JP3830611B2 - Showcase cooling system - Google Patents

Showcase cooling system Download PDF

Info

Publication number
JP3830611B2
JP3830611B2 JP09045597A JP9045597A JP3830611B2 JP 3830611 B2 JP3830611 B2 JP 3830611B2 JP 09045597 A JP09045597 A JP 09045597A JP 9045597 A JP9045597 A JP 9045597A JP 3830611 B2 JP3830611 B2 JP 3830611B2
Authority
JP
Japan
Prior art keywords
pressure
value
showcase
set value
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09045597A
Other languages
Japanese (ja)
Other versions
JPH10281616A (en
Inventor
伸一 中山
克広 酒井
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP09045597A priority Critical patent/JP3830611B2/en
Publication of JPH10281616A publication Critical patent/JPH10281616A/en
Application granted granted Critical
Publication of JP3830611B2 publication Critical patent/JP3830611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば真冬の夜間などのように、冷凍機能力が最低でもそのときのショーケース負荷に対して過剰(能力絶対過剰という)となる場合や、真夏の昼間などのように、冷凍機能力が最高でもそのときのショーケース負荷に対して不足(能力絶対不足という)となる場合に、総合コントローラで演算された吸入冷媒の圧力設定値にその実際値が追従不能となり、言い換えれば制御不能となって能力絶対過剰または能力絶対不足の各状態が解消されたときに制御が円滑におこなわれない恐れがあるから、この欠点を除去したショーケース冷却装置に関する。
【0002】
【従来の技術】
ショーケースの冷却装置の一従来例について、図9を参照しながら説明する。ショーケース群1と冷凍機6の間に介在させる形で、両者を総合的・合理的に制御するための、電磁弁運転率演算部3と、圧力設定値演算部4と、回転数指令演算部5からなる総合コントローラ34を設ける。電磁弁運転率演算部3は、一定時間ごとに、その前の一定時間に対する各電磁弁のオン時間の割合である電磁弁運転率を求める。圧力設定値演算部4は、その求められた電磁弁運転率に基づいて、冷凍機6の側でインバータ8を介して運転される圧縮機9の吸入冷媒圧力に対する次の一定時間に係る設定値(更新)を求める。回転数指令演算部5は、その求められた吸入冷媒圧力の設定値と実際の圧力との偏差に基づいて、圧縮機9に対するインバータ8の次の一定時間に係る回転数指令(更新)を求める。ここで、ショーケース群1は、ショーケース1A,1B,1C,・・・(以下、1A・・・と表記する)の全てが店舗内で並設されて一つのグループをなすもので、各ショーケース1A・・・はそれぞれ、蒸発器2A・・・、この蒸発器2A・・・への冷媒の流れをオン・オフ制御するショーケース用コントローラ34A・・・、冷媒の流れをオン・オフする操作端としての図示してない電磁弁(図12の符号33A・・・)、および、ショーケースの吹き出し空気の温度を測定する温度センサ14A・・・を備える。ここで、ショーケース内の温度測定箇所として、空気が吹き出す箇所が選ばれた理由は、一つには格納商品の量の多寡によって影響されない箇所であること、もう一つには制御に基づく温度変化が最も先行的に現れる箇所であるから制御上好都合なことによる。
【0003】
ここで、圧力設定値演算部4は、消費電力量が必要最小限になるように圧力設定値を最適に更新するが、そのためには冷凍機能力とショーケース負荷が分かればよい。実際にこれらを測定するのが困難であるから、冷凍機能力とショーケース負荷のバランスを見ながら、冷凍機能力が不足か、適当か、過剰かを判断し、これに基づいて圧力設定値を最適に更新する。しかも、冷凍機能力とショーケース負荷のバランスを、電磁弁の運転率が低いときには、ショーケース負荷に対して冷凍機能力が過剰、電磁弁の運転率が高いときには、ショーケース負荷に対して冷凍機能力が不足、電磁弁の運転率が適当なときには、ショーケース負荷に対して冷凍機能力が適当、とそれぞれ判断する。なお、冷凍機能力とショーケース負荷のバランスを、前記のように電磁弁の運転率で判断する代わりに、電磁弁が繰返しオンして冷媒の流れをオンしたときのショーケース内の空気温度の降下速度や、電磁弁が繰返しオン・オフしたときの平均的オン・オフ周期で判断する方式もある。
【0004】
図10は圧力設定値の更新に係る、圧力設定値/ショーケース運転率対応図である。これは圧力設定値を更新するための経験則で、この内容が図9の圧力設定値演算部4で実施されることになる。つまり、(1)少なくとも1台のショーケース(電磁弁)運転率が90%以上なら冷凍機能力は不足と判断し、圧力設定値を0.01MPa(0.1Kg/cm2)だけ下げ(更新し)て、冷凍機能力を増加させる。(2)全てのショーケース(電磁弁)運転率が40〜90%なら、冷凍機能力は適当と判断し、圧力設定値をそのまま維持する。(3)ショーケース(電磁弁)運転率が全て90%以下で、かつ少なくとも1台が40%以下なら、冷凍機能力は過剰と判断し、圧力設定値を0.01MPaだけ上げ(更新し)て、冷凍機能力を減少させる。
【0005】
マルチ冷凍機が用いられた別の従来例について、図11〜図13を参照しながら説明する。図11は別の従来例の構成を示すブロック図である。図11において、この別の従来例は、図9の一従来例における総合コントローラ34に代えて総合コントローラ35が、また冷凍機6に代えてマルチ冷凍機6Mがそれぞれ用いられる。総合コントローラ35は、総合コントローラ34におけると同じ電磁弁運転率演算部3および圧力設定演算部4と、新たな冷凍機能力制御部5Mからなる。この冷凍機能力制御部5Mは、前段の圧力設定値演算部4によって求められた吸入冷媒圧力の設定値と、その実際値との偏差に基づいて、次に述べるマルチ冷凍機6Mにおける圧縮機群9Mの運転パターンを指令し(詳しくは図13参照)、もってマルチ冷凍機6Mの冷凍能力をショーケース負荷に対して最適にする機能をもつ。また、マルチ冷凍機6Mは主として、圧縮機群9Mと、その吸入冷媒圧力を測定する圧力センサ7からなる。ここで、圧縮機群9Mは、詳しくは図12を参照しながら後述するが、複数の圧縮機が並列接続され、その選択的運転によって冷凍機能力が制御されるように構成される。
【0006】
図12は別の従来例の冷凍サイクルの構成を詳細に示すブロック図である。冷凍サイクルは、マルチ冷凍機6Mに内蔵された、圧縮機群9Mおよび凝縮器31と、各ショーケース1A・・・に内蔵された蒸発器2A・・・、対応する電磁弁33A・・・および温度膨張弁32A・・・とから構成される。圧縮機群9Mは、ここでは4個の圧縮機9A,9B,9C,9Dが並列接続されて構成され、各圧縮機9A・・・の選択的運転によって冷凍機能力を制御することができる。また、蒸発器2A・・・は互いに並列接続され、この並列接続されたものに圧縮機群9Mと凝縮器31が直列接続され冷凍サイクルが構成される。図11の各コントローラ34A・・・はそれぞれ、対応する温度センサ14Aからの温度信号とその設定値との偏差に基づき、対応する蒸発器2A・・・への冷媒の流れをオン・オフ制御する。再び、図12に戻って、冷媒は、圧縮機群9Mから凝縮器31を経た後に分流して、各蒸発器2A・・・に流れたり、または流れるのを阻止されてから圧縮機群9Mに戻るように循環する。
【0007】
図13は圧縮機群9Mの運転パターンと冷凍機能力の対応図である。この別の従来例では、5つの運転パターン(1),(2),(3),(4),(5)があって、各運転パターンのとき運転される圧縮機の組合わせと、そのときの冷凍機能力が示される。運転パターン(3)で説明すると、このときには各圧縮機9A,9Bが同時運転され(○印表示)、冷凍機能力は50%(全圧縮機が同時運転される運転パターン(5)のときを100 %として)である。なお、ここでは各圧縮機が同じ能力(容量)としてあるが、一般に構成台数と、それぞれの能力は自由に選ぶことができる。
【0008】
【発明が解決しようとする課題】
以上に述べたように、図9のインバータ圧縮機内蔵の冷凍機を用いた一従来例では、たとえば真冬の夜間などに、冷凍機能力が最低でもそのときのショーケース負荷に対して過剰、つまり能力絶対過剰となって、図10の圧力設定値/ショーケース運転率対応図にしたがい、圧力設定値を上げ続ける。一方、圧縮機9の回転数は最低回転数以下には下げられないため、実際の吸入冷媒の圧力実際値が圧力設定値に追従できなくなって制御不能となる。同様に、真夏の昼間などに、冷凍機能力が最高でもそのときのショーケース負荷に対して不足、つまり能力絶対不足となって、図10の圧力設定値/ショーケース運転率対応図にしたがい、圧力設定値を下げ続ける。一方、圧縮機9の回転数は最高回転数以上には上げられないため、圧力実際値が圧力設定値に追従できなくなって制御不能となる。
【0009】
また、図11のマルチ冷凍機を用いた別の従来例においても、前記の従来例と冷凍機の形式に違いはあっても、能力絶対過剰または能力絶対不足のとき、冷凍機の能力が限界に達するから、同様に圧力実際値が圧力設定値に追従できなくなって制御不能となる。
この発明が解決しようとする課題は、たとえば真冬の夜間などのように、冷凍機能力が最低でもそのときのショーケース負荷に対して過剰、つまり能力絶対過剰となる場合や、真夏の昼間などのように、冷凍機能力が最高でもそのときのショーケース負荷に対して不足、つまり能力絶対不足となる場合を含む広範囲にわたって常に円滑な制御がおこなわれるようにしたショーケース冷却装置を提供することにある。
【0010】
【課題を解決するための手段】
この発明は、本体内所定箇所の空気温度とその設定値との偏差に基づき蒸発器への冷媒の流れを電磁弁を介してオン・オフ制御するショーケースの一または二以上と、これと冷凍サイクルを構成する共通な冷凍機と、これらショーケースおよび冷凍機を制御する総合コントローラからなる冷却装置において、この総合コントローラは、前記電磁弁の運転状態に基づいて、冷凍機に内蔵されるインバータ圧縮機の吸入冷媒圧力の設定値を求める圧力設定値演算部と;求められた吸入冷媒圧力の設定値とその実際値の偏差に基づいて、インバータ圧縮機に対する回転数指令を求める回転数指令演算部と;圧力設定値を、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰な状態である能力絶対過剰状態、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足する状態である能力絶対不足状態の各状態に対応してそれぞれ予め定められた上限値および下限値に制限する処置部と;を備える、という構成である。
【0011】
また、この発明は、本体内所定箇所の空気温度とその設定値との偏差に基づき蒸発器への冷媒の流れを電磁弁を介してオン・オフ制御するショーケースの一または二以上と、内蔵する複数圧縮機の選択的運転によって能力制御されるマルチ冷凍機と、これらショーケースおよびマルチ冷凍機を制御する総合コントローラからなる冷却装置において、この総合コントローラは、前記電磁弁の運転状態に基づいて、マルチ冷凍機の圧縮機用吸入冷媒圧力の設定値を求める圧力設定値演算部と;求められた吸入冷媒圧力の設定値とその実際値の偏差に基づいて、複数圧縮機の選択的運転を指令する冷凍能力制御部と;圧力設定値を、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰な状態である能力絶対過剰状態、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足する状態である能力絶対不足状態の各状態に対応してそれぞれ予め定められた上限値および下限値に制限する処置部と;を備える、という構成である。
【0012】
【発明の実施の形態】
この発明の実施の形態として、実施例について以下に図を参照しながら説明する。
【0013】
図1は第1参考例の構成を示すブロック図である。第1参考例は、図9に示した従来例の総合コントローラ34に代えて総合コントローラ21が用いられ、この中の判定部15は、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰、つまり能力絶対過剰、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足、つまり能力絶対不足であることを判定するもので、具体的には詳しく後述する。処置部17は判定に応じて後述するような対応処置を講じる。平均値演算部19は、圧力センサ7の出力である吸入冷媒の圧力実際値としての最近1時間の圧力平均値を15分ごとに求める。固定部20は、その入力を判定部15の能力絶対過剰または能力絶対不足の各判定時の値に、その判定中は持続的に固定する。判定部15は、圧力設定値演算部4によって求められた圧力設定値と、圧力センサ7の出力の実際値としての圧力平均値(平均値演算部19の出力)に基づいて次のようにして判定する。すなわち、圧力設定値がそのときの圧力平均値より所定僅少値、たとえば0.1Kgf/cm2だけ大きい値を超えるときには能力絶対過剰と判定する。能力絶対過剰とは、たとえば真冬の夜間などに、冷凍機能力を下げるように制御的に圧力設定値を上げても、圧縮機9の能力が既に最低レベルに達していて、その圧力平均値を上げることができない、言い換えれば圧力設定値がそのときの圧力平均値を超えるわけである。ここで、0.1Kgf/cm2だけ大きい値をとるのは、判定の信頼性を高めるためであって、その意味では、0.1Kgf/cm2は正確な判定をするための余裕値または安全値と言える。求められた圧力設定値が、そのときの圧力平均値より所定僅少値、たとえば0.1Kgf/cm2だけ小さい値未満なときには能力絶対不足と判定する。能力絶対不足とは、たとえば真夏の昼間などに、冷凍機能力を上げるように制御的に圧力設定値を下げても、圧縮機9の能力が既に最高レベルに達していて、その圧力平均値を下げることができない、言い換えれば圧力設定値がそのときの圧力平均値未満となるわけである。ここで、0.1Kgf/cm2だけ小さい値をとるのは、能力絶対過剰のときと同様に判定の信頼性を高めるためである。
【0014】
冷凍機能力が絶対過剰状態、または絶対不足状態になったら、それ以降は圧力平均値が設定値に追従できないで制御不能の状態になる。そこで、図1における処置部17が対応処置を講じることになる。処置部17は、機能的にはスイッチであって、能力絶対過剰または能力絶対不足になる前までは実線の側に切り替わっていて、求められた圧力設定値をそのまま回転数指令演算部5に入力する。また、能力絶対過剰または能力絶対不足になったら、処置部17は、各判定信号に基づいて破線の側に切り替わると同時に、求められた圧力設定値(最大の圧力平均値より0.1Kgf/cm2だけ大きい値、または最小の圧力平均値より0.1Kgf/cm2だけ小さい値)が、固定部20を介して各判定時の圧力設定値にその判定中は持続的に固定され、処置部17を介して回転数指令演算部5に入力される。
【0015】
その結果、冷凍機能力が最低でもそのときのショーケース負荷に対して過剰、つまり能力絶対過剰となる場合や、冷凍機能力が最高でもそのときのショーケース負荷に対して不足、つまり能力絶対不足となる場合を含む広範囲にわたって常に円滑な制御がおこなわれるようになる。図2は第1参考例の変形例の構成を示すブロック図である。この変形例は、総合コントローラ21Aを用い、能力絶対過剰または能力絶対不足の各判定方式は第1参考例と同じで、異なるのは各判定に基づき処置部17に入力されるのが、第1参考例の図1での各判定時の圧力設定値に代えて、平均値演算部19の出力(1時間の平均値)になる点である。第1参考例とその変形例には、対応処置の値に若干の違いがあるだけで、本質的な違いはない。
【0016】
図3は第2参考例の構成を示すブロック図である。第2参考例では、第1参考例と判別方式が異なり、処置方式は同じである。総合コントローラ22の中の判定部16によって、圧縮機9の回転数の実際値が、その最低回転数より所定僅少値、たとえば5Hzだけ大きい値未満のときには能力絶対過剰と判定され、圧縮機回転数の実績値が、その最高回転数より所定僅少値、たとえば5Hzだけ小さい値を超えるときには能力絶対不足と判定される。ここで、5Hzだけ大きい、または小さい値をとるのは、第1参考例におけるのと同様に判定の信頼性を高めるためである。判定部16による能力絶対過剰または能力絶対不足との各判定に基づき、圧力設定値は固定部20を介して各判定時における圧力設定値に固定され、この固定値が処置部17を介して回転数指令演算部5に入力される。
【0017】
図4は第2参考例の変形例の構成を示すブロック図である。この変形例は、総合コントローラ22Aを用い、能力絶対過剰または能力絶対不足との各判定方式は第2参考例と同じで、異なるのは、固定部20を介して固定されるのが、各判定時における圧力実際値としての圧力平均値である点である。つまり、第2参考例とその変形例には、対応処置の値に若干の違いがあるだけで、本質的な違いはない。
【0018】
図5は第1実施例の構成を示すブロック図である。第1実施例では、第1,第2の参考例における判定部が削除され、総合コントローラ23の中のリミッタとしての処置部18によって、圧力設定値演算部4からの圧力設定値を、予め定められた上限値および下限値に制限する、という対応処置が講じられる。上限値および下限値は能力絶対過剰または能力絶対不足の各状態に対応した値であって、第1または第2の各参考例とその変形例において、過剰または不足の各判定時に固定部20を介して固定される各固定値に対応する。第1実施例では、このようにして構成と動作が第1,第2の参考例に比べて格段に単純化される。
【0019】
次の図6,図7の参考例、図8の実施例は冷凍機としてマルチ冷凍機を用いたときに、能力絶対過剰または能力絶対不足の各状態を含む広範囲にわたって常に円滑な制御がおこなわれるようにしたショーケース冷却装置に関する。図6は第3参考例の構成を示すブロック図で、既に述べた第1参考例(図1参照)に対応する。第3参考例が第1参考例と異なる点は、(1)総合コントローラ21に代えて総合コントローラ24が、(2)回転数指令演算部5に代えて冷凍機能力制御部5Mが、(3)冷凍機6に代えてマルチ冷凍機6Mが、それぞれ用いられることである。冷凍機能力制御部5Mは、既に述べたようにマルチ冷凍機6Mの冷凍能力をショーケース負荷に対して最適に制御するために、前段の圧力設定値演算部4によって求められた吸入冷媒圧力の設定値と、その実際値の偏差に基づいて、マルチ冷凍機6Mにおける圧縮機群9Mの選択的運転を、つまり運転パターンを指令するもので、機能的には別の従来例におけるのと同じものである。マルチ冷凍機6Mは、別の従来例におけるのと全く同じ構成である。したがって、第3参考例の動作は、第1参考例に準じておこなわれるから、ここでの説明は省略する。
【0020】
図7は第3参考例の変形例の構成を示すブロック図である。この変形例は総合コントローラ24Aを用い、第3参考例を既に述べた第1参考例の変形例(図2参照)に対応して、つまり各判定に基づき処置部17に入力されるのが、各判定時の圧力設定値に代えて、平均値演算部19の出力(1時間の平均値)になるように変形した構成をとる。したがって、この第3参考例の変形例の動作についての説明は省略する。
【0021】
図8は第2実施例の構成を示すブロック図である。この第2実施例は、総合コントローラ25を用い、既に述べた第1実施例(図5参照)に対応して、判定部が削除され、リミッタとしての処置部18を備える構成をとる。この処置部18によって、圧力設定値演算部4からの圧力設定値を、予め定められた上限値および下限値に制限する、という対応処置が講じられる。
【0022】
【発明の効果】
この発明によれば、冷凍機がインバータ圧縮機を備える形式と、内蔵する複数圧縮機の選択的運転によって能力制御されるマルチ冷凍機形式のいずれの場合にも、処置部によって、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰な状態である能力絶対過剰状態、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足する状態である能力絶対不足状態に対応して、圧力設定値を予め定めた上限値および下限値に制限することで、能力絶対過剰または不足の各状態を含む広範囲にわたってショーケース冷却装置の制御を常に円滑におこなうことができる。
【図面の簡単な説明】
【図1】 この発明に係る第1参考例の構成を示すブロック図
【図2】 第1参考例の変形例の構成を示すブロック図
【図3】 第2参考例の構成を示すブロック図
【図4】 第2参考例の変形例の構成を示すブロック図
【図5】 第1実施例の構成を示すブロック図
【図6】 第3参考例の構成を示すブロック図
【図7】 第3参考例の変形例の構成を示すブロック図
【図8】 第2実施例の構成を示すブロック図
【図9】 一従来例の構成を示すブロック図
【図10】 圧力設定値の更新に係る、圧力設定値/ショーケース運転率対応図
【図11】 別の従来例の構成を示すブロック図
【図12】 別の従来例の冷凍サイクルの構成を詳細に示すブロック図
【図13】 別の従来例の圧縮機群の運転パターンと冷凍機能力対応図
【符号の説明】
4 圧力設定値演算部
5 回転数指令演算部
5M 冷凍機能力制御部
6 冷凍機
6M マルチ冷凍機
7 圧力センサ
8 インバータ
9 圧縮機
9M 圧縮機群
15,16 判定部
17,18 処置部
19 平均値演算部
20 固定部
21,22,23,24,25 総合コントローラ
21A,22A,24A 総合コントローラ(変形例)
[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, when the refrigeration function is at least excessive (referred to as an absolute excess) relative to the showcase load at that time, such as at night in midwinter, or in the midsummer daytime, the refrigeration function Even if the power is maximum, the actual value cannot follow the pressure setting value of the intake refrigerant calculated by the general controller when it is insufficient for the showcase load at that time (absolute capacity shortage). Thus, there is a possibility that control may not be performed smoothly when each state of absolute capacity excess or capacity absolute shortage is resolved. Therefore, the present invention relates to a showcase cooling apparatus that eliminates this drawback.
[0002]
[Prior art]
A conventional example of a showcase cooling apparatus will be described with reference to FIG. A solenoid valve operating rate calculation unit 3, a pressure set value calculation unit 4, and a rotational speed command calculation for comprehensively and rationally controlling both of them in a form interposed between the showcase group 1 and the refrigerator 6 A total controller 34 composed of the unit 5 is provided. The solenoid valve operating rate calculation unit 3 obtains the solenoid valve operating rate, which is a ratio of the on-time of each solenoid valve with respect to the previous fixed time, every fixed time. Based on the obtained solenoid valve operating rate, the pressure set value calculation unit 4 sets a set value related to the next fixed time with respect to the suction refrigerant pressure of the compressor 9 operated via the inverter 8 on the refrigerator 6 side. (Update) is requested. The rotation speed command calculation unit 5 calculates a rotation speed command (update) for the next fixed time of the inverter 8 with respect to the compressor 9 based on the deviation between the determined set value of the suction refrigerant pressure and the actual pressure. . Here, the showcase group 1 is one in which all of the showcases 1A, 1B, 1C,... (Hereinafter referred to as 1A...) Are juxtaposed in the store to form one group. The showcase 1A ... is an evaporator 2A ..., a showcase controller 34A for controlling on / off of the refrigerant flow to the evaporator 2A ..., and an on / off of the refrigerant flow. And a temperature sensor 14A for measuring the temperature of the air blown from the showcase. Here, the reason why air was blown out as the temperature measurement location in the showcase was partly because it was not affected by the amount of stored goods, and the other was temperature based on control. This is because it is the place where the change appears most first, which is advantageous in terms of control.
[0003]
Here, the pressure set value calculation unit 4 optimally updates the pressure set value so that the amount of power consumption becomes the minimum necessary. For this purpose, it is only necessary to know the refrigeration function and the showcase load. Since it is difficult to actually measure these, it is determined whether the refrigeration function is insufficient, appropriate, or excessive while observing the balance between the refrigeration function and the showcase load. Update optimally. Moreover, the balance between the refrigeration function force and the showcase load is such that when the operating rate of the solenoid valve is low, the refrigeration function force is excessive with respect to the showcase load, and when the solenoid valve operation rate is high, When the functional force is insufficient and the operation rate of the solenoid valve is appropriate, it is determined that the refrigeration functional force is appropriate for the showcase load. Instead of judging the balance between the refrigeration function force and the showcase load based on the operating rate of the solenoid valve as described above, the air temperature in the showcase when the solenoid valve is repeatedly turned on and the refrigerant flow is turned on. There is also a method of judging by a descending speed or an average on / off cycle when the solenoid valve is repeatedly turned on / off.
[0004]
FIG. 10 is a pressure set value / showcase operation rate correspondence diagram related to the update of the pressure set value. This is an empirical rule for updating the pressure set value, and this content is implemented by the pressure set value calculation unit 4 in FIG. In other words, (1) If the operating rate of at least one showcase (solenoid valve) is 90% or more, it is judged that the refrigeration function is insufficient, and the pressure setting value is reduced (updated) by 0.01 MPa (0.1 kg / cm 2 ). And increase the freezing function. (2) If the operating rate of all showcases (solenoid valves) is 40 to 90%, it is determined that the refrigeration function is appropriate, and the pressure set value is maintained as it is. (3) If the operating rate of all showcases (solenoid valves) is 90% or less and at least one unit is 40% or less, it is judged that the refrigeration function is excessive and the pressure setting value is increased (updated) by 0.01 MPa. , Reduce the freezing function power.
[0005]
Another conventional example in which a multi refrigerator is used will be described with reference to FIGS. FIG. 11 is a block diagram showing the configuration of another conventional example. In FIG. 11, in this other conventional example, a general controller 35 is used instead of the general controller 34 in the conventional example of FIG. 9, and a multi-refrigerator 6 </ b> M is used instead of the refrigerator 6. The general controller 35 includes the same solenoid valve operating rate calculation unit 3 and pressure setting calculation unit 4 as in the general controller 34, and a new refrigeration function force control unit 5M. The refrigeration functional force control unit 5M is based on the deviation between the set value of the suction refrigerant pressure obtained by the pressure setting value calculation unit 4 in the previous stage and the actual value, and the compressor group in the multi-chiller 6M described below. A 9M operation pattern is commanded (refer to FIG. 13 for details), thereby having the function of optimizing the refrigerating capacity of the multi-chiller 6M with respect to the showcase load. The multi refrigerator 6M mainly includes a compressor group 9M and a pressure sensor 7 for measuring the suction refrigerant pressure. Here, the compressor group 9M will be described later in detail with reference to FIG. 12, but a plurality of compressors are connected in parallel, and the refrigeration function is controlled by selective operation thereof.
[0006]
FIG. 12 is a block diagram showing in detail the configuration of another conventional refrigeration cycle. The refrigeration cycle includes a compressor group 9M and a condenser 31 built in the multi-chiller 6M, an evaporator 2A ... built in each showcase 1A ..., a corresponding electromagnetic valve 33A ... It is comprised from temperature expansion valve 32A .... Here, the compressor group 9M is configured by connecting four compressors 9A, 9B, 9C, and 9D in parallel, and the refrigeration functional force can be controlled by selective operation of the compressors 9A. Further, the evaporators 2A are connected in parallel to each other, and the compressor group 9M and the condenser 31 are connected in series to the parallel connection to constitute a refrigeration cycle. Each controller 34A in FIG. 11 performs on / off control of the refrigerant flow to the corresponding evaporator 2A... Based on the deviation between the temperature signal from the corresponding temperature sensor 14A and its set value. . Referring back to FIG. 12 again, the refrigerant is diverted from the compressor group 9M after passing through the condenser 31 and flows to each of the evaporators 2A... Or is prevented from flowing to the compressor group 9M. Cycle to return.
[0007]
FIG. 13 is a correspondence diagram between the operation pattern of the compressor group 9M and the refrigeration functional force. In this other conventional example, there are five operation patterns (1), (2), (3), (4), (5), and combinations of compressors operated in each operation pattern, and The refrigeration function is shown. Explaining the operation pattern (3), at this time, the compressors 9A and 9B are operated simultaneously (indicated by a circle), and the refrigeration functional force is 50% (the operation pattern (5) where all the compressors are operated simultaneously). As 100%). Here, although each compressor has the same capacity (capacity), in general, the number of components and each capacity can be freely selected.
[0008]
[Problems to be solved by the invention]
As described above, in the conventional example using the refrigerator with a built-in inverter compressor in FIG. 9, for example, at night in the middle of winter, the refrigeration function is at least excessive with respect to the showcase load at that time. The capacity becomes absolutely excessive, and the pressure set value is continuously increased according to the pressure set value / showcase operation rate correspondence diagram of FIG. On the other hand, since the rotation speed of the compressor 9 cannot be reduced below the minimum rotation speed, the actual pressure value of the refrigerant actually sucked cannot follow the pressure set value, and control becomes impossible. Similarly, even during midsummer daytime or the like, even if the refrigeration function is the highest, it is insufficient for the showcase load at that time, that is, the absolute capacity is insufficient, and according to the pressure set value / showcase operation rate correspondence diagram of FIG. Continue to lower the pressure setpoint. On the other hand, since the rotational speed of the compressor 9 cannot be increased beyond the maximum rotational speed, the actual pressure value cannot follow the pressure set value, and control becomes impossible.
[0009]
Further, in another conventional example using the multi-refrigerator of FIG. 11, even if there is a difference in the type of the conventional example and the refrigerator, the capacity of the refrigerator is limited when the absolute capacity is excessive or the absolute capacity is insufficient. Therefore, similarly, the actual pressure value cannot follow the set pressure value and becomes uncontrollable.
The problem to be solved by the present invention is, for example, when the refrigeration function is at least excessive with respect to the showcase load at that time, that is, when the capacity is absolutely excessive, such as at night in midwinter, or in the daytime in midsummer. Thus, it is to provide a showcase cooling device in which smooth control is always performed over a wide range including a case where the refrigeration function is at a maximum, which is insufficient with respect to the showcase load at that time, that is, when the capacity is absolutely insufficient. is there.
[0010]
[Means for Solving the Problems]
This invention includes one or more showcases for controlling on / off of the flow of refrigerant to the evaporator via a solenoid valve based on a deviation between an air temperature at a predetermined location in the main body and a set value thereof, In a cooling device comprising a common refrigerator constituting a cycle and an integrated controller for controlling the showcase and the refrigerator, the integrated controller is configured to compress an inverter built in the refrigerator based on the operating state of the electromagnetic valve. A pressure setting value calculation unit for determining a set value of the suction refrigerant pressure of the compressor; and a rotation speed command calculation unit for determining a rotation speed command for the inverter compressor based on the deviation between the determined setting value of the suction refrigerant pressure and the actual value when; the pressure setting, the refrigeration function forces an excess state is capacity absolute excess state also to showcase load when the lowest, or even frozen function forces the best And the upper limit value and the treatment portion is limited to a predetermined lower limit value respectively corresponding to each state's ability absolute shortage state, in which insufficient to showcase load when the; comprises a configuration that.
[0011]
The present invention also includes one or more showcases that control on / off of the refrigerant flow to the evaporator via a solenoid valve based on the deviation between the air temperature at a predetermined location in the main body and the set value. In a cooling device comprising a multi-chiller whose capacity is controlled by selective operation of a plurality of compressors, and a general controller for controlling these showcases and multi-freezers, the general controller is based on the operating state of the solenoid valve. A pressure set value calculation unit for obtaining a set value of the intake refrigerant pressure for the compressor of the multi-refrigerator; and a selective operation of the plurality of compressors based on the obtained set value of the intake refrigerant pressure and a deviation between the actual values. and cooling capacity control unit a command for; the pressure setpoint, ability absolute excess state is excess state to showcase load when the at refrigeration function forces a minimum, or, refrigeration capability force Up to be a treatment portion for limiting the upper limit value and the lower limit value set in advance in correspondence to each state's ability absolute shortage state, in which insufficient to showcase load when the; comprises, in the configuration of .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below with reference to the drawings.
[0013]
FIG. 1 is a block diagram showing the configuration of the first reference example. In the first reference example, the integrated controller 21 is used in place of the integrated controller 34 of the conventional example shown in FIG. 9, and the determination unit 15 in this case is excessive with respect to the showcase load at that time even if the refrigeration function force is at least. That is, it is determined whether the capacity is absolutely excessive, or even if the refrigeration function power is the highest, the showcase load at that time is insufficient, that is, the capacity is absolutely insufficient, which will be described in detail later. The treatment unit 17 takes a countermeasure as described later according to the determination. The average value calculation unit 19 obtains the pressure average value for the last one hour as the actual pressure value of the suction refrigerant, which is the output of the pressure sensor 7, every 15 minutes. The fixing unit 20 continuously fixes the input to the value at the time of each determination of the absolute capacity excess or the absolute capacity shortage of the determination unit 15 during the determination. The determination unit 15 is based on the pressure set value obtained by the pressure set value calculation unit 4 and the pressure average value (output of the average value calculation unit 19) as the actual value of the output of the pressure sensor 7 as follows. judge. That is, when the pressure set value exceeds a predetermined slight value, for example, a value larger by 0.1 kgf / cm 2 than the average pressure value at that time, it is determined that the capacity is absolutely excessive. The absolute excess of capacity means that, even if the pressure setting value is raised in a controlled manner so as to lower the refrigeration function, for example, at night in the middle of winter, the capacity of the compressor 9 has already reached the minimum level, and the average pressure value is It cannot be raised, in other words, the pressure set value exceeds the pressure average value at that time. Here, the reason why the value that is larger by 0.1 kgf / cm 2 is to increase the reliability of the judgment, and in that sense, 0.1 kgf / cm 2 is a margin value or a safe value for accurate judgment. I can say that. When the determined pressure set value is less than a predetermined slight value, for example, 0.1 kgf / cm 2 smaller than the pressure average value at that time, it is determined that the capacity is absolutely insufficient. Absolute capacity deficiency means that, even if the pressure setting value is lowered in a controlled manner so as to increase the refrigeration function, for example during midsummer daytime, the capacity of the compressor 9 has already reached the highest level, and the average pressure value is It cannot be lowered, in other words, the pressure set value is less than the pressure average value at that time. Here, the reason why the value is reduced by 0.1 kgf / cm 2 is to increase the reliability of the determination as in the case of the absolute capacity excess.
[0014]
If the refrigeration functional force becomes an absolute excess state or an absolute shortage state, the pressure average value cannot follow the set value thereafter, and the control becomes impossible. Therefore, the treatment unit 17 in FIG. 1 takes a countermeasure. The treatment unit 17 is functionally a switch, and is switched to the solid line side before absolute capacity is excessive or insufficient, and the obtained pressure setting value is input to the rotational speed command calculation unit 5 as it is. To do. In addition, when the capacity becomes absolutely excessive or insufficient, the treatment unit 17 switches to the broken line side based on each determination signal, and at the same time, obtains the determined pressure set value (0.1 kgf / cm 2 from the maximum pressure average value). (A value smaller by 0.1 kgf / cm 2 than the minimum pressure average value) is continuously fixed to the pressure setting value at the time of each determination via the fixing unit 20, and the treatment unit 17 is Is input to the rotational speed command calculation unit 5.
[0015]
As a result, even if the refrigeration function is at least excessive to the showcase load at that time, that is, the capacity is absolutely excessive, or even if the refrigeration function power is at maximum, it is insufficient to the showcase load at that time, that is, the capacity is absolutely insufficient Smooth control is always performed over a wide range including FIG. 2 is a block diagram showing a configuration of a modification of the first reference example. In this modification, the overall controller 21A is used, and each determination method of absolute capacity excess or capacity insufficiency is the same as that in the first reference example, and the difference is that the first is input to the treatment unit 17 based on each determination. It is a point which becomes an output (average value for 1 hour) of the average value calculation part 19 instead of the pressure setting value at the time of each determination in FIG. 1 of the reference example. The first reference example and its modification have only a slight difference in the value of the corresponding treatment, and there is no essential difference.
[0016]
FIG. 3 is a block diagram showing the configuration of the second reference example. The second reference example is different from the first reference example in the determination method, and the treatment method is the same. When the actual value of the rotational speed of the compressor 9 is less than a predetermined slight value, for example, 5 Hz larger than the minimum rotational speed, the determination unit 16 in the integrated controller 22 determines that the capacity is absolutely excessive, and the compressor rotational speed When the actual value exceeds a predetermined slight value, for example, a value smaller by 5 Hz than the maximum rotational speed, it is determined that the capacity is absolutely insufficient. Here, the reason why the value is larger or smaller by 5 Hz is to increase the reliability of the determination as in the first reference example. The pressure setting value is fixed to the pressure setting value at the time of each determination through the fixing unit 20 based on each determination of the absolute capacity excess or the absolute capacity shortage by the determination unit 16, and this fixed value is rotated through the treatment unit 17. It is input to the number command calculation unit 5.
[0017]
FIG. 4 is a block diagram showing a configuration of a modification of the second reference example. This modification uses the integrated controller 22A, and each determination method of absolute capacity excess or capacity insufficiency is the same as that of the second reference example. The difference is that each determination is fixed by the fixing unit 20. It is a point which is a pressure average value as a pressure actual value at the time. That is, the second reference example and its modification have only a slight difference in the value of the countermeasure, and there is no essential difference.
[0018]
FIG. 5 is a block diagram showing the configuration of the first embodiment. In the first embodiment, the determination unit in the first and second reference examples is deleted, and the pressure setting value from the pressure setting value calculation unit 4 is determined in advance by the treatment unit 18 as a limiter in the general controller 23. A countermeasure is taken to limit the upper limit value and the lower limit value. The upper limit value and the lower limit value are values corresponding to the respective states of absolute capacity excess or capacity insufficiency, and in each of the first or second reference examples and the modified examples, the fixing unit 20 is determined at each determination of excess or insufficiency. Corresponding to each fixed value. In the first embodiment, the configuration and operation are greatly simplified as compared with the first and second reference examples.
[0019]
In the reference examples of FIGS. 6 and 7 and the embodiment of FIG. 8, when a multi refrigerator is used as a refrigerator, smooth control is always performed over a wide range including each state of absolute capacity excess or absolute capacity shortage. The present invention relates to a showcase cooling apparatus. FIG. 6 is a block diagram showing the configuration of the third reference example, which corresponds to the first reference example (see FIG. 1) already described. The third reference example is different from the first reference example in that (1) the general controller 24 instead of the general controller 21 and (2) the refrigeration functional force control unit 5M instead of the rotational speed command calculation unit 5 (3 ) A multi-chiller 6M is used instead of the refrigerator 6. The refrigeration functional force control unit 5M, as already described, sets the intake refrigerant pressure obtained by the pressure setting value calculation unit 4 in the previous stage in order to optimally control the refrigeration capacity of the multi-chiller 6M with respect to the showcase load. Based on the set value and the deviation between the actual values, the operation of the compressor group 9M in the multi-chiller 6M is instructed, that is, the operation pattern, and is functionally the same as in another conventional example. It is. The multi refrigerator 6M has the same configuration as in another conventional example. Therefore, since the operation of the third reference example is performed according to the first reference example, the description thereof is omitted here.
[0020]
FIG. 7 is a block diagram showing a configuration of a modified example of the third reference example. This modification uses the integrated controller 24A, and corresponds to the modification of the first reference example (see FIG. 2) already described in the third reference example, that is, input to the treatment unit 17 based on each determination. Instead of the pressure set value at the time of each determination, a modified configuration is adopted so that the output (average value for 1 hour) of the average value calculation unit 19 is obtained. Therefore, the description of the operation of the modified example of the third reference example is omitted.
[0021]
FIG. 8 is a block diagram showing the configuration of the second embodiment. The second embodiment uses a general controller 25, and corresponds to the first embodiment (see FIG. 5) already described. The determination unit is deleted and a treatment unit 18 as a limiter is provided. The treatment unit 18 takes a corresponding measure of limiting the pressure set value from the pressure set value calculating unit 4 to a predetermined upper limit value and lower limit value.
[0022]
【The invention's effect】
According to the present invention, the refrigeration function power is provided by the treatment section in both cases where the refrigerator includes an inverter compressor and the multiple refrigerator type in which the capacity is controlled by selective operation of a plurality of built-in compressors. Corresponding to an absolute capacity excess state that is at least excessive with respect to the showcase load at that time, or an absolute capacity shortage state in which the refrigeration function power is at least insufficient with respect to the showcase load at that time, By restricting the pressure set value to a predetermined upper limit value and lower limit value, it is possible to always smoothly control the showcase cooling device over a wide range including each state where the capacity is absolutely excessive or insufficient.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a first reference example according to the present invention. FIG. 2 is a block diagram showing a configuration of a modification of the first reference example. FIG. 3 is a block diagram showing a configuration of a second reference example. FIG. 4 is a block diagram showing a configuration of a modification of the second reference example. FIG. 5 is a block diagram showing a configuration of the first embodiment. FIG. 6 is a block diagram showing a configuration of the third reference example. FIG. 8 is a block diagram showing a configuration of a second embodiment. FIG. 9 is a block diagram showing a configuration of a conventional example. FIG. 10 is related to an update of a pressure set value. FIG. 11 is a block diagram showing the configuration of another conventional example. FIG. 12 is a block diagram showing in detail the configuration of the refrigeration cycle of another conventional example. FIG. 13 is another conventional example. Example of compressor group operation pattern and refrigeration function map [Explanation of symbols]
4 Pressure setting value calculation unit 5 Rotational speed command calculation unit 5M Refrigeration function force control unit 6 Refrigeration unit 6M Multi refrigeration unit 7 Pressure sensor 8 Inverter 9 Compressor 9M Compressor group 15, 16 Judgment unit 17, 18 Treatment unit 19 Average value Arithmetic unit 20 Fixed unit 21, 22, 23, 24, 25 General controller 21A, 22A, 24A General controller (modification)

Claims (2)

本体内所定箇所の空気温度とその設定値との偏差に基づき蒸発器への冷媒の流れを電磁弁を介してオン・オフ制御するショーケースの一または二以上と、これと冷凍サイクルを構成する共通な冷凍機と、これらショーケースおよび冷凍機を制御する総合コントローラからなる冷却装置において、この総合コントローラは、前記電磁弁の運転状態に基づいて、冷凍機に内蔵されるインバータ圧縮機の吸入冷媒圧力の設定値を求める圧力設定値演算部と;求められた吸入冷媒圧力の設定値とその実際値の偏差に基づいて、インバータ圧縮機に対する回転数指令を求める回転数指令演算部と;圧力設定値を、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰な状態である能力絶対過剰状態、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足する状態である能力絶対不足状態の各状態に対応してそれぞれ予め定められた上限値および下限値に制限する処置部と;を備えることを特徴とするショーケース冷却装置。One or two or more showcases that control on / off of the refrigerant flow to the evaporator via a solenoid valve based on the deviation between the air temperature at a predetermined position in the main body and the set value thereof, and this constitutes a refrigeration cycle In a cooling device comprising a common refrigerator and an integrated controller for controlling the showcase and the refrigerator, the integrated controller is configured to take in refrigerant of an inverter compressor built in the refrigerator based on the operating state of the electromagnetic valve. A pressure set value calculation unit for obtaining a set value of pressure; a rotation number command calculation unit for obtaining a rotation number command for the inverter compressor based on a deviation between the obtained set value of the suction refrigerant pressure and its actual value; and pressure setting sheet of values, excess state in which capacity absolute excess state to showcase load when the at refrigeration function forces a minimum, or the time at refrigeration function forces the best A treatment portion for limiting the upper limit value and the lower limit value set in advance in correspondence to each state's ability absolute shortage state, in which insufficient to Kesu load; showcase cooling device, characterized in that it comprises a. 本体内所定箇所の空気温度とその設定値との偏差に基づき蒸発器への冷媒の流れを電磁弁を介してオン・オフ制御するショーケースの一または二以上と、内蔵する複数圧縮機の選択的運転によって能力制御されるマルチ冷凍機と、これらショーケースおよびマルチ冷凍機を制御する総合コントローラからなる冷却装置において、この総合コントローラは、前記電磁弁の運転状態に基づいて、マルチ冷凍機の圧縮機用吸入冷媒圧力の設定値を求める圧力設定値演算部と;求められた吸入冷媒圧力の設定値とその実際値の偏差に基づいて、複数圧縮機の選択的運転を指令する冷凍能力制御部と;圧力設定値を、冷凍機能力が最低でもそのときのショーケース負荷に対し過剰な状態である能力絶対過剰状態、または、冷凍機能力が最高でもそのときのショーケース負荷に対し不足する状態である能力絶対不足状態の各状態に対応してそれぞれ予め定められた上限値および下限値に制限する処置部と;を備えることを特徴とするショーケース冷却装置。Selection of one or more showcases that control the flow of refrigerant to the evaporator on / off via a solenoid valve based on the deviation between the air temperature at a predetermined location in the body and its set value, and the selection of built-in multiple compressors In a cooling device comprising a multi-chiller whose capacity is controlled by a typical operation and a general controller for controlling the showcase and the multi-freezer, the general controller compresses the multi-refrigerator based on the operating state of the solenoid valve. A pressure setting value calculation unit for determining a set value of the intake refrigerant pressure for the machine; a refrigeration capacity control unit for instructing selective operation of a plurality of compressors based on the deviation between the determined set value of the intake refrigerant pressure and the actual value when; the pressure setpoint, excess state in which capacity absolute excess state to showcase load when the at refrigeration function forces a minimum, or the time at refrigeration function forces the best Treatment portion for limiting the upper limit value and the lower limit value set in advance in correspondence to each state's ability absolute shortage state, in which insufficient to showcase load and; showcase cooling device, characterized in that it comprises a.
JP09045597A 1997-04-09 1997-04-09 Showcase cooling system Expired - Lifetime JP3830611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09045597A JP3830611B2 (en) 1997-04-09 1997-04-09 Showcase cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09045597A JP3830611B2 (en) 1997-04-09 1997-04-09 Showcase cooling system

Publications (2)

Publication Number Publication Date
JPH10281616A JPH10281616A (en) 1998-10-23
JP3830611B2 true JP3830611B2 (en) 2006-10-04

Family

ID=13999102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09045597A Expired - Lifetime JP3830611B2 (en) 1997-04-09 1997-04-09 Showcase cooling system

Country Status (1)

Country Link
JP (1) JP3830611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073390B2 (en) * 2003-11-20 2008-04-09 三洋電機株式会社 Operating state management device
JP4867503B2 (en) * 2006-07-04 2012-02-01 富士電機株式会社 Cooling system
BRPI0622229A2 (en) * 2006-12-29 2012-01-03 Carrier Corp Method for operating a transport refrigeration system
JP4910725B2 (en) * 2007-01-29 2012-04-04 富士電機株式会社 Cooling system
JP5758749B2 (en) * 2011-09-05 2015-08-05 三菱電機株式会社 Refrigeration / refrigeration system

Also Published As

Publication number Publication date
JPH10281616A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
EP0410570B1 (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JPH0522145B2 (en)
JP3956784B2 (en) Refrigeration equipment
JPH0257875A (en) Operation controller for air conditioner
JP3830611B2 (en) Showcase cooling system
JP3748098B2 (en) Refrigerator for refrigerated showcase
JP4026624B2 (en) Showcase cooling system
JP3666174B2 (en) Showcase cooling system
JP3291362B2 (en) Air conditioner
JP3666180B2 (en) Showcase cooling system
JP3550772B2 (en) Refrigeration equipment
JP3584514B2 (en) Refrigeration equipment
JPH06257827A (en) Multi chamber type air conditioning system
JPH03102150A (en) Defrost control method for air conditioner
JPH09145130A (en) Multi-room type air conditioner system
JPH0217358A (en) Degree of overheat control device for freezing device
JP3750145B2 (en) Refrigeration equipment
JPH0221165A (en) Operation controller for air conditioner
JP3635705B2 (en) Refrigeration equipment
JPH05322275A (en) Multi-chamber type air conditioning system
JP3546504B2 (en) Refrigeration equipment
JP3642078B2 (en) Refrigeration equipment
JP3538936B2 (en) Refrigerant refrigerant recovery method
JP2710698B2 (en) Multi-type air conditioner
JPH03129274A (en) Multi-room type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term