JPH07185546A - Purifying treatment of sewage - Google Patents

Purifying treatment of sewage

Info

Publication number
JPH07185546A
JPH07185546A JP33378093A JP33378093A JPH07185546A JP H07185546 A JPH07185546 A JP H07185546A JP 33378093 A JP33378093 A JP 33378093A JP 33378093 A JP33378093 A JP 33378093A JP H07185546 A JPH07185546 A JP H07185546A
Authority
JP
Japan
Prior art keywords
treated water
ozone
sewage
membrane
filtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33378093A
Other languages
Japanese (ja)
Inventor
Takao Okura
孝雄 大倉
Hiroshi Sasaki
宏 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP33378093A priority Critical patent/JPH07185546A/en
Publication of JPH07185546A publication Critical patent/JPH07185546A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To purify sewage stably over a long period of time by bringing ozone into contact with the sewage, then oxidizing and decomposing the sewage by aerobic microorganisms and subjecting the sewage to a purification treatment by an ultrafiltration and reverse osmosis membranes. CONSTITUTION:The secondarily treated water 3 which flows into an ozone reaction chamber 1 and is treated by a biological treatment, etc., is aerated with the ozone 7. Hardly decomposable polluting materials are denatured to easily decomposable materials to permit a biological treatment and are made low molecular and hydrophilic by this ozone 7. Next, the secondarily treated water 3 is aerated with the air in a biological filter vessel 10 and the polluting materials made further easier to be decomposed are decomposed by the aerobic microorganisms in a treating vessel 11; thereafter, the treated water is sent to an ultrafiltration device 17. The water is filtered by ultrafilter membranes 18 of a fraction mol.wt. of about 50,000 in the ultrafiltration device 17 and is in succession filtered by the ultrafilter membranes 24 of a reverse osmosis filter device 23. The treated water after the filtration is released from a treated water pipe 25. Further, the filtered polluting materials are returned by a reflux pipe 19 and are drained properly from a drain pipe 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水の二次処理水など
を処理する汚水の浄化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sewage purification treatment method for treating secondary treated water of sewage.

【0002】[0002]

【従来の技術】従来、下水の二次処理水などを高度に処
理して再利用する汚水の浄化処理方法としては、例えば
図10に示す方法が知られている。
2. Description of the Related Art Conventionally, for example, a method shown in FIG. 10 is known as a method for purifying sewage by highly treating and reusing sewage secondary treated water.

【0003】この図10に示す汚水の浄化処理方法は、
凝集剤31を添加して汚水中の汚染物質を凝集32させ、砂
瀘過33により汚水中の浮遊物やコロイド成分、凝集物な
どを取り除いた後、精密瀘過(MF:Microfiltration
)膜にて水質指標となる汚れ指数(FI:Fouling Ind
ex )の値が4〜5となるように精密瀘過34し、さら
に、逆浸透(RO:Reverse Osmosis )膜にて逆浸透35
を行い、高度に処理している。
The method for purifying sewage shown in FIG.
A coagulant 31 is added to coagulate the pollutants in the wastewater 32, and the suspended solids, colloidal components, and aggregates in the wastewater are removed by sand filtration 33, and then fine filtration (MF: Microfiltration).
) Fouling Ind (FI) as a water quality index in the membrane
ex) is set to 4 to 5 by precision filtration 34, and then reverse osmosis (RO: Reverse Osmosis) membrane is used to reverse osmosis 35.
Has done and is highly processed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記汚
水の浄化処理方法は、凝集沈殿32させ砂瀘過33後に、F
I値が4〜5となるようにMF処理34してRO処理35を
行うので、RO膜面が汚染され易く、長期間安定してR
O処理35させるために、頻繁にRO膜を逆流洗浄しなけ
ればならず、汚水の処理効率が低下するとともに、逆流
洗浄により処理コストが増大する問題がある。
However, in the method for purifying sewage described above, after the coagulating sedimentation 32 and the sand filtration 33, the F
Since the MF process 34 and the RO process 35 are performed so that the I value becomes 4 to 5, the RO film surface is easily contaminated and the R film is stable for a long time.
In order to carry out the O treatment 35, the RO membrane must be frequently backwashed, which reduces the treatment efficiency of the sewage and causes the problem that the treatment cost increases due to the backwashing.

【0005】さらに、凝集沈殿32および砂瀘過33により
発生する汚泥量が多く、汚水の高度処理が煩雑となると
ともに、汚泥処理により処理コストが増大する問題も有
している。また、凝集剤31の添加により汚泥を凝集沈殿
32させる一方、汚水が凝集剤31にて汚染される。
Further, there is a problem that the amount of sludge generated by the coagulating sedimentation 32 and the sand filtration 33 is large, the advanced treatment of wastewater becomes complicated, and the treatment cost increases due to the sludge treatment. In addition, sludge is coagulated and settled by adding coagulant 31.
Meanwhile, the wastewater is contaminated with the coagulant 31.

【0006】本発明は、上記問題点に鑑みなされたもの
で、RO膜の負荷を低減して安価で効率よく容易に処理
できる汚水の浄化処理方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for purifying sewage that reduces the load on the RO membrane and can be easily and inexpensively and efficiently treated.

【0007】[0007]

【課題を解決するための手段】本発明の汚水の浄化処理
方法は、逆浸透膜を用いて汚水を浄化処理する汚水の浄
化処理方法において、汚水にオゾンを接触させ、このオ
ゾンが接触された汚水を好気性生物にて酸化分解し、こ
の好気性生物にて酸化分解された汚水を限外瀘過にて瀘
過した後、逆浸透膜を用いて浄化処理するものである。
The method for purifying sewage of the present invention is a method for purifying sewage using a reverse osmosis membrane, in which sewage is contacted with ozone and contacted with ozone. The sewage is oxidatively decomposed by aerobic organisms, and the sewage oxidatively decomposed by the aerobic organisms is filtered by ultrafiltration and then purified by using a reverse osmosis membrane.

【0008】[0008]

【作用】本発明の汚水の浄化処理方法は、汚水にオゾン
を接触させて汚水中の汚染物質を易分解性にし、この易
分解性の汚染物質を、好気性生物にて酸化分解し、未分
解の易分解性の汚染物質を含有する汚水を限外瀘過した
後に、逆浸透膜により浄化処理するため、逆浸透膜の負
荷が低減して逆浸透膜の汚染が低減し、汚水の浄化処理
が長期間安定し処理効率が向上する。
The method for purifying sewage of the present invention makes ozone polluted in sewage to make pollutants in sewage easily decomposable, and oxidizes and decomposes the easily decomposable pollutants by aerobic organisms. After the ultrafiltration of sewage containing pollutants that are easily decomposed, it is purified by a reverse osmosis membrane, which reduces the load on the reverse osmosis membrane and reduces the pollution of the reverse osmosis membrane. The treatment is stable for a long time and the treatment efficiency is improved.

【0009】[0009]

【実施例】以下、本発明の汚水の浄化処理方法の一実施
例の装置を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus of one embodiment of the method for purifying wastewater of the present invention will be described below with reference to the drawings.

【0010】図1において、1はオゾン反応槽で、この
オゾン反応槽1は、高さが約4mで、直径が約0.6m
の略筒状に形成され、上端には、下水が例えば生物処理
などにより処理された後の汚水としての二次処理水2が
流入される流入管3が設けられている。
In FIG. 1, reference numeral 1 denotes an ozone reaction tank, which has a height of about 4 m and a diameter of about 0.6 m.
Is formed in a substantially cylindrical shape, and an inflow pipe 3 into which the secondary treated water 2 as sewage after the sewage is treated by, for example, biological treatment is introduced is provided at the upper end.

【0011】また、オゾン反応槽1内の底部には、曝気
手段5が設けられ、この曝気手段5には、オゾン発生装
置6が接続されて、オゾン反応槽1に流入された二次処
理水2にオゾン7を曝気する。さらに、オゾン反応槽1
の上部には、オゾン反応槽1内に曝気されるオゾン7
や、二次処理水2とともに流入する空気を排気する図示
しない排気弁が設けられている。
Aeration means 5 is provided at the bottom of the ozone reaction tank 1, and an ozone generator 6 is connected to the aeration means 5 so that the secondary treated water flowing into the ozone reaction tank 1 is discharged. Aeration of ozone 7 to 2. Furthermore, ozone reaction tank 1
In the upper part of the, ozone 7 aerated in the ozone reaction tank 1
Alternatively, an exhaust valve (not shown) that exhausts the air that flows in together with the secondary treated water 2 is provided.

【0012】そして、このオゾン反応槽1の下端には、
オゾン反応槽1内のオゾン7が曝気されて接触された二
次処理水2を槽外に流出する導出管8が設けられてい
る。
At the lower end of the ozone reaction tank 1,
A derivation pipe 8 is provided for outflowing the secondary treated water 2 to which the ozone 7 in the ozone reaction tank 1 is aerated and brought into contact with the outside of the tank.

【0013】また、10は生物瀘過槽で、この生物瀘過槽
10は、高さが約2m、直径が約0.8mの略筒状に形成
され、生物瀘過槽10の略中間部には、図示しない好気性
生物を担持する担体が充填された処理層11が形成されて
いる。そして、この生物瀘過槽10の上端に、オゾン反応
槽1からの導出管8が接続されている。
Numeral 10 is a biological filtration tank, which is a biological filtration tank.
The treatment layer 10 is formed in a substantially cylindrical shape having a height of about 2 m and a diameter of about 0.8 m, and a treatment layer in which a carrier for supporting aerobic organisms (not shown) is filled in a substantially middle portion of the biological filtration tank 10. 11 are formed. A lead-out pipe 8 from the ozone reaction tank 1 is connected to the upper end of the biological filtration tank 10.

【0014】さらに、生物瀘過槽10の下部には、ブロワ
12からの空気を曝気する曝気手段13が配設され、底部に
は処理層11を流過し好気性生物にて処理された二次処理
水2を生物瀘過槽10外に流出するポンプ14を設けた搬送
管15が接続されている。そして、この搬送管15の下流側
には、限外瀘過装置17が設けられている。
Further, at the bottom of the biological filtration tank 10, there is a blower.
An aeration means 13 for aerating the air from 12 is provided, and a pump 14 for flowing the secondary treated water 2 that has passed through the treatment layer 11 at the bottom and treated by aerobic organisms to the outside of the biological filtration tank 10. Is connected to the transfer pipe 15. An ultrafiltration device 17 is provided on the downstream side of the transport pipe 15.

【0015】そして、この限外瀘過装置17は、分画分子
量が約5万の中空糸状で膜面積が約5m2 の限外瀘過
(UF:Ultrafiltration )膜18が、配設されている。
また、限外瀘過装置17のUF膜18面の搬送管15からの二
次処理水2が接触する上流側には、先端がポンプ14より
上流側の搬送管15に接続された還流管19が設けられてい
る。さらに、この還流管19には、還流によりUF膜18を
通過できない図示しない汚泥物質が濃縮された二次処理
水2を排水する排水管20が設けられ、別途図示しない下
水処理装置などにて処理したり、再びオゾン反応槽1に
返送するようになっている。
The ultrafiltration device 17 is provided with an ultrafiltration (UF) membrane 18 having a cut-off molecular weight of about 50,000 and a hollow fiber shape and a membrane area of about 5 m 2 . .
Further, on the upstream side of the ultrafiltration device 17 on the surface of the UF membrane 18 where the secondary treated water 2 from the carrier pipe 15 comes into contact, a reflux pipe 19 having a tip connected to the carrier pipe 15 upstream of the pump 14. Is provided. Further, the reflux pipe 19 is provided with a drain pipe 20 for draining the secondary treated water 2 in which sludge substances (not shown) that cannot pass through the UF membrane 18 due to reflux are drained, and treated by a sewage treatment device (not shown) or the like. Or, it is adapted to be returned to the ozone reaction tank 1 again.

【0016】また、限外濾過装置17のUF膜18面の下流
側には、送水管22が設けられ、この送水管22の下流側に
は、逆浸透瀘過装置23が設けられている。
A water supply pipe 22 is provided on the downstream side of the UF membrane 18 surface of the ultrafiltration device 17, and a reverse osmosis filtration device 23 is provided on the downstream side of the water supply pipe 22.

【0017】そして、この逆浸透瀘過装置23は、塩化ナ
トリウムなどの無機塩の排除率が40〜98%のスパイ
ラル状の逆浸透(RO:Reverse Osmosis )膜24が、膜
面積が約2.2m2 となるように、複数配設されてい
る。また、逆浸透瀘過装置23のRO膜24面の送水管22か
らの二次処理水2が接触する上流側には、先端が送水管
22に接続された還流管19が設けられている。さらに、こ
の還流管19には、還流によりRO膜24を通過できない汚
泥物質が濃縮された二次処理水2を排水する排水管20が
設けられ、別途、図示しない下水処理装置などにて処理
したり、再びオゾン反応槽1に返送するようになってい
る。
In this reverse osmosis filtration apparatus 23, a spiral reverse osmosis (RO) membrane 24 having an exclusion rate of inorganic salts such as sodium chloride of 40 to 98% has a membrane area of about 2. Plural pieces are arranged so as to be 2 m 2 . The upstream end of the RO membrane 24 of the reverse osmosis filtration device 23, which comes into contact with the secondary treated water 2 from the water supply pipe 22, has a water pipe with a tip.
A reflux pipe 19 connected to 22 is provided. Further, the reflux pipe 19 is provided with a drain pipe 20 for draining the secondary treated water 2 in which the sludge substance which cannot pass through the RO membrane 24 due to the reflux is discharged, and is separately treated by a sewage treatment device (not shown) or the like. Alternatively, it is returned to the ozone reaction tank 1 again.

【0018】また、逆浸透瀘過装置23のRO膜24面の下
流側には、高度に浄化処理された処理水が排水される処
理水管25が設けられている。
Further, on the downstream side of the RO membrane 24 surface of the reverse osmosis filtration device 23, there is provided a treated water pipe 25 for draining highly purified treated water.

【0019】次に、上記実施例の装置による浄化処理の
動作を説明する。
Next, the operation of the purification process by the apparatus of the above embodiment will be described.

【0020】まず、流入管3を介してオゾン反応槽1に
二次処理水2を流入するとともに、オゾン発生装置6を
駆動させて、曝気手段5から二次処理水2にオゾン7を
曝気し、二次処理水2中の図示しない汚染物質を分解す
る。
First, while the secondary treated water 2 flows into the ozone reaction tank 1 through the inflow pipe 3, the ozone generator 6 is driven to aerate the ozone 7 from the aeration means 5 to the secondary treated water 2. , Decomposes contaminants (not shown) in the secondary treated water 2.

【0021】さらに、オゾン反応槽1でオゾン7が曝気
された二次処理水2を、導出管8を介して生物瀘過槽10
の上部に流入させるとともに、ブロワ12からの空気を曝
気手段13にて流入する二次処理水2に曝気する。また、
流入した二次処理水2は、搬送管15のポンプ14を駆動さ
せ、好気性生物が担持された担体にて構成された処理層
11を流過させて、搬送管15から限外瀘過装置17に流出さ
せる。
Further, the secondary treated water 2 in which ozone 7 has been aerated in the ozone reaction tank 1 is passed through the outlet pipe 8 to the biological filtration tank 10
And the air from the blower 12 is aerated by the aeration means 13 to the secondary treated water 2 flowing in. Also,
The secondary treated water 2 that has flowed in drives the pump 14 of the carrier pipe 15 to form a treatment layer composed of a carrier carrying aerobic organisms.
11 is made to flow through, and is made to flow out from the carrier pipe 15 to the ultrafiltration device 17.

【0022】なお、生物瀘過槽に流入した二次処理水
は、水量が約100m3 /日で、処理層の流過速度が約
200m3 /m2 /日となるように、ポンプ14を駆動さ
せて浄化処理する。
The secondary treated water that has flowed into the biological filtration tank has a pump 14 so that the amount of water is about 100 m 3 / day and the flow rate of the treated layer is about 200 m 3 / m 2 / day. Drive and purify.

【0023】そして、生物瀘過槽10に流入した二次処理
水2は、処理層11の流過の際、好気性生物によりオゾン
反応槽1で易分解性となった汚染物質を酸化分解して、
浄化処理される。
The secondary treated water 2 that has flowed into the biological filtration tank 10 oxidizes and decomposes pollutants that have become easily degradable in the ozone reaction tank 1 due to aerobic organisms when flowing through the treatment layer 11. hand,
Purified.

【0024】また、生物瀘過槽10からポンプ14にて搬送
管15を介して水量が約12m3 /日で限外瀘過装置17に
流入された二次処理水2は、透過速度が約100l/m
2 /日でUF膜18にて瀘過される。そして、二次処理水
2は、このUF膜18の透過の際に、生物瀘過槽10の処理
層11の好気性生物にて酸化分解されなかった未分解の易
分解性の汚染物質で、UF膜18の分画分子量の5万より
荒い汚染物質が瀘過される。また、UF膜18の分画分子
量より細かい汚染物質を含有する二次処理水2は、送水
管22を介して逆浸透瀘過装置23に流入される。
Further, the secondary treated water 2 which has flowed into the ultrafiltration device 17 from the biological filtration tank 10 through the carrier pipe 15 by the pump 14 at a flow rate of about 12 m 3 / day has a permeation rate of about 2%. 100 l / m
It is filtered by UF membrane 18 every 2 days. Then, the secondary treated water 2 is an undegradable and easily degradable pollutant that was not oxidatively decomposed by the aerobic organisms in the treatment layer 11 of the biological filtration tank 10 during permeation of the UF membrane 18. Contaminants rougher than the cut-off molecular weight of UF membrane 18 of 50,000 are filtered off. In addition, the secondary treated water 2 containing contaminants finer than the cut-off molecular weight of the UF membrane 18 flows into the reverse osmosis filtration device 23 via the water supply pipe 22.

【0025】そして、限外瀘過装置17のUF膜18にて瀘
過されたUF膜18の分画分子量より荒い汚染物質は、液
量が約24m3 /日で二次処理水2とともに還流管19か
ら再び搬送管15を介して限外瀘過装置17に流入される。
さらに、この還流により、UF膜18の上流側で汚染物質
が所定の濃度となった時点、すなわち、流入する二次処
理水2の約10%の割合で、排水管20を介して別途図示
しない下水処理装置などに送水されて処理される。
[0025] Then, the contaminants, which are coarser than the cut-off molecular weight of the UF membrane 18 filtered by the UF membrane 18 of the ultrafiltration device 17, are refluxed together with the secondary treated water 2 at a liquid volume of about 24 m 3 / day. From the pipe 19 to the ultrafiltration device 17 again via the transfer pipe 15.
Further, due to this reflux, when the pollutant reaches a predetermined concentration on the upstream side of the UF membrane 18, that is, at a rate of about 10% of the inflowing secondary treated water 2, it is not shown separately via the drain pipe 20. The water is sent to a sewage treatment device for treatment.

【0026】次に、限外瀘過装置17から水量が1m3
日で逆浸透瀘過装置23に流入された二次処理水2は、R
O膜24の透過速度が20l/m2 /日でRO膜24にて瀘
過される。そして、二次処理水2は、このRO膜24の透
過の際に、限外瀘過装置17のUF膜18にて瀘過されなか
ったUF膜18の分画分子量の5万より細かい汚染物質
や、上述のオゾン反応槽1でのオゾン7による分解およ
び生物瀘過槽10での好気性生物による分解により生成す
るリン酸などの無機塩が、逆浸透にて瀘過され、二次処
理水2は、高度に浄化処理されて、処理水管25より放水
される。
Next, the amount of water from the ultrafiltration device 17 is 1 m 3 /
The secondary treated water 2 that has flowed into the reverse osmosis filtration device 23 by day is R
The permeation rate of the O membrane 24 is 20 l / m 2 / day and the RO membrane 24 filters. Then, the secondary treated water 2 is a contaminant finer than the molecular weight cut-off of 50,000 of the UF membrane 18 which was not filtered by the UF membrane 18 of the ultrafiltration device 17 during permeation of the RO membrane 24. Alternatively, inorganic salts such as phosphoric acid generated by the decomposition of ozone 7 in the ozone reaction tank 1 and the decomposition of aerobic organisms in the biological filtration tank 10 are filtered by reverse osmosis to produce secondary treated water. 2 is highly purified and discharged from the treated water pipe 25.

【0027】また、RO膜24にて瀘過された汚染物質
は、液量が約12m3 /日で二次処理水2とともに還流
管19から送水管22を介して再び逆浸透瀘過装置23に流入
され、RO膜24の上流側で汚染物質が所定の濃度となっ
た時点、すなわち、流入する二次処理水2の約10%の
割合で、排水管20を介して別途図示しない下水処理装置
などに送水されて処理される。
Further, the contaminant filtered through the RO membrane 24 has a liquid volume of about 12 m 3 / day, and the reverse osmosis filter 23 through the reflux pipe 19 and the water pipe 22 together with the secondary treated water 2. Sewage treatment (not shown) via the drainage pipe 20 at the time when the pollutant reaches a predetermined concentration on the upstream side of the RO membrane 24, that is, at a rate of about 10% of the inflowing secondary treatment water 2. Water is sent to the equipment and processed.

【0028】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.

【0029】まず、オゾン反応槽1において、二次処理
水2にオゾン7が供給されると、図2および表1に示す
ように、二次処理水2中の汚染物質が分解される。
First, when ozone 7 is supplied to the secondary treated water 2 in the ozone reaction tank 1, as shown in FIG. 2 and Table 1, the pollutants in the secondary treated water 2 are decomposed.

【0030】すなわち、例えば、図3に示すように変態
するオゾン7が、図4に示すように励起する有機不飽和
化合物との反応により、図5に示すようにオゾニドを生
成し、このオゾニドが水の存在下で、アルデヒド、ケト
ン、カルボン酸などが生成されるオゾン分解などによ
り、難分解性の汚染物質が生物処理可能な易分解性の汚
染物質に変成させたり、低分子化して生物処理可能な易
分解性になる。
That is, for example, ozone 7 which transforms as shown in FIG. 3 reacts with an organic unsaturated compound which is excited as shown in FIG. 4 to produce an ozonide as shown in FIG. In the presence of water, aldehydes, ketones, carboxylic acids, etc. are generated by ozonolysis, etc. to transform easily-degradable pollutants into easily degradable pollutants that can be bioprocessed, or to reduce the molecular weight to perform bioprocessing. Becomes easily degradable.

【0031】[0031]

【表1】 また、オゾン7との接触により、疎水性の有機不飽和化
合物などが分解されて生成する易分解性の汚染物質は、
親水化、低分子化の方向に移行して、親水性のアルデヒ
ド、ケトン、カルボン酸などの汚染物質のように、親水
性となる。
[Table 1] In addition, the easily decomposable pollutants produced by decomposing hydrophobic organic unsaturated compounds and the like by contact with ozone 7 are
It shifts toward hydrophilicity and lower molecular weight, and becomes hydrophilic like contaminants such as hydrophilic aldehydes, ketones, and carboxylic acids.

【0032】そして、オゾン7を10mg/l供給した場
合、図2および表1に示すように、精密瀘過(MF:Mi
crofiltration )膜で瀘過される細菌類などの粒子径が
約0.45μm以下の汚染物質、および、分画分子量が
5〜20万程度の汚染物質が減少し、分画分子量が1〜
5万程度の汚染物質が増加し、全体の化学的酸素要求量
(COD)も約3割り程度減少している。したがって、
粒子径が約0.45μm以下で分画分子量が約20万以
上の汚染物質のほとんどが分解されることが分かる。
When 10 mg / l of ozone 7 was supplied, as shown in FIG. 2 and Table 1, precise filtration (MF: Mi
crofiltration) Contaminants with a particle size of about 0.45 μm or less, such as bacteria that are filtered through the membrane, and pollutants with a molecular weight cut-off of about 5 to 200,000 are reduced, and the molecular weight cut-off is 1 to
About 50,000 pollutants have increased, and the total chemical oxygen demand (COD) has decreased by about 30%. Therefore,
It can be seen that most of the pollutants having a particle size of about 0.45 μm or less and a molecular weight cutoff of about 200,000 or more are decomposed.

【0033】また、オゾン7の供給量を変化させた際の
二次処理水2の汚染物質の分解状況を表2および図7に
示す。
Table 2 and FIG. 7 show the state of decomposition of pollutants in the secondary treated water 2 when the supply amount of ozone 7 was changed.

【0034】[0034]

【表2】 表2および図7に示す結果から、オゾン7の供給量が5
mg/lより少ないと、分画分子量が約5万以上の有機物
の量が急激に増加する。また、オゾン7を10mg/l以
上供給量しても分画分子量が約5万以上の有機物量はほ
とんど変化しないため、オゾン7の供給量は少なくとも
5mg/l以上で、処理コストの面から供給量を15mg/
l以下とする。
[Table 2] From the results shown in Table 2 and FIG. 7, the supply amount of ozone 7 is 5
If it is less than mg / l, the amount of organic matter having a cut-off molecular weight of about 50,000 or more increases sharply. Moreover, even if the amount of ozone 7 supplied is 10 mg / l or more, the amount of organic matter having a molecular weight cutoff of about 50,000 or more hardly changes. 15 mg /
It should be 1 or less.

【0035】次に、生物瀘過槽10では、図2および表1
に示すように、処理層11を構成する担体に担持された好
気性生物により、オゾン7で分解しきれない粒子径が約
0.45μm以下の汚染物質を分解して、さらに全体の
化学的酸素要求量(COD)を低減させる。
Next, in the biological filtration tank 10, FIG.
As shown in Fig. 3, the aerobic organisms supported on the carrier constituting the treatment layer 11 decompose the pollutants having a particle size of about 0.45 µm or less which cannot be decomposed by the ozone 7, and further the total chemical oxygen. Reduce demand (COD).

【0036】なお、この好気性生物による浄化処理は、
二次処理水2中の汚染物質をオゾン7によりあらかじめ
易分解性にしているため、容易に浄化処理が可能となっ
ている。
The purification treatment by the aerobic organism is
Since the pollutants in the secondary treated water 2 are made easily decomposable in advance by the ozone 7, the purification treatment can be easily performed.

【0037】また、限外瀘過装置17において、図2およ
び表1に示すように、分画分子量が約5万以上が瀘過さ
れていることが分かる。
Further, in the ultrafiltration device 17, as shown in FIG. 2 and Table 1, it can be seen that the molecular weight cutoff of about 50,000 or more is filtered.

【0038】さらに、還流管19にて還流されるUF膜18
にて瀘過された分画分子量が5万以上の汚染物質の量を
表3に示す。
Further, the UF film 18 which is refluxed by the reflux tube 19
Table 3 shows the amounts of pollutants having a molecular weight cutoff of 50,000 or more, which have been filtered by.

【0039】[0039]

【表3】 表3に示す結果から、還流管19にて還流される二次処理
水2のUF膜18にて瀘過された汚染物質の濃度は、オゾ
ン処理および好気性生物による処理を行わず、直接UF
膜18にて瀘過されたものより低いことが分かる。したが
って、オゾン処理および好気性生物による処理により、
汚染物質が分解されていることが分かる。
[Table 3] From the results shown in Table 3, the concentration of the pollutants filtered through the UF membrane 18 of the secondary treated water 2 that is refluxed through the reflux pipe 19 is measured without direct ozone treatment and aerobic treatment.
It can be seen that it is lower than that filtered through membrane 18. Therefore, by ozone treatment and treatment with aerobic organisms,
It can be seen that the pollutants have been decomposed.

【0040】一方、表3から、UF膜18の分画分子量を
約2万とすると、還流される二次処理水2の汚染物質の
濃度が高くなっており、確実に瀘過されることが分か
る。
On the other hand, from Table 3, when the molecular weight cut-off of the UF membrane 18 is about 20,000, the concentration of the pollutants in the refluxed secondary treated water 2 is high, and it can be reliably filtered. I understand.

【0041】ところで、UF膜18の分画分子量を約2万
よりさらに細かくすると、瀘過率はさらに高くなるが、
循環される二次処理水2の汚染物質の濃度が高くなり、
UF膜18面から極めて近い部分の汚染物質の濃度が高く
なる濃度分極が顕著に生じ、UF膜18面上にゲル状に汚
染物質による二次膜が形成される。このため、本来UF
膜18を通過する汚泥物質の透過が疎外され、図8に示す
ように、UF膜18の透過水量が極端に減少し始める。
By the way, if the molecular weight cutoff of the UF membrane 18 is made finer than about 20,000, the filtration rate becomes higher,
The concentration of pollutants in the circulated secondary treated water 2 becomes high,
Concentration polarization in which the concentration of the pollutant in a portion extremely close to the UF film 18 surface becomes high occurs remarkably, and a secondary film of the pollutant is formed in a gel state on the UF film 18 surface. Therefore, the UF
The permeation of the sludge substance passing through the membrane 18 is alienated, and as shown in FIG. 8, the permeated water amount of the UF membrane 18 starts to extremely decrease.

【0042】したがって、還流される二次処理水2の汚
染物質の濃度(COD濃度)が約10mg/l以下、好ま
しくは分画分子量で5万以上のUF膜18を用いて瀘過す
る。
Therefore, the secondary treated water 2 to be refluxed is filtered using the UF membrane 18 having a pollutant concentration (COD concentration) of about 10 mg / l or less, preferably a cutoff molecular weight of 50,000 or more.

【0043】次に、逆浸透瀘過装置23では、図2および
表1に示すように、分画分子量が約1〜5万の汚染物質
が瀘過されるとともに、分画分子量が約1以下の汚染物
質のほとんどが瀘過されていることが分かる。
Next, in the reverse osmosis filtration device 23, as shown in FIG. 2 and Table 1, contaminants having a molecular weight cutoff of about 1 to 50,000 are filtered and the molecular weight cutoff is about 1 or less. It can be seen that most of the pollutants have been filtered.

【0044】そして、従来の凝集沈殿、砂瀘過、精密膜
瀘過した後に逆浸透膜にて瀘過するものと、RO膜24の
透過水量について比較した結果を図9に示す。
FIG. 9 shows the result of comparison of the permeated water amount of the RO membrane 24 with that of the conventional coagulation sedimentation, sand filtration, and precision membrane filtration followed by filtration with a reverse osmosis membrane.

【0045】この図9から、従来の浄化処理では、瀘過
後直ちに、通過水量が減少し始め、運転日数が20日を
越えると、ほとんど透過できなくなるが、上記実施例に
よる浄化処理によれば、ほとんど透過水量が減少せず、
安定して瀘過できていることが分かる。さらに、凝集剤
などを添加せず、二次処理水2を汚染しないオゾンを曝
気するので、二次処理水2が汚染されず、効率よく浄化
処理できる。
From FIG. 9, in the conventional purification treatment, the amount of passing water begins to decrease immediately after the filtration, and almost no permeation is possible when the number of operating days exceeds 20, but according to the purification treatment according to the above embodiment, The amount of permeated water hardly decreases,
It can be seen that stable filtration is possible. Furthermore, since ozone that does not contaminate the secondary treated water 2 is aerated without adding a coagulant or the like, the secondary treated water 2 is not contaminated and can be efficiently purified.

【0046】また、上述したように、UF膜18およびR
O膜24に瀘過される汚染物質は、既にオゾン7により、
親水性化されているため、UF膜18およびRO膜24への
付着が起こりにくく、UF膜18およびRO膜24への負荷
が低減し、効率よく瀘過できる。
As described above, the UF film 18 and R
The pollutants filtered on the O film 24 have already been generated by ozone 7.
Since it is made hydrophilic, adhesion to the UF membrane 18 and the RO membrane 24 is less likely to occur, the load on the UF membrane 18 and the RO membrane 24 is reduced, and efficient filtration is possible.

【0047】したがって、上記実施例は、二次処理水2
にオゾン7を接触させて、二次処膜水2中の汚染物質
を、好気性生物にて分解し易いように易分解性に分解す
るとともに、親水性化し、汚染物質を好気性生物にてさ
らに分解するので、従来使用されるMF膜よりさらに細
かいUF膜18を透過水量を低減させずに使用でき、この
UF膜18にてにて瀘過したものを、RO膜24にて瀘過す
るため、RO膜24の負荷が低減するとともに二次膜の形
成が抑制されて、RO膜24の汚染が低減でき、効率よく
二次処理水2を高度にの浄化処理できる。
Therefore, in the above embodiment, the secondary treated water 2
By contacting ozone 7 with the ozone, the pollutants in the secondary membrane water 2 are easily decomposed so that they are easily decomposed by aerobic organisms, and the hydrophilic substances are made hydrophilic. Since it is further decomposed, it is possible to use the UF membrane 18 finer than the conventionally used MF membrane without reducing the amount of permeated water, and the UF membrane 18 is used to filter what is filtered by the RO membrane 24. Therefore, the load on the RO membrane 24 is reduced, the formation of the secondary membrane is suppressed, the contamination of the RO membrane 24 can be reduced, and the secondary treated water 2 can be efficiently purified to a high degree.

【0048】さらに、RO膜24の汚染が低減できるた
め、頻繁にRO膜24を逆流洗浄せずに長期間安定して効
率よく浄化処理できるとともに、頻繁な逆流洗浄による
運転コストの上昇、RO膜24の損傷、および、逆流洗浄
による処理工程の停止による処理効率の低減を防止で
き、安価で効率よく容易に高度に浄化処理できる。
Furthermore, since the contamination of the RO membrane 24 can be reduced, the RO membrane 24 can be stably and efficiently purified for a long period of time without frequent backwashing, and the operating cost increases due to frequent backwashing, and the RO membrane can be cleaned. It is possible to prevent the damage of 24 and the reduction of the treatment efficiency due to the stop of the treatment process due to the backwashing, and the inexpensive purification can be performed efficiently, efficiently and highly.

【0049】[0049]

【発明の効果】本発明の汚水の浄化処理方法は、汚水に
オゾンを接触させて汚水中の汚染物質を易分解性にし、
この易分解性の汚染物質を、好気性生物にて酸化分解
し、未分解の易分解性の汚染物質を含有する汚水を限外
瀘過した後に、逆浸透膜にて浄化処理するため、逆浸透
膜の負荷が低減して逆浸透膜の汚染が低減でき、汚水の
浄化処理が長期間安定し処理効率を向上できる。
EFFECT OF THE INVENTION The method for purifying sewage of the present invention is to bring ozone into contact with sewage to make pollutants in sewage easily degradable.
This easily degradable pollutant is oxidatively decomposed by aerobic organisms, and the wastewater containing undegraded easily degradable pollutant is ultrafiltered and then purified by a reverse osmosis membrane. The load on the osmosis membrane can be reduced and the contamination of the reverse osmosis membrane can be reduced, and the purification process of the sewage can be stable for a long period of time and the treatment efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚水の浄化処理方法の一実施例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of a method for purifying sewage according to the present invention.

【図2】同上各処理工程における二次処理水の状況を示
す説明図である。
FIG. 2 is an explanatory view showing a situation of secondary treated water in each treatment step of the above.

【図3】同上オゾンを示す説明図である。FIG. 3 is an explanatory view showing ozone as above.

【図4】同上有機不飽和化合物を示す説明図である。FIG. 4 is an explanatory view showing the same organic unsaturated compound.

【図5】同上オゾンによる浄化処理の状況を示す説明図
である。
FIG. 5 is an explanatory diagram showing a situation of a purification process using ozone.

【図6】同上オゾンによる浄化処理の状況を示す説明図
である。
FIG. 6 is an explanatory diagram showing a situation of a purification process using ozone.

【図7】同上限外瀘過膜による浄化処理の状況を示す説
明図である。
FIG. 7 is an explanatory diagram showing a state of a purification process by the upper limit outer filtration film.

【図8】同上逆浸透膜による浄化処理の状況を示す説明
図である。
FIG. 8 is an explanatory diagram showing a state of purification processing by the reverse osmosis membrane.

【図9】従来例の汚水の浄化処理方法を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a conventional wastewater purification treatment method.

【符号の説明】[Explanation of symbols]

1 オゾン反応槽 2 汚水としての二次処理水 7 オゾン 10 生物瀘過槽 11 処理層 17 限外瀘過装置 18 限外瀘過膜 23 逆浸透瀘過装置 24 逆浸透膜 1 ozone reaction tank 2 secondary treated water as sewage 7 ozone 10 biological filtration tank 11 treatment layer 17 ultrafiltration device 18 ultrafiltration membrane 23 reverse osmosis filtration device 24 reverse osmosis membrane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 501 B 502 F G R 503 C 504 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 9/00 501 B 502 FG 503 C 504 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜を用いて汚水を浄化処理する汚
水の浄化処理方法において、 汚水にオゾンを接触させ、 このオゾンが接触された汚水を好気性生物にて酸化分解
し、 この好気性生物にて酸化分解された汚水を限外瀘過にて
瀘過した後、 逆浸透膜を用いて浄化処理することを特徴とした汚水の
浄化処理方法。
1. A method for purifying sewage using a reverse osmosis membrane, wherein sewage is contacted with ozone, and the sewage contacted with ozone is oxidatively decomposed by an aerobic organism to produce an aerobic property. A method for purifying sewage, which comprises filtering sewage that has been oxidatively decomposed by living organisms by ultrafiltration and then purifying it using a reverse osmosis membrane.
JP33378093A 1993-12-27 1993-12-27 Purifying treatment of sewage Pending JPH07185546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33378093A JPH07185546A (en) 1993-12-27 1993-12-27 Purifying treatment of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33378093A JPH07185546A (en) 1993-12-27 1993-12-27 Purifying treatment of sewage

Publications (1)

Publication Number Publication Date
JPH07185546A true JPH07185546A (en) 1995-07-25

Family

ID=18269882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33378093A Pending JPH07185546A (en) 1993-12-27 1993-12-27 Purifying treatment of sewage

Country Status (1)

Country Link
JP (1) JPH07185546A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990079000A (en) * 1999-08-18 1999-11-05 이영호 Sewage Treatment Facility with Nano Filtration Membrane
JPH11347596A (en) * 1998-06-05 1999-12-21 Mitsubishi Electric Corp Apparatus for treating drainage
KR20030009723A (en) * 2001-07-23 2003-02-05 박경습 Toilet water recycling system
KR100864587B1 (en) * 2007-05-25 2008-10-20 호서대학교 산학협력단 Method and apparatus for disposing wastewater in digital textile printing
JP2010099545A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Organic wastewater treatment method and apparatus
JP2010115576A (en) * 2008-11-11 2010-05-27 Suido Kiko Kaisha Ltd Water treatment system
JP2011140017A (en) * 2009-12-07 2011-07-21 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
CN102249491A (en) * 2011-06-16 2011-11-23 北京城市排水集团有限责任公司 Deep treatment device and process for secondary treatment effluent of urban sewage plant
JP2012179538A (en) * 2011-03-01 2012-09-20 Air Water Inc Apparatus and method for waste water disposal
CN102826718A (en) * 2012-09-13 2012-12-19 中国科学院广州能源研究所 Method and device for improving oxidation efficiency of ozone-aeration biological filter combination system
KR101214991B1 (en) * 2012-06-21 2013-01-03 다이텍연구소 Method for treating waste water
KR101360020B1 (en) * 2013-03-15 2014-02-12 재단법인 한국계면공학연구소 Preprocessing of membrane filtration and system using the same
CN104093672A (en) * 2011-12-23 2014-10-08 得利满公司 Method for treating industrial or urban wastewater for reuse, and facility for implementing this method
RU2668036C2 (en) * 2017-02-14 2018-09-25 Дмитрий Валерьевич Татеосов Water purification and disinfection unit
EP3947296A4 (en) * 2019-03-26 2022-12-28 Evocra Pty Limited Sewage treatment method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347596A (en) * 1998-06-05 1999-12-21 Mitsubishi Electric Corp Apparatus for treating drainage
KR19990079000A (en) * 1999-08-18 1999-11-05 이영호 Sewage Treatment Facility with Nano Filtration Membrane
KR20030009723A (en) * 2001-07-23 2003-02-05 박경습 Toilet water recycling system
KR100864587B1 (en) * 2007-05-25 2008-10-20 호서대학교 산학협력단 Method and apparatus for disposing wastewater in digital textile printing
JP2010099545A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Organic wastewater treatment method and apparatus
JP2010115576A (en) * 2008-11-11 2010-05-27 Suido Kiko Kaisha Ltd Water treatment system
JP2011140017A (en) * 2009-12-07 2011-07-21 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
JP2012179538A (en) * 2011-03-01 2012-09-20 Air Water Inc Apparatus and method for waste water disposal
CN102249491A (en) * 2011-06-16 2011-11-23 北京城市排水集团有限责任公司 Deep treatment device and process for secondary treatment effluent of urban sewage plant
CN104093672A (en) * 2011-12-23 2014-10-08 得利满公司 Method for treating industrial or urban wastewater for reuse, and facility for implementing this method
KR101214991B1 (en) * 2012-06-21 2013-01-03 다이텍연구소 Method for treating waste water
CN102826718A (en) * 2012-09-13 2012-12-19 中国科学院广州能源研究所 Method and device for improving oxidation efficiency of ozone-aeration biological filter combination system
KR101360020B1 (en) * 2013-03-15 2014-02-12 재단법인 한국계면공학연구소 Preprocessing of membrane filtration and system using the same
RU2668036C2 (en) * 2017-02-14 2018-09-25 Дмитрий Валерьевич Татеосов Water purification and disinfection unit
EP3947296A4 (en) * 2019-03-26 2022-12-28 Evocra Pty Limited Sewage treatment method

Similar Documents

Publication Publication Date Title
JPH07185546A (en) Purifying treatment of sewage
JPH0665371B2 (en) Organic wastewater biological treatment equipment
US20080179256A1 (en) System and method for chemical-free metal particle removal from a liquid media
JP2003534891A (en) Water treatment system and method
JP2007244979A (en) Water treatment method and water treatment apparatus
JP2001191086A (en) Water treating apparatus
JP2001276844A (en) Water producing method and water producing system
KR101150335B1 (en) Wastewater treatment apparatus combined sbr with mbr
CN101891337A (en) Treating system and method for treating surface water worse than Grade V into drinking water
KR102021951B1 (en) Water Treatment System Using Reciprocation of the Filtration Membrane and intermittent Air scour
JP2002136981A (en) Method for cleaning secondarily treated water of sewage
KR100538126B1 (en) Ds-mt system
JPS649071B2 (en)
JP3444202B2 (en) Water treatment equipment
JPH09253456A (en) Treatment of organic drain
JPH11221584A (en) Pressurized ozone treating system and device
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
JP2002346347A (en) Method and apparatus for filtration
JP4019277B2 (en) Method and apparatus for treating organic wastewater generated from fishing ports and fish markets
JP3697938B2 (en) Wastewater treatment equipment
JP2003094088A (en) Water treatment system
JP2003340247A (en) Device and method for treating water
JP2002035554A (en) Method for treating water and its apparatus
JP3565083B2 (en) Method and apparatus for treating human wastewater