction of the oblique electric field is reversed between the display areas divided by the adjacent slits. This is illustrated in FIG.
図10は上記のような表示領域の斜め電界の様子を示す断面図であり、液晶表示素子をスリットの長手方向に対して直角に切った時の断面形状を示している。同図中、1、2は上下基板の透明電極3、4に設けられたスリットで、上下で位置がずれていることにより、斜め電界5が発生する。 FIG. 10 is a cross-sectional view showing a state of the oblique electric field in the display region as described above, and shows a cross-sectional shape when the liquid crystal display element is cut at right angles to the longitudinal direction of the slit. In the figure, reference numerals 1 and 2 denote slits provided in the transparent electrodes 3 and 4 of the upper and lower substrates, and an oblique electric field 5 is generated due to a shift in the vertical position.
斜め電界5に対しては、垂直配向した液晶分子は図11に示すような方向に倒れるので、上記のようなスリット構造とすることにより、スリット1、2により形成された領域のそれぞれ隣り合った領域の液晶分子6はそれぞれ逆方向に倒れ込むことになる。いわゆる2ドメイン配向構造が実現できる。TN‐LCDの場合も原理的にはこれと全く同じであり、液晶分子が倒れる代わりに水平配向された液晶分子が2つの方向から立ち上がるということだけが異なっている。 With respect to the oblique electric field 5, the vertically aligned liquid crystal molecules are tilted in the direction as shown in FIG. 11, so that the slit structure as described above makes the regions formed by the slits 1 and 2 adjacent to each other. The liquid crystal molecules 6 in the region fall down in the opposite direction. A so-called two-domain alignment structure can be realized. In principle, the TN-LCD is exactly the same as this, except that the horizontally aligned liquid crystal molecules rise from two directions instead of falling down.
そして、それぞれの中で具体的なスリット形状が実施例として示されている。特許文献1のTN‐LCDの場合は、図12に示すように、表示領域の端から端までつながった1本の細長いスリットが上下基板にスリット長手方向と直交する方向において交互に配置されている。同図の(a)は平面図、(b)は斜視図であり、1a、1b、1cは上側基板のスリット、2a、2b、2cは下側基板のスリット、7は上側基板の配向方向、また8は下側基板の配向方向、9は液晶層中央部の液晶分子の配向方向をそれぞれ示している。 And the concrete slit shape is shown as an Example in each. In the case of the TN-LCD disclosed in Patent Document 1, as shown in FIG. 12, one elongated slit connected from end to end of the display area is alternately arranged on the upper and lower substrates in a direction perpendicular to the longitudinal direction of the slit. . (A) of the figure is a plan view, (b) is a perspective view, 1a, 1b, 1c are slits of the upper substrate, 2a, 2b, 2c are slits of the lower substrate, 7 is the orientation direction of the upper substrate, Reference numeral 8 denotes the orientation direction of the lower substrate, and 9 denotes the orientation direction of the liquid crystal molecules at the center of the liquid crystal layer.
垂直配向LCDの場合は、図13に示すように、スリット長手方向が多数に分断されたスリットが上下基板にスリット長手方向と直交する方向において交互に配置されている。同図の(a)は平面図、(b)は斜視図である。 In the case of a vertical alignment LCD, as shown in FIG. 13, slits having a large number of slit longitudinal directions are alternately arranged on the upper and lower substrates in a direction perpendicular to the slit longitudinal direction. (A) of the same figure is a top view, (b) is a perspective view.
前者のように1本の細長いスリットを用いる場合は、表示領域の外側でスリットにより分けられた領域をつなぐ必要がある(図12参照)。このようなことは設計的には可能なことであるが、設計工程が複雑になるためコストアップを招くことになり、上下の電極パターンの重ね合わせ精度も厳しくなる。 When using one long and narrow slit like the former, it is necessary to connect the area divided by the slit outside the display area (see FIG. 12). Although this is possible in terms of design, the design process becomes complicated, leading to an increase in cost, and the overlay accuracy of the upper and lower electrode patterns becomes severe.
これに対して後者の例では、スリットが分断されていてスリットにより分けられた領域が表示領域内でつながっているため、表示領域の外側でそれらをつなぐ必要がなく、パターン設計が簡略化される。しかし、このように長手方向に分断されたスリットを用いることにより、表示不良を起こしやすくなる。 On the other hand, in the latter example, since the slit is divided and the area divided by the slit is connected in the display area, it is not necessary to connect them outside the display area, and the pattern design is simplified. . However, display defects are easily caused by using the slits divided in the longitudinal direction in this way.
図14は上記の後者のスリットを用いて作製した2ドメインTN‐LCDの表示不良の例を示す図(写真)である。この2ドメインTN‐LCDは、低プレティルト角配向膜を用いて、かつ片側基板のラビング方向を通常の方向とは逆にして、セル厚方向に対して液晶分子がスプレイ配向をしてセル中央の液晶分子のティルト角が0度になるようにすることにより、2ドメイン配向が安定して得られるような工夫をしたものである。 FIG. 14 is a diagram (photograph) showing an example of display failure of a two-domain TN-LCD manufactured using the latter slit. This two-domain TN-LCD uses a low pretilt angle alignment film and reverses the rubbing direction of one side of the substrate from the normal direction, so that the liquid crystal molecules are splay aligned with respect to the cell thickness direction. By making the tilt angle of the liquid crystal molecules 0 degree, the device is devised so that two-domain alignment can be stably obtained.
同図中の円で囲った部分では、本来長手方向に隣り合ったスリットを結んでいるディスクリネーションラインが短手方向に隣り合ったスリットを結んでしまっていることが判る。このスリット短手方向を結んでいる2本のディスクリネーションラインで囲まれた領域では、本来立ち上がるべき方向とは逆の方向から液晶分子が立ち上がっている。したがって、この領域では視角方向が逆になり、このような領域が多数できることによって表示不良となる。具体的には、スリット短手方向に視角を傾けた時に表示がざらついて見えてしまう。更にこの表示不良は、液晶セルを高温雰囲気下で表示させ続けた時に顕著になることが判った。 It can be seen that in the portion surrounded by a circle in the figure, the disclination line originally connecting the adjacent slits in the longitudinal direction connects the adjacent slits in the short direction. In the region surrounded by the two disclination lines connecting the short slit direction, the liquid crystal molecules rise from the direction opposite to the direction that should originally rise. Accordingly, the viewing angle direction is reversed in this region, and a large number of such regions cause display defects. Specifically, the display appears rough when the viewing angle is tilted in the slit short direction. Further, it has been found that this display defect becomes prominent when the liquid crystal cell is continuously displayed in a high temperature atmosphere.
図15は85℃で約500時間表示し続けた後の表示領域の拡大図(写真)である。先ほど見られたスリット短手方向を結んでいる2本のディスクリネーションラインで囲まれた領域が広範囲にわたって現れていることが判る。このセルを目視で見たところ、甚だ見難いものであった。このような表示不良が発生する原因を図16を用いて考察する。 FIG. 15 is an enlarged view (photograph) of the display area after the display is continued at 85 ° C. for about 500 hours. It can be seen that the area surrounded by the two disclination lines connecting the slit short direction seen earlier appears over a wide range. When this cell was visually observed, it was very difficult to see. The cause of such a display failure will be considered with reference to FIG.
図16は上記の表示不良の液晶分子の配向の様子を示す図であり、図15のA−A′断面の液晶分子の配向の様子を模式的に描いて示している。スリットによりA−A′は本来は図に示すように領域1(右方向から分子が立ち上がる)と領域2(左方向から分子が立ち上がる)の2ドメイン配向になっており、その境界では液晶分子6が連続的に配向を変化させ、セル中央の液晶分子6のプレティルト角θが0度となる部分を中心にディスクリネーションライン(スリット長手方向をつなぐディスクリネーションライン)が形成されている。 FIG. 16 is a diagram showing the alignment state of the liquid crystal molecules having the above-mentioned poor display, and schematically shows the alignment state of the liquid crystal molecules in the AA ′ cross section of FIG. As shown in the figure, A-A 'is originally a two-domain alignment of region 1 (molecules rise from the right direction) and region 2 (molecules rise from the left direction), as shown in the figure. The disclination line (disclination line connecting the longitudinal direction of the slits) is formed around the portion where the pretilt angle θ of the liquid crystal molecules 6 in the center of the cell is 0 degree, while the orientation is continuously changed.
本来は上下基板のプレティルト角は等しいので、プレティルト角が0度のセル中央の液晶分子を中心に対称なスプレイ配向をしている。このため、領域1と領域2の液晶分子の弾性変形による自由エネルギーは等しく、両領域のバランスが保たれるので、ディスクリネーションラインは時間が経過しても動かずに安定している。しかし、上下基板のプレティルト角がラビング条件の微妙なずれ等により異なってしまった場合(図16では上側基板のプレティルト角が大きくθ1>θ2となっている)は、両領域の自由エネルギーは等しくならず、プレティルト角が高い方に立ち上がった領域(領域2)の方が自由エネルギーが小さくなり、逆の領域(領域1)より安定となる。 Originally, the pretilt angles of the upper and lower substrates are equal, so that the splay alignment is symmetric with respect to the liquid crystal molecules at the center of the cell where the pretilt angle is 0 degree. For this reason, the free energy due to the elastic deformation of the liquid crystal molecules in the region 1 and the region 2 is equal, and the balance between the two regions is maintained, so that the disclination line is stable without moving over time. However, when the pretilt angles of the upper and lower substrates are different due to a slight shift in the rubbing conditions (in FIG. 16, the pretilt angle of the upper substrate is large and θ 1 > θ 2 ), the free energy of both regions is The region where the pretilt angle is not equal and the region where the pretilt angle rises (region 2) has a lower free energy and is more stable than the opposite region (region 1).
このような状態になると、液晶分子配列はより安定な状態に変化するようになるため、図16の矢印で示すようにディスクリネーションラインの移動が生じて領域1は時間の経過とともに徐徐に小さくなり、やがて領域2に埋め尽くされてしまう。低プレティルト配向膜を用いているので上下基板のプレティルト角の差は非常に小さいため、領域1と領域2の自由エネルギーの差は小さく、常温ではこのようなディスクリネーションラインの移動は起こらないと考えるが、高温下では液晶分子の弾性定数が小さくなる上に液晶分子の揺らぎも大きくなるため、このようなディスクリネーションラインの移動が起こり、図15に示すような表示不良へと発展してしまうものと考えられる。 In such a state, the liquid crystal molecular alignment changes to a more stable state, so that the movement of the disclination line occurs as shown by the arrow in FIG. 16, and the region 1 gradually decreases with time. Eventually, the area 2 will be filled up. Since the difference in the pretilt angle between the upper and lower substrates is very small because a low pretilt alignment film is used, the difference in free energy between region 1 and region 2 is small, and such movement of the disclination line should not occur at room temperature. Considering that, at high temperatures, the elastic constants of the liquid crystal molecules become smaller and the fluctuations of the liquid crystal molecules also become larger. Therefore, such movement of the disclination line occurs, leading to a display defect as shown in FIG. It is thought that it will end up.
なお、図14に示すような表示不良が常温でしかも電圧をかけた直後から生じるのは、この部分の上下基板のプレティルト角の差が大きく、図16に示す両領域の自由エネルギー差が大きいために、電圧印加直後にディスクリネーションラインの移動が起こるか、もしくは初めからこの領域が逆方向から立ち上がるくらい大きなプレティルト角差がついているものと思われる。
上述のように、液晶表示素子における上下の基板の電極にスリットを設けることで視角特性を改善することができるが、設計の複雑化やコストアップを招いたり、組立精度が厳しくなることがあった。また、表示不良が発生し、ざらつき感や見難い感じが生じることがあった。 As described above, the viewing angle characteristics can be improved by providing slits on the electrodes of the upper and lower substrates of the liquid crystal display element, but this may lead to complicated design and cost increase, and the assembly accuracy may become severe. . In addition, display defects may occur, and a rough feeling or a difficult-to-see feeling may occur.
本発明は、上記のような問題の発生に鑑みてなされたものであり、設計の複雑化やコストアップ、また表示不良の発生を防止でき、視角を傾けた場合でも表示のざらつき感を感じることなく、良好な視角特性が得られる液晶表示素子を提供することを目的としている。 The present invention has been made in view of the occurrence of the above problems, and can prevent the design from becoming complicated and costly, and the occurrence of display defects, so that even when the viewing angle is tilted, the user feels a rough display. The present invention aims to provide a liquid crystal display element that can provide good viewing angle characteristics.
本発明に係る液晶表示素子は、表示をさせるために所定のパターンを形成させた透明電極を有する一対の基板で液晶を挟持してなる液晶表示素子であって、前記一対の基板上の透明電極が対向している領域において、該一対の基板の両方の透明電極に長方形型に一部が取り除かれたスリットを有し、片方の基板上の透明電極に設けられた前記スリットと他方の透明電極に設けられた前記スリットとが前記対向している領域内でスリットの長手方向と直交する方向に交互に配置されているとともに、片方の透明電極に設けられたスリットの短辺と他方の透明電極に設けられたスリットの短辺とが、スリットの長手方向に対して垂直な方向に並ばない位置で、該スリットの長手方向に対して略半ピッチずれた位置に配置されていることを特徴とするものである。 The liquid crystal display element according to the present invention is a liquid crystal display element in which a liquid crystal is sandwiched between a pair of substrates having a transparent electrode on which a predetermined pattern is formed for display, and the transparent electrodes on the pair of substrates In the region where the two electrodes are opposed to each other, both the transparent electrodes of the pair of substrates have a slit partially removed in a rectangular shape, and the slit provided on the transparent electrode on one substrate and the other transparent electrode And the slits provided in one of the transparent electrodes are alternately arranged in the direction perpendicular to the longitudinal direction of the slits in the region facing each other, and the other side of the slits provided in one of the transparent electrodes The short side of the slit provided in is arranged at a position that is not lined up in a direction perpendicular to the longitudinal direction of the slit and at a position shifted by about a half pitch with respect to the longitudinal direction of the slit. You It is intended.
本発明によれば、設計の複雑化やコストアップ、また表示不良の発生を防止でき、視角を傾けた場合でも表示のざらつき感を感じることなく、良好な視角特性が得られるという効果がある。 According to the present invention, it is possible to prevent the design from becoming complicated and costly, and to prevent the occurrence of display defects. Even when the viewing angle is tilted, there is an effect that a favorable viewing angle characteristic can be obtained without feeling a rough display.
以下、本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
まず、本発明の実施例1を参考例1と比較しながら詳細に説明する。参考例1及び実施例1では、セグメント表示の2ドメインTN‐LCDに本発明を適用した場合について説明する。 First, Example 1 of the present invention will be described in detail while comparing with Reference Example 1. In Reference Example 1 and Example 1, a case where the present invention is applied to a two-domain TN-LCD for segment display will be described.
(参考例1)
表示領域において透明電極の一部が取り除かれたスリットを有し、対向配置された一対の透明電極の一方の透明電極の上記スリットと他方の透明電極の上記スリットとが上記表示領域内で該スリットの長手方向と直角の方向に交互に配置された所定のパターンを有する基板上に、低プレティルト角の配向膜(日産化学工業製SE‐510)を塗布、焼成する。その後、図2に示す関係となるように基板をレーヨン製のラビング布を用いてラビングする。液晶のツイスト方向は左巻きである。
(Reference Example 1)
The display area has a slit from which a part of the transparent electrode is removed, and the slit of one transparent electrode and the slit of the other transparent electrode of the pair of transparent electrodes arranged opposite to each other are within the display area. A low pretilt angle alignment film (SE-510 manufactured by Nissan Chemical Industries, Ltd.) is applied and baked on a substrate having a predetermined pattern alternately arranged in a direction perpendicular to the longitudinal direction. After that, the substrate is rubbed with a rayon rubbing cloth so as to have the relationship shown in FIG. The twist direction of the liquid crystal is left-handed.
図1は上記セルになった状態でのスリットパターンを示す図であり、1は上側基板のスリット、2は下側基板のスリットを示している。スリット1、2の寸法は、20μm×100μm、上下のスリット間隔は、長さ方向が20μm、それに垂直な方向が40μmである。図2はセルになった状態でのラビング方向を示す図である。上側基板のラビング方向と下側基板のラビング方向は直交している。 FIG. 1 is a diagram showing a slit pattern in a state where the above-mentioned cell is formed, wherein 1 is a slit of the upper substrate, and 2 is a slit of the lower substrate. The dimensions of the slits 1 and 2 are 20 μm × 100 μm, and the upper and lower slits are 20 μm in the length direction and 40 μm in the direction perpendicular thereto. FIG. 2 is a diagram showing the rubbing direction in the state of being a cell. The rubbing direction of the upper substrate and the rubbing direction of the lower substrate are orthogonal to each other.
上記図2に示すラビング方向とすることにより、液晶分子はスプレイ配向し、セル中央の液晶分子のティルト角は0度になる。このように作製した2枚の基板にメインシール材を塗布し、更に9μmの直径を有するギャップコントロール材を散布する。その後、重ね合わせ、メインシール材を硬化させる。そして、でき上がった空セルに大日本インキ社製の複屈折率0.25の液晶を注入し、液晶セルを完成させる。この液晶セルに偏光板を図3に示すような構造で貼り合わせる。このようにして、ノーマリーブラック表示の2ドメインTN‐LCDが作製できる。 By setting the rubbing direction as shown in FIG. 2, the liquid crystal molecules are splay aligned, and the tilt angle of the liquid crystal molecules at the center of the cell is 0 degree. The main sealing material is applied to the two substrates thus produced, and a gap control material having a diameter of 9 μm is further dispersed. Thereafter, the main seal material is cured by overlapping. Then, a liquid crystal cell having a birefringence of 0.25 manufactured by Dainippon Ink Co., Ltd. is injected into the completed empty cell to complete the liquid crystal cell. A polarizing plate is bonded to the liquid crystal cell with a structure as shown in FIG. In this way, a normally black display 2-domain TN-LCD can be manufactured.
図3は偏光板の吸収軸を示す図であり、前面側(上側)の偏光板の吸収軸と背面側(下側)の偏光板の吸収軸は平行になっている。 FIG. 3 is a diagram showing the absorption axis of the polarizing plate, and the absorption axis of the polarizing plate on the front side (upper side) and the absorption axis of the polarizing plate on the back side (lower side) are parallel.
上記のセルに電圧を印加して表示させたところ、図14に示すような表示不良が多数の部分において発生し、液晶セルを斜め方向から見た場合、表示がざらついて見えた。スリット短手方向を結んでいる2本のディスクリネーションラインで囲まれた領域では、本来立ち上がるべき方向とは逆の方向から液晶分子が立ち上がっていて、この領域では視角方向が逆になるためである。 When a voltage was applied to the above cell for display, display defects as shown in FIG. 14 occurred in many parts, and the display looked rough when the liquid crystal cell was viewed from an oblique direction. In the area surrounded by the two disclination lines that connect the slit short direction, the liquid crystal molecules are rising from the direction opposite to the direction where they should stand up. In this area, the viewing angle direction is reversed. is there.
更に、このセルを85℃の雰囲気下で通電し続けたところ、約500時間経過後に図15に示すような表示不良が発生してしまい、甚だ見難い表示となってしまった。ただし、この表示不良は一旦電圧を下げて液晶分子を初期配向状態に戻すことにより解消されるようであり、再び電圧を上げて表示させてもこのように見難い表示にはならなかった。一旦電圧を下げて表示不良を解消したセルを再度85℃雰囲気下で通電したところ、今度は60時間経過後に同様の甚だ見難い表示不良が発生した。 Further, when the cell was continuously energized in an atmosphere of 85 ° C., a display defect as shown in FIG. 15 occurred after about 500 hours had elapsed, and the display became extremely difficult to see. However, this display defect seems to be solved by lowering the voltage once to return the liquid crystal molecules to the initial alignment state. Even if the voltage is increased again, the display is not so difficult to see. When the voltage was once reduced and the cell with the display defect eliminated was energized again in an atmosphere of 85 ° C., a similar display defect that was difficult to see occurred after 60 hours.
〔実施例1〕
表示領域において透明電極の一部が取り除かれたスリットを有し、対向配置された一対の透明電極の一方の透明電極の上記スリットと他方の透明電極の上記スリットとが上記表示領域内で該スリットの長手方向と直角の方向に交互に配置され、かつ、片方の透明電極に設けられたスリットに対して、他方の透明電極に設けられたスリットがスリット長手方向に対して半ピッチずれた状態で配置された所定のパターンを有する基板上に、低プレティルト角の配向膜(日産化学工業製SE‐510)を塗布、焼成する。その後、図2(セルになった状態でのラビング方向を図示)に示す関係となるように基板をレーヨン製のラビング布を用いてラビングする。液晶のツイスト方向は左巻きである。
[Example 1]
The display area has a slit from which a part of the transparent electrode is removed, and the slit of one transparent electrode and the slit of the other transparent electrode of the pair of transparent electrodes arranged opposite to each other are within the display area. In a state where the slits provided in the other transparent electrode are shifted by a half pitch with respect to the slit provided in the other transparent electrode with respect to the slit provided in one transparent electrode alternately with the direction perpendicular to the longitudinal direction. An alignment film having a low pretilt angle (SE-510, manufactured by Nissan Chemical Industries, Ltd.) is applied and baked on the substrate having a predetermined pattern. Thereafter, the substrate is rubbed using a rayon rubbing cloth so that the relationship shown in FIG. 2 (the rubbing direction in the cell state is shown) is obtained. The twist direction of the liquid crystal is left-handed.
図4はセルになった状態での本実施例のスリットパターンを示す図であり、上側基板のスリット1と下側基板のスリット2の寸法及び長さ方向の間隔は図1と同じであるが、両スリット1、2は長さ方向で半ピッチずれている。長さ方向と直交する方向の間隔は図1と同じである。 FIG. 4 is a diagram showing the slit pattern of this embodiment in the state of a cell, and the dimensions and the distance in the length direction of the slit 1 of the upper substrate and the slit 2 of the lower substrate are the same as those in FIG. The slits 1 and 2 are shifted by a half pitch in the length direction. The interval in the direction orthogonal to the length direction is the same as in FIG.
上記図2に示すラビング方向とすることにより、液晶分子はスプレイ配向し、セル中央の液晶分子のティルト角は0度になる。このように作製した2枚の基板にメインシール材を塗布し、更に9μmの直径を有するギャップコントロール材を散布する。その後、重ね合わせ、メインシール材を硬化させる。でき上がった空セルに大日本インキ社製の複屈折率0.25の液晶を注入し、液晶セルを完成させる。この液晶セルに偏光板を図3に示すような構造で貼り合わせる。このようにして、ノーマリーブラック表示の2ドメインTN‐LCDが作製できる。 By setting the rubbing direction as shown in FIG. 2, the liquid crystal molecules are splay aligned, and the tilt angle of the liquid crystal molecules at the center of the cell is 0 degree. The main sealing material is applied to the two substrates thus produced, and a gap control material having a diameter of 9 μm is further dispersed. Thereafter, the main seal material is cured by overlapping. A liquid crystal cell is completed by injecting a liquid crystal having a birefringence of 0.25 manufactured by Dainippon Ink Co., Ltd. A polarizing plate is bonded to the liquid crystal cell with a structure as shown in FIG. In this way, a normally black display 2-domain TN-LCD can be manufactured.
このセルに電圧を印加して表示させたところ、図5に示すようになり、図14で見られるようなスリット短手方向に隣り合ったスリット間をつなぐディスクリネーションライン発生による表示不良が全く発生しない表示が実現でき、セルを斜め方向から見ても全くざらつきを感じなかった。更にこのセルを85℃の雰囲気下で通電し続けたところ、1000時間経過後においても表示状態は綺麗なままであり、全く問題は生じなかった。 When this cell is displayed by applying a voltage, it is as shown in FIG. 5, and there is no display defect due to the occurrence of a disclination line connecting the adjacent slits in the slit short direction as seen in FIG. A display that does not occur can be realized, and even when the cell is viewed from an oblique direction, no roughness is felt. Further, when this cell was continuously energized in an atmosphere of 85 ° C., the display state remained clean even after 1000 hours had elapsed, and no problem occurred.
スリットのサイズについて説明すると、スリットの幅(長手方向と直交する方向の長さ)がある程度以上広い場合には、スリット中央部の電界が極端に弱くなり、電圧印加に対して液晶分子が反応しなくなる領域が生じ、その領域で表示不良が発生する。更に、スリット以外の部分すなわち液晶分子が電界に対して応答する領域の面積が小さくなり、いわゆる開口率が小さくなるために電圧印加時の透過率が小さくなってしまう。このようなことを考慮して、スリットの幅は30μm以下が好ましい。逆にスリットの幅が余りに狭すぎると、充分な斜め電界が生じなくなってしまい、本発明の効果が充分に発揮できないことになる。 The slit size will be explained. When the slit width (length in the direction perpendicular to the longitudinal direction) is more than a certain level, the electric field at the center of the slit becomes extremely weak, and the liquid crystal molecules react to voltage application. An area that disappears occurs, and a display defect occurs in that area. Further, the area other than the slit, that is, the area of the liquid crystal molecules responding to the electric field is reduced, and the so-called aperture ratio is reduced, so that the transmittance during voltage application is reduced. Considering this, the width of the slit is preferably 30 μm or less. On the other hand, if the slit width is too narrow, a sufficient oblique electric field is not generated, and the effect of the present invention cannot be sufficiently exhibited.
スリット幅をいろいろ変えて行った実験によると、スリット幅が5μmであると綺麗な2ドメイン配向にならないことが分かった。このような場合セルを目視で観察すると、特に視角を傾けた方向からドメイン不安定による表示のざらつき感を感じてしまう。スリット幅が10μmの時は液晶分子が倒れる方向に多少不安定さがあるが、視角を傾けた場合のざらつき感も許容できる範囲であることが判った。これに対してスリット幅が20μmであると、綺麗で安定した2ドメイン配向になり、視角を傾けた場合でもざらつき感を感じないことが判った。 According to an experiment conducted with various slit widths, it was found that when the slit width was 5 μm, a beautiful two-domain orientation was not obtained. In such a case, when the cell is visually observed, a feeling of display roughness due to domain instability is felt particularly from the direction in which the viewing angle is inclined. It was found that when the slit width is 10 μm, the liquid crystal molecules are somewhat unstable in the direction of tilting, but the rough feeling when the viewing angle is tilted is also acceptable. On the other hand, when the slit width was 20 μm, it became clear that the two-domain orientation was clean and stable, and even when the viewing angle was tilted, it did not feel rough.
更に、上下電極間における隣接するスリット間のスリット短手方向の間隔は、充分な表示領域を確保するためには大きい方がよいが、2ドメインの安定性を確保するためと目視で2ドメインの模様が識別されるのを防止するためにはなるべく狭い方が良い。この間隔をいろいろ変えた実験を行ったところ、このスリット間の間隔は70μmとすると2ドメインの安定性が得られず、少なくとも60μm以下にするのが2ドメインの安定性という面から好ましいことが判った。また、60μm以下であれば目視で2ドメインの模様が識別されることはなかった。またこの間隔の最小値であるが、開口率を考えるとなるべく広い方が好ましいので、最小でも10μm以上もしくはスリットの幅以上が望ましい。 In addition, the gap between the upper and lower electrodes in the slit short direction between adjacent slits is preferably large in order to ensure a sufficient display area, but in order to ensure the stability of two domains, two domains are visually observed. In order to prevent the pattern from being identified, it is preferable that the pattern is as narrow as possible. When experiments were performed with various intervals, it was found that if the interval between the slits was 70 μm, the stability of the two domains could not be obtained, and at least 60 μm or less was preferable in terms of the stability of the two domains. It was. Moreover, if it was 60 micrometers or less, the pattern of 2 domains was not identified visually. Further, the minimum value of this interval is preferably as wide as possible in view of the aperture ratio. Therefore, at least 10 μm or more than the width of the slit is desirable.
また、スリットの長さであるが、図14に示す表示不良がスリットエッジを起点として発生していることから、できる限りスリットを長くしてエッジ部分の数を少なくした方が好ましいが、スリットの長さが長くなればなるほどスリット短手方向に隣り合った領域をつなぐ透明電極の面積が小さくなってしまい、その部分の抵抗値が上昇することにより表示ムラが生じるというような不都合が生じる。様々な長さのスリットを実験した結果、20μmから300μm程度の長さを有するものが適することが判った。更に、スリット短手方向に隣り合った領域をつなぐ透明電極の幅は(図4では20μm)、10μmから50μm程度が適することも判った。 Further, regarding the length of the slit, since the display defect shown in FIG. 14 occurs starting from the slit edge, it is preferable to make the slit as long as possible to reduce the number of edge portions. The longer the length, the smaller the area of the transparent electrode that connects the adjacent areas in the lateral direction of the slit, and there is a disadvantage that display unevenness occurs due to an increase in the resistance value of that portion. As a result of experiments on slits having various lengths, it was found that a slit having a length of about 20 μm to 300 μm is suitable. Furthermore, it was also found that the width of the transparent electrode connecting the adjacent regions in the slit short direction (20 μm in FIG. 4) is suitably about 10 μm to 50 μm.
最後に、スリット長手方向への上下基板に設けられたスリットのずらし方について述べる。本実施例では丁度スリット長手方向の繰り返し寸法の半分だけずらした場合を示しているが、これに限定されるものではなく、上下基板のスリットが少しでもずれていれば同様の効果が得られると考えられる。ただし、対称性から考えると、丁度半ピッチだけずらした場合が左右対称になり最も安定していると考えられる。 Finally, how to displace the slits provided on the upper and lower substrates in the slit longitudinal direction will be described. In the present embodiment, the case is shown in which only half of the repetitive dimension in the slit longitudinal direction is shifted, but it is not limited to this, and the same effect can be obtained if the slits of the upper and lower substrates are shifted even a little. Conceivable. However, from the viewpoint of symmetry, it can be considered that the case where it is shifted by a half pitch is symmetrical and is most stable.
次に、本発明の実施例2を参考例2と比較しながら詳細に説明する。参考例2及び実施例2では、セグメント表示の2ドメイン垂直配向型LCDに本発明を適用した場合について説明する。 Next, Example 2 of the present invention will be described in detail in comparison with Reference Example 2. In Reference Example 2 and Example 2, the case where the present invention is applied to a two-domain vertical alignment type LCD for segment display will be described.
(参考例2)
参考例1と同様、表示領域において透明電極の一部が取り除かれたスリットを有し、対向配置された一対の透明電極の一方の透明電極の上記スリットと他方の透明電極の上記スリットとが上記表示領域内で交互に配置された所定のパターン(スリットパターン及び寸法は従来例1と同じ;図1参照)を有する基板上に、垂直配向膜(日産化学工業製SE‐1211)を塗布、焼成する。このように作製した2枚の基板にメインシール材を塗布し、更に4μmの直径を有するギャップコントロール材を散布する。その後、重ね合わせ、メインシール材を硬化させる。でき上がった空セルにメルク社製の複屈折率0.15の液晶を注入し、液晶セルを完成させる。この液晶セルに視角補償板(住友化学工業製VAC‐180フィルム)と偏光板を図6に示すような構造で貼り合わせる。このようにして、2ドメイン垂直配向型LCDが作製できる。
(Reference Example 2)
As in Reference Example 1, the display area has a slit from which a part of the transparent electrode has been removed, and the slit of one transparent electrode and the slit of the other transparent electrode of the pair of opposed transparent electrodes are A vertical alignment film (SE-1211 manufactured by Nissan Chemical Industries, Ltd.) is applied and baked on a substrate having a predetermined pattern (slit pattern and dimensions are the same as in Conventional Example 1; see FIG. 1) alternately arranged in the display area. To do. The main sealing material is applied to the two substrates thus produced, and a gap control material having a diameter of 4 μm is further dispersed. Thereafter, the main seal material is cured by overlapping. A liquid crystal cell having a birefringence of 0.15 manufactured by Merck is injected into the completed empty cell to complete the liquid crystal cell. A viewing angle compensator (VAC-180 film manufactured by Sumitomo Chemical Co., Ltd.) and a polarizing plate are bonded to the liquid crystal cell with a structure as shown in FIG. In this way, a two-domain vertical alignment type LCD can be manufactured.
このセルに電圧を印加して表示させたところ、液晶セルを斜め方向から見た場合に表示がざらついて見えた。また、このセルを85℃の雰囲気下で通電し続けたところ、2ドメインTN‐LCDで見られたような表示不良は発生しなかった。 When a voltage was applied to the cell for display, the liquid crystal cell looked rough when viewed from an oblique direction. Further, when this cell was continuously energized in an atmosphere of 85 ° C., the display defect as seen in the 2-domain TN-LCD did not occur.
〔実施例2〕
表示領域において透明電極の一部が取り除かれたスリットを有し、対向配置された一対の透明電極の一方の透明電極の上記スリットと他方の透明電極の上記スリットとが上記表示領域内で該スリットの長手方向と直角の方向に交互に配置され、かつ、片方の透明電極に設けられたスリットに対して、他方の透明電極に設けられたスリットがスリット長手方向に対して半ピッチずれた状態で配置された所定のパターン(セルになった状態でのスリットパターン及び寸法は図4参照)を有する基板上に、垂直配向膜(日産化学工業製SE‐1211)を塗布、焼成する。このように作製した2枚の基板にメインシール材を塗布し、更に4μmの直径を有するギャップコントロール材を散布する。その後、重ね合わせ、メインシール材を硬化させる。でき上がった空セルにメルク社製の複屈折率0.15の液晶を注入し、液晶セルを完成させる。この液晶セルに視角補償板(住友化学工業製VAC‐180フィルム)と偏光板を図6に示すような構造で貼り合わせる。このようにして、2ドメイン垂直配向型LCDが作製できる。
[Example 2]
The display area has a slit from which a part of the transparent electrode is removed, and the slit of one transparent electrode and the slit of the other transparent electrode of the pair of transparent electrodes arranged opposite to each other are within the display area. In a state where the slits provided in the other transparent electrode are shifted by a half pitch with respect to the slit provided in the other transparent electrode with respect to the slit provided in one transparent electrode alternately with the direction perpendicular to the longitudinal direction. A vertical alignment film (SE-1211 manufactured by Nissan Chemical Industries, Ltd.) is applied and baked on a substrate having a predetermined pattern (see FIG. 4 for the slit pattern and dimensions in a cell state). The main sealing material is applied to the two substrates thus produced, and a gap control material having a diameter of 4 μm is further dispersed. Thereafter, the main seal material is cured by overlapping. A liquid crystal cell having a birefringence of 0.15 manufactured by Merck is injected into the completed empty cell to complete the liquid crystal cell. A viewing angle compensator (VAC-180 film manufactured by Sumitomo Chemical Co., Ltd.) and a polarizing plate are bonded to the liquid crystal cell with a structure as shown in FIG. In this way, a two-domain vertical alignment type LCD can be manufactured.
図6は上記のセル構造を示す図であり、(a)はその断面図、(b)は偏光板の吸収軸を示している。同図中、11、12は上下の偏光板、13は視角補償フィルム、14は垂直配向型LCDを示している。前面側(上側)の偏光板11の吸収軸と背面側(下側)の偏光板12の吸収軸は直交している。 6A and 6B are diagrams showing the cell structure. FIG. 6A is a cross-sectional view thereof, and FIG. 6B is an absorption axis of the polarizing plate. In the figure, 11 and 12 are upper and lower polarizing plates, 13 is a viewing angle compensation film, and 14 is a vertical alignment type LCD. The absorption axis of the polarizing plate 11 on the front side (upper side) and the absorption axis of the polarizing plate 12 on the back side (lower side) are orthogonal to each other.
上記のセルに電圧を印加して表示させたところ、液晶セルを斜め方向から見た場合でも表示ざらつきは全く認められなかった。更に、このセルを85℃の雰囲気下で通電し続けても、参考例1の2ドメインTN‐LCDで見られたような表示不良は発生しなかった。 When a voltage was applied to the above cell for display, no display roughness was observed even when the liquid crystal cell was viewed from an oblique direction. Furthermore, even when the cell was continuously energized in an atmosphere of 85 ° C., the display defect as seen in the 2-domain TN-LCD of Reference Example 1 did not occur.
〔実施例3〕
次に、ドットマトリクスタイプの2ドメインTN‐LCD及び2ドメイン垂直配向型LCDに本発明を適用した場合について説明する。
Example 3
Next, a case where the present invention is applied to a dot matrix type two-domain TN-LCD and a two-domain vertical alignment type LCD will be described.
セグメント表示の時と同様に、スリットを長手方向にずらさない構造(図7参照)にしたものと、長手方向に半ピッチずらした構造(図8参照)にしたもので、それぞれ2ドメインTN−LCD及び2ドメイン垂直配向型LCDを作製して、表示のざらつき具合を確認したところ、やはり、半ピッチずらした構造にすることによって表示ざらつきを大幅に低減できた。 Similarly to the segment display, the slit is not shifted in the longitudinal direction (see FIG. 7) and the slit is shifted in the longitudinal direction by a half pitch (see FIG. 8). Further, when a 2-domain vertical alignment type LCD was fabricated and the roughness of the display was confirmed, the display roughness could be greatly reduced by making the structure shifted by a half pitch.
図7はセグメント基板のスリット1とコモン基板のスリット2を長手方向にずらさない構造、図8はスリット1、2を長手方向に半ピッチずらした構造をそれぞれ示す図である。図中、15はセグメント基板(上側基板)、16はコモン基板を示している。 FIG. 7 shows a structure in which the slit 1 of the segment substrate and the slit 2 of the common substrate are not shifted in the longitudinal direction, and FIG. 8 is a diagram showing a structure in which the slits 1 and 2 are shifted by a half pitch in the longitudinal direction. In the figure, 15 indicates a segment substrate (upper substrate), and 16 indicates a common substrate.
ドットマトリクス表示の場合は、横方向のくし歯型電極(コモン電極)と縦方向のくし歯型電極(セグメント電極)の交差している部分のみにスリットが敷き詰められている。セグメント表示の時と同様に、スリットは表示領域において上下の電極間で交互に配置される。したがって、液晶分子の立ち上がる方向(TNの場合)及び倒れ込む方向(垂直配向型の場合)は交互に反転するので2ドメイン構造となり、表示領域のスリットで挟まれた小領域の電界印加時の液晶分子の傾きが交互に逆転するために、全体として視角特性が補完され、視角依存性が減少するので、何れの方向からでも視認性が良くなる。 In the case of dot matrix display, slits are laid only in the intersecting portions of the horizontal comb-shaped electrode (common electrode) and the vertical comb-shaped electrode (segment electrode). As in the segment display, the slits are alternately arranged between the upper and lower electrodes in the display area. Accordingly, the rising direction (in the case of TN) of the liquid crystal molecules and the direction of falling (in the case of the vertical alignment type) are alternately reversed, so that a two-domain structure is formed, and the liquid crystal molecules when an electric field is applied to a small region sandwiched between slits in the display region. Since the inclination of the rotation is alternately reversed, the viewing angle characteristics are complemented as a whole, and the viewing angle dependency is reduced, so that visibility is improved from any direction.
また、スリットの幅や上下電極間における隣接するスリット間の間隔、及びスリットの長さの好ましい値は実施例1で述べたセグメント表示場合と全く同様であった。 Further, the preferred values of the slit width, the interval between adjacent slits between the upper and lower electrodes, and the length of the slit were the same as those in the segment display described in the first embodiment.
ここで注意しなければいけないのは、1つのドットのスリットの長手方向と直交する方向の最端部、つまり一番端っこ(両端)のスリットを、スリットの長手方向と直交に配置されている電極(図7、8ではセグメント電極)側に設けることである。 It should be noted here that the electrode at the extreme end in the direction orthogonal to the longitudinal direction of the slit of one dot, that is, the slit at the extreme end (both ends) is arranged orthogonal to the longitudinal direction of the slit. (Segment electrodes in FIGS. 7 and 8) are provided on the side.
〔実施例4〕
次に、本発明をTFTアクティブマトリクスタイプの液晶表示素子に適用した場合について説明する。
Example 4
Next, the case where the present invention is applied to a TFT active matrix type liquid crystal display element will be described.
図9はTFTアクティブマトリックス液晶表示装置の数個の画素領域を示す平面図である。なお、アクティブマトリックス型液晶装置は現在では一般的であるので、その構造については簡単に言及するに止める。同図においては、透明ガラス基板(図示せず)上に複数のアモルファスシリコン等によるTFT素子20と、ITO等による透明画素電極21と、更にTFT素子20のソース電極Sとゲート電極Gとにそれぞれ接続するソースライン(信号線)22と、ゲートライン(走査線)23とが形成され、TFT素子20によりドレイン電極Dを介して画素電極21を駆動する構成となっている。画素電極21の上には図示しないが垂直配向膜(垂直配向型の場合)もしくは水平配向膜にラビング処理を施したもの(TNの場合)が形成される。 FIG. 9 is a plan view showing several pixel regions of a TFT active matrix liquid crystal display device. The active matrix type liquid crystal device is generally used at present, and the structure thereof is only briefly described. In the figure, a plurality of TFT elements 20 made of amorphous silicon, a transparent pixel electrode 21 made of ITO, etc., and a source electrode S and a gate electrode G of the TFT element 20 are respectively formed on a transparent glass substrate (not shown). A source line (signal line) 22 and a gate line (scanning line) 23 to be connected are formed, and the pixel element 21 is driven by the TFT element 20 via the drain electrode D. Although not shown, a vertical alignment film (in the case of a vertical alignment type) or a horizontal alignment film that has been subjected to a rubbing process (in the case of TN) is formed on the pixel electrode 21.
また、平面図では図示しにくいので省略するが、上記画素電極の形成されたガラス基板の上に、その基板と対向して、液晶層を介してもう一つのガラス基板が配置され、その基板には共通電極が形成される。また共通電極の液晶層と接する面上にも、垂直配向膜(垂直配向型の場合)もしくは水平配向膜にラビング処理を施したもの(TNの場合)が形成される。 Although not shown in the plan view, the description is omitted, but another glass substrate is disposed on the glass substrate on which the pixel electrode is formed so as to face the substrate with a liquid crystal layer interposed therebetween. A common electrode is formed. Also, a vertical alignment film (in the case of a vertical alignment type) or a film obtained by subjecting a horizontal alignment film to a rubbing process (in the case of TN) is formed on the surface of the common electrode that is in contact with the liquid crystal layer.
上記画素電極21には電極の一部を取り除いた図示のような実線で示すスリット24が複数形成される。更に、画素電極21と対向する共通電極にも破線で示すような電極の一部を削除したスリット25が形成される。上下の基板のスリット24と25は交互に並び、かつ、画素電極に設けられたスリットに対して、共通電極に設けられたスリットがスリット長手方向に対して半ピッチずれた状態で配置される。 The pixel electrode 21 is formed with a plurality of slits 24 shown by solid lines as shown in the drawing, with a part of the electrode removed. Further, the common electrode facing the pixel electrode 21 is also formed with a slit 25 from which a part of the electrode as shown by a broken line is deleted. The slits 24 and 25 of the upper and lower substrates are alternately arranged, and the slits provided in the common electrode are arranged in a state shifted by a half pitch with respect to the slit longitudinal direction with respect to the slits provided in the pixel electrode.
図9のスリットの長手方向と直交する方向における断面は、図10に示す断面構造と基本的に対応する。この上下電極間で交互に配置したスリット24、25により、実施例1及び実施例2で説明したのと同様な作用効果を生ずる。 The cross section in the direction orthogonal to the longitudinal direction of the slit in FIG. 9 basically corresponds to the cross sectional structure shown in FIG. The slits 24 and 25 arranged alternately between the upper and lower electrodes produce the same effects as described in the first and second embodiments.
ここで注意しなければいけないのは、実施例2のドットマトリクスタイプの液晶表示素子と同様に、1つの画素電極61のスリットの長手方向と直交する方向の一番端っこ(両端)のスリットを、共通電極側に設けることである。 It should be noted here that, similarly to the dot matrix type liquid crystal display element of the second embodiment, the slit at the extreme end (both ends) in the direction orthogonal to the longitudinal direction of the slit of one pixel electrode 61 is It is to be provided on the common electrode side.
以上、本発明の各実施例について説明したが、実施例の構造を採用することにより、設計の複雑化やコストアップ、また表示不良の発生を防止でき、視角を傾けた場合でも表示のざらつき感を感じることなく、良好な視角特性が得られる液晶表示素子を実現することができる。 As described above, each embodiment of the present invention has been described. By adopting the structure of the embodiment, it is possible to prevent design complexity and cost increase, and display defects, and display roughness even when the viewing angle is tilted. It is possible to realize a liquid crystal display element capable of obtaining good viewing angle characteristics without feeling the above.
なお、アクティブマトリックス構造には上記以外の別の構造も有るが、本発明はそのような別のアクティブマトリクス構造でも適用できる。本発明は、以上図面を参照して説明した実施例に限るものではなく、上記開示に基づき当業者であれば様々な変更や改良ができることはいうまでもない。このような場合も、半ピッチずらした構造にすることによって表示ざらつきを抑えられる。 The active matrix structure includes other structures other than those described above, but the present invention can also be applied to such other active matrix structures. The present invention is not limited to the embodiments described above with reference to the drawings, and it goes without saying that various modifications and improvements can be made by those skilled in the art based on the above disclosure. Even in such a case, display roughness can be suppressed by adopting a structure shifted by a half pitch.
本発明は、セグメント表示、ドットマトリクス表示の何れの液晶表示素子にも対応可能である。更に、TFTなどのスイッチング素子を用いたアクティブマトリクスタイプの液晶表示素子にも適用可能である。 The present invention is applicable to both liquid crystal display elements of segment display and dot matrix display. Furthermore, the present invention can also be applied to an active matrix type liquid crystal display element using a switching element such as a TFT.
1 上側基板のスリット
2 下側基板のスリット
3 透明電極
4 透明電極
5 斜め電界
6 液晶分子
11 偏光板
12 偏光板
13 視角補償フィルム
14 垂直配向型LCD
15 上側基板
16 下側基板
20 TFT素子
21 透明画素電極
24 スリット
25 スリット
DESCRIPTION OF SYMBOLS 1 Upper substrate slit 2 Lower substrate slit 3 Transparent electrode 4 Transparent electrode 5 Diagonal electric field 6 Liquid crystal molecule 11 Polarizing plate 12 Polarizing plate 13 Viewing angle compensation film 14 Vertical alignment type LCD
15 Upper substrate 16 Lower substrate 20 TFT element 21 Transparent pixel electrode 24 Slit 25 Slit
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003278140A JP3834304B2 (en) | 2003-07-23 | 2003-07-23 | Liquid crystal display element |
CNB2004100589421A CN100412660C (en) | 2003-07-23 | 2004-07-23 | Liquid crystal display components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003278140A JP3834304B2 (en) | 2003-07-23 | 2003-07-23 | Liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005043696A JP2005043696A (en) | 2005-02-17 |
JP3834304B2 true JP3834304B2 (en) | 2006-10-18 |
Family
ID=34264641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003278140A Expired - Lifetime JP3834304B2 (en) | 2003-07-23 | 2003-07-23 | Liquid crystal display element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3834304B2 (en) |
CN (1) | CN100412660C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2192439A2 (en) | 2008-11-26 | 2010-06-02 | Stanley Electric Co., Ltd. | Liquid crystal display and its manufacture method |
EP2423738A2 (en) | 2010-08-25 | 2012-02-29 | Stanley Electric Co., Ltd. | Liquid crystal display element |
US8169574B2 (en) | 2008-08-04 | 2012-05-01 | Stanley Electric Co., Ltd. | Liquid crystal display with viewing angle compensators |
US8542335B2 (en) | 2010-09-22 | 2013-09-24 | Stanley Electric Co., Ltd. | Liquid crystal display element |
US8749466B2 (en) | 2007-05-10 | 2014-06-10 | Stanley Electric Co., Ltd. | Vertical alignment type liquid crystal display apparatus having improved display uniformity |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4846401B2 (en) * | 2006-03-17 | 2011-12-28 | スタンレー電気株式会社 | Liquid crystal display element |
JP4846402B2 (en) * | 2006-03-20 | 2011-12-28 | スタンレー電気株式会社 | Liquid crystal display element |
JP4781866B2 (en) * | 2006-03-23 | 2011-09-28 | スタンレー電気株式会社 | Liquid crystal display element |
JP4802023B2 (en) * | 2006-03-24 | 2011-10-26 | 東芝モバイルディスプレイ株式会社 | Liquid crystal display |
JP4801479B2 (en) * | 2006-03-28 | 2011-10-26 | スタンレー電気株式会社 | Liquid crystal display element |
JP4884176B2 (en) * | 2006-11-16 | 2012-02-29 | スタンレー電気株式会社 | Liquid crystal display element |
US8274637B2 (en) | 2006-12-28 | 2012-09-25 | Citizen Holdings Co., Ltd. | Liquid crystal panel having an opening in transparent conductive layer for venting gas |
JP5706147B2 (en) * | 2010-12-13 | 2015-04-22 | 京セラディスプレイ株式会社 | Liquid crystal display |
JP5827177B2 (en) * | 2012-06-01 | 2015-12-02 | スタンレー電気株式会社 | Liquid crystal display |
JP6406822B2 (en) * | 2013-12-25 | 2018-10-17 | スタンレー電気株式会社 | Liquid crystal display element |
JP6145479B2 (en) * | 2015-07-16 | 2017-06-14 | スタンレー電気株式会社 | Liquid crystal display |
JP6419291B2 (en) * | 2017-10-27 | 2018-11-07 | スタンレー電気株式会社 | Liquid crystal display |
JP6564492B2 (en) * | 2018-04-16 | 2019-08-21 | スタンレー電気株式会社 | Liquid crystal display element |
CN110007533B (en) * | 2019-04-10 | 2020-12-01 | 惠科股份有限公司 | Pixel electrode and liquid crystal display panel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108768A (en) * | 1988-09-20 | 1991-05-08 | Fujitsu Ltd | Manufacture of semiconductor memory |
JP3164702B2 (en) * | 1993-07-27 | 2001-05-08 | シャープ株式会社 | Liquid crystal display |
JP3966614B2 (en) * | 1997-05-29 | 2007-08-29 | 三星電子株式会社 | Wide viewing angle LCD |
JP3492582B2 (en) * | 2000-03-03 | 2004-02-03 | Nec液晶テクノロジー株式会社 | Liquid crystal display device and method of manufacturing the same |
KR100720093B1 (en) * | 2000-10-04 | 2007-05-18 | 삼성전자주식회사 | liquid crystal display |
-
2003
- 2003-07-23 JP JP2003278140A patent/JP3834304B2/en not_active Expired - Lifetime
-
2004
- 2004-07-23 CN CNB2004100589421A patent/CN100412660C/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8749466B2 (en) | 2007-05-10 | 2014-06-10 | Stanley Electric Co., Ltd. | Vertical alignment type liquid crystal display apparatus having improved display uniformity |
US9207471B2 (en) | 2007-05-10 | 2015-12-08 | Stanley Electric Co., Ltd. | Vertical alignment type liquid crystal display apparatus having improved display uniformity |
USRE46345E1 (en) | 2007-05-10 | 2017-03-21 | Stanley Electric Co., Ltd | Vertical alignment type liquid crystal display apparatus having improved display uniformity |
US8169574B2 (en) | 2008-08-04 | 2012-05-01 | Stanley Electric Co., Ltd. | Liquid crystal display with viewing angle compensators |
EP2192439A2 (en) | 2008-11-26 | 2010-06-02 | Stanley Electric Co., Ltd. | Liquid crystal display and its manufacture method |
EP2423738A2 (en) | 2010-08-25 | 2012-02-29 | Stanley Electric Co., Ltd. | Liquid crystal display element |
US8542335B2 (en) | 2010-09-22 | 2013-09-24 | Stanley Electric Co., Ltd. | Liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
CN100412660C (en) | 2008-08-20 |
JP2005043696A (en) | 2005-02-17 |
CN1576975A (en) | 2005-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3834304B2 (en) | Liquid crystal display element | |
JP4107978B2 (en) | Liquid crystal display element | |
US9977289B2 (en) | Liquid crystal display having wide viewing angle | |
JP3108768B2 (en) | TN liquid crystal display device | |
US6704083B1 (en) | Liquid crystal display including polarizing plate having polarizing directions neither parallel nor perpendicular to average alignment direction of molecules | |
JP3324926B2 (en) | Liquid crystal display device | |
US20030202144A1 (en) | Liquid crystal display having wide viewing angle | |
JP5101268B2 (en) | Liquid crystal display element | |
JP3101454B2 (en) | TN liquid crystal display device | |
JP2001174821A (en) | Active matrix type liquid crystal display device | |
JP4902345B2 (en) | Liquid crystal display element | |
JPH09325373A (en) | Liquid crystal display element and production therefor | |
JP4801479B2 (en) | Liquid crystal display element | |
JP4606540B2 (en) | Multi-domain liquid crystal display device | |
JP4847134B2 (en) | Liquid crystal display element | |
JP4846401B2 (en) | Liquid crystal display element | |
CN111812895A (en) | Pixel electrode and liquid crystal display panel | |
JP2713210B2 (en) | Liquid crystal display | |
JP2008164982A (en) | Liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060414 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060721 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3834304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100728 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110728 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130728 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |