JP3832028B2 - Substrate defect inspection apparatus and defect inspection method - Google Patents

Substrate defect inspection apparatus and defect inspection method Download PDF

Info

Publication number
JP3832028B2
JP3832028B2 JP16495197A JP16495197A JP3832028B2 JP 3832028 B2 JP3832028 B2 JP 3832028B2 JP 16495197 A JP16495197 A JP 16495197A JP 16495197 A JP16495197 A JP 16495197A JP 3832028 B2 JP3832028 B2 JP 3832028B2
Authority
JP
Japan
Prior art keywords
substrate
light
light receiving
angle
defect inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16495197A
Other languages
Japanese (ja)
Other versions
JPH10339701A (en
Inventor
欣也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP16495197A priority Critical patent/JP3832028B2/en
Publication of JPH10339701A publication Critical patent/JPH10339701A/en
Application granted granted Critical
Publication of JP3832028B2 publication Critical patent/JP3832028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基板の欠陥検査装置及び欠陥検査方法に関し、特に基板表面の膜厚むら、汚れ、基板に形成されたパターンの段差、露光忘れ、表面の傷等のマクロ的欠陥を検査する欠陥検査装置及び欠陥検査方法に関する。
【0002】
【従来の技術】
半導体用ウエハなどの基板を自動検査するための従来技術としては、特公平6−8789号公報に開示されているように、基板に対する照明光の入射角を可変にし、基板表面からの正反射光をカメラで撮影してその画像情報を基に基板の汚れ、傷などの欠陥を検査する方法がある。また、特開平8−75661号公報には、基板上の繰り返しパタ―ンからの回折光のみを受光して基板上の傷、異物、シミなどの欠陥を検査する方法が開示されている。
【0003】
【発明が解決しようとする課題】
半導体を製造する際には、基板は多数のプロセスを経て処理されるので、それらのプロセス毎の検査や管理が必要となるが、以上のような従来技術によれば、特に重ねて形成された複数の層のうち1層を分離して検査することが困難であった。
【0004】
半導体ウエハのなかには、周期的な繰り返しパタ―ンの上に透明な薄膜などが塗布され、表面がほとんど平坦なものや、あるいは表面層とその下の層で繰り返しパタ―ンのピッチが異なるようなものが存在する。
【0005】
例えば前者のような表面が平坦な試料からの回折光を受光すると、下層の繰り返しパタ―ンからの情報が中心で、表面の薄膜のマクロ的検査は困難であった。
【0006】
また後者のような場合は、検査すべき層のパタ―ンのピッチに合わせて回折光を受光できればよいが、表面層の透明薄膜のパタ―ンピッチが下層のパタ―ンピッチの整数倍になった場合は、それぞれの回折光を別々に受光することが困難であるため、工程(層)毎の欠陥情報を誤り無く検出することが困難であった。
【0007】
そこで本発明は、工程(層)毎の種々の欠陥を高い信頼性をもって検査できる欠陥検査装置及び欠陥検査方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明による基板の欠陥検査装置は、図1と図2に示されるように、基板Wの表面の法線に対して光軸が80°〜89°の角度θiをもって配置された照明光学系10と;前記照明光学系10によって照明された基板Wの表面に関する情報を含んだ光を受光する受光手段30と;前記基板Wからの所定の光を選択的に受光するために、前記受光手段30の受光角を設定する受光角設定手段40と;前記基板Wの表面と交差する軸線回りに前記基板Wを回転させる回転機構50とを備え、前記受光手段30は、前記回転機構50で前記基板Wを回転させ複数の回転角で前記光を受光するよう構成されたことを特徴とする。
このように構成すると、照明光学系の光軸が基板表面の法線に対して80°〜89°という90°に近い角度をもって配置されているので、照明光の大半が基板の表面で反射され、主として基板の表面の情報が取り出される。そのような情報を含んだ光を受光する受光手段が、受光角設定手段により所定の受光角に設定されようになっているので、基板からの所定の光、例えば所定の方向に向かう正反射光、散乱光、回折光の中からいずれかの光を選択的に受光することができる。また、基板の表面と交差する軸線回りに基板を回転させる回転機構を備えるので、任意の方向のパターンや傷に対処でき、受光手段が回転機構で基板を回転させ複数の回転角で受光するよう構成されているので、複数の方向のパターンや傷に対処できる。ここで、その軸線は一般的には基板の表面に垂直な軸線である。
【0009】
上記目的を達成するために、請求項2に係る発明による基板の欠陥検査装置は、図1と図2に示されるように、前記光が、正反射光または回折光であってもよい。
このように構成すると、基板Wからの所定の方向に向かう正反射光または回折光を選択的に受光することができ、前記受光角設定手段40が前記基板 W からの正反射光または回折光を受光する方向に前記受光手段30を配置するので、正反射光によって、基板表面の厚膜むら、しみや汚れなどの欠陥を検出し、または回折光によって、基板上のパターンの欠陥を検出できる。
【0010】
ここで、請求項に記載のように、受光角設定手段は、照明光学系と基板とを一体的に傾斜させて受光角を設定するように構成されていてもよい。
【0011】
このように構成すると、照明光学系と基板とを一体的に傾斜させるので、照明光の入射角は一定に保ったまま、受光角を任意に設定できる。また、検査装置中で受光光学系を固定的に配置することができる。
【0012】
請求項に係る発明による基板の欠陥検査方法は、基板の表面に対して80°〜89°の入射角をもって前記基板を照明する照明工程と;前記照明工程で照明された前記基板にて生ずる、前記基板の表面に関する情報を含んだ光のうちの所定の光を、選択的に受光する第1の受光工程と;前記基板を前記基板の表面と交差する軸線回りに回転させ前記第1の受光工程とは異なった方向から、前記基板の表面に関する情報を含んだ光のうち所定の光を選択的に受光する第2の受光工程と前記第1の受光工程と前記第2の受光工程で得られた情報に基づいて前記基板の欠陥を検出する工程とを備えることを特徴とする。
【0013】
この方法では、基板表面に対して80°〜89°という90°に近い角度をもって基板が照明されるので、照明光の大半が基板の表面で反射され、主として基板の表面の情報が取り出される。第1の受光工程および第2の受光工程で、基板の表面に関する情報を含んだ光のうちの所定の光を選択的に受光するので、異なる条件下で、選択された光に応じた欠陥が検出される。
【0014】
上記方法では、請求項に記載のように、前記第1の受光工程及び前記第2の受光工程は、前記基板にて生ずる所定の回折光、散乱光あるいは正反射光を選択的に受光するのが望ましい。
【0015】
この場合、選択された光が正反射光であれば、基板表面の膜厚むら、しみや汚れに関する情報が、回折光であれば、基板上のパターンの情報が、そして散乱光であれば、表面の傷や異物の情報が主として拾われる。そして欠陥を検出する工程で、それらの基板に係わる欠陥が検出される。
【0016】
以上の方法では、請求項に記載のように、前記欠陥を検出する工程は、前記第1の受光工程及び前記第2の受光工程で得られた情報と前記基板の基準状態を示す基準情報とを比較する工程をさらに備えてもよい。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。図1は、本発明による基板の欠陥検査装置の実施の形態を示す側面図であり、図2は図1の装置の平面図である。
【0018】
図1に示されるように、照明光学系10は基板ステ―ジSTGに対して相対的に固定されている。基板ステ―ジSTG上に取り付けられていてもよい。さらに基板ステージSTGの上面には、基板Wを載置する面を有する試料台20が設けられている。
【0019】
照明光学系には、照明光を供給するライトガイド11がその光射出端面12を基板Wの方向に向けて配置されている。射出端面12の光の進行方向には、試料台に載置される基板の表面の法線に平行な方向にパワ―を持つ円筒凹面鏡13が、その焦点位置に射出端面12が位置するように配置され、円筒凹面鏡13で反射された射出端面12からの光の進行方向には、前記法線に直角な方向にパワ―を持つ円筒凹面鏡14が、その焦点位置に射出端面12が位置するように配置されている。
【0020】
ここで、円筒凹面鏡14で反射された射出端面12からの光が、試料台20上に載置された基板Wの表面に、80°〜89°の角度をもって入射するように、照明光学系10は配置されている。即ち、照明光学系10の光軸が、試料台20上に載置された基板Wの表面に、前記のような角度をもつように、配置されている。
【0021】
このように構成されているので、ライトガイド11の射出端面12から射出された光は、基板の表面の法線方向、即ち鉛直方向、基板表面の法線直角方向、即ち水平方向の両方向共に実質的に平行である光束L1となって基板Wを90°に近い入射角(基板の表面にすれすれの入射角)で入射し、基板の表面を照明する。このため媒質の異なる境界面での光の反射、屈折に関するフレネルの式により、照明光の大半は基板の表面で反射されるので、基板(被検試料)内部の情報ではなく、主に表面の情報を取り出すことができる。
【0022】
また基板Wを照明する照明光学系の開口数(N.A.)が、基板表面の法線と照明光学系10の光軸とを含む面方向、図1でいえば紙面方向と、それに直交する方向とで等しくなるように、ライトガイド11の端面12の形状は、円筒凹面鏡13と円筒凹面鏡14のそれぞれの焦点距離に比例する寸法とするとよい。
【0023】
一方、基板の表面状態に関する情報を含んだ基板からの光を受光する受光光学系30が、基板からの光の進行方向に設けられている。図1中、受光光学系30は、凹面反射鏡31が基板Wからの正反射光を受光する方向、即ち本実施の形態では、基板上の反射角が80°〜89°の入射角と同じ角度で入射点おける法線に対して反対側の方向に配置されている。さらに凹面反射鏡31からの反射光の進行方向には、結像レンズ32と2次元イメ―ジセンサ33がこの順に、かつ基板Wの表面と2次元イメ―ジセンサ33の表面とが実質的に共役になるように配置されている。
【0024】
したがって、基板Wで正反射された平行な光束L2は凹面反射鏡31で反射され、結像レンズ32の入射瞳位置に集光され、基板Wの表面の正反射画像を2次元イメ―ジセンサ33上に結ぶ。
【0025】
ここで照明効率の点からも、照明光学系10の開口数(N.A.)と受光光学系系30の開口数は実質的に揃えておくことが望ましい。
【0026】
基板Wの表面のレジスト塗布むらや部分的な露光異常などの原因による異常な段差などがあると反射率がそのような異常を反映したものとなり、正常な基板のそれとは異なるので、比較することにより異常を検出することができる。
【0027】
次に回折光を受光する場合を考える。被検基板W上に周期的な繰り返しパタ―ンがあればそのピッチに応じて回折光が生ずる。図1のように入射角θiに対する回折角θdは、パタ―ンのピッチと波長をそれぞれp、λ、回折の次数をm(整数)とすると以下の関係を満足する。
【0028】
sinθd―sinθi=mλ/p (1)
入射角が90゜に近い場合、式(1)におけるsinθiは、ほぼ1に等しくなるので、sinθi=1と置けば、式(1)は、
sinθd=mλ/p+1 (2)
となる。
【0029】
回折光を受光する場合はパタ―ンのピッチ情報に応じて、式(1)で決まる受光角に設定しなければならないが、受光光学系30a全体を基板Wの中心の回りに回転させることにより受光角を調節し、図1の破線で示めされるように、基板表面からの射出角を式(1)で求められる回折角θdに設定することにより、回折光L3による画像を得ることができる。
【0030】
ここで正常なパタ―ンに対してパタ―ン段差や凹凸の比率(デュ―ティ―比)が異なると、回折効率が異なり、回折像の明るさが正常なパタ―ンのそれとは異なるので、比較することにより異常を検査することができる。
【0031】
照明系の入射角を90゜付近にすることにより、表面反射率を高め、表面からの回折光を効率良く受光する点は、正反射光受光の場合と同様である。なお受光角を変化させる他の方法として、照明光学系10と基板Wとの相対的位置関係を一定に保持したまま、ステ―ジSTG全体を傾斜させてもよい。そのために、基板ステージSTGには、受光角設定手段40が設けられている。その回転軸は、ほぼ基板Wの表面を含む平面内にあり、照明光学系10の光軸に直交する方向に向いている。
【0032】
また散乱光を受光する場合は、パタ―ンからの回折光が2次元イメージセンサ33に直接入射しない方向に受光光学系30を設定するのが望ましい。散乱光の検出は基板W上の異物や傷の検出に有効であるが、傷による散乱光は傷に対して直角の方向に強く出るので、傷の方向によって散乱光を受光すべき方向が異なる。したがって、基板Wを載置する試料台20が360゜回転できる構造になっている。試料台20は、基板ステージSTGに設けられた、試料台20の基板Wを載置する上面、ひいては基板Wの表面の法線に平行な回転軸を有する回転機構50(図1参照)により回転される。回転機構50は、基板ステ―ジSTG上に取り付けられていてもよい。
【0033】
このようにして、基板Wは、上記法線回りに少なくとも0゜、45゜の2方向で検査される。おのおのの回転角における画像と正常なパタ―ンの画像とを比較することにより異常を検査する点では前述2方式と同様である。
【0034】
以上のように、任意の受光角を選択できる構成、及び基板表面の法線回りに回転して異なった方向から基板の表面を観察できるように構成することにより、最適な観察の方向を設定できる他、異なる条件下で得られる複数の画像情報を基に基板上の欠陥検査を行うこともできる。
【0035】
図2に示されるように、凹面反射鏡31の反射方向を基板Wの中心からずらしてあるのは、反射光による検出をする際に、反射光に回折光の影響が及ばないようにするためである。
【0036】
次に、図3〜図5を参照して、本発明に係る基板の欠陥検査方法の実施の形態を説明する。図3は、検査開始を開始して、回折光を選択的に受光して行う検査のフローを示し、図4は、正反射光を選択的に受光して行う検査のフローを示し、図5は、散乱光を選択的に受光して行う検査及び、基板の良、不良を判別し、欠陥検査方法を終了するまでのフローを示している。
【0037】
先ず図3に示されるように、本実施の形態では、基板に形成されているパターンに関する情報を読みとる(工程SP1)。そのパターンが周期性パターンであるかを判断して(工程SP2)、周期性パターンでなければ、回折光を受光して行う検査は不要であるので、正反射光を受光する検査(図4、工程SP8)にバイパスしてよい(X1)。
【0038】
周期性パターン、例えばラインアンドスペースパターンであれば、基板の表面の法線回りの回転角を、照明光を入射させる方向に対してラインの方向が直交するように設定する(工程SP3)。
【0039】
また、パターンピッチに対する回折角を、式(1)あるいは式(2)にしたがって計算する(工程SP4)。計算で求められた回折角θdに、受光角度を設定する(工程SP5)。もちろん、ここで工程3は工程5の後でもよい。
【0040】
以上のようにして方向と傾斜が設定された基板の表面に、90°近い入射角で照明光を照射する(工程6)。そして基板表面の情報を取り込んで基板から生じる回折光を受光する。ここで、受光角は回折光を受光しながら最も適切な角度にさらに調整してもよい。
【0041】
取り込まれた画像を、予め用意されている欠陥のない基板の状態を与える基準画像と比較して(工程8)、許容できる程度に同じではない場合には不要品と判断して、そのような基板は不良品トレイに納める(X3、図5、工程28)。
【0042】
工程8で、基準画像と同じと判定された場合は次の工程に移る(X1、図4、工程SP11)。
【0043】
なお、基板に形成されているパターンに関する情報が、基板毎の特性として事前に知られていれば、読みとる工程SP1と周期性パターンかの判断工程SP2は省略して、以下説明する直接X1以下の正反射受光工程、あるいは乱反射受光工程から、本検査方法を開始してもよい。
【0044】
図4を参照して、正反射光を受光して行われる検査工程を説明する。先ず、受光角を照明光の入射角と同一に設定する(工程SP11)。次に、傾斜が(受光角が)設定された基板の表面に、90°近い入射角で照明光を照射する(工程12)。そして基板表面の情報を取り込んで基板から反射する正反射光を受光し、正反射画像を取り込む。ここで、受光角は反射光を受光しながら最も適切な角度にさらに調整してもよい。
【0045】
取り込まれた正反射画像を、予め用意されている欠陥のない基板の状態を与える基準画像と比較して(工程14)、許容できる程度に同じではない場合には不要品と判断して、そのような基板は不良品トレイに納める(X3、図5、工程28)。工程14で、基準画像と同じと判定された場合は次の工程に移る(X2、図5、工程SP21)。
【0046】
図5を参照して、乱反射光を受光して行われる検査工程を説明する。先ず、受光光学系を基板に対して、乱反射光を受光するに適した受光角に設定する。乱反射光は、正反射あるいは回折光の場合と違って、ほぼあらゆる方向に発せられるが、例えば正反射光を避ける方向、あるいは1次、2次の回折光の方向を避ける方向に設定すれば、効率良く乱反射光による観察ができる。
【0047】
このようにして方向と傾斜が設定された基板の表面に、90°近い入射角で照明光を照射する(工程22)。そして基板表面の情報を取り込んで基板から生じる散乱光を受光する。ここで、受光角はあらためて散乱光を受光しながら最も適切な角度にさらに調整してもよい。
【0048】
取り込まれた画像を、予め用意されている欠陥のない基板の状態を与える基準画像と比較して(工程24)、許容できる程度に同じではない場合には不良品と判断して、そのような基板は不良品トレイに納める(X3、工程28)。そしてまだ検査すべ基板が残っているか否かを判断する(工程SP29)。
【0049】
工程24で、基準画像と同じと判定された場合は、次にさらに基板表面の法線回りの別の角度から観察するかを判断し、別の角度から観察する場合は、ここで基板を回転し(工程SP26)、工程SP21に戻り、その位置において散乱光を受光して行う検査を繰り返す。
【0050】
工程25で、基板をさらに回転させて観察する必要がないと判断された場合は、基板を良品トレイに納める(工程SP27)。そしてまだ検査すべき基板が残っているか否かを判断する(工程SP29)。
【0051】
まだ検査すべき基板が残っている場合は、次の基板を検査テーブルに載せ(工程SP30)、その基板が前に検査された基板と同じ種類の基板かを判断し、同じ種類ではなければ工程SP1に戻り(X4)、パターン情報の読込から工程を繰り返す。同じ種類であれば、パターン情報の読込みは不要であるので、工程SP2に戻る。
【0052】
工程29で全ての基板が検査されたと判断されると、この検査は終了する(END)。
【0053】
以上、周期性パターンを受光する回折光受光の工程、正反射光受光の工程、乱反射光受光の工程の順番で実行する場合を説明したが、順番はこの限りにあらず、例えば正反射、乱反射、回折光の順番でもよい。また、周期性パターンを有さない基板の場合は回折光受光検査は省略してよいが、一般的には正反射工程と、乱反射工程は省略しない。
【0054】
以上説明したように、欠陥のない基板の状態即ち基準状態と、検査される基板を状態とを比較することにより、欠陥を判別することができる。
【0055】
以上のように、周期性を有する繰り返しパタ―ンの上に透明な薄膜などが塗布され、表面がほとんど平坦な試料の表面状態を検査する場合は、異物からの散乱光を検出することにより異物を検出することができる。また表面の膜厚むらなどは表面の正反射画像が明るさのむらとなるので検出することができる。
【0056】
ここで、表面の反射率をできるだけ高め、照明光が下層まで到達しないようにするために、照明系の入射角は80°〜89°とし、できるだけ90゜に近い角度にする。望ましくは87°〜89°とする。例えば一実施例では入射角88゜とする。この場合照明光の大半(90%以上)が表面で反射される。図1は、入射角88°の場合を示しているが、図1の(a)は、入射する照明光と正反射光との関係が分かり易いように、入射角80°の場合の試料周辺を部分的に示している。
【0057】
また、表面層と下層の繰り返しパタ―ンのピッチが異なるような試料では、検査すべき層のパタ―ンのピッチに合わせて回折光を受光しなければならないが、表面層と下層からの回折光同士がうまく分離できない場合(ピッチが整数倍の場合)も、やはり照明系の入射角は80°〜89°とし、できるだけ90゜に近くする。さらに87°〜89°とするのが望ましい。例えば望ましい実施例では入射角を88゜とする。このようにすることにより、基板の表面反射率を高め、表面からの回折光を効率良く受光することができる。
【0058】
このように試料に応じて最適な検出なモ―ドを選択することによって、工程毎の種々の欠陥に対して信頼性の高い検査が可能となる。
【0059】
また、照明光学系10及び受光光学系30はテレセントリック光学系とするのが望ましい。このように構成すれば、被検査基板の表面全体にわたって同一入射角をもって照明が行われ、また同一受光角をもって観察することができる。したがって、基板表面の欠陥を検査するのに、目視検査でよく行われるように基板の傾斜を少しづつ変化させる必要がない。
【0060】
また、照明光学系10は互いに直交方向でパワ―の異なる2群の光学要素から成り、開口絞りの寸法形状が前記パワ―に逆比例するように構成してもよい。
【0061】
以上のように本発明によれば試料基板に応じて反射光、回折光、散乱光の中から最適な検出モ―ドを選択することができ、さまざまの工程における種々の欠陥に対して信頼性の高い検査が可能となる。
【0062】
また、装置が表面の画像情報を入手するような構成となっているので、工程終了毎にこれらの検査を行うことが望ましい。
【0063】
またこれらの方法は、半導体ウエハばかりでなく、液晶用の大型基板等の欠陥、異物の検出にも応用できる。
【0064】
【発明の効果】
以上のように本発明によれば、照明光が基板に対して80°〜89°の角度で入射するので、大半の光が基板の表面で反射され、第1層である表面の欠陥を検出することが可能となる。また基板の表面から所定の光を選択的に受光するので、例えば正反射光、散乱光、回折光の中からいずれかの光を選択して受光でき、それらの光で検出するのに適した欠陥を検出することを可能にする。このようにして、基板の各層毎の種々の欠陥を高い信頼性をもって検査することができる。
【図面の簡単な説明】
【図1】本発明の欠陥検出装置の実施の形態を示す側面図である。
【図2】図1の装置の平面図である。
【図3】本発明の欠陥検出方法の実施の形態中、回折光を受光して行う方法の部分を示すフロー図である。
【図4】本発明の欠陥検出方法の実施の形態中、正反射光を受光して行う方法の部分を示すフロー図である。
【図5】本発明の欠陥検出方法の実施の形態中、散乱光を受光して行う方法の部分を示すフロー図である。
【符号の説明】
10 照明光学系
11 ライトガイド(光ファイバー)
12 射出端面
13 円筒凹面鏡
14 円筒凹面鏡
20 試料台
30 受光光学系
31 凹面反射鏡
32 結像レンズ
33 2次元イメージセンサ
40 受光角設定手段
50 回転機構
θi 入射角
θd 回折角
W 基板
STG 基板ステージ
L1 入射光
L2 反射光
L3 回折光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a defect inspection apparatus and defect inspection method for a substrate, and in particular, defect inspection for inspecting macroscopic defects such as film thickness unevenness on the substrate surface, dirt, pattern steps formed on the substrate, forgetting exposure, and scratches on the surface. The present invention relates to an apparatus and a defect inspection method.
[0002]
[Prior art]
As a conventional technique for automatically inspecting a substrate such as a semiconductor wafer, as disclosed in Japanese Patent Publication No. 6-8789, the incident angle of illumination light with respect to the substrate is made variable, and regular reflection light from the substrate surface is obtained. There is a method of inspecting the substrate for defects such as dirt and scratches based on the image information. Japanese Patent Application Laid-Open No. 8-75661 discloses a method for inspecting defects such as scratches, foreign matter, and spots on the substrate by receiving only the diffracted light from the repetitive pattern on the substrate.
[0003]
[Problems to be solved by the invention]
When manufacturing a semiconductor, since the substrate is processed through a number of processes, it is necessary to inspect and manage each process. It was difficult to separate and inspect one layer among a plurality of layers.
[0004]
In a semiconductor wafer, a transparent thin film or the like is coated on a periodic repetitive pattern so that the surface is almost flat or the pitch of the repetitive pattern differs between the surface layer and the layer below it. Things exist.
[0005]
For example, when diffracted light from a sample with a flat surface such as the former is received, information from the repeated pattern of the lower layer is the center, and macroscopic inspection of the thin film on the surface is difficult.
[0006]
In the latter case, it is sufficient if the diffracted light can be received according to the pattern pitch of the layer to be inspected, but the pattern pitch of the transparent thin film on the surface layer is an integral multiple of the pattern pitch of the lower layer. In this case, since it is difficult to receive each diffracted light separately, it is difficult to detect defect information for each process (layer) without error.
[0007]
Accordingly, an object of the present invention is to provide a defect inspection apparatus and a defect inspection method that can inspect various defects for each process (layer) with high reliability.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the substrate defect inspection apparatus according to the first aspect of the present invention has an optical axis of 80 ° to 89 ° with respect to the normal of the surface of the substrate W, as shown in FIGS. An illumination optical system 10 arranged at an angle θi of °; light receiving means 30 for receiving light including information on the surface of the substrate W illuminated by the illumination optical system 10; and predetermined light from the substrate W to selectively receives, a light receiving angle setting means 40 for setting the acceptance angle of the light receiving means 30; and a rotating mechanism 50 for rotating the substrate W about the axis intersecting the substrate W surface, the The light receiving means 30 is configured to receive the light at a plurality of rotation angles by rotating the substrate W by the rotation mechanism 50 .
With this configuration, the optical axis of the illumination optical system is arranged at an angle close to 90 °, ie, 80 ° to 89 ° with respect to the normal line of the substrate surface, so that most of the illumination light is reflected on the surface of the substrate. The information on the surface of the substrate is mainly taken out. Since the light receiving means for receiving light including such information is set to a predetermined light receiving angle by the light receiving angle setting means, predetermined light from the substrate, for example, specularly reflected light directed in a predetermined direction Any one of scattered light and diffracted light can be selectively received. In addition, since a rotation mechanism that rotates the substrate about an axis that intersects the surface of the substrate is provided, it can cope with patterns and scratches in any direction, and the light receiving means rotates the substrate with the rotation mechanism and receives light at a plurality of rotation angles. Because it is configured, it can deal with patterns and scratches in multiple directions. Here, the axis is generally an axis perpendicular to the surface of the substrate.
[0009]
In order to achieve the above object, in the defect inspection apparatus for a substrate according to the second aspect of the present invention, as shown in FIGS. 1 and 2, the light may be specular reflection light or diffracted light.
If comprised in this way, the regular reflection light or diffracted light which goes to the predetermined direction from the board | substrate W can be light-received selectively, and the said light reception angle setting means 40 will receive the regular reflection light or diffracted light from the said board | substrate W. Since the light receiving means 30 is arranged in the direction of receiving light, defects such as thick film unevenness, stains and dirt on the substrate surface can be detected by specular reflection light, or pattern defects on the substrate can be detected by diffracted light.
[0010]
Here, as described in claim 3 , the light reception angle setting means may be configured to set the light reception angle by inclining the illumination optical system and the substrate integrally.
[0011]
If comprised in this way, since an illumination optical system and a board | substrate are inclined integrally, a light reception angle can be set arbitrarily, keeping the incident angle of illumination light constant. Further, the light receiving optical system can be fixedly arranged in the inspection apparatus.
[0012]
A defect inspection method for a substrate according to a fourth aspect of the present invention occurs in the illumination step of illuminating the substrate at an incident angle of 80 ° to 89 ° with respect to the surface of the substrate; A first light receiving step for selectively receiving a predetermined light including information on the surface of the substrate ; and rotating the substrate around an axis intersecting the surface of the substrate. A second light receiving step for selectively receiving predetermined light out of light including information on the surface of the substrate from a different direction from the light receiving step ; the first light receiving step and the second light receiving step. And a step of detecting a defect of the substrate based on the information obtained in (1).
[0013]
In this method, since the substrate is illuminated at an angle close to 90 °, that is, 80 ° to 89 ° with respect to the substrate surface, most of the illumination light is reflected by the surface of the substrate, and information on the surface of the substrate is mainly extracted. In the first light receiving step and the second light receiving step, predetermined light of light including information on the surface of the substrate is selectively received, so that a defect corresponding to the selected light is detected under different conditions. Detected.
[0014]
In the above method, as described in claim 5 , the first light receiving step and the second light receiving step selectively receive predetermined diffracted light, scattered light or specularly reflected light generated on the substrate. Is desirable.
[0015]
In this case, if the selected light is specularly reflected light, the information on the film thickness unevenness, stains and dirt on the substrate surface is diffracted light, the pattern information on the substrate is scattered light, and if the light is scattered light, Information on surface scratches and foreign objects is mainly picked up. Then, in the process of detecting defects, defects related to those substrates are detected.
[0016]
In the above method, as described in claim 6 , the defect detecting step includes the information obtained in the first light receiving step and the second light receiving step and the reference information indicating the reference state of the substrate. You may further provide the process of comparing.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing an embodiment of a substrate defect inspection apparatus according to the present invention, and FIG. 2 is a plan view of the apparatus of FIG.
[0018]
As shown in FIG. 1, the illumination optical system 10 is fixed relative to the substrate stage STG. It may be mounted on the substrate stage STG. Further, a sample stage 20 having a surface on which the substrate W is placed is provided on the upper surface of the substrate stage STG.
[0019]
In the illumination optical system, a light guide 11 that supplies illumination light is arranged with its light exit end face 12 facing the substrate W. A cylindrical concave mirror 13 having power in a direction parallel to the normal line of the surface of the substrate placed on the sample stage is arranged such that the emission end face 12 is positioned at the focal position in the light traveling direction of the emission end face 12. In the traveling direction of light from the exit end face 12 arranged and reflected by the cylindrical concave mirror 13, a cylindrical concave mirror 14 having power in a direction perpendicular to the normal line is positioned so that the exit end face 12 is located at the focal position. Is arranged.
[0020]
Here, the illumination optical system 10 is configured so that light from the emission end face 12 reflected by the cylindrical concave mirror 14 is incident on the surface of the substrate W placed on the sample stage 20 at an angle of 80 ° to 89 °. Is arranged. That is, the optical axis of the illumination optical system 10 is arranged on the surface of the substrate W placed on the sample stage 20 so as to have the above-described angle.
[0021]
With this configuration, the light emitted from the exit end face 12 of the light guide 11 is substantially in both the normal direction of the substrate surface, that is, the vertical direction, and the normal direction of the substrate surface, that is, the horizontal direction. The light beam L1 is parallel, and the substrate W is incident on the substrate W at an incident angle close to 90 ° (a grazing incident angle on the surface of the substrate) to illuminate the surface of the substrate. For this reason, most of the illumination light is reflected on the surface of the substrate by the Fresnel's formula for reflection and refraction of light at different boundary surfaces of the medium. Information can be retrieved.
[0022]
Also, the numerical aperture (NA) of the illumination optical system that illuminates the substrate W is perpendicular to the plane direction including the normal of the substrate surface and the optical axis of the illumination optical system 10, in FIG. The shape of the end surface 12 of the light guide 11 is preferably a size proportional to the focal length of each of the cylindrical concave mirror 13 and the cylindrical concave mirror 14 so that the direction of the light guide 11 is equal.
[0023]
On the other hand, a light receiving optical system 30 that receives light from the substrate including information on the surface state of the substrate is provided in the traveling direction of the light from the substrate. In FIG. 1, the light receiving optical system 30 has a direction in which the concave reflecting mirror 31 receives specularly reflected light from the substrate W, that is, in this embodiment, the reflection angle on the substrate is the same as the incident angle of 80 ° to 89 °. It is arranged in the direction opposite to the normal at the incident point at an angle. Further, in the traveling direction of the reflected light from the concave reflecting mirror 31, the imaging lens 32 and the two-dimensional image sensor 33 are in this order, and the surface of the substrate W and the surface of the two-dimensional image sensor 33 are substantially conjugated. It is arranged to be.
[0024]
Accordingly, the parallel light beam L2 specularly reflected by the substrate W is reflected by the concave reflecting mirror 31 and condensed at the entrance pupil position of the imaging lens 32, and the specular reflection image on the surface of the substrate W is converted into a two-dimensional image sensor 33. Tie on top.
[0025]
Here, also from the viewpoint of illumination efficiency, it is desirable that the numerical aperture (NA) of the illumination optical system 10 and the numerical aperture of the light receiving optical system 30 are substantially aligned.
[0026]
If there is an abnormal level difference due to resist coating unevenness on the surface of the substrate W or partial exposure abnormality, etc., the reflectivity will reflect such an abnormality, which is different from that of a normal substrate. Thus, an abnormality can be detected.
[0027]
Next, consider the case of receiving diffracted light. If there is a periodic repetitive pattern on the test substrate W, diffracted light is generated according to the pitch. As shown in FIG. 1, the diffraction angle θd with respect to the incident angle θi satisfies the following relationship when the pattern pitch and wavelength are p and λ, respectively, and the diffraction order is m (integer).
[0028]
sinθd−sinθi = mλ / p (1)
When the incident angle is close to 90 °, sin θi in equation (1) is almost equal to 1. Therefore, if sin θi = 1 is set, equation (1) is
sinθd = mλ / p + 1 (2)
It becomes.
[0029]
When receiving diffracted light, the light receiving angle determined by the equation (1) must be set according to the pitch information of the pattern, but by rotating the entire light receiving optical system 30a around the center of the substrate W, By adjusting the light reception angle and setting the emission angle from the substrate surface to the diffraction angle θd obtained by the equation (1) as shown by the broken line in FIG. 1, an image by the diffracted light L3 can be obtained. it can.
[0030]
Here, if the pattern level difference and the ratio of unevenness (duty ratio) are different from the normal pattern, the diffraction efficiency will be different and the brightness of the diffraction pattern will be different from that of the normal pattern. By comparing, abnormality can be inspected.
[0031]
The point that the incident angle of the illumination system is set to about 90 ° to increase the surface reflectance and efficiently receive the diffracted light from the surface is the same as in the case of receiving regular reflection light. As another method for changing the light receiving angle, the entire stage STG may be tilted while the relative positional relationship between the illumination optical system 10 and the substrate W is kept constant. For this purpose, the substrate stage STG is provided with a light receiving angle setting means 40. The rotation axis is substantially in a plane including the surface of the substrate W and is oriented in a direction perpendicular to the optical axis of the illumination optical system 10.
[0032]
When receiving scattered light, it is desirable to set the light receiving optical system 30 in such a direction that the diffracted light from the pattern does not directly enter the two-dimensional image sensor 33. Although detection of scattered light is effective for detecting foreign matter and scratches on the substrate W, scattered light from the scratches is strongly emitted in a direction perpendicular to the scratches, and therefore the direction in which the scattered light should be received differs depending on the direction of the scratches. . Therefore, the sample stage 20 on which the substrate W is placed has a structure that can rotate 360 °. The sample stage 20 is rotated by a rotation mechanism 50 (see FIG. 1) provided on the substrate stage STG, which has a rotation axis parallel to the upper surface of the sample stage 20 on which the substrate W is placed, and thus the normal line of the surface of the substrate W. Is done. The rotation mechanism 50 may be mounted on the substrate stage STG.
[0033]
In this way, the substrate W is inspected in two directions of at least 0 ° and 45 ° around the normal. This is the same as the above-described two methods in that the abnormality is inspected by comparing the image at each rotation angle with the image of the normal pattern.
[0034]
As described above, an optimum observation direction can be set by selecting an arbitrary light receiving angle and rotating the substrate surface around the normal to observe the surface of the substrate from different directions. In addition, it is possible to inspect a defect on the substrate based on a plurality of pieces of image information obtained under different conditions.
[0035]
As shown in FIG. 2, the reason why the reflection direction of the concave reflecting mirror 31 is shifted from the center of the substrate W is to prevent the reflected light from being affected by the diffracted light when detecting by the reflected light. It is.
[0036]
Next, an embodiment of a defect inspection method for a substrate according to the present invention will be described with reference to FIGS. FIG. 3 shows a flow of inspection performed by selectively starting diffracted light after the start of inspection, and FIG. 4 shows a flow of inspection performed by selectively receiving specularly reflected light. FIG. 5 shows a flow from an inspection performed by selectively receiving scattered light to a determination of whether the substrate is good or defective and the completion of the defect inspection method.
[0037]
First, as shown in FIG. 3, in the present embodiment, information on the pattern formed on the substrate is read (step SP1). It is determined whether the pattern is a periodic pattern (step SP2). If the pattern is not a periodic pattern, an inspection performed by receiving diffracted light is unnecessary, and an inspection that receives specularly reflected light (FIG. 4, FIG. 4). You may bypass to process SP8) (X1).
[0038]
In the case of a periodic pattern, for example, a line and space pattern, the rotation angle around the normal line on the surface of the substrate is set so that the direction of the line is orthogonal to the direction in which the illumination light is incident (step SP3).
[0039]
Further, the diffraction angle with respect to the pattern pitch is calculated according to the formula (1) or the formula (2) (step SP4). The light receiving angle is set to the diffraction angle θd obtained by the calculation (step SP5). Of course, step 3 may be after step 5.
[0040]
Illumination light is irradiated at an incident angle close to 90 ° on the surface of the substrate whose direction and inclination are set as described above (step 6). Then, information on the surface of the substrate is taken in and diffracted light generated from the substrate is received. Here, the light receiving angle may be further adjusted to the most appropriate angle while receiving the diffracted light.
[0041]
The captured image is compared with a reference image prepared in advance that gives a substrate-free state (step 8). The substrate is placed in a defective product tray (X3, FIG. 5, step 28).
[0042]
If it is determined in step 8 that the image is the same as the reference image, the process proceeds to the next step (X1, FIG. 4, step SP11).
[0043]
If the information about the pattern formed on the substrate is known in advance as the characteristics of each substrate, the reading step SP1 and the periodic pattern determination step SP2 are omitted, and the direct X1 or less described below will be omitted. The present inspection method may be started from the regular reflection light receiving step or the irregular reflection light receiving step.
[0044]
With reference to FIG. 4, the inspection process performed by receiving regular reflection light will be described. First, the light receiving angle is set to be the same as the incident angle of the illumination light (step SP11). Next, the illumination light is irradiated at an incident angle close to 90 ° on the surface of the substrate with the inclination (the light receiving angle) set (step 12). Then, the information on the surface of the substrate is taken in and the regular reflection light reflected from the substrate is received, and the regular reflection image is taken in. Here, the light receiving angle may be further adjusted to the most appropriate angle while receiving the reflected light.
[0045]
The captured regular reflection image is compared with a reference image prepared in advance that gives a substrate state without defects (step 14). Such a substrate is placed in a defective product tray (X3, FIG. 5, step 28). If it is determined in step 14 that the image is the same as the reference image, the process proceeds to the next step (X2, FIG. 5, step SP21).
[0046]
With reference to FIG. 5, an inspection process performed by receiving irregularly reflected light will be described. First, the light receiving optical system is set to a light receiving angle suitable for receiving irregularly reflected light with respect to the substrate. Diffuse reflected light is emitted in almost any direction, unlike the case of regular reflection or diffracted light. For example, if it is set in a direction that avoids regular reflected light, or a direction that avoids the directions of primary and secondary diffracted light, Efficient observation with irregularly reflected light is possible.
[0047]
Illumination light is irradiated at an incident angle close to 90 ° on the surface of the substrate thus set in direction and inclination (step 22). Then, the scattered light generated from the substrate is received by taking in information on the substrate surface. Here, the light receiving angle may be further adjusted to the most appropriate angle while receiving scattered light again.
[0048]
The captured image is compared with a reference image prepared in advance that gives a substrate-free state (step 24). The substrate is placed in a defective product tray (X3, step 28). Then, it is determined whether or not a substrate to be inspected still remains (step SP29).
[0049]
If it is determined in step 24 that the image is the same as the reference image, it is next determined whether to observe from another angle around the normal of the substrate surface. If the image is observed from another angle, the substrate is rotated here. Then (step SP26), the process returns to step SP21, and the inspection performed by receiving scattered light at that position is repeated.
[0050]
If it is determined in step 25 that there is no need to further rotate and observe the substrate, the substrate is placed in a non-defective tray (step SP27). Then, it is determined whether or not there is still a substrate to be inspected (process SP29).
[0051]
If there are still substrates to be inspected, the next substrate is placed on the inspection table (step SP30), and it is determined whether the substrate is the same type as the previously inspected substrate. Returning to SP1 (X4), the process is repeated from reading the pattern information. If they are the same type, it is not necessary to read the pattern information, so the process returns to step SP2.
[0052]
If it is determined in step 29 that all the substrates have been inspected, the inspection ends (END).
[0053]
As described above, the case where the process is performed in the order of the diffracted light receiving process for receiving the periodic pattern, the regular reflected light receiving process, and the irregularly reflected light receiving process has been described. However, the order is not limited to this, for example, regular reflection or irregular reflection. The order of diffracted light may be used. In the case of a substrate having no periodic pattern, the diffracted light reception inspection may be omitted, but in general, the regular reflection process and the irregular reflection process are not omitted.
[0054]
As described above, the defect can be determined by comparing the state of the substrate having no defect, that is, the reference state with the state of the substrate to be inspected.
[0055]
As described above, when a transparent thin film or the like is applied on a repetitive pattern having periodicity and the surface state of a sample with a substantially flat surface is inspected, the foreign matter is detected by detecting scattered light from the foreign matter. Can be detected. Further, the film thickness unevenness on the surface can be detected because the regular reflection image on the surface has uneven brightness.
[0056]
Here, in order to increase the reflectance of the surface as much as possible and prevent the illumination light from reaching the lower layer, the incident angle of the illumination system is set to 80 ° to 89 ° and as close to 90 ° as possible. Desirably, the angle is 87 ° to 89 °. For example, in one embodiment, the incident angle is 88 °. In this case, most of the illumination light (90% or more) is reflected on the surface. FIG. 1 shows the case where the incident angle is 88 °, but FIG. 1A shows the periphery of the sample when the incident angle is 80 ° so that the relationship between the incident illumination light and the regular reflection light can be easily understood. Is partially shown.
[0057]
In addition, for samples where the surface layer and lower layer have different repeated pattern pitches, diffracted light must be received in accordance with the pattern pitch of the layer to be inspected. Even when the light cannot be separated well (when the pitch is an integral multiple), the incident angle of the illumination system is also set to 80 ° to 89 ° and as close to 90 ° as possible. Furthermore, it is desirable to set it as 87 degrees-89 degrees. For example, in the preferred embodiment, the incident angle is 88 °. By doing in this way, the surface reflectance of a board | substrate can be improved and the diffracted light from the surface can be received efficiently.
[0058]
Thus, by selecting an optimum detection mode according to the sample, it is possible to perform a highly reliable inspection for various defects in each process.
[0059]
The illumination optical system 10 and the light receiving optical system 30 are preferably telecentric optical systems. If comprised in this way, illumination is performed with the same incident angle over the whole surface of a to-be-inspected board | substrate, and it can observe with the same light receiving angle. Therefore, it is not necessary to change the inclination of the substrate little by little, as is often done by visual inspection to inspect defects on the substrate surface.
[0060]
Further, the illumination optical system 10 may be composed of two groups of optical elements having different powers in the orthogonal direction, and the dimensional shape of the aperture stop may be inversely proportional to the power.
[0061]
As described above, according to the present invention, an optimal detection mode can be selected from reflected light, diffracted light, and scattered light according to the sample substrate, and reliability against various defects in various processes can be selected. High inspection is possible.
[0062]
Moreover, since the apparatus is configured to obtain surface image information, it is desirable to perform these inspections at the end of each process.
[0063]
These methods can be applied not only to detection of semiconductor wafers but also to detection of defects and foreign matters on large substrates for liquid crystals.
[0064]
【The invention's effect】
As described above, according to the present invention, since the illumination light is incident on the substrate at an angle of 80 ° to 89 °, most of the light is reflected on the surface of the substrate, and the surface defect which is the first layer is detected. It becomes possible to do. In addition, since predetermined light is selectively received from the surface of the substrate, for example, any of the specularly reflected light, scattered light, and diffracted light can be selected and received, and it is suitable for detection with those lights. Makes it possible to detect defects. In this way, various defects for each layer of the substrate can be inspected with high reliability.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of a defect detection apparatus of the present invention.
FIG. 2 is a plan view of the apparatus of FIG.
FIG. 3 is a flowchart showing a portion of a method performed by receiving diffracted light in the embodiment of the defect detection method of the present invention.
FIG. 4 is a flowchart showing a portion of a method performed by receiving regular reflection light in the embodiment of the defect detection method of the present invention.
FIG. 5 is a flowchart showing a portion of a method performed by receiving scattered light in the embodiment of the defect detection method of the present invention.
[Explanation of symbols]
10 Illumination optical system 11 Light guide (optical fiber)
12 exit end face 13 cylindrical concave mirror 14 cylindrical concave mirror 20 sample stage 30 light receiving optical system 31 concave reflecting mirror 32 imaging lens 33 two-dimensional image sensor 40 light receiving angle setting means 50 rotating mechanism θi incident angle θd diffraction angle W substrate STG substrate stage L1 incident Light L2 Reflected light L3 Diffracted light

Claims (6)

基板の欠陥検査装置であって;
前記基板の表面の法線に対して光軸が80°〜89°の角度をもって配置された照明光学系と;
前記照明光学系によって照明された基板の表面に関する情報を含んだ光を受光する受光手段と;
前記基板からの所定の光を選択的に受光するために、前記受光手段の受光角を設定する受光角設定手段と;
前記基板の表面と交差する軸線回りに前記基板を回転させる回転機構とを備え;
前記受光手段は、前記回転機構で前記基板を回転させ複数の回転角で前記光を受光するよう構成されたことを特徴とする;
基板の欠陥検査装置。
A substrate defect inspection apparatus;
An illumination optical system disposed with an optical axis at an angle of 80 ° to 89 ° with respect to the normal of the surface of the substrate;
Light receiving means for receiving light including information on the surface of the substrate illuminated by the illumination optical system;
A light receiving angle setting means for setting a light receiving angle of the light receiving means for selectively receiving predetermined light from the substrate;
A rotation mechanism that rotates the substrate about an axis that intersects the surface of the substrate;
The light receiving means is configured to receive the light at a plurality of rotation angles by rotating the substrate by the rotation mechanism ;
Substrate inspection system.
前記光が、正反射光または回折光であることを特徴とする;
請求項1に記載の基板の欠陥検査装置。
The light is specularly reflected light or diffracted light ;
The defect inspection apparatus for a substrate according to claim 1 .
前記受光角設定手段は、前記照明光学系と前記基板とを一体的に傾斜させて受光角を設定するように構成されたことを特徴とする;請求項1または請求項2に記載の、基板の欠陥検査装置。The substrate according to claim 1 or 2 , wherein the light reception angle setting means is configured to set the light reception angle by integrally tilting the illumination optical system and the substrate. Defect inspection equipment. 基板の表面に対して80°〜89°の入射角をもって前記基板を照明する照明工程と;
前記照明工程で照明された前記基板にて生ずる、前記基板の表面に関する情報を含んだ光のうちの所定の光を、選択的に受光する第1の受光工程と;
前記基板を前記基板の表面と交差する軸線回りに回転させ、前記第1の受光工程とは異なった方向から、前記基板の表面に関する情報を含んだ光のうち所定の光を選択的に受光する第2の受光工程と
前記第1の受光工程と前記第2の受光工程で得られた情報に基づいて前記基板の欠陥を検出する工程とを備えることを特徴とする;
基板の欠陥検査方法。
An illuminating step of illuminating the substrate with an incident angle of 80 ° to 89 ° with respect to the surface of the substrate;
A first light receiving step for selectively receiving predetermined light of light including information on the surface of the substrate generated in the substrate illuminated in the illumination step;
The substrate is rotated about an axis intersecting the surface of the substrate, and predetermined light is selectively received from light including information on the surface of the substrate from a direction different from that of the first light receiving step. A second light receiving step ;
A step of detecting a defect of the substrate based on information obtained in the first light receiving step and the second light receiving step ;
Substrate defect inspection method.
前記第1の受光工程および前記第2の受光工程は、前記基板にて生ずる所定の回折光、散乱光あるいは正反射光を選択的に受光することを特徴とする;請求項に記載の、基板の欠陥検査方法。The first light receiving step and said second receiving step, characterized by selectively receiving a predetermined diffracted light, scattered light or specular light produced by said substrate; according to claim 4, Substrate defect inspection method. 前記欠陥を検出する工程は、前記第1の受光工程および前記第2の受光工程で得られた情報と前記基板の基準状態を示す基準情報とを比較する工程をさらに備えることを特徴とする;請求項または請求項に記載の、基板の欠陥検査方法。The step of detecting the defect further comprises a step of comparing information obtained in the first light receiving step and the second light receiving step with reference information indicating a reference state of the substrate; 6. The substrate defect inspection method according to claim 4 or 5 .
JP16495197A 1997-06-06 1997-06-06 Substrate defect inspection apparatus and defect inspection method Expired - Lifetime JP3832028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16495197A JP3832028B2 (en) 1997-06-06 1997-06-06 Substrate defect inspection apparatus and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16495197A JP3832028B2 (en) 1997-06-06 1997-06-06 Substrate defect inspection apparatus and defect inspection method

Publications (2)

Publication Number Publication Date
JPH10339701A JPH10339701A (en) 1998-12-22
JP3832028B2 true JP3832028B2 (en) 2006-10-11

Family

ID=15802970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16495197A Expired - Lifetime JP3832028B2 (en) 1997-06-06 1997-06-06 Substrate defect inspection apparatus and defect inspection method

Country Status (1)

Country Link
JP (1) JP3832028B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235428A (en) * 2000-02-23 2001-08-31 Nikon Corp Visual examination instrument
AU4277501A (en) * 2000-03-24 2001-10-03 Olympus Optical Co., Ltd. Apparatus for detecting defect
KR100856357B1 (en) * 2000-09-13 2008-09-04 가부시키가이샤 니콘 Apparatus and method for inspecting surface
JP4591802B2 (en) 2000-09-13 2010-12-01 株式会社ニコン Surface inspection apparatus and method
TWI285738B (en) * 2000-09-26 2007-08-21 Olympus Corp Defect detecting apparatus and computer readable medium
JP4529108B2 (en) * 2000-12-25 2010-08-25 株式会社ニコン Defect inspection equipment
JP4637642B2 (en) * 2005-05-18 2011-02-23 株式会社日立ハイテクノロジーズ Device and method for inspecting defects between patterns
JP5078583B2 (en) * 2007-12-10 2012-11-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Macro inspection device and macro inspection method

Also Published As

Publication number Publication date
JPH10339701A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US5278012A (en) Method for producing thin film multilayer substrate, and method and apparatus for detecting circuit conductor pattern of the substrate
US8416402B2 (en) Method and apparatus for inspecting defects
JP3669101B2 (en) Substrate inspection method and apparatus using diffracted light
US7005649B1 (en) Mask blanks inspection method and mask blank inspection tool
JP5201350B2 (en) Surface inspection device
JP4552859B2 (en) Surface inspection apparatus and surface inspection method
JPWO2007069457A1 (en) Surface inspection apparatus and surface inspection method
JP3692685B2 (en) Defect inspection equipment
WO1999002977A1 (en) Device and method for inspecting surface
KR20070009705A (en) Defect inspection device and substrate production system using the same
JP3832028B2 (en) Substrate defect inspection apparatus and defect inspection method
US6646735B2 (en) Surface inspection apparatus and surface inspection method
KR100705983B1 (en) Flaw detecting device and computer-readable storage medium
US11536648B2 (en) Optical inspection device and method
JP3982017B2 (en) Defect inspection equipment
JP2003289035A (en) Resist outer-periphery removing width inspecting device
JP4635939B2 (en) Surface inspection device
JP3078784B2 (en) Defect inspection equipment
JP2005274161A (en) Flaw inspection device
JPH05113408A (en) Reflection optical microscope with oblique illumination
JPH0599639A (en) Inspection device for small unevenness of planar object
JP2962565B2 (en) Manufacturing method of thin film multilayer substrate
JPS60124833A (en) Appearance inspecting device of lsi wafer
JP2010107465A (en) Device and method for inspecting defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150728

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150728

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term