JP3834091B2 - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP3834091B2
JP3834091B2 JP01830696A JP1830696A JP3834091B2 JP 3834091 B2 JP3834091 B2 JP 3834091B2 JP 01830696 A JP01830696 A JP 01830696A JP 1830696 A JP1830696 A JP 1830696A JP 3834091 B2 JP3834091 B2 JP 3834091B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane module
water
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01830696A
Other languages
Japanese (ja)
Other versions
JPH09187768A (en
Inventor
和男 田中
一郎 河田
雅彦 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP01830696A priority Critical patent/JP3834091B2/en
Publication of JPH09187768A publication Critical patent/JPH09187768A/en
Application granted granted Critical
Publication of JP3834091B2 publication Critical patent/JP3834091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は下水を処理する場合、高次処理を膜分離法により行う下水の処理方法に関するものである。
【0002】
【従来の技術】
都市での下水処理においては、下水を粗濾過したうえで、活性汚泥法により生物処理し、その処理水を河川に放流している。
すなわち、粗濾過した下水を曝気槽に導入し、下水中の有機物を浮遊状態の微生物により好気性状態で吸着・分解させ、微生物を増殖させ、更に、曝気槽の微生物混合液(ML)を最終沈殿池に導き、微生物を沈殿分離し、その沈殿微生物を返送汚泥としての曝気槽の下水流入部に返送して循環処理を行い、沈殿池の余剰汚泥を適時抜き取っている。
近来、環境問題や水資源の有効利用のために、上記処理水を放流せずに、例えば、公園等の公共施設の親水用水として再利用することが検討されている。而して、この有効利用のためには、上記処理水から窒素や燐等の栄養塩類を高い除去率で除去することが必要である。
【0003】
【発明が解決しようとする課題】
従来、活性汚泥処理を嫌気・好気状態の繰返しで行って有機物と同時に窒素をも除去することが、所謂、生物学的硝化脱窒法として知られている。また、活性汚泥処理を完全嫌気状態、無酸素状態、好気状態で順次に行うことを繰り返して有機物と同時に窒素及び燐をも除去することが、所謂、生物学的硝化脱窒燐除去法として知られている。
しかしながら、これらの方法では、上記最終の処理水を有効に再利用できる程度にまで窒素や燐化合物を除去することは困難である。
【0004】
而して、この窒素や燐化合物の除去のために、逆浸透膜モジュ−ルにより最終的な高次処理を行うことが提案されている。この処理における処理水量が大きいために、逆浸透膜モジュ−ルには透過流束が大のものを使用することが適切であり、その逆浸透膜モジュ−ルとしては架橋芳香族ポリアミド系逆浸透膜モジュ−ルが注目されている。
しかしながら、本発明者等の試験結果によれば、この架橋芳香族ポリアミド系逆浸透膜モジュ−ルで上記最終的な高次処理を行うと、比較的早期に透過流束が低下し、所定の処理速度を維持することが困難であることが知った。
かかる早期透過流束の低下の原因は、処理水中に含有されている界面活性剤が架橋芳香族ポリアミド膜表面に顕著に吸着され、膜表面の親水性が低下した結果であると推定される。
【0005】
本発明の目的は、下水の処理において、下水の最終的な高次処理を高く、かつ安定な透過流束のもとで、しかも、窒素や燐等の栄養塩類を高除去率で除去して行うことを可能とし、その処理水を公共設備の親水用水として利用可能とすることにある。
【0006】
【課題を解決するための手段】
本発明に係る下水の処理方法は、原水に接する膜表面がピペラジンアミノ化合物の架橋重合体で形成された前段の逆浸透膜モジュ−ルと、原水に接する膜表面が架橋芳香族ポリアミドで形成された後段の逆浸透膜モジュ−ルにより、下水処理における最終的な高次処理を行うことを特徴とする構成であり、後段の逆浸透膜モジュ−ルには、透過流束が0.10m3/m2・〔kgf/cm2〕・day以上であり、pH6.5、濃度0.05%の食塩水を原水として25℃、操作圧力7.5kgf/cm2にて運転30分後での食塩阻止率が90%以上であるもの、更には、膜表面の平均面粗さが55nm以上であるものを使用することが好ましい。
【0007】
本発明において、後段の逆浸透膜モジュールに架橋芳香族ポリアミド系逆浸透膜モジュールを使用する理由は、透過流束が大きく、しかも、窒素及び燐化合物に対する溶質除去率が大であるからである。この架橋芳香族ポリアミド系膜としては、多孔質基材上で、少なくとも2個のアミン官能性基を有する単量体の芳香族ポリアミン反応体と、多官能性アシルハライドまたはその混合物から成る単量体の芳香族のアミン反応性反応体(このアミン反応性反応体1分子につき平均で少なくとも約2.2個のアシルハライド基を有する)とを、アミン塩の存在下で界面重合することにより作成した複合膜(例えば、特許第1948993号)が好適に使用され、少なくとも2個のアミン官能性基を有する単量体の芳香族ポリアミン反応体には例えば、m−フエニレンジアミンが、多官能性アシルハライドから成る単量体の芳香族のアミン反応性反応体には例えば、トリメソイルクロライドが使用される。
これ以外の架橋芳香族ポリアミド系膜を使用した逆浸透膜モジュールの使用も可能である。
【0008】
本発明において、前段の逆浸透膜モジュ−ルに膜表面がピペラジンアミノ化合物の架橋重合体で形成されたものを使用する理由は、界面活性剤との接触による透過流束の低下が著しく低く、界面活性剤の通過を阻止しつつ後段の架橋芳香族ポリアミド系逆浸透膜モジュ−ルへの充分な供給液量を保証し、後段の逆浸透膜モジュ−ルを界面活性剤から遮断して高い透過流束のもとで窒素や燐を高い除去率でを除去するためであり、ピペラジンアミノ化合物としては、2−メチルピペラジン、2,5−ジメチルピペラジン、ホモピペラジン等が挙げられる(例えば、特公昭61−27083号公報)。
【0009】
この後段の逆浸透膜モジュ−ルには、上記の高透過流束を確保するために、透過流束0.10m3/m2・〔kgf/cm2〕・day以上のものが使用され、また、上記の窒素や燐に対する高い除去率を確保するために、pH6.5、濃度0.05%の食塩水を原水として25℃、操作圧力7.5kgf/cm2にて運転30分後での食塩阻止率が90%以上のものが使用される。
上記後段の逆浸透膜モジュ−ルにおいては、膜の表面積を大として実質的に膜面積を大きくするために、膜表面の平均面粗さRaが55nm以上のものを使用することが好ましい。
【0010】
なお、上記の平均粗さRaは次の式▲1▼によって定義され、原子力間顕微鏡、摩擦力顕微鏡、トンネル顕微鏡、走査電子顕微鏡、透過電子顕微鏡等により測定できる。
【数1】

Figure 0003834091
ここで、a,bは指定面(長方形)の2辺の長さ、Sは指定面の面積、f(x,y)は指定面内での高さ、Zoは次式で与えられる指定面の高さの平均値である。
【数2】
Figure 0003834091
【0011】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用する下水処理施設の一例を示している。
図1において、1は粗濾過装置であり、後続の処理施設に障害となる粗い浮遊物や油脂が除去され、スクリ−ン、沈砂池、油脂分離槽、pH調整槽等が設けられている。2は生物処理装置である。3は前処理装置であり、懸濁物質を除去し後置の逆浸透膜モジュ−ルを懸濁物質から保護するために設けられ、例えば、砂濾過装置や精密濾過装置が使用される。4は原水タンクを、51は前段送液ポンプを、61は原水に接する膜表面がピペラジンアミノ化合物の架橋重合体で形成された前段の逆浸透膜モジュ−ルを、611は前段非透過水排出管を、612は前段透過水流出管をそれぞれ示している。
【0012】
7は中間タンク、例えばパイプヘッダ−を、52は後段送液ポンプを、62は原水に接する膜表面が架橋芳香族ポリアミドで形成された後段の逆浸透膜モジュ−ルを、622は後段透過水流出管を、620は後段非透過水配管をそれぞれ示し、後段非透過水の一部が原水タンク4にリタ−ン管620’によりリタ−ンされ、残部は後段非透過水排出管621より排出され、後段透過水が後段透過水流出管622より用水として取り出されていく。8は必要に応じて設けられるアルカリ液タンクを、9は前段逆浸透膜分離モジュ−ル61の透過側にアルカリ液を注入するためのポンプをそれぞれ示している。
【0013】
上記施設を用いて本発明により下水を処理するには、下水を粗濾過装置1、生物処理装置2並びに前処理装置3で処理し、これを一旦原水タンク4に貯え、前段送液ポンプ51により所定の圧力で前段逆浸透膜分離モジュ−ル61に供給し、原水中の塩や有機物の通過の阻止により塩等の濃縮された非透過水を前段非透過水排出管611から排出し、透過側に所定の除去率で塩等を除去した透過水を発生させていく。
【0014】
上記前段逆浸透膜分離モジュ−ル61の前段透過水は一旦中間タンク7に貯え、必要に応じてポンプ9によりアリカリ液、例えば、水酸化ナトリウムや水酸化カリウム等を注入してその透過水のpHを調整し、このpH調整透過水を送液ポンプ52により所定の圧力で後段逆浸透膜分離モジュ−ル62に供給し、塩の濃縮された後段非透過水の一部を前段ライン側にリタ−ンさせると共に後段非透過水の残部を後段非透過水排出管621から排出していく。後段逆浸透膜分離モジュ−ル62により更に脱塩された後段透過水は、親水用水等の用水として使用していく。
上記において、後段逆浸透膜分離モジュ−ル62の非透過水は全て排出し、前段ラインへのリタ−ン量を0にすることもできる。
【0015】
上記後段液送ポンプを省略し、図2に示すように、前段逆浸透膜分離モジュ−ル61のみならず後段逆浸透膜分離モジュ−ル62の操作圧力をも前段液送ポンプ51で発生させることもでき、この場合、前段逆浸透膜分離モジュ−ル61はその透過側においても加圧されるので、透過側もこの加圧力に対処できる耐圧構造とされる。
なお、図2において、図1と同一符号は同一の構成要素を示している
上記前段及び後段の逆浸透膜分離モジュ−ルには、スパイラル型、中空糸型、チュ−ブラ−型、フレ−ム&プレ−ト型等を使用できる。
上記において、逆浸透膜分離モジュ−ルには数台のモジュ−ルユニットを直列または並列に接続し、これらのユニット群の供給側を一括して原水供給管に接続し、透過側を一括して透過水流出管に接続したものも使用できる。
【0016】
本発明が処理の対象とする下水中には、石鹸や洗剤排液のために多量の界面活性剤が含まれている。而るに、膜の表面層がピペラジンアミノ化合物の架橋重合体で形成された逆浸透膜モジュ−ルにおいては、界面活性剤に接しても膜面への界面活性剤の吸着が殆ど観られずに透過流束の低下が僅かである。この界面活性剤は、比較的分子量が高く、前段の逆浸透膜モジュ−ルにより実質的にほぼ完全に遮断される。従って、前段逆浸透膜モジュ−ルによるほぼ完全な界面活性剤の遮断により、膜の表面層が架橋芳香族ポリアミドで形成された後段逆浸透膜モジュ−ルの界面活性剤接触下での低透過流束性を現出させずに、この後段逆浸透膜モジュ−ルに、窒素や燐に対する本来の高い塩除去率を効果的に発揮させ得、窒素や燐含有量が僅小で親水用水として利用可能な高水質の透過水を得ることができる。
【0017】
【実施例】
〔実施例〕
前段の逆浸透膜モジュ−ルには、pH6.5、濃度0.15%の食塩水を原水として25℃、操作圧力10kgf/cm2にて運転30分後での食塩阻止率が90%であり、膜がピペラジンポリアミド系である日東電工株式会社製スパイラル型逆浸透膜モジュ−ルを使用した。この逆浸透膜モジュ−ルの膜(複合膜)は、ポリスルホンからなる多孔質基材上に、ポリビニルアルコ−ル0.25重量%、ピペラジン0.25重量%及び水酸化ナトリウム0。5重量%を含有する原液を均一に塗布した後、トリメシン酸クロライドの1重量%n−ヘキサン溶液に温度25℃にて1分間浸漬し、次いで引き上げてn−ヘキサンを揮散させた後、温度110℃にて10分間加熱処理したものであり、ポリビニルアルコ−ルとピペラジンアミノ化合物との架橋重合体の超薄膜と、この超薄膜とポリスルホン多孔質基材との間の原液塗布層内部の架橋反応に寄与しなかった未反応の水不溶性化ポリビニルアルコ−ル中間層と、ポリスルホン多孔質基材からなっている。
【0018】
後段の逆浸透膜モジュールには、pH6.5、濃度0.05%の食塩水を原水として25℃、操作圧力7.5kgf/cmにて運転30分後での食塩阻止率が99.5%で、純水の透過流束が0.13m/m・〔kgf/cm〕・dayであり、膜が架橋芳香族ポリアミド系で、平均表面粗さが80nmの日東電工株式会社製スパイラル型逆浸透膜モジュールを使用した。この逆浸透膜モジュールの膜は、ポリスルホンからなる多孔質基材上に、m−フェニレンジアミンを2.0重量%、ラウリル硫酸ナトリウムを0.15重量%、トリエチルアミンを2.0重量%、カンファースルホン酸を4.0重量%、イソプロピルアルコールを20重量%含有した原液を接触させ、かくして形成した原液層に、トリメシン酸クロライドを0.15重量%含有するヘキサン溶液を接触させ、その後120℃の熱風乾燥機で3分間保持して表面平均粗さ80nmの反応生成スキン層を形成したものである。
【0019】
図1において(アルカリ液タンク8及びポンプ9は省略した)、亜硝酸窒素濃度50ppm、アンモニア性窒素濃度50ppm、燐濃度50ppmで、洗剤を高濃度で含有する調整原水を原水タンク4に貯え、前段送液ポンプ51の送液圧力を10kgf/cm、後段送液ポンプ52の送液圧力を7.5kgf/cmとして、後段逆浸透膜モジュール62の初期透過流束を1.0 /m ・day(0.133m /m ・〔kgf/cm 〕・day)とするように運転し、その運転を200時間継続した。
後段逆浸透膜モジュール62の透過水の水質は表1に示す通りであり、その透過水流量の経時的低下状態は図3に示す通りであった。
【0020】
〔比較例1〕
実施例で前段逆浸透膜モジュールとして使用した日東電工株式会社製スパイラル型逆浸透膜モジュールのみを運転圧力10kgf/cmで運転して、実施例と同じ調整原水を処理した。初期透過流束は1.7 /m ・dayであった。
この比較例での透過水の水質は表1に示す通りであり、その透過水流量の経時的低下状態は図3に示す通りであった。
【0021】
〔比較例2〕
実施例で後段逆浸透膜モジュールとして使用した日東電工株式会社製スパイラル型逆浸透膜モジュールのみを運転圧力10kgf/cmで運転して、実施例と同じ調整原水を処理した。初期透過流束は0.8 /m ・dayであった。この比較例での透過水の水質は表1に示す通りであり、その透過水流量の経時的低下状態は図3に示す通りであった。
【0022】
【表1】
Figure 0003834091
【0023】
表1から明らかなように、本発明に係る下水の処理方法によれば、下水に界面活性剤が多量に含有されていても、窒素並びに燐化合物を著しく微量にして処理でき、しかも、その透過流束も充分に大きくできるから、その処理水を用水として有効に利用できる。
【0024】
【発明の効果】
本発明に係る下水の処理方法によれば、界面活性剤を実質的に遮断して架橋芳香族ポリアミド系逆浸透膜モジュ−ルの窒素や燐化合物に対する本来の優れた除去率、透過流束を有効に発揮させ得、下水に界面活性剤が多量に含有されていても、窒素並びに燐を著しく微量にして処理でき、しかも、その透過流束も充分に大きくできるから、その処理水を親水用水として、また水源への返送等により有効に利用できる。
【図面の簡単な説明】
【図1】本発明において使用する下水処理施設の一例を示す説明図である。
【図2】本発明において使用する下水処理施設の別例を示す説明図である。
【図3】本発明に係る実施例と比較例との経時的な透過流束特性を示す図表である。
【符号の説明】
1 粗濾過装置
2 生物処理装置
3 前処理装置
4 原水タンク
51 前段液送ポンプ
52 後段液送ポンプ
61 前段逆浸透膜モジュ−ル
62 後段逆浸透膜モジュ−ル
7 中間タンク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating sewage in which higher-order treatment is performed by a membrane separation method when treating sewage.
[0002]
[Prior art]
In sewage treatment in cities, sewage is roughly filtered and then biologically treated by the activated sludge method, and the treated water is discharged into rivers.
That is, the roughly filtered sewage is introduced into the aeration tank, the organic matter in the sewage is adsorbed and decomposed in the aerobic state by the floating microorganisms, and the microorganisms are grown. It leads to the sedimentation basin, separates and separates microorganisms, returns the sedimentary microorganisms to the sewage inflow part of the aeration tank as return sludge, performs circulation treatment, and removes excess sludge from the sedimentation basin in a timely manner.
Recently, for the purpose of environmental problems and effective use of water resources, it has been studied to reuse the treated water as hydrophilic water for public facilities such as parks without releasing the treated water. Thus, for this effective use, it is necessary to remove nutrient salts such as nitrogen and phosphorus from the treated water at a high removal rate.
[0003]
[Problems to be solved by the invention]
Conventionally, it is known as so-called biological nitrification denitrification to perform activated sludge treatment repeatedly in anaerobic and aerobic conditions to remove nitrogen simultaneously with organic substances. In addition, it is a so-called biological nitrification denitrification phosphorus removal method that removes nitrogen and phosphorus simultaneously with organic substances by repeatedly performing activated sludge treatment in a completely anaerobic state, anoxic state, and aerobic state. Are known.
However, in these methods, it is difficult to remove nitrogen and phosphorus compounds to such an extent that the final treated water can be effectively reused.
[0004]
Thus, in order to remove the nitrogen and phosphorus compounds, it has been proposed to perform a final high-order treatment using a reverse osmosis membrane module. Since the amount of treated water in this treatment is large, it is appropriate to use a reverse osmosis membrane module having a large permeation flux. The reverse osmosis membrane module is a cross-linked aromatic polyamide reverse osmosis. Membrane modules are attracting attention.
However, according to the test results of the present inventors, when the final higher-order treatment is performed with this crosslinked aromatic polyamide-based reverse osmosis membrane module, the permeation flux decreases relatively early, I found it difficult to maintain the processing speed.
The cause of the decrease in the early permeation flux is presumed to be a result of the surfactant contained in the treated water being significantly adsorbed on the surface of the cross-linked aromatic polyamide membrane and the hydrophilicity of the membrane surface being reduced.
[0005]
The object of the present invention is to remove the high-level final treatment of sewage under a stable and permeate flux, and remove nutrients such as nitrogen and phosphorus at a high removal rate. It is possible to carry out the treatment, and the treated water can be used as hydrophilic water for public facilities.
[0006]
[Means for Solving the Problems]
The method for treating sewage according to the present invention comprises a reverse osmosis membrane module in which the membrane surface in contact with raw water is formed of a crosslinked polymer of a piperazine amino compound, and the membrane surface in contact with raw water is formed of a crosslinked aromatic polyamide. The latter reverse osmosis membrane module performs the final higher-order treatment in the sewage treatment. The latter reverse osmosis membrane module has a permeation flux of 0.10 m 3. / m 2 · [kgf / cm 2 ] · day or more, pH 6.5, 0.05% saline solution as raw water at 25 ° C, operating pressure 7.5 kgf / cm 2 after 30 minutes of operation It is preferable to use a salt blocking rate of 90% or more, and a membrane surface average surface roughness of 55 nm or more.
[0007]
In the present invention, the reason why the cross-linked aromatic polyamide reverse osmosis membrane module is used for the latter reverse osmosis membrane module is that the permeation flux is large and the solute removal rate with respect to nitrogen and phosphorus compounds is large. The crosslinked aromatic polyamide-based membrane is a monomer comprising an aromatic polyamine reactant of a monomer having at least two amine functional groups and a polyfunctional acyl halide or a mixture thereof on a porous substrate. By subjecting an aromatic amine-reactive reactant (which has an average of at least about 2.2 acyl halide groups per molecule of the amine-reactive reactant) to interfacial polymerization in the presence of an amine salt. Composite membranes (eg, US Pat. No. 1,948,993) are preferably used, and monomeric aromatic polyamine reactants having at least two amine functional groups include, for example, m-phenylenediamine. For example, trimesoyl chloride is used as the monomeric aromatic amine-reactive reactant comprising an acyl halide.
It is also possible to use a reverse osmosis membrane module using a crosslinked aromatic polyamide-based membrane other than this.
[0008]
In the present invention, the reason why the surface of the reverse osmosis membrane module in which the membrane surface is formed of a crosslinked polymer of piperazine amino compound is used is that the decrease in permeation flux due to contact with the surfactant is extremely low, Guaranteeing a sufficient amount of supply liquid to the subsequent crosslinked aromatic polyamide-based reverse osmosis membrane module while blocking the passage of the surfactant, and blocking the latter reverse osmosis membrane module from the surfactant is high. This is for removing nitrogen and phosphorus at a high removal rate under the permeation flux. Examples of piperazine amino compounds include 2-methylpiperazine, 2,5-dimethylpiperazine, and homopiperazine (for example, No. 61-27083).
[0009]
In this reverse osmosis membrane module, in order to ensure the high permeation flux, a permeation flux of 0.10 m 3 / m 2 · [kgf / cm 2 ] · day or more is used, In order to ensure a high removal rate for nitrogen and phosphorus described above, a saline solution having a pH of 6.5 and a concentration of 0.05% is used as raw water at 25 ° C. and an operating pressure of 7.5 kgf / cm 2 after 30 minutes of operation Those having a salt rejection of 90% or more are used.
In the latter reverse osmosis membrane module, it is preferable to use a membrane having an average surface roughness Ra of 55 nm or more in order to increase the membrane surface area and substantially increase the membrane area.
[0010]
The average roughness Ra is defined by the following equation (1), and can be measured by an atomic force microscope, a friction force microscope, a tunnel microscope, a scanning electron microscope, a transmission electron microscope, or the like.
[Expression 1]
Figure 0003834091
Here, a and b are the lengths of the two sides of the designated surface (rectangle), S is the area of the designated surface, f (x, y) is the height in the designated surface, and Zo is the designated surface given by the following equation. It is the average value of height.
[Expression 2]
Figure 0003834091
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a sewage treatment facility used in the present invention.
In FIG. 1, reference numeral 1 denotes a coarse filtration device, which removes coarse suspended matters and oils and fats that obstruct subsequent processing facilities, and is provided with a screen, a sand basin, an oil and fat separation tank, a pH adjustment tank, and the like. 2 is a biological treatment apparatus. Reference numeral 3 denotes a pretreatment device, which is provided to remove suspended substances and protect the downstream reverse osmosis membrane module from suspended substances. For example, a sand filtration device or a microfiltration device is used. 4 is a raw water tank, 51 is a front-stage liquid feed pump, 61 is a front-stage reverse osmosis membrane module in which the membrane surface in contact with the raw water is formed of a crosslinked polymer of a piperazine amino compound, and 611 is a front-stage non-permeate water discharge. Reference numeral 612 denotes a front permeate outflow pipe.
[0012]
7 is an intermediate tank such as a pipe header, 52 is a post-stage liquid feed pump, 62 is a post-stage reverse osmosis membrane module whose membrane surface in contact with the raw water is formed of a crosslinked aromatic polyamide, and 622 is a post-stage permeate. An outflow pipe, 620 indicates a rear non-permeate water pipe, a part of the rear non-permeate water is returned to the raw water tank 4 by a return pipe 620 ′, and the remainder is discharged from the rear non-permeate water discharge pipe 621. Then, the latter-stage permeated water is taken out from the latter-stage permeated water outflow pipe 622 as service water. Reference numeral 8 denotes an alkaline liquid tank provided as necessary, and 9 denotes a pump for injecting the alkaline liquid into the permeation side of the upstream reverse osmosis membrane separation module 61.
[0013]
In order to treat sewage according to the present invention using the above facilities, the sewage is treated with the coarse filtration device 1, the biological treatment device 2 and the pretreatment device 3, which is temporarily stored in the raw water tank 4, and is fed by the upstream liquid feed pump 51. The pre-reverse osmosis membrane separation module 61 is supplied at a predetermined pressure, and concentrated non-permeate water such as salt is discharged from the pre-permeate non-permeate discharge pipe 611 by blocking the passage of salt and organic matter in the raw water. Permeated water from which salt and the like have been removed at a predetermined removal rate is generated on the side.
[0014]
The upstream permeated water of the upstream reverse osmosis membrane separation module 61 is temporarily stored in the intermediate tank 7, and if necessary, ant liquid such as sodium hydroxide or potassium hydroxide is injected by the pump 9, and the permeated water is injected. The pH is adjusted, and this pH-adjusted permeate is supplied to the reverse osmosis membrane separation module 62 at a predetermined pressure by the liquid feed pump 52, and a part of the non-permeate water after the salt concentration is moved to the front line side. While returning, the remainder of the latter non-permeate water is discharged from the latter non-permeate water discharge pipe 621. The latter-stage permeated water further desalted by the latter-stage reverse osmosis membrane separation module 62 is used as water for use in hydrophilic water or the like.
In the above, all of the non-permeated water of the rear-stage reverse osmosis membrane separation module 62 can be discharged, and the amount of return to the front-stage line can be made zero.
[0015]
The above-mentioned rear-stage liquid feed pump is omitted, and as shown in FIG. 2, not only the front-stage reverse osmosis membrane separation module 61 but also the operation pressure of the rear-stage reverse osmosis membrane separation module 62 is generated by the front-stage liquid feed pump 51. In this case, the upstream reverse osmosis membrane separation module 61 is pressurized on the permeate side, so that the permeate side has a pressure resistant structure capable of coping with the pressure.
2, the same reference numerals as those in FIG. 1 denote the same components, and the preceding and subsequent reverse osmosis membrane separation modules include spiral type, hollow fiber type, tuber type, frame type, and the like. A plate and plate type can be used.
In the above, several module units are connected in series or in parallel to the reverse osmosis membrane separation module, the supply side of these units is connected to the raw water supply pipe at once, and the permeation side is connected at once. The one connected to the permeate outflow pipe can also be used.
[0016]
The sewage to be treated by the present invention contains a large amount of a surfactant for soap and detergent drainage. Therefore, in the reverse osmosis membrane module in which the surface layer of the membrane is formed of a crosslinked polymer of piperazine amino compound, even when the membrane is in contact with the surfactant, the adsorption of the surfactant on the membrane surface is hardly observed. In addition, the decrease in permeation flux is slight. This surfactant has a relatively high molecular weight and is substantially completely blocked by the reverse osmosis membrane module in the previous stage. Therefore, almost complete blocking of the surfactant by the upstream reverse osmosis membrane module results in low permeation of the downstream reverse osmosis membrane module in which the surface layer of the membrane is formed of a crosslinked aromatic polyamide in contact with the surfactant. Without revealing flux properties, this reverse-stage reverse osmosis membrane module can effectively exhibit the original high salt removal rate for nitrogen and phosphorus, and the water content is low as the content of nitrogen and phosphorus is small. High quality permeated water can be obtained.
[0017]
【Example】
〔Example〕
The reverse osmosis membrane module in the previous stage has a salt rejection rate of 90% after 30 minutes of operation at 25 ° C. and an operating pressure of 10 kgf / cm 2 using saline with a pH of 6.5 and a concentration of 0.15% as raw water. Yes, a spiral reverse osmosis membrane module manufactured by Nitto Denko Corporation with a membrane of piperazine polyamide was used. This reverse osmosis membrane module membrane (composite membrane) is formed on a porous substrate made of polysulfone, polyvinyl alcohol 0.25% by weight, piperazine 0.25% by weight, and sodium hydroxide 0.5% by weight. Is uniformly applied, and then immersed in a 1% by weight n-hexane solution of trimesic acid chloride at a temperature of 25 ° C. for 1 minute, and then pulled up to volatilize n-hexane, and then at a temperature of 110 ° C. Heat-treated for 10 minutes and contributes to the crosslinking reaction in the ultrathin film of the crosslinked polymer of polyvinyl alcohol and piperazine amino compound and the undiluted coating layer between the ultrathin film and the polysulfone porous substrate. It consists of an unreacted water-insoluble polyvinyl alcohol intermediate layer that was not present and a polysulfone porous substrate.
[0018]
The reverse osmosis membrane module in the latter stage has a salt rejection rate of 99.5 after 30 minutes of operation at 25 ° C. and an operating pressure of 7.5 kgf / cm 2 using saline with a pH of 6.5 and a concentration of 0.05% as raw water. %, The permeation flux of pure water is 0.13 m 3 / m 2 [kgf / cm 2 ] · day, the membrane is a crosslinked aromatic polyamide system, and the average surface roughness is 80 nm, manufactured by Nitto Denko Corporation A spiral type reverse osmosis membrane module was used. The membrane of this reverse osmosis membrane module comprises a porous substrate made of polysulfone, 2.0% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.0% by weight of triethylamine, camphorsulfone. A stock solution containing 4.0% by weight of acid and 20% by weight of isopropyl alcohol was brought into contact, and the stock solution layer thus formed was brought into contact with a hexane solution containing 0.15% by weight of trimesic acid chloride. A reaction product skin layer having an average surface roughness of 80 nm is formed by holding in a dryer for 3 minutes.
[0019]
In FIG. 1 (alkaline liquid tank 8 and pump 9 are omitted), adjusted raw water containing 50 ppm nitrous acid concentration, 50 ppm ammonia nitrogen concentration and 50 ppm phosphorus concentration and containing detergent at high concentration is stored in raw water tank 4, The liquid feeding pressure of the liquid feeding pump 51 is 10 kgf / cm 2 , the liquid feeding pressure of the latter-stage liquid feeding pump 52 is 7.5 kgf / cm 2 , and the initial permeation flux of the latter-stage reverse osmosis membrane module 62 is 1.0 m 3 / m 2 · day operated so as to (0.133m 3 / m 2 · [kgf / cm 2] · day), and continues the operation for 200 hours.
The water quality of the permeated water in the latter reverse osmosis membrane module 62 is as shown in Table 1, and the state of the permeated water flow rate with time is as shown in FIG.
[0020]
[Comparative Example 1]
Only the spiral reverse osmosis membrane module manufactured by Nitto Denko Corporation, which was used as the previous-stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 to treat the same adjusted raw water as in the example. The initial permeation flux was 1.7 m 3 / m 2 · day .
The quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate with time is as shown in FIG.
[0021]
[Comparative Example 2]
Only the spiral type reverse osmosis membrane module manufactured by Nitto Denko Corporation, which was used as the latter-stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 to treat the same adjusted raw water as in the example. The initial permeation flux was 0.8 m 3 / m 2 · day . The quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate with time is as shown in FIG.
[0022]
[Table 1]
Figure 0003834091
[0023]
As is apparent from Table 1, according to the sewage treatment method of the present invention, even if the sewage contains a large amount of surfactant, it can be treated with a very small amount of nitrogen and phosphorus compounds, and the permeation thereof. Since the flux can be made sufficiently large, the treated water can be used effectively as irrigation water.
[0024]
【The invention's effect】
According to the sewage treatment method according to the present invention, the surfactant is substantially blocked, and the inherently excellent removal rate and permeation flux of the cross-linked aromatic polyamide reverse osmosis membrane module with respect to nitrogen and phosphorus compounds can be obtained. Even if the sewage contains a large amount of surfactant, it can be treated with a very small amount of nitrogen and phosphorus, and its permeation flux can be sufficiently increased. In addition, it can be used effectively by returning it to a water source.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a sewage treatment facility used in the present invention.
FIG. 2 is an explanatory diagram showing another example of a sewage treatment facility used in the present invention.
FIG. 3 is a chart showing permeation flux characteristics over time between an example according to the present invention and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coarse filtration apparatus 2 Biological treatment apparatus 3 Pretreatment apparatus 4 Raw water tank 51 Front stage liquid feed pump 52 Rear stage liquid feed pump 61 Front stage reverse osmosis membrane module 62 Rear stage reverse osmosis membrane module 7 Intermediate tank

Claims (3)

原水に接する膜表面がピペラジンアミノ化合物の架橋重合体で形成された前段の逆浸透膜モジュ−ルと、原水に接する膜表面が架橋芳香族ポリアミドで形成された後段の逆浸透膜モジュ−ルにより、下水処理における最終的な高次処理を行うことを特徴とする下水の処理方法。The former reverse osmosis membrane module in which the membrane surface in contact with the raw water was formed of a crosslinked polymer of piperazine amino compound, and the latter reverse osmosis membrane module in which the membrane surface in contact with the raw water was formed of a crosslinked aromatic polyamide A method for treating sewage, comprising performing a final high-order treatment in sewage treatment. 後段の逆浸透膜モジュ−ルの透過流束が0.10m3/m2・〔kgf/cm2〕・day以上であり、pH6.5、濃度0.05%の食塩水を原水として25℃、操作圧力7.5kgf/cm2にて運転30分後での食塩阻止率が90%以上である請求項1記載の下水の処理方法。The reverse osmosis membrane module in the latter stage has a permeation flux of 0.10 m 3 / m 2 · [kgf / cm 2 ] · day or more, 25 ° C. using saline with pH 6.5 and concentration of 0.05% as raw water. The method for treating sewage according to claim 1, wherein the salt rejection after 30 minutes of operation at an operating pressure of 7.5 kgf / cm 2 is 90% or more. 後段の逆浸透膜モジュ−ルの膜表面の平均面粗さが55nm以上である請求項1または2記載の下水の処理方法。The sewage treatment method according to claim 1 or 2, wherein the average surface roughness of the membrane surface of the reverse osmosis membrane module in the latter stage is 55 nm or more.
JP01830696A 1996-01-08 1996-01-08 Sewage treatment method Expired - Fee Related JP3834091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01830696A JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01830696A JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH09187768A JPH09187768A (en) 1997-07-22
JP3834091B2 true JP3834091B2 (en) 2006-10-18

Family

ID=11967938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01830696A Expired - Fee Related JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP3834091B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224546A (en) * 2000-11-29 2002-08-13 Toray Ind Inc Composite semipermeable membrane for sewage disposal and its manufacturing method
JPWO2020137066A1 (en) * 2018-12-26 2021-11-04 東レ株式会社 Composite semipermeable membrane

Also Published As

Publication number Publication date
JPH09187768A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
JP2007244979A (en) Water treatment method and water treatment apparatus
US7166220B2 (en) Systems and methods for organic wastewater treatment
JPH07185546A (en) Purifying treatment of sewage
JP3834091B2 (en) Sewage treatment method
JPS62221493A (en) Method for treating membrane bioreactor
JPH11319492A (en) Treatment of sewage
JPH0368498A (en) Treatment of organic sewage
JP3576314B2 (en) Sewage treatment method
JPH0561991B2 (en)
JPH10305216A (en) Reverse osmosis membrane device and high concentration solution separation
JP3266915B2 (en) Wastewater treatment method
JP3697938B2 (en) Wastewater treatment equipment
JP2002035554A (en) Method for treating water and its apparatus
KR20010109804A (en) Treatment of concentrated organic wastewater with a reverse osmosis process
JP2000051855A (en) Water treatment apparatus
JPH05309391A (en) Water treatment method
JP2003340247A (en) Device and method for treating water
JP2004050144A (en) Separation membrane for waste water treatment and its manufacturing method
JP2006055849A (en) Apparatus and method for treating organic waste water
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPH10137756A (en) Treatment of sewage
JPH091187A (en) Waste water treating device and its operating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees