JPH09187768A - Treatment method of sewage - Google Patents

Treatment method of sewage

Info

Publication number
JPH09187768A
JPH09187768A JP1830696A JP1830696A JPH09187768A JP H09187768 A JPH09187768 A JP H09187768A JP 1830696 A JP1830696 A JP 1830696A JP 1830696 A JP1830696 A JP 1830696A JP H09187768 A JPH09187768 A JP H09187768A
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
raw water
osmosis membrane
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1830696A
Other languages
Japanese (ja)
Other versions
JP3834091B2 (en
Inventor
Kazuo Tanaka
和男 田中
Ichiro Kawada
一郎 河田
Masahiko Hirose
雅彦 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP01830696A priority Critical patent/JP3834091B2/en
Publication of JPH09187768A publication Critical patent/JPH09187768A/en
Application granted granted Critical
Publication of JP3834091B2 publication Critical patent/JP3834091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize treated water as amenity water for the public utilities by carrying out the final treatment of the sewage disposal with a foregoing reverse osmosis film module having a raw water contact film surface composed of a cross-linked polymer of a piperazineamino compound and a following reverse osmosis film module having a raw water contact film surface composed of a cross-linked aromatic polyamide. SOLUTION: Sewage is treated in a rough filter device 1, a biological treatment device 2 and a pretreatment device 3, and stored in a raw water tank 4. Then the raw water is fed into a foregoing reverse osmosis film separation module 61 by a foregoing water feed pump 51, and solution and organic matters are concentrated therein. Non-permeated water in which salt and the like are concentrated is discharged out of a discharge pipe 61. If necessary, the pH adjustment is carried out for the foregoing permeated water, and then the water is fed into a reverse osmosis film separation module 62, and the following permeation treatment is carried out. A raw water contact surface of the foregoing reverse osmosis separation module 61 is formed from a cross-linked polymer composed of a piperazineamino compound, while the raw water contact surface of the following reverse osmosis film separation module 62 is formed from a cross-linked aromatic polyamide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は下水を処理する場
合、高次処理を膜分離法により行う下水の処理方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating sewage, in which sewage is treated by a membrane separation method.

【0002】[0002]

【従来の技術】都市での下水処理においては、下水を粗
濾過したうえで、活性汚泥法により生物処理し、その処
理水を河川に放流している。すなわち、粗濾過した下水
を曝気槽に導入し、下水中の有機物を浮遊状態の微生物
により好気性状態で吸着・分解させ、微生物を増殖さ
せ、更に、曝気槽の微生物混合液(ML)を最終沈殿池
に導き、微生物を沈殿分離し、その沈殿微生物を返送汚
泥としての曝気槽の下水流入部に返送して循環処理を行
い、沈殿池の余剰汚泥を適時抜き取っている。近来、環
境問題や水資源の有効利用のために、上記処理水を放流
せずに、例えば、公園等の公共施設の親水用水として再
利用することが検討されている。而して、この有効利用
のためには、上記処理水から窒素や燐等の栄養塩類を高
い除去率で除去することが必要である。
In the treatment of sewage in cities, the sewage is roughly filtered, then biologically treated by the activated sludge method, and the treated water is discharged into a river. That is, the coarsely filtered sewage is introduced into the aeration tank, the organic matter in the sewage is adsorbed and decomposed by the floating microorganisms in an aerobic state to grow the microorganisms, and further, the microorganism mixture liquid (ML) in the aeration tank is finally added. The wastewater is led to a sedimentation tank, the microorganisms are separated by sedimentation, and the sedimentation microorganisms are returned to the sewage inflow section of the aeration tank as return sludge for circulation processing, and excess sludge in the sedimentation tank is extracted at appropriate times. Recently, for environmental problems and effective use of water resources, it has been considered to reuse the treated water as hydrophilic water for public facilities such as parks without discharging it. For this effective use, it is necessary to remove nutrient salts such as nitrogen and phosphorus from the treated water at a high removal rate.

【0003】[0003]

【発明が解決しようとする課題】従来、活性汚泥処理を
嫌気・好気状態の繰返しで行って有機物と同時に窒素を
も除去することが、所謂、生物学的硝化脱窒法として知
られている。また、活性汚泥処理を完全嫌気状態、無酸
素状態、好気状態で順次に行うことを繰り返して有機物
と同時に窒素及び燐をも除去することが、所謂、生物学
的硝化脱窒燐除去法として知られている。しかしなが
ら、これらの方法では、上記最終の処理水を有効に再利
用できる程度にまで窒素や燐化合物を除去することは困
難である。
Conventionally, it has been known as a so-called biological nitrification denitrification method that activated sludge treatment is repeated in an anaerobic / aerobic state to remove nitrogen as well as organic substances. Further, as a so-called biological nitrifying denitrifying phosphorus removing method, it is possible to remove nitrogen and phosphorus at the same time as organic matter by repeating the activated sludge treatment sequentially in a completely anaerobic state, anoxic state and aerobic state. Are known. However, it is difficult for these methods to remove nitrogen and phosphorus compounds to the extent that the final treated water can be effectively reused.

【0004】而して、この窒素や燐化合物の除去のため
に、逆浸透膜モジュ−ルにより最終的な高次処理を行う
ことが提案されている。この処理における処理水量が大
きいために、逆浸透膜モジュ−ルには透過流束が大のも
のを使用することが適切であり、その逆浸透膜モジュ−
ルとしては架橋芳香族ポリアミド系逆浸透膜モジュ−ル
が注目されている。しかしながら、本発明者等の試験結
果によれば、この架橋芳香族ポリアミド系逆浸透膜モジ
ュ−ルで上記最終的な高次処理を行うと、比較的早期に
透過流束が低下し、所定の処理速度を維持することが困
難であることが知った。かかる早期透過流束の低下の原
因は、処理水中に含有されている界面活性剤が架橋芳香
族ポリアミド膜表面に顕著に吸着され、膜表面の親水性
が低下した結果であると推定される。
In order to remove the nitrogen and phosphorus compounds, it has been proposed to carry out a final high-order treatment with a reverse osmosis membrane module. Since the amount of treated water in this treatment is large, it is appropriate to use a reverse osmosis membrane module having a large permeation flux.
A cross-linked aromatic polyamide-based reverse osmosis membrane module has attracted attention as a module. However, according to the test results of the inventors of the present invention, when the above-mentioned final high-order treatment is carried out with this crosslinked aromatic polyamide-based reverse osmosis membrane module, the permeation flux is lowered relatively early and a predetermined value I found it difficult to maintain the processing speed. It is presumed that the cause of the decrease in the early permeation flux is a result of the surfactant contained in the treated water being remarkably adsorbed on the surface of the crosslinked aromatic polyamide membrane and the hydrophilicity of the membrane surface being lowered.

【0005】本発明の目的は、下水の処理において、下
水の最終的な高次処理を高く、かつ安定な透過流束のも
とで、しかも、窒素や燐等の栄養塩類を高除去率で除去
して行うことを可能とし、その処理水を公共設備の親水
用水として利用可能とすることにある。
An object of the present invention is to treat sewage in a high-level final treatment of sewage with a high and stable permeation flux, and at a high removal rate of nutrient salts such as nitrogen and phosphorus. It is possible to remove the wastewater and use the treated water as hydrophilic water for public facilities.

【0006】[0006]

【課題を解決するための手段】本発明に係る下水の処理
方法は、原水に接する膜表面がピペラジンアミノ化合物
の架橋重合体で形成された前段の逆浸透膜モジュ−ル
と、原水に接する膜表面が架橋芳香族ポリアミドで形成
された後段の逆浸透膜モジュ−ルにより、下水処理にお
ける最終的な高次処理を行うことを特徴とする構成であ
り、後段の逆浸透膜モジュ−ルには、透過流束が0.1
0m3/m2・〔kgf/cm2〕・day以上であり、pH6.5、濃
度0.05%の食塩水を原水として25℃、操作圧力
7.5kgf/cm2にて運転30分後での食塩阻止率が90
%以上であるもの、更には、膜表面の平均面粗さが55
nm以上であるものを使用することが好ましい。
Means for Solving the Problems The method for treating sewage according to the present invention comprises a reverse osmosis membrane module of the preceding stage having a membrane surface in contact with raw water made of a crosslinked polymer of a piperazine amino compound, and a membrane in contact with raw water. The reverse osmosis membrane module of the latter stage whose surface is formed of a crosslinked aromatic polyamide is a constitution characterized by performing the final high-order treatment in the sewage treatment. , The permeation flux is 0.1
0m 3 / m 2 · [kgf / cm 2 ] · day or more, pH 6.5, 0.05% concentration of saline as raw water at 25 ℃, operating pressure 7.5kgf / cm 2 after 30 minutes of operation Salt inhibition rate at 90
% Or more, and the average surface roughness of the film surface is 55
It is preferable to use those having a thickness of at least nm.

【0007】本発明において、後段の逆浸透膜モジュ−
ルに架橋芳香族ポリアミド系逆浸透膜モジュ−ルを使用
する理由は、透過流束が大きく、しかも、窒素及び燐化
合物に対する溶質除去率が大であるからである。この架
橋芳香族ポリアミド系膜としては、多孔質基材上で、少
なくとも2個のアミン官能性基を有する単量体の芳香族
ポリアミン反応体と、多官能性アシルハライドまたはそ
の混合物から成る単量体の芳香族のアミン反応性反応体
(このアミン反応性反応体1分子につき平均で少なくと
も約2.2個のアシルハライド基を有する)とを、アミ
ン塩の存在下で界面重合することにより作成した複合膜
(例えば、特許第1948993号)が好適に使用さ
れ、少なくとも2個のアミン官能性基を有する単量体の
芳香族ポリアミン反応体には例えば、m−フエニレンジ
アミンが、多官能性アシルハライドから成る単量体の芳
香族のアミン反応性反応体には例えば、トリメンイルク
ロライドが使用される。これ以外の架橋芳香族ポリアミ
ド系膜を使用した逆浸透膜モジュ−ルの使用も可能であ
る。
In the present invention, the reverse osmosis membrane module of the latter stage is used.
The reason why the cross-linked aromatic polyamide reverse osmosis membrane module is used for the resin is that the permeation flux is large and the solute removal rate for nitrogen and phosphorus compounds is large. The cross-linked aromatic polyamide film is a monomer composed of a monomeric aromatic polyamine reactant having at least two amine functional groups and a polyfunctional acyl halide or a mixture thereof on a porous substrate. Made by interfacially polymerizing an aromatic amine-reactive reactant (which has an average of at least about 2.2 acyl halide groups per molecule of this amine-reactive reactant) with an aromatic amine-reactive reactant in the presence of an amine salt. Composite membranes (e.g., Japanese Patent No. 1948993) are preferably used, and monomeric aromatic polyamine reactants having at least two amine functional groups include, for example, m-phenylenediamine as a polyfunctional compound. For example, trimenyl chloride is used as the monomeric aromatic amine reactive reactant comprising an acyl halide. It is also possible to use a reverse osmosis membrane module using a cross-linked aromatic polyamide-based membrane other than this.

【0008】本発明において、前段の逆浸透膜モジュ−
ルに膜表面がピペラジンアミノ化合物の架橋重合体で形
成されたものを使用する理由は、界面活性剤との接触に
よる透過流束の低下が著しく低く、界面活性剤の通過を
阻止しつつ後段の架橋芳香族ポリアミド系逆浸透膜モジ
ュ−ルへの充分な供給液量を保証し、後段の逆浸透膜モ
ジュ−ルを界面活性剤から遮断して高い透過流束のもと
で窒素や燐を高い除去率でを除去するためであり、ピペ
ラジンアミノ化合物としては、2−メチルピペラジン、
2,5−ジメチルピペラジン、ホモピペラジン等が挙げ
られる(例えば、特公昭61−27083号公報)。
In the present invention, the reverse osmosis membrane module of the preceding stage is used.
The reason why the membrane surface formed of a cross-linked polymer of piperazine amino compound is used for the polymer is that the decrease of the permeation flux due to contact with the surfactant is extremely low, and it prevents the passage of the surfactant while Guarantee a sufficient amount of liquid supplied to the crosslinked aromatic polyamide-based reverse osmosis membrane module and block the reverse osmosis membrane module in the subsequent stage from the surfactant to remove nitrogen and phosphorus under high permeation flux. This is for removing with a high removal rate, and as the piperazine amino compound, 2-methylpiperazine,
2,5-dimethylpiperazine, homopiperazine and the like can be mentioned (for example, Japanese Examined Patent Publication No. 61-27083).

【0009】この後段の逆浸透膜モジュ−ルには、上記
の高透過流束を確保するために、透過流束0.10m3/m
2・〔kgf/cm2〕・day以上のものが使用され、また、上記
の窒素や燐に対する高い除去率を確保するために、pH
6.5、濃度0.05%の食塩水を原水として25℃、
操作圧力7.5kgf/cm2にて運転30分後での食塩阻止
率が90%以上のものが使用される。上記後段の逆浸透
膜モジュ−ルにおいては、膜の表面積を大として実質的
に膜面積を大きくするために、膜表面の平均面粗さRa
が55nm以上のものを使用することが好ましい。
In order to secure the above high permeation flux, the reverse osmosis membrane module in the latter stage has a permeation flux of 0.10 m 3 / m 2.
2・ [kgf / cm 2 ] ・ day or more is used, and in order to secure a high removal rate for the above-mentioned nitrogen and phosphorus, pH
6.5, saline solution with a concentration of 0.05% as raw water at 25 ° C,
A salt inhibition rate of 90% or more after 30 minutes of operation at an operating pressure of 7.5 kgf / cm 2 is used. In the latter-stage reverse osmosis membrane module, in order to increase the surface area of the membrane and substantially increase the membrane area, the average surface roughness Ra of the membrane surface is increased.
Is preferably 55 nm or more.

【0010】なお、上記の平均粗さRaは次の式によ
って定義され、原子力間顕微鏡、摩擦力顕微鏡、トンネ
ル顕微鏡、走査電子顕微鏡、透過電子顕微鏡等により測
定できる。
The average roughness Ra is defined by the following equation and can be measured by an atomic force microscope, a frictional force microscope, a tunnel microscope, a scanning electron microscope, a transmission electron microscope or the like.

【数1】 ここで、a,bは指定面(長方形)の2辺の長さ、Sは
指定面の面積、f(x,y)は指定面内での高さ、Zoは次式
で与えられる指定面の高さの平均値である。
[Equation 1] Where a and b are the lengths of two sides of the specified surface (rectangle), S is the area of the specified surface, f (x, y) is the height within the specified surface, and Zo is the specified surface given by the following equation. Is the average height.

【数2】 [Equation 2]

【0011】[0011]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明において使
用する下水処理施設の一例を示している。図1におい
て、1は粗濾過装置であり、後続の処理施設に障害とな
る粗い浮遊物や油脂が除去され、スクリ−ン、沈砂池、
油脂分離槽、pH調整槽等が設けられている。2は生物
処理装置である。3は前処理装置であり、懸濁物質を除
去し後置の逆浸透膜モジュ−ルを懸濁物質から保護する
ために設けられ、例えば、砂濾過装置や精密濾過装置が
使用される。4は原水タンクを、51は前段送液ポンプ
を、61は原水に接する膜表面がピペラジンアミノ化合
物の架橋重合体で形成された前段の逆浸透膜モジュ−ル
を、611は前段非透過水排出管を、612は前段透過
水流出管をそれぞれ示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a sewage treatment facility used in the present invention. In FIG. 1, reference numeral 1 is a coarse filtration device, which removes coarse suspended matter and oils and fats that interfere with subsequent treatment facilities, and screens, sand basins,
An oil and fat separation tank, a pH adjusting tank, etc. are provided. 2 is a biological treatment apparatus. Reference numeral 3 is a pretreatment device, which is provided to remove suspended matter and protect the reverse osmosis membrane module after it from suspended matter. For example, a sand filter device or a microfiltration device is used. 4 is a raw water tank, 51 is a pre-stage liquid feed pump, 61 is a pre-stage reverse osmosis membrane module whose membrane surface in contact with raw water is a cross-linked polymer of piperazine amino compound, and 611 is a pre-stage non-permeate discharge Reference numeral 612 denotes a front-stage permeated water outflow pipe.

【0012】7は中間タンク、例えばパイプヘッダ−
を、52は後段送液ポンプを、62は原水に接する膜表
面が架橋芳香族ポリアミドで形成された後段の逆浸透膜
モジュ−ルを、622は後段透過水流出管を、620は
後段非透過水配管をそれぞれ示し、後段非透過水の一部
が原水タンク4にリタ−ン管620’によりリタ−ンさ
れ、残部は後段非透過水排出管621より排出され、後
段透過水が後段透過水流出管622より用水として取り
出されていく。8は必要に応じて設けられるアルカリ液
タンクを、9は前段逆浸透膜分離モジュ−ル61の透過
側にアルカリ液を注入するためのポンプをそれぞれ示し
ている。
7 is an intermediate tank such as a pipe header
Reference numeral 52 is a rear-stage liquid feed pump, 62 is a rear-stage reverse osmosis membrane module whose membrane surface in contact with raw water is formed of a crosslinked aromatic polyamide, 622 is a rear-stage permeated water outflow pipe, and 620 is a rear-stage non-permeate. Water pipes are respectively shown. A part of the rear-stage non-permeate water is returned to the raw water tank 4 by the return pipe 620 ′, and the rest is discharged from the rear-stage non-permeate discharge pipe 621. It is taken out as water from the outflow pipe 622. Reference numeral 8 denotes an alkaline liquid tank provided as necessary, and 9 denotes a pump for injecting the alkaline liquid into the permeate side of the pre-stage reverse osmosis membrane separation module 61.

【0013】上記施設を用いて本発明により下水を処理
するには、下水を粗濾過装置1、生物処理装置2並びに
前処理装置3で処理し、これを一旦原水タンク4に貯
え、前段送液ポンプ51により所定の圧力で前段逆浸透
膜分離モジュ−ル61に供給し、原水中の塩や有機物の
通過の阻止により塩等の濃縮された非透過水を前段非透
過水排出管611から排出し、透過側に所定の除去率で
塩等を除去した透過水を発生させていく。
In order to treat sewage according to the present invention using the above facility, the sewage is treated by the rough filtration device 1, the biological treatment device 2 and the pretreatment device 3, which is once stored in the raw water tank 4 and the pre-stage liquid transfer. The pump 51 supplies the pre-stage reverse osmosis membrane separation module 61 at a predetermined pressure, and the non-permeated water concentrated such as salt is discharged from the pre-stage non-permeate water discharge pipe 611 by blocking the passage of salts and organic substances in the raw water. Then, permeated water from which salts and the like have been removed is generated on the permeate side at a predetermined removal rate.

【0014】上記前段逆浸透膜分離モジュ−ル61の前
段透過水は一旦中間タンク7に貯え、必要に応じてポン
プ9によりアリカリ液、例えば、水酸化ナトリウムや水
酸化カリウム等を注入してその透過水のpHを調整し、
このpH調整透過水を送液ポンプ52により所定の圧力
で後段逆浸透膜分離モジュ−ル62に供給し、塩の濃縮
された後段非透過水の一部を前段ライン側にリタ−ンさ
せると共に後段非透過水の残部を後段非透過水排出管6
21から排出していく。後段逆浸透膜分離モジュ−ル6
2により更に脱塩された後段透過水は、親水用水等の用
水として使用していく。上記において、後段逆浸透膜分
離モジュ−ル62の非透過水は全て排出し、前段ライン
へのリタ−ン量を0にすることもできる。
The pre-stage permeated water of the pre-stage reverse osmosis membrane separation module 61 is temporarily stored in the intermediate tank 7, and if necessary, an alkali solution, for example, sodium hydroxide, potassium hydroxide, or the like is injected by the pump 9 to obtain the permeated water. Adjust the pH of the permeate,
The pH-adjusted permeated water is supplied to the rear-stage reverse osmosis membrane separation module 62 at a predetermined pressure by the liquid feed pump 52, and a part of the rear-stage non-permeated water in which salt is concentrated is returned to the front-stage line side. The remaining non-permeated water in the second stage is discharged into the non-permeated water in the second stage 6
Eject from 21. Rear-stage reverse osmosis membrane separation module 6
The second-stage permeated water further desalted by 2 will be used as water for hydrophilic water and the like. In the above, all the non-permeated water of the rear-stage reverse osmosis membrane separation module 62 can be discharged, and the return amount to the front-stage line can be made zero.

【0015】上記後段液送ポンプを省略し、図2に示す
ように、前段逆浸透膜分離モジュ−ル61のみならず後
段逆浸透膜分離モジュ−ル62の操作圧力をも前段液送
ポンプ51で発生させることもでき、この場合、前段逆
浸透膜分離モジュ−ル61はその透過側においても加圧
されるので、透過側もこの加圧力に対処できる耐圧構造
とされる。なお、図2において、図1と同一符号は同一
の構成要素を示している上記前段及び後段の逆浸透膜分
離モジュ−ルには、スパイラル型、中空糸型、チュ−ブ
ラ−型、フレ−ム&プレ−ト型等を使用できる。上記に
おいて、逆浸透膜分離モジュ−ルには数台のモジュ−ル
ユニットを直列または並列に接続し、これらのユニット
群の供給側を一括して原水供給管に接続し、透過側を一
括して透過水流出管に接続したものも使用できる。
As shown in FIG. 2, the operation pressure of not only the pre-stage reverse osmosis membrane separation module 61 but also the post-stage reverse osmosis membrane separation module 62 is reduced as shown in FIG. In this case, since the pre-stage reverse osmosis membrane separation module 61 is also pressurized on its permeation side, the permeation side also has a pressure-resistant structure capable of coping with this pressing force. In FIG. 2, the same reference numerals as those in FIG. 1 indicate the same components. The above-mentioned reverse osmosis membrane separation modules at the front and rear stages include a spiral type, a hollow fiber type, a tuber type, and a frame type. And plate type can be used. In the above, several module units are connected in series or in parallel to the reverse osmosis membrane separation module, the supply side of these unit groups are collectively connected to the raw water supply pipe, and the permeate side is collectively connected. Those connected to the permeate outflow pipe can also be used.

【0016】本発明が処理の対象とする下水中には、石
鹸や洗剤排液のために多量の界面活性剤が含まれてい
る。而るに、膜の表面層がピペラジンアミノ化合物の架
橋重合体で形成された逆浸透膜モジュ−ルにおいては、
界面活性剤に接しても膜面への界面活性剤の吸着が殆ど
観られずに透過流束の低下が僅かである。この界面活性
剤は、比較的分子量が高く、前段の逆浸透膜モジュ−ル
により実質的にほぼ完全に遮断される。従って、前段逆
浸透膜モジュ−ルによるほぼ完全な界面活性剤の遮断に
より、膜の表面層が架橋芳香族ポリアミドで形成された
後段逆浸透膜モジュ−ルの界面活性剤接触下での低透過
流束性を現出させずに、この後段逆浸透膜モジュ−ル
に、窒素や燐に対する本来の高い塩除去率を効果的に発
揮させ得、窒素や燐含有量が僅小で親水用水として利用
可能な高水質の透過水を得ることができる。
The sewage to be treated by the present invention contains a large amount of surfactants for draining soap and detergent. Thus, in a reverse osmosis membrane module in which the surface layer of the membrane is formed of a crosslinked polymer of a piperazine amino compound,
Even when contacted with the surfactant, the adsorption of the surfactant on the membrane surface was hardly observed, and the permeation flux was slightly reduced. This surfactant has a relatively high molecular weight and is substantially almost completely blocked by the preceding reverse osmosis membrane module. Therefore, by the almost complete blocking of the surfactant by the former reverse osmosis membrane module, the low permeation of the latter reverse osmosis membrane module in which the surface layer of the membrane was formed by the crosslinked aromatic polyamide under the contact with the surfactant was achieved. The latter reverse osmosis membrane module can effectively exhibit its original high salt removal rate for nitrogen and phosphorus without exhibiting flux, and as a hydrophilic water with a small nitrogen and phosphorus content. It is possible to obtain usable permeate of high water quality.

【0017】[0017]

【実施例】【Example】

〔実施例〕前段の逆浸透膜モジュ−ルには、pH6.
5、濃度0.15%の食塩水を原水として25℃、操作
圧力10kgf/cm2にて運転30分後での食塩阻止率が9
0%であり、膜がピペラジンポリアミド系である日東電
工株式会社製スパイラル型逆浸透膜モジュ−ルを使用し
た。この逆浸透膜モジュ−ルの膜(複合膜)は、ポリス
ルホンからなる多孔質基材上に、ポリビニルアルコ−ル
0.25重量%、ピペラジン0.25重量%及び水酸化
ナトリウム0。5重量%を含有する原液を均一に塗布し
た後、トリメシン酸クロライドの1重量%n−ヘキサン
溶液に温度25℃にて1分間浸漬し、次いで引き上げて
n−ヘキサンを揮散させた後、温度110℃にて10分
間加熱処理したものであり、ポリビニルアルコ−ルとピ
ペラジンアミノ化合物との架橋重合体の超薄膜と、この
超薄膜とポリスルホン多孔質基材との間の原液塗布層内
部の架橋反応に寄与しなかった未反応の水不溶性化ポリ
ビニルアルコ−ル中間層と、ポリスルホン多孔質基材か
らなっている。
[Example] The reverse osmosis membrane module in the former stage had pH 6.
5. Using salt water with a concentration of 0.15% as raw water at 25 ° C and operating pressure of 10 kgf / cm 2 , the salt inhibition rate after 30 minutes of operation was 9
A spiral type reverse osmosis membrane module manufactured by Nitto Denko Co., Ltd., which is 0% and the membrane is a piperazine polyamide type, was used. This reverse osmosis membrane module membrane (composite membrane) comprises 0.25% by weight of polyvinyl alcohol, 0.25% by weight of piperazine and 0.5% by weight of sodium hydroxide on a porous substrate made of polysulfone. After being uniformly applied with a stock solution containing the above, it was immersed in a 1% by weight solution of trimesic acid chloride in n-hexane at a temperature of 25 ° C. for 1 minute and then pulled up to volatilize n-hexane, and then at a temperature of 110 ° C. It was heat treated for 10 minutes and contributed to the crosslinking reaction inside the undiluted coating layer between the ultrathin film of the crosslinked polymer of polyvinyl alcohol and the piperazine amino compound and the ultrathin film and the polysulfone porous substrate. It is composed of an unreacted water-insoluble polyvinyl alcohol intermediate layer and a polysulfone porous substrate.

【0018】後段の逆浸透膜モジュ−ルには、pH6.
5、濃度0.05%の食塩水を原水として25℃、操作
圧力7.5kgf/cm2にて運転30分後での食塩阻止率が
99.5%で、純粋の透過流束が0.13m3/m2・〔kgf/
cm2〕・dayであり、膜が架橋芳香族ポリアミド系で、平
均表面粗さが80nmの日東電工株式会社製スパイラル
型逆浸透膜モジュ−ルを使用した。この逆浸透膜モジュ
−ルの膜は、ポリスルホンからなる多孔質基材上に、m
−フェニレンジアミンを2.0重量%、ラウリル硫酸ナ
トリウムを0.15重量%、トリエチルアミンを2.0
重量%、カンファ−スルホン酸を4.0重量%、イソプ
ロピルアルコ−ルを20重量%含有した原液を接触さ
せ、かくして形成した原液層に、トリメシン酸クロライ
ドを0.15重量%含有するヘキサン溶液を接触させ、
その後120℃の熱風乾燥機で3分間保持して表面平均
粗さ80nmの反応生成スキン層を形成したものであ
る。
The reverse osmosis membrane module in the latter stage has a pH of 6.
5, salt water having a concentration of 0.05% was used as raw water at 25 ° C. and an operating pressure of 7.5 kgf / cm 2, and after 30 minutes of operation, the salt rejection rate was 99.5% and the pure permeation flux was 0. 13m 3 / m 2・ [kgf /
cm 2 ] · day, the membrane was a cross-linked aromatic polyamide system, and a spiral reverse osmosis membrane module manufactured by Nitto Denko Corporation having an average surface roughness of 80 nm was used. The membrane of this reverse osmosis membrane module has a structure in which m is formed on a porous substrate made of polysulfone.
2.0% by weight of phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 2.0% of triethylamine
Wt%, camphor-sulfonic acid 4.0 wt%, isopropyl alcohol 20 wt% of the stock solution was contacted, the hexane solution containing 0.15 wt% of trimesic acid chloride was added to the stock solution layer thus formed. Contact
After that, the reaction product skin layer having a surface average roughness of 80 nm was formed by holding it in a hot air dryer at 120 ° C. for 3 minutes.

【0019】図1において(アルカリ液タンク8及びポ
ンプ9は省略した)、亜硝酸窒素濃度50ppm、アン
モニア性窒素濃度50ppm、燐濃度50ppmで、洗
剤を高濃度で含有する調整原水を原水タンク4に貯え、
前段送液ポンプ51の送液圧力を10kgf/cm2、後段送
液ポンプ52の送液圧力を7.5kgf/cm2として、後段
逆浸透膜モジュ−ル62の初期透過流束を1.0m3/m2
〔kgf/cm2〕・dayとするように運転し、その運転を20
0時間継続した。後段逆浸透膜モジュ−ル62の透過水
の水質は表1に示す通りであり、その透過水流量の経時
的低下状態は図3に示す通りであった。
In FIG. 1 (the alkaline liquid tank 8 and the pump 9 are omitted), the adjusted raw water containing the detergent at a high concentration with a nitrous acid concentration of 50 ppm, an ammoniacal nitrogen concentration of 50 ppm and a phosphorus concentration of 50 ppm is stored in the raw water tank 4. Save
The liquid feed pressure of the front stage liquid feed pump 51 is 10 kgf / cm 2 , the liquid feed pressure of the rear stage liquid feed pump 52 is 7.5 kgf / cm 2 , and the initial permeation flux of the rear stage reverse osmosis membrane module 62 is 1.0 m. 3 / m 2
[Kgf / cm 2 ] ・ Driving for a day,
It continued for 0 hours. The water quality of the permeate of the latter-stage reverse osmosis membrane module 62 is as shown in Table 1, and the state of the permeate flow rate decreasing with time was as shown in FIG.

【0020】〔比較例1〕実施例で前段逆浸透膜モジュ
−ルとして使用した日東電工株式会社製スパイラル型逆
浸透膜モジュ−ルのみを運転圧力10kgf/cm2で運転し
て、実施例と同じ調整原水を処理した。初期透過流束は
1.7m3/m2・〔kgf/cm2〕・dayであった。この比較例で
の透過水の水質は表1に示す通りであり、その透過水流
量の経時的低下状態は図3に示す通りであった。
Comparative Example 1 Only the spiral type reverse osmosis membrane module manufactured by Nitto Denko Co., Ltd., which was used as the preceding stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 , and The same adjusted raw water was treated. The initial permeation flux was 1.7 m 3 / m 2 · [kgf / cm 2 ] · day. The water quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate decreasing with time was as shown in FIG.

【0021】〔比較例2〕実施例で後段逆浸透膜モジュ
−ルとして使用した日東電工株式会社製スパイラル型逆
浸透膜モジュ−ルのみを運転圧力10kgf/cm2で運転し
て、実施例と同じ調整原水を処理した。初期透過流束は
0.8m3/m2・〔kgf/cm2〕・dayであった。この比較例で
の透過水の水質は表1に示す通りであり、その透過水流
量の経時的低下状態は図3に示す通りであった。
Comparative Example 2 Only the spiral type reverse osmosis membrane module manufactured by Nitto Denko Co., Ltd., which was used as the latter-stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 and The same adjusted raw water was treated. The initial flux was 0.8 m 3 / m 2 · [kgf / cm 2 ] · day. The water quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate decreasing with time was as shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、本発明に係る下
水の処理方法によれば、下水に界面活性剤が多量に含有
されていても、窒素並びに燐化合物を著しく微量にして
処理でき、しかも、その透過流束も充分に大きくできる
から、その処理水を用水として有効に利用できる。
As is clear from Table 1, according to the method for treating sewage according to the present invention, even if the sewage contains a large amount of a surfactant, it is possible to treat the nitrogen and phosphorus compounds in extremely small amounts, and Since the permeation flux can be made sufficiently large, the treated water can be effectively used as water.

【0024】[0024]

【発明の効果】本発明に係る下水の処理方法によれば、
界面活性剤を実質的に遮断して架橋芳香族ポリアミド系
逆浸透膜モジュ−ルの窒素や燐化合物に対する本来の優
れた除去率、透過流束を有効に発揮させ得、下水に界面
活性剤が多量に含有されていても、窒素並びに燐を著し
く微量にして処理でき、しかも、その透過流束も充分に
大きくできるから、その処理水を親水用水として、また
水源への返送等により有効に利用できる。
According to the sewage treatment method of the present invention,
By substantially blocking the surfactant, the crosslinkable aromatic polyamide reverse osmosis membrane module can effectively exhibit the original excellent removal rate and permeation flux for nitrogen and phosphorus compounds, and the surfactant can be effectively added to sewage. Even if it is contained in a large amount, it can be treated with extremely small amounts of nitrogen and phosphorus, and its permeation flux can be made sufficiently large, so the treated water can be effectively used as hydrophilic water and by returning it to a water source. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する下水処理施設の一例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a sewage treatment facility used in the present invention.

【図2】本発明において使用する下水処理施設の別例を
示す説明図である。
FIG. 2 is an explanatory diagram showing another example of the sewage treatment facility used in the present invention.

【図3】本発明に係る実施例と比較例との経時的な透過
流束特性を示す図表である。
FIG. 3 is a chart showing permeation flux characteristics over time of an example according to the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 粗濾過装置 2 生物処理装置 3 前処理装置 4 原水タンク 51 前段液送ポンプ 52 後段液送ポンプ 61 前段逆浸透膜モジュ−ル 62 後段逆浸透膜モジュ−ル 7 中間タンク 1 Coarse Filtration Device 2 Biological Treatment Device 3 Pretreatment Device 4 Raw Water Tank 51 Pre-stage Liquid Delivery Pump 52 Post-stage Liquid Delivery Pump 61 Pre-stage Reverse Osmosis Membrane Module 62 Post-stage Reverse Osmosis Membrane Module 7 Intermediate Tank

【手続補正書】[Procedure amendment]

【提出日】平成8年4月5日[Submission date] April 5, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】本発明において、後段の逆浸透膜モジュー
ルに架橋芳香族ポリアミド系逆浸透膜モジュールを使用
する理由は、透過流束が大きく、しかも、窒素及び燐化
合物に対する溶質除去率が大であるからである。この架
橋芳香族ポリアミド系膜としては、多孔質基材上で、少
なくとも2個のアミン官能性基を有する単量体の芳香族
ポリアミン反応体と、多官能性アシルハライドまたはそ
の混合物から成る単量体の芳香族のアミン反応性反応体
(このアミン反応性反応体1分子につき平均で少なくと
も約2.2個のアシルハライド基を有する)とを、アミ
ン塩の存在下で界面重合することにより作成した複合膜
(例えば、特許第1948993号)が好適に使用さ
れ、少なくとも2個のアミン官能性基を有する単量体の
芳香族ポリアミン反応体には例えば、m−フエニレンジ
アミンが、多官能性アシルハライドから成る単量体の芳
香族のアミン反応性反応体には例えば、トリメソイルク
ロライドが使用される。これ以外の架橋芳香族ポリアミ
ド系膜を使用した逆浸透膜モジュールの使用も可能であ
る。
In the present invention, the reason why the crosslinked aromatic polyamide reverse osmosis membrane module is used for the reverse osmosis membrane module in the latter stage is that the permeation flux is large and the solute removal rate for nitrogen and phosphorus compounds is large. Is. The cross-linked aromatic polyamide film is a monomer composed of a monomeric aromatic polyamine reactant having at least two amine functional groups and a polyfunctional acyl halide or a mixture thereof on a porous substrate. Made by interfacially polymerizing an aromatic amine-reactive reactant (which has an average of at least about 2.2 acyl halide groups per molecule of this amine-reactive reactant) with an aromatic amine-reactive reactant in the presence of an amine salt. Composite membranes (e.g., Japanese Patent No. 1948993) are preferably used, and monomeric aromatic polyamine reactants having at least two amine functional groups include, for example, m-phenylenediamine as a polyfunctional compound. Monomeric aromatic amine-reactive reactants consisting of acyl halides include, for example, trimesoyl acrylate.
Loride is used. It is also possible to use a reverse osmosis membrane module using a cross-linked aromatic polyamide-based membrane other than this.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】後段の逆浸透膜モジュールには、pH6.
5、濃度0.05%の食塩水を原水として25℃、操作
圧力7.5kgf/cmにて運転30分後での食塩阻
止率が99.5%で、純水の透過流束が0.13m
・〔kgf/cm〕・dayであり、膜が架橋芳
香族ポリアミド系で、平均表面粗さが80nmの日東電
工株式会社製スパイラル型逆浸透膜モジュールを使用し
た。この逆浸透膜モジュールの膜は、ポリスルホンから
なる多孔質基材上に、m−フェニレンジアミンを2.0
重量%、ラウリル硫酸ナトリウムを0.15重量%、ト
リエチルアミンを2.0重量%、カンファースルホン酸
を4.0重量%、イソプロピルアルコールを20重量%
含有した原液を接触させ、かくして形成した原液層に、
トリメシン酸クロライドを0.15重量%含有するヘキ
サン溶液を接触させ、その後120℃の熱風乾燥機で3
分間保持して表面平均粗さ80nmの反応生成スキン層
を形成したものである。
The reverse osmosis membrane module in the latter stage has a pH of 6.
5, salt water having a concentration of 0.05% as raw water at 25 ° C. and an operating pressure of 7.5 kgf / cm 2 had a salt rejection of 99.5% and a pure water permeation flux of 0 after 30 minutes of operation. .13m 3 /
A spiral-type reverse osmosis membrane module manufactured by Nitto Denko Corp. having a m 2 · [kgf / cm 2 ] · day, a membrane made of a cross-linked aromatic polyamide, and an average surface roughness of 80 nm was used. The membrane of this reverse osmosis membrane module has 2.0 m-phenylenediamine on a porous substrate made of polysulfone.
% By weight, sodium lauryl sulfate 0.15% by weight, triethylamine 2.0% by weight, camphorsulfonic acid 4.0% by weight, isopropyl alcohol 20% by weight
The contained stock solution is brought into contact with the stock solution layer thus formed,
A hexane solution containing 0.15% by weight of trimesic acid chloride was brought into contact with the hexane solution, followed by 3 hours with a hot air dryer at 120 ° C.
The reaction product skin layer having a surface average roughness of 80 nm was formed by holding for a minute.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】図1において(アルカリ液タンク8及びポ
ンプ9は省略した)、亜硝酸窒素濃度50ppm、アン
モニア性窒素濃度50ppm、燐濃度50ppmで、洗
剤を高濃度で含有する調整原水を原水タンク4に貯え、
前段送液ポンプ51の送液圧力を10kgf/cm
後段送液ポンプ52の送液圧力を7.5kgf/cm
として、後段逆浸透膜モジュール62の初期透過流束を
1.0/m・day(0.133m/m
〔kgf/cm〕・day)とするように運転し、そ
の運転を200時間継続した。後段逆浸透膜モジュール
62の透過水の水質は表1に示す通りであり、その透過
水流量の経時的低下状態は図3に示す通りであった。
In FIG. 1 (the alkaline liquid tank 8 and the pump 9 are omitted), the adjusted raw water containing the detergent at a high concentration with a nitrous acid concentration of 50 ppm, an ammoniacal nitrogen concentration of 50 ppm and a phosphorus concentration of 50 ppm is stored in the raw water tank 4. Save
The liquid feeding pressure of the former-stage liquid feeding pump 51 is 10 kgf / cm 2 ,
The liquid feeding pressure of the latter-stage liquid feeding pump 52 is 7.5 kgf / cm 2
The initial permeation flux of the latter-stage reverse osmosis membrane module 62 is 1.0 m 3 / m 2 · day (0.133 m 3 / m 2 ·
[Kgf / cm 2 ] · day), and the operation was continued for 200 hours. The water quality of the permeate of the latter-stage reverse osmosis membrane module 62 is as shown in Table 1, and the state of the permeate flow rate decreasing with time was as shown in FIG.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】〔比較例1〕実施例で前段逆浸透膜モジュ
ールとして使用した日東電工株式会社製スパイラル型逆
浸透膜モジュールのみを運転圧力10kgf/cm
運転して、実施例と同じ調整原水を処理した。初期透過
流束は1.7/m・dayであった。この比較例
での透過水の水質は表1に示す通りであり、その透過水
流量の経時的低下状態は図3に示す通りであった。
[Comparative Example 1] Only the spiral type reverse osmosis membrane module manufactured by Nitto Denko Co., Ltd., which was used as the previous stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 to obtain the same adjusted raw water as the example. Processed. The initial flux was 1.7 m 3 / m 2 · day . The water quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate decreasing with time was as shown in FIG.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】〔比較例2〕実施例で後段逆浸透膜モジュ
ールとして使用した日東電工株式会社製スパイラル型逆
浸透膜モジュールのみを運転圧力10kgf/cm
運転して、実施例と同じ調整原水を処理した。初期透過
流束は0.8/m・dayであった。この比較例
での透過水の水質は表1に示す通りであり、その透過水
流量の経時的低下状態は図3に示す通りであった。
Comparative Example 2 Only the spiral type reverse osmosis membrane module manufactured by Nitto Denko Co., Ltd., which was used as the latter-stage reverse osmosis membrane module in the example, was operated at an operating pressure of 10 kgf / cm 2 , and the same adjusted raw water as the example was supplied. Processed. The initial flux was 0.8 m 3 / m 2 · day . The water quality of the permeated water in this comparative example is as shown in Table 1, and the state of the permeated water flow rate decreasing with time was as shown in FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原水に接する膜表面がピペラジンアミノ化
合物の架橋重合体で形成された前段の逆浸透膜モジュ−
ルと、原水に接する膜表面が架橋芳香族ポリアミドで形
成された後段の逆浸透膜モジュ−ルにより、下水処理に
おける最終的な高次処理を行うことを特徴とする下水の
処理方法。
1. A reverse osmosis membrane module of the preceding stage, wherein the membrane surface in contact with raw water is formed of a cross-linked polymer of piperazine amino compound.
And a latter-stage reverse osmosis membrane module in which the membrane surface in contact with raw water is formed of a crosslinked aromatic polyamide, the final high-order treatment in the sewage treatment is performed.
【請求項2】後段の逆浸透膜モジュ−ルの透過流束が
0.10m3/m2・〔kgf/cm2〕・day以上であり、pH6.
5、濃度0.05%の食塩水を原水として25℃、操作
圧力7.5kgf/cm2にて運転30分後での食塩阻止率が
90%以上である請求項1記載の下水の処理方法。
2. The reverse osmosis membrane module of the latter stage has a permeation flux of 0.10 m 3 / m 2 · [kgf / cm 2 ] · day or more and a pH of 6.
5. The method for treating sewage according to claim 1, wherein the salt inhibition rate after 30 minutes of operation at 25 ° C. and an operating pressure of 7.5 kgf / cm 2 is 90% or more using saline solution having a concentration of 0.05% as raw water. .
【請求項3】後段の逆浸透膜モジュ−ルの膜表面の平均
面粗さが55nm以上である請求項1または2記載の下
水の処理方法。
3. The method for treating sewage according to claim 1 or 2, wherein the average surface roughness of the membrane surface of the reverse osmosis membrane module at the latter stage is 55 nm or more.
JP01830696A 1996-01-08 1996-01-08 Sewage treatment method Expired - Fee Related JP3834091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01830696A JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01830696A JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH09187768A true JPH09187768A (en) 1997-07-22
JP3834091B2 JP3834091B2 (en) 2006-10-18

Family

ID=11967938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01830696A Expired - Fee Related JP3834091B2 (en) 1996-01-08 1996-01-08 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP3834091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224546A (en) * 2000-11-29 2002-08-13 Toray Ind Inc Composite semipermeable membrane for sewage disposal and its manufacturing method
CN113226527A (en) * 2018-12-26 2021-08-06 东丽株式会社 Composite semipermeable membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224546A (en) * 2000-11-29 2002-08-13 Toray Ind Inc Composite semipermeable membrane for sewage disposal and its manufacturing method
CN113226527A (en) * 2018-12-26 2021-08-06 东丽株式会社 Composite semipermeable membrane
CN113226527B (en) * 2018-12-26 2023-07-18 东丽株式会社 Composite semipermeable membrane

Also Published As

Publication number Publication date
JP3834091B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JPH0663592A (en) Ultra-pure water producing apparatus
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
JP2007244979A (en) Water treatment method and water treatment apparatus
US7166220B2 (en) Systems and methods for organic wastewater treatment
EP0879634A2 (en) Process of purification of leachate from dumps via ultrafiltration and reverse osmosis
JP3834091B2 (en) Sewage treatment method
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JPH0368498A (en) Treatment of organic sewage
JPS62221493A (en) Method for treating membrane bioreactor
JPH0561991B2 (en)
JP3150734B2 (en) Wastewater or sludge treatment method and apparatus
JP3266915B2 (en) Wastewater treatment method
JP3576314B2 (en) Sewage treatment method
JPS645960B2 (en)
JPH11319492A (en) Treatment of sewage
JP2006055849A (en) Apparatus and method for treating organic waste water
JPH05309391A (en) Water treatment method
JP2002035554A (en) Method for treating water and its apparatus
JP3697938B2 (en) Wastewater treatment equipment
KR102160939B1 (en) A water treatment system using ultrafiltration process and reverse osmosis process
JP3819457B2 (en) Biological denitrification of wastewater
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPH091187A (en) Waste water treating device and its operating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees