JP3832496B1 - 噴流式蒸気エンジン - Google Patents

噴流式蒸気エンジン Download PDF

Info

Publication number
JP3832496B1
JP3832496B1 JP2005152544A JP2005152544A JP3832496B1 JP 3832496 B1 JP3832496 B1 JP 3832496B1 JP 2005152544 A JP2005152544 A JP 2005152544A JP 2005152544 A JP2005152544 A JP 2005152544A JP 3832496 B1 JP3832496 B1 JP 3832496B1
Authority
JP
Japan
Prior art keywords
rotor
pipe
liquid
sealed container
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005152544A
Other languages
English (en)
Other versions
JP2006329038A (ja
Inventor
阿部  誠
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005152544A priority Critical patent/JP3832496B1/ja
Priority to US11/920,440 priority patent/US7841166B2/en
Priority to EP06756604.2A priority patent/EP1890003B1/en
Priority to CN2006800180559A priority patent/CN101198767B/zh
Priority to PCT/JP2006/310504 priority patent/WO2006126658A1/ja
Application granted granted Critical
Publication of JP3832496B1 publication Critical patent/JP3832496B1/ja
Publication of JP2006329038A publication Critical patent/JP2006329038A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/32Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/04Plants characterised by the engines being structurally combined with boilers or condensers the boilers or condensers being rotated in use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/005Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the engine comprising a rotor rotating under the actions of jets issuing from this rotor

Abstract

【課題】簡易な構成の蒸気エンジンにより、高温の熱源に限らず、内燃機関の排熱や太陽熱等各種の低温状態の熱源からも効率的に機械的エネルギを得る。
【解決手段】液体を充満させた密閉容器1内に屈曲した噴出管51を有するロータ5を回転可能に支持する。ロータ中心部の中心円筒50には加熱部9を挿入して高温の流体を通過させ、ロータ5の吸入管52から吸入した液体を蒸発させる。蒸発した蒸気の圧力で蒸気と液体の混合体を噴出管51から噴出することによりロータ5を回転させる。噴出管51と吸入管52の先端部には、噴出用逆止弁53と吸入用逆止弁54とがそれぞれ配置されている。噴出された蒸気は、密閉容器1の上方に設置されたコンデンサ2に導かれ、ここで凝縮して密閉容器1に還流する。コンデンサ2には真空ポンプ23が接続され、密閉容器内の圧力は飽和蒸気圧に保持される。
【選択図】図1

Description

本発明は、熱エネルギを回転エネルギ等の機械的エネルギに変換するための蒸気エンジン、殊に比較的低温の熱源から効率的に機械的エネルギを発生させる蒸気エンジンに関するものである。
環境対策あるいは省資源、省エネルギの観点から、近年、多様なエネルギ資源の利用技術の開発が進んでおり、その中には、太陽熱等自然界に存在する熱エネルギから機械的エネルギを取り出す技術がある。また、ディーゼル機関等の内燃機関の排気ガスや冷却水中に廃棄される排熱を利用して動力を発生させ、その動力を回収することにより内燃機関の熱効率を向上させる技術も開発されている。
熱エネルギを回転エネルギ等の機械的エネルギに変換するには熱機関(エンジン)が使用される。石油、天然ガス等、通常の燃料を用いる内燃機関あるいは蒸気タービンなどの熱機関は、燃料の燃焼により高温高圧の作動流体を発生させて熱エネルギを機械的エネルギに変換するものであリ、高温状態の熱源から機械的エネルギを取り出すので熱効率が高い。しかし、自然界の熱エネルギや内燃機関の排熱などは一般的にそれほど高温ではない、つまり低温状態の熱エネルギであって、このような熱源から機械的エネルギを効率的に取り出すには、低温状態の熱源に適した熱機関が必要となる。
低温状態の熱源から機械的エネルギを発生させる熱機関として、特開2001−20706号公報に示されるエンジンがある。このエンジンは、図4に示されるように、加熱部101と冷却部102とを備え、それらの間はノズル103で連結される。冷却部102のノズル103と対向する位置にはタービン106が配置してあり、タービン106はマグネット107と一体となって回転する。マグネット107の内側には、静止した発電コイル110が対向するように配置され、マグネット107と発電コイル110は発電装置を構成する。加熱部101と冷却部102とはそれぞれ密閉され、その内部には作動流体である水104が封入されるとともに、内部の空気等は真空ポンプにより排気されている。また、冷却部102の上方には放熱のための多数のヒートパイプ105が取付けられている。
加熱部101と冷却部102とは全体としてヒートパイプをなしており、加熱部101で下方から加熱され水蒸気となった水104は、高速流となりノズル103からタービン106のブレードに噴出する。これにより、タービン106及びマグネット107が回転して回転エネルギが生じ、回転エネルギはマグネット107と発電コイル110により最終的には電気エネルギの形に変換されて外部に出力される。タービン106を駆動した後の蒸気は、ヒートパイプ105の放熱作用に伴い冷却されて水に戻る。この復水は重力によって冷却部102の下方に落下し、中央部から加熱部101に還流される。
密封容器内に封入された液体の蒸発と凝縮とを利用するヒートパイプは、一般的には熱の輸送手段つまり熱伝達装置として用いられるものである。しかし、ヒートパイプ内に封入された液体の蒸気は大きな速度エネルギを伴って移動するから、上記のとおりこれから動力を取り出すことが可能であって、この場合には、低温状態の熱源から機械的エネルギを取り出すことができるようになる。
特開2001−20706号公報
特許文献1に示されるタービンは、作動流体の速度エネルギを利用するいわゆる速度型機関であるが、タービンを効率的に作動させるには、タービンの回転数を上昇させその周速を蒸気の速度に匹敵するような値まで増大させる必要がある。タービンを小型化し直径を小さくしたときは、タービン回転数は非常に高回転となり、タービンには大きな遠心力が作用して破損の虞れが生じる。さらに、加熱部の温度が低く蒸気が低温であるときは、蒸気の過熱度が低いので冷却により水滴が生じやすい。水滴が発生すると高速でタービンブレードに衝突し、タービンブレードには水滴の衝突による浸食、いわゆるエロージョンが起こる。
また、密閉容器の中に熱機関を収容しこれを回転させるときは、回転軸はシール性を備えた軸受により支持しなければならない。タービンのような高速回転を行う回転軸を支持するには精密な軸受が必要であって、シール性を確保しながら支持するには、その軸受部に複雑かつ高価なものを採用することとなる。
本発明の課題は、高温の熱源に限らず、内燃機関の排熱等低温状態の各種の熱源から機械的エネルギを得ることが可能な蒸気エンジンであって、しかも、排熱等で加熱された流体を熱源とするに適した蒸気エンジンを提供し、従来の熱機関における上述の問題点を解決することにある。
上記の課題に鑑み、本発明の蒸気エンジンは、液体を充満させた密閉容器内に噴出管を有するロータを回転可能に支持し、ロータ中心部に挿入した加熱部に熱流体を通過させることにより、液体を蒸発させて噴出管から噴出させ、ロータを回転させて熱エネルギを回転エネルギに変換するものである。すなわち、本発明は、
「液体を封入した密閉容器を設置するとともに、その密閉容器の上部には前記密閉容器と連通して液体の蒸気を凝縮するコンデンサを設置し、
前記密閉容器の内部には、中心部に加熱部を備え、さらに、中心部から放射状に延び先端部には噴出用逆止弁を有する屈曲した噴出管と、中心部から放射状に延び先端部には吸入用逆止弁を有する屈曲した吸入管とを備えたロータを設け、
加熱部には高温の流体が通過する連通管を接続するとともに、前記ロータが前記連通管を中心として回転可能なように、前記ロータを液体中に浸漬して前記密閉容器に支持し、
前記加熱部に加えられた熱により前記ロータを回転させ、動力を取り出す」
ことを特徴とする蒸気エンジンとなっている。
請求項2に記載のように、前記コンデンサには真空ポンプが接続されており、前記密閉容器及び前記コンデンサ内の圧力が液体の飽和蒸気圧とされていることが好ましい。
請求項3に記載のように、前記加熱部の内部には、高温の流体が通過する孔を備えた複数の伝熱板を設置することができる。
また、前記噴出管及び前記吸入管は、請求項4に記載のように、その断面が流線形となるよう形成することが好ましい。
本発明の蒸気エンジンでは、液体を充満させた密閉容器内に噴出管を有するロータを設け、ロータ中心部の加熱部の周囲に吸入管から液体を吸入して蒸発させる。そして、蒸発させた高圧の蒸気により、液体と蒸気が混合した状態である混合体を噴出管から噴出させ、このときの反動によって回転力を得る。噴出する混合体には液体が多く含まれており、その質量は蒸気に比べはるかに大きいから、反動により得られる回転力、つまり回転トルクは蒸気のみを噴出する場合よりも非常に大きくなる。そのため、ロータが低速で回転する際にも大きなトルクを得ることができ、蒸気の速度エネルギを回転エネルギに変換するタービンとは異なり、低速でも効率よく作動させることが可能である。
さらに、この蒸気エンジンは、中心部から放射状に延びる噴出管と吸入管を備えたロータを回転させるものであって、通常のタービンのようにノズルや静翼を備えておらず、構成が簡易なものである。回転速度もタービンと比較すれば低速であるから、回転軸を支持するベアリングには高回転用の精度の高いものを採用する必要はなく、また、水滴の衝突に起因するエロージョンは発生しない。
中心部に設けられる加熱部には連通管が接続され、これを通して、例えば内燃機関の排気ガス、地熱によって高温となった熱流体等が加熱部に導かれる。連通管はロータの回転中心を貫通しているので、連通管をロータの回転支持軸として利用することが可能であるとともに、連通管を密閉容器に固定することが可能であって、連通管と密閉容器の間における液体のシール構造は単純なものとなる。
本発明の蒸気エンジンの吸入管には吸入用逆止弁が、また、噴出管には噴出用逆止弁が設置されている。吸入管から吸入された液体は、ロータ中心部の加熱部により加熱され蒸気となって圧力が上昇するが、吸入管の先端部には吸入用逆止弁が設置してあるので、吸入管から逆流を生じることはない。蒸気の圧力が十分に高まったときには、蒸気は噴出管内で膨張しながら液体と蒸気の混合体として噴出用逆止弁を経て液体中に噴出され、ロータに回転トルクを付与する。つまり、液体は高圧の蒸気となるまでの間加熱部付近で滞留することができるので、加熱部が低温の状態にあったとしても十分な伝熱を行うことができる。
請求項2の発明のように、コンデンサに真空ポンプを接続してコンデンサ内から空気等のガスを排気し、密閉容器及びコンデンサ内の圧力を封入された液体の飽和蒸気圧としたときは、液体の沸点が低下して低温でも液体が蒸気状態となる。その結果、加熱部の温度がそれほど高温でない場合でも、液体は容易に蒸気となり、エンジンを効率的に作動させ回転エネルギを取り出すことが可能である。
本発明の蒸気エンジンの加熱部には温度の高い流体が流れ、これにより加熱部周囲の液体が加熱される。請求項3の発明のように、加熱部の内部に高温の流体が通過する孔を備えた複数の伝熱板を設置したときは、流体の熱が伝熱板を介して加熱部の管路壁から液体に伝達され、良好な熱伝達を実現できる。また、高温の流体が孔を通過する際には乱流を発生するため、流体から伝熱板等への熱伝達が一層向上する。
本発明の蒸気エンジンでは、噴出管と吸入管とを備えたロータを液体中で回転させる。請求項4の発明のように、噴出管と吸入管の断面を流線形に形成したときは、ロータが液体から受ける流体抵抗の減少に伴い動力損失が減少するため、エンジンの熱効率を向上させることができる。
以下、図面を参照しながら本発明の実施形態について詳細に説明する。図1には、本発明の蒸気エンジンの断面図を中央に示し、右側にはそのA−A断面図を示す。また、噴出管の断面拡大図(B−B断面)を左側に示している。図2は、蒸気エンジンのロータ中心部及び加熱部の詳細図であり、図3は、加熱部及び連通管の一部破断斜視図である。
蒸気エンジンは断面円形の密閉容器1を有し、その内部には、加熱される液体(作動流体)として水が封入されており、水は密閉容器1内にほぼ充満している。密閉容器1の上部には水蒸気を凝縮し復水とするコンデンサ2が設置してあり、コンデンサ2は短管3により密閉容器1に連結される。短管3内には複数の邪魔板4が間隔を開けて取付けられ、これによって液体状態の水がコンデンサ2に入り込むのを防止するが、コンデンサ2からの復水は密閉容器1に還流することが可能である。
円形の密閉容器1には、ロータ5が水中に浸漬して設置されている。ロータ5はその中心部分に中心円筒50を有し、中心円筒50には放射方向に延びる噴出管51と吸入管52とが接続される。噴出管51と吸入管52とは、図1の中央の図に示すとおり、180度の角度で互いに反対方向に延びており、先の部分は直角に屈曲している。この実施例では直角に屈曲させているけれども、滑らかに屈曲させることもできる。
噴出管の先端には、噴出管51から蒸気と水の混合体を噴出する方向にのみ流れを許容する噴出用逆止弁53が取付けられ、吸入管の先端には、水を中心円筒50に向けてのみ流す吸入用逆止弁54が取付けられる。吸入用逆止弁54を取付けるため、吸入管52の先端部には吸入管よりも径の大きい吸入室55が形成されている。また、噴出管51及び吸入管52の断面は、図1の左の図に示されるように、流線形に形成されている。流線型の断面とするには、断面円形の管に流線形の覆い部材を固着するようにしてもよい。
ロータ5の中央円筒50は、図1の右の図及び図2に示されるとおり、密閉容器1の左右の側壁に固着したスリーブ6に、シール機能を付加したベアリング7を介して回転可能に支持される。中央円筒50には、その軸心を一致させて加熱部9を構成する円管が挿入されている。加熱部9の円管の両端には、図3にも示すとおり、連通管91、92が溶接等によって固着されており、この連通管91、92は、左右のスリーブ6に挿入されスリーブ6の内面と密接に嵌合する。これにより、連通管91、92はスリーブ6を補強する役目を果たし、スリーブ6に作用するロータ5の軸荷重の一部を負担する。
連通管91からは、例えば内燃機関の排気ガス等、高温の流体が加熱部9に供給され、中央円筒50に吸入された水が加熱されて蒸気が発生する。加熱部9の内部には、流体が通過する孔を形成した複数の伝熱板93が配置されている。高温の流体は、伝熱板93の孔を通過して流れるときに乱れを生じ、また、伝熱面積も大幅に増加しているため、高温の流体の熱を中央円筒50内の水に伝える熱伝達が促進される。熱伝達を行った後の流体は連通管92から外部に排出される。なお、この実施例では、連通管91、92として加熱部9の円筒よりも小径の管を用いているが、場合によっては、同じ径の管を使用することができる。
中央円筒50の左側端部には、マグネット10が周方向に間隔を隔てて複数個固定され、これはロータ5と一体に回転する。密閉容器1の左側側壁のマグネット10と対向する位置には、複数個の発電用コイル11が取り付けてある。ロータ5の回転エネルギは、マグネット10と発電用コイル11との相互作用により、電気的エネルギとして外部に出力される。ここでは図示を省略するが、マグネット10及び発電用コイル11は、水等の侵入を防止するため、これらを取り囲むケース内に収容されている。
密閉容器1の上方に設置されるコンデンサ2は、放熱性能の向上のため、伝熱性の良好なアルミニュウム等からなる外壁を有し、その内部には多数の板状の伝熱用フィン21が縦方向に設けられる。場合によっては、図1の右の図に2点鎖線で示すように、放熱用のフィンを外壁に取付けてもよい。コンデンサ2の底壁は、凝縮した復水を短管3に集めるよう傾斜が施されている。また、コンデンサ2の内部は、空気等のガスを排出してコンデンサ2及び密閉容器1の圧力を飽和蒸気圧に保持するため、逆止弁22を介して真空ポンプ23に接続されている。
次いで、本発明の蒸気エンジンの作動について説明する。
回転可能に支持されたロータ5の中央円筒50には、吸入用逆止弁54及び吸入管52を介して密閉容器1内の水が供給される。中央円筒50内に挿入された加熱部9には、連通管91から高温の流体が送り込まれてその温度が上昇しており、供給された水は加熱部9に接触してその一部が水蒸気となる。水蒸気の発生に伴い中央円筒50の内部の圧力は増加し、圧力が一定値を超えると噴出用逆止弁53が開き、水蒸気は膨張しながら屈曲した噴出管51を通過し、水と混合した状態でその先端から高速で噴出される。噴出された蒸気と水の混合体の慣性により、中央円筒50内の圧力は低下して吸入管52から再び水が吸入され、以降、このような噴出、吸入作用が周期的に繰り返される。
噴出された混合体の反動によってロータ5には回転トルクが作用し、ロータ5は図1において時計方向に回転する。噴出される混合体には液体である水が大量に含まれており、水の比重は水蒸気に比べ非常に大きいから、混合体の運動量及びロータ5に作用する回転トルクは大きなものとなる。したがって、ロータ5の低速回転時にあっても所要の動力を取り出すことが可能である。ロータ5の回転エネルギは、ロータ5と一体に回転するマグネット10と静止した発電用コイル11との相互電磁作用により、電気的エネルギとして外部に取り出される。
ロータ5は密閉容器1内で水に浸漬され水中を回転するので、水の流体抵抗を受ける。その抵抗を減少させるため、噴出管51及び吸入管52の断面は流線形に形成されており、流体抵抗に起因する動力損失を減少させている。また、ロータ5の回転に伴い密閉容器1内の水も回転するが、密閉容器1の断面は円形となっているため水の回転は円滑に行われ、水の乱れによる動力損失が減少する。
噴出管51から噴出された水蒸気は、水中を上昇して短管3からコンデンサ2に送られ、放熱フィン21により冷却されて凝縮し復水となる。復水は壁面に沿って下方に流れ短管3から密閉容器1に還流する。コンデンサ2には空気等を排出する真空ポンプ23が接続され、これによりコンデンサ2及び密閉容器1の内部の圧力は低下して飽和水蒸気圧に保持されている。そのため、密閉容器1内の水の沸点は低下しており、加熱部9の温度がそれほど高くない状態であっても、水が蒸発して水蒸気となリロータ5を回転させる回転トルクを発生させることができる。内燃機関等の排熱は、流体に伝熱されて廃棄されることが多いが、この蒸気エンジンは、加熱部9に流体を流すことによって直接水を加熱しているから、排熱の回収のために特に好適なものである。
以上詳述したように、本発明の蒸気エンジンは、液体を充満させた密閉容器内に噴出管を有するロータを設け、ロータ中心部に挿入した加熱部に高温の流体を通過させて液体を蒸発させ、液体と蒸気の混合体を噴出管から噴出させることによりロータを回転させて、加熱部に加えられた熱を回転エネルギに変換するものである。前記の実施例では、主に低温状態の熱を回転エネルギに変換する場合について述べているけれども、本発明の蒸気エンジンにおいては、例えば燃焼等による高温の熱源を使用して動力を取り出すことが可能であるのは言うまでもない。また、作動流体となる液体としては、水に限らず例えばフロン等の冷媒を用いることができるのは明らかである。
本発明の蒸気エンジンの断面図である。 本発明の蒸気エンジンの加熱部近傍を示す詳細図である。 本発明の蒸気エンジンの加熱部を示す一部破断斜視図である。 従来の蒸気エンジンの一例を示す図である。
符号の説明
1 密閉容器
2 コンデンサ
23 真空ポンプ
3 短管
5 ロータ
50 中央円筒
51 噴出管
52 吸入管
53 噴出用逆止弁
54 吸入用逆止弁
6 スリーブ
9 加熱部
91、92 連通管
93 伝熱板
10 マグネット
11 発電用コイル

Claims (4)

  1. 液体を封入した密閉容器(1)を設置するとともに、その密閉容器(1)の上部には前記密閉容器(1)と連通して液体の蒸気を凝縮するコンデンサ(2)を設置し、
    前記密閉容器(1)の内部には、中心部に加熱部(9)を備え、さらに、中心部から放射状に延び先端部には噴出用逆止弁(53)を有する屈曲した噴出管(51)と、中心部から放射状に延び先端部には吸入用逆止弁(54)を有する屈曲した吸入管(52)とを備えたロータ(5)を設け、
    前記加熱部(9)には高温の流体が通過する連通管(91,92)を接続するとともに、前記ロータ(5)が前記連通管(91,92)を中心として回転可能なように、前記ロータ(5)を液体中に浸漬して前記密閉容器(1)に支持し、
    前記加熱部(9)に加えられた熱により前記ロータ(5)を回転させ、動力を取り出すことを特徴とする蒸気エンジン。
  2. 前記コンデンサ(2)には真空ポンプ(23)が接続されており、前記密閉容器(1)及び前記コンデンサ(2)内の圧力が液体の飽和蒸気圧とされている請求項1に記載の蒸気エンジン。
  3. 前記加熱部(9)の内部には、高温の流体が通過する孔を備えた複数の伝熱板(93)が設置されている請求項1又は請求項2に記載の蒸気エンジン。
  4. 前記噴出管(51)及び前記吸入管(52)は、その断面が流線形に形成されている請求項1乃至請求項3のいずれかに記載の蒸気エンジン。
JP2005152544A 2005-05-25 2005-05-25 噴流式蒸気エンジン Expired - Fee Related JP3832496B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005152544A JP3832496B1 (ja) 2005-05-25 2005-05-25 噴流式蒸気エンジン
US11/920,440 US7841166B2 (en) 2005-05-25 2006-05-19 Jet-type steam engine
EP06756604.2A EP1890003B1 (en) 2005-05-25 2006-05-19 Jet steam engine
CN2006800180559A CN101198767B (zh) 2005-05-25 2006-05-19 喷射式蒸汽发动机
PCT/JP2006/310504 WO2006126658A1 (ja) 2005-05-25 2006-05-19 噴流式蒸気エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152544A JP3832496B1 (ja) 2005-05-25 2005-05-25 噴流式蒸気エンジン

Publications (2)

Publication Number Publication Date
JP3832496B1 true JP3832496B1 (ja) 2006-10-11
JP2006329038A JP2006329038A (ja) 2006-12-07

Family

ID=37214357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152544A Expired - Fee Related JP3832496B1 (ja) 2005-05-25 2005-05-25 噴流式蒸気エンジン

Country Status (5)

Country Link
US (1) US7841166B2 (ja)
EP (1) EP1890003B1 (ja)
JP (1) JP3832496B1 (ja)
CN (1) CN101198767B (ja)
WO (1) WO2006126658A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277233A (zh) * 2013-04-27 2013-09-04 陈银轩 一种用于冲击发电装置的清水回收装置
CN109533254B (zh) * 2018-09-21 2022-01-14 北京理工大学 水下聚光热压往复式喷水推进器
CN110361182B (zh) * 2019-07-30 2021-03-26 西安航天动力研究所 冷却液射流均分件性能测试装置及方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079751A (en) * 1961-10-02 1963-03-05 Neilson W Lewis Marine propulsion system
US4057961A (en) * 1973-05-08 1977-11-15 Payne Peter R Pulse-jet water propulsor
US3898800A (en) * 1973-05-08 1975-08-12 Peter R Payne Heat engine in the form of a water pulse-jet
GB1591297A (en) * 1977-10-10 1981-06-17 Sandwell Plant Ltd Heat engine for producing rotating drive
US4196590A (en) * 1978-03-07 1980-04-08 Fries James E Vapor buoyancy engine
JPS5990710A (ja) * 1982-11-15 1984-05-25 Jiyantetsuku:Kk ガスモ−タ
JPS59142405A (ja) 1983-02-02 1984-08-15 Shimizu Constr Co Ltd 鋼板セルの位置検知方法
JPS59142404A (ja) 1983-02-02 1984-08-15 Fuji Electric Co Ltd 車輌のトレツド測定方式
JPS59142405U (ja) * 1983-03-15 1984-09-22 株式会社ジヤンテツク ガスモ−タ
JPS59142404U (ja) * 1983-03-15 1984-09-22 株式会社ジヤンテツク ガスモ−タ
JPS59168205A (ja) * 1983-03-15 1984-09-21 Jiyantetsuku:Kk ガスモ−タにおける作動媒体の気化方法および装置
CH667499A5 (de) * 1983-04-29 1988-10-14 Sulzer Ag Verfahren zum foerdern und verdichten eines gasfoermigen mediums sowie vorrichtung zur durchfuehrung des verfahrens.
JPS6119954A (ja) * 1984-07-04 1986-01-28 Takashi Uesugi 回転式ジエツトエンジン
DE3505201A1 (de) * 1985-02-15 1986-08-21 Heinz 4474 Lathen Bergmann Dampfantriebsaggregat
DE3935048C2 (de) * 1988-10-20 1994-10-20 Wilhelm Engel Energieumwandlungsvorrichtung
CN1046017A (zh) * 1989-04-01 1990-10-10 施国梁 一种全封闭蒸汽工作系统
CN2082313U (zh) * 1990-02-08 1991-08-07 恒昌洗涤用品厂 发动机
JP2001020706A (ja) * 1999-07-10 2001-01-23 Tatsutoshi Hashimoto ヒートパイプ型熱エンジン
JP2002221043A (ja) * 2001-01-29 2002-08-09 Koji Iizuka 回転ノズル式タービン
US6565310B1 (en) * 2001-03-15 2003-05-20 Robert Davidow Steam-powered rotary engine
RU2200848C1 (ru) * 2002-03-11 2003-03-20 Общество С Ограниченной Ответственностью "Мидера-К" Способ получения механической энергии в турбине и турбина для его реализации
NL1022803C2 (nl) * 2003-02-28 2004-08-31 Micro Turbine Technology B V Micro reactie turbine met geïntegreerde verbrandingskamer en rotor.
JP4586632B2 (ja) * 2005-05-25 2010-11-24 いすゞ自動車株式会社 噴流式蒸気エンジン

Also Published As

Publication number Publication date
EP1890003B1 (en) 2015-03-04
JP2006329038A (ja) 2006-12-07
US20090056308A1 (en) 2009-03-05
EP1890003A1 (en) 2008-02-20
CN101198767A (zh) 2008-06-11
WO2006126658A1 (ja) 2006-11-30
US7841166B2 (en) 2010-11-30
EP1890003A4 (en) 2011-08-24
CN101198767B (zh) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4586632B2 (ja) 噴流式蒸気エンジン
US8739540B2 (en) Vapor vortex heat sink
JP4779513B2 (ja) 回転式容積型蒸気エンジン
JP4735116B2 (ja) 回転式蒸気エンジン
WO2009084444A1 (ja) 噴流式蒸気エンジン
JP3832496B1 (ja) 噴流式蒸気エンジン
JP2001020706A (ja) ヒートパイプ型熱エンジン
JP4561477B2 (ja) 噴流式蒸気エンジン
JP2008088957A (ja) 蒸気タービン
US9453412B2 (en) Liquid ring rotating casing steam turbine and method of use thereof
RU2056606C1 (ru) Преобразователь тепловой энергии в механическую работу
KR20110085587A (ko) 진공엔진
JP2007046484A (ja) 回転式太陽熱蒸気エンジン
JP2011236782A (ja) 廃熱回収タービンおよび廃熱回収システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees