JP3830254B2 - Building vibration control structure - Google Patents

Building vibration control structure Download PDF

Info

Publication number
JP3830254B2
JP3830254B2 JP31313297A JP31313297A JP3830254B2 JP 3830254 B2 JP3830254 B2 JP 3830254B2 JP 31313297 A JP31313297 A JP 31313297A JP 31313297 A JP31313297 A JP 31313297A JP 3830254 B2 JP3830254 B2 JP 3830254B2
Authority
JP
Japan
Prior art keywords
vibration
damper
vibration control
damping device
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31313297A
Other languages
Japanese (ja)
Other versions
JPH11141174A (en
Inventor
信治 中田
正保 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP31313297A priority Critical patent/JP3830254B2/en
Publication of JPH11141174A publication Critical patent/JPH11141174A/en
Application granted granted Critical
Publication of JP3830254B2 publication Critical patent/JP3830254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建物の制振構造に係り、特に、住宅やオフィス等の中低層鉄骨建物に好適な制振構造に関するものである。
【0002】
【従来の技術】
一般に鉄骨構造の建物では、予め設定された設計基準に基づいて構造計算がなされている。そして、前記設計基準は想定された地震により構造体に作用する水平力を主とし、比較的大きい振幅を持った振動が対象となる。
【0003】
一方、住宅やオフィス等の中低層鉄骨建物には道路を通行する車両により発生する振動や屋内の歩行により発生する振動等の微小振動が作用することがある。そして、前記微小振動レベルにおける中低層鉄骨建物の剛性は骨組のみならず、帳壁や間仕切壁等の二次部材が大きく寄与するのが現実である。
【0004】
建物に微小振動が作用した場合、二次部材の配置や量によっては、適正になされた構造設計の結果とは全く無関係に建物に捩れを発生させることがあり、壁を付けることによりかえって悪影響を及ぼす虞がある。即ち、構造計算の結果に応じて構成された骨組に対して無制限に二次部材を配置した場合、重心と剛心との偏心距離が大きくなって僅かな外力(微小振動)が作用しても捩れ振動を起こしてしまうという問題があった。
【0005】
そこで、本発明者は、道路を通行する車両により発生する振動や屋内での歩行により発生する振動等の微小レベルの振動に対してのみ剛性及び減衰性を有する粘弾性ダンパーを耐力壁間に取り付けた剛性調整壁パネルの構造に関する技術を提案し、特願平6-131619号により現在特許出願中である。
【0006】
また、鉄骨構造の建物で微小振動に対する補強方法として上下梁間にブレースを配置して剛性を高めることも行われているが、ブレースの断面積を相当に大きくしないと僅かな外力(微小振動)が作用した時の負担能力が小さいという問題があった。
【0007】
【発明が解決しようとする課題】
しかしながら、前述の特願平6-131619号に記載された技術では、微小レベルの振動に対しては効果があるものの大地震が発生すれば粘弾性ダンパーは破損してしまう。この粘弾性ダンパーを例えばブレースに設けた場合、大地震が発生して粘弾性ダンパーが破損するとブレースが切れた状態になるため居住性の悪い状態となってしまう。
【0008】
また、粘弾性ダンパーが破損してブレースが切れた場合、地震が去った後、この粘弾性ダンパーを交換する必要がある上、交換するまでの間はブレースが無い状態になって居住性の悪い状態になってしまう。
【0009】
一方、大地震でなくとも小地震や台風に対する大振動用の制振装置も別途に設置しておくとの要請もあるが、微小振動用と大振動用の制振装置を別々に取り付けることは嵩張るため壁厚が大きくなり、居住空間を制限するため好ましくない。
【0010】
本発明は前記課題を解決するものであり、その目的とするところは、微小振動と大振動の両方に適用出来、地震後も交換不要で且つ居住空間を広くとれる建物の制振構造を提供せんとするものである。
【0011】
【課題を解決するための手段】
前記目的を達成するための本発明に係る建物の制振構造は、中低層鉄骨建物の鉄骨構造のブレースに、車両、歩行による微小振動用制振装置と、地震、台風による大振動用制振装置とを平面上に並列に且つ一体的に設け、前記微小振動用制振装置と前記大振動用制振装置とは両者を合わせて3つの制振装置で構成され、且つ、前記微小振動用制振装置を略中央部に1つ配置し、前記微小振動用制振装置の外側に該微小振動用制振装置を挟んで前記ブレースの延びる方向を対称軸として線対称に前記大振動用制振装置を1つずつ配置し、前記微小振動用制振装置を粘弾性ダンパーまたは摩擦ダンパーで構成し、前記大振動用制振装置を油圧ダンパーで構成したことを特徴とする。
【0012】
上記構成によれば、中低層鉄骨建物の鉄骨構造のブレースに、車両、歩行による微小振動用制振装置と、地震、台風による大振動用制振装置とを平面上に並列に且つ一体的に設け、前記微小振動用制振装置と前記大振動用制振装置とは両者を合わせて3つ以上の制振装置で構成され、且つ、前記微小振動用制振装置を略中央部に配置し、前記大振動用制振装置を前記微小振動用制振装置の外側に配置し、ブレースの軸心(中心)に微小振動用制振装置を設けたことで微小振動と大振動の両方に適用出来る上、大振動レベルでの微小振動用制振装置の負担が小さくなり好ましい。また、振幅の小さい微小振動の力の伝搬性が良い。一方、大振動は振幅が大きいのでブレースの軸心(中心)から多少ずれても振動の力の伝搬性が損なわれることがない。
【0013】
また、微小振動用制振装置と大振動用制振装置とを並列にブレースに設けたことで耐力壁に取り付ける場合と比較して施工が簡単であり、且つ、設計上も単純計算で済む。また、開口部のある壁面にも取り付けることが出来るので開口部の面の補強も兼ねることが出来、好ましい。
【0014】
また、前記微小振動用制振装置と前記大振動用制振装置とを一体的に設けたことで、工場生産が可能で現場の作業工数が低減され、工期を短縮することが出来る。
【0015】
また、前記微小振動用制振装置と前記大振動用制振装置とを平面上に並設したことで、空間専有体積を小さく出来るので壁厚を薄くして居住空間を広くとれる。
【0016】
また、大振動用制振装置を微小振動用制振装置を中心として対称的に配置した場合には力のバランスが良いので好ましい。
【0017】
前記微小振動用制振装置と前記大振動用制振装置の数は設計上や占有空間可能体積を考慮して必要に応じて増加することが出来るが、この場合も微小振動用制振装置をブレースの軸心(中心)に集中させた方が好ましい。
【0018】
また、前記微小振動用制振装置を粘弾性ダンパーまたは摩擦ダンパーで構成し、前記大振動用制振装置を油圧ダンパーで構成したことで、油圧ダンパーにより粘弾性ダンパーまたは摩擦ダンパーの変形量を抑えることが出来、粘弾性ダンパーの弾性変形範囲内及び摩擦ダンパーの変位追従性範囲内に変形量を抑えることで、復元可能な制振装置を実現することが出来、大地震の後で粘弾性ダンパーや摩擦ダンパーを交換する必要がないのでメンテナンス等の必要がなく、各ダンパー及びブレースが破損することも無いので快適な居住性を維持することが出来る。
【0019】
特に、前記微小振動用制振装置を摩擦ダンパーで構成した場合には復元量が大きく設定出来るので変位追従性の範囲を大きく設定することで超強振動にも対応出来る。
【0020】
【発明の実施の形態】
図により本発明に係る建物の制振構造の一実施形態を具体的に説明する。図1は本発明に係る建物の制振構造の一例を示す図、図2は微小振動用制振装置と大振動用制振装置とを一体的に設けたハイブリッドダンパーの構成を示す図、図3は各ダンパーを取り付けるダンパー取付部の構成を示す図、図4及び図5は微小振動用制振装置となる粘弾性ダンパーの構成を示す図、図6は大振動用制振装置となる油圧ダンパーの構成を示す図、図7は微小振動用制振装置と大振動用制振装置とを一体的に設けたハイブリッドダンパーの他の構成を示す図、図8は各ダンパーを取り付けるダンパー取付部の他の構成を示す図、図9は微小振動用制振装置となる摩擦ダンパーの構成を示す図、図10は摩擦ダンパーに使用される潤滑シートの構成を示す図、図11〜図13は本発明に係る建物の制振構造の他の構成を示す図である。
【0021】
本発明に係る建物の制振構造の一例として、図1に示すように、鉄骨構造の上下梁1,2間に設けられる間柱3,4間に斜めに掛け渡されるブレース5,6に微小振動用制振装置となる粘弾性ダンパー7または摩擦ダンパー8と大振動用制振装置となる油圧ダンパー9とを並列に且つ一体的に且つ平面上に並設したハイブリッドダンパーA,Bを設けて構成した建物の制振構造について説明する。
【0022】
図1において、上下梁1,2の間柱3,4を配置する所定位置には補強金物10がボルト,ナット等の固定部材により固定され、該補強金物10に間柱3,4が取り付けられて間柱3,4が上下梁1,2に固定される。
【0023】
間柱3,4の上下部及び中央部には間柱取付金物11,12が夫々固定され、間柱3,4の中央部に取り付けられた間柱取付金物12には該間柱3,4を継ぐ継ぎ材13が固定されている。
【0024】
間柱3,4の上下部に取り付けられた間柱取付金物11と間柱3,4の中央部に取り付けられた間柱取付金物12との間には、図1に示すように、中央部に微小振動用制振装置となる粘弾性ダンパー7または摩擦ダンパー8と、その両側に大振動用制振装置となる油圧ダンパー9とを並列に且つ一体的に且つ平面上に並設したハイブリッドダンパーA,Bを略中央部に設けたブレース5,6が「く」の字形状に斜めに掛け渡されて固定されている。
【0025】
各ブレース5,6の夫々の略中央部に設けられたハイブリッドダンパーA,Bは、図1に示すように、微小振動用制振装置となる粘弾性ダンパー7または摩擦ダンパー8をブレース5,6の軸線上に配置し、該微小振動用制振装置の両側に大振動用制振装置となる油圧ダンパー9を2つ配置して構成している。
【0026】
前記間柱3,4、補強金物10、継ぎ材13、ハイブリッドダンパーA,Bを設けたブレース5,6は予め工場生産された完成品の状態で建築現場に供給され、前記各部材をボルト,ナット等の固定部材により上下梁1,2に固定することで壁パネル構造を構成することが出来る。
【0027】
間柱3,4は上下梁1,2における対向する面の距離(梁間距離)と等しい長さを持って形成され、長手方向の両端部が各上下梁1,2に固着されている。従って、各上下梁1,2に作用する微小振動及び大振動は各間柱3,4に伝達され、更に間柱3,4に固着された間柱取付金物11,12を介してブレース5,6に伝達される。
【0028】
次に図2〜図6を用いて微小振動用制振装置として粘弾性ダンパー7を採用し、大振動用制振装置として油圧ダンパー9を採用したハイブリッドダンパーAの構成について詳細に説明する。
【0029】
図2及び図3に示すように、ブレース5,6のハイブリッドダンパーA側の端部には、該ブレース5,6の軸線上に粘弾性ダンパー7を固定すると共に該粘弾性ダンパー7の両側に壁パネルの面と略平行な平面上に油圧ダンパー9を2つ並設して取り付けるための略T字形状で平板からなるダンパー取付部14が形成されており、該ダンパー取付部14の中央の突出部14a及び両側の鍔部14bには夫々ボルト孔14cが形成されている。
【0030】
ハイブリッドダンパーAの中央部に配置される微小振動用制振装置となる粘弾性ダンパー7は図4及び図5に示すように、塑性ゴム或いは弾性ゴムからなる減衰性を有する粘弾性体7aの表面及び裏面に所定の形状に形成されたプレート7b,7cを張り付けて構成されており、該プレート7b,7cに作用する微小振動を粘弾性体7aで減衰する機能を有する。
【0031】
また、プレート7b,7cの粘弾性体7aと反対側の端部には該端部をダンパー取付部14の突出部14aに取り付けるためのボルト孔7dが形成されている。
【0032】
ハイブリッドダンパーAの微小振動用制振装置となる粘弾性ダンパー7の両側に配置される大振動用制振装置となる油圧ダンパー9は、図6に示すような一般的な油圧ダンパーを使用することが出来る。図6中、9aはシリンダー、9bはピストン、9b1はピストン9bに固定されたロッド、9cはピストン9bに設けられたオリフィスである。
【0033】
前記油圧ダンパー9はオリフィス9cを介してシリンダー9a内をオイルが流通することでオリフィス9cの両側に生ずる圧力差により抵抗力が生じ、これにより大振動を減衰する機能を有する。
【0034】
前記シリンダー9a及びピストン9bに固定されたロッド9b1 の端部には夫々係合部9d,9eが設けられており、該係合部9d,9eには夫々該係合部9d,9eをダンパー取付部14の鍔部14bに取り付けるためのボルト孔9fが形成されている。
【0035】
そして、ブレース5,6の一端に設けられたダンパー取付部14の突出部14aのボルト孔14cと粘弾性ダンパー7のプレート7b,7cのボルト孔7dにボルト15を挿通して該ボルト15にナット16を螺合して締着固定すると共に、ダンパー取付部14の鍔部14bのボルト孔14cと油圧ダンパー9の係合部9d,9eのボルト孔9fにボルト15を挿通して該ボルト15にナット16を螺合して締着固定することで、中央に1つの粘弾性ダンパー7及びその両側に2つの油圧ダンパー9を並設したハイブリッドダンパーAをブレース5,6の中央部に形成することが出来るようになっている。
【0036】
次に図7〜図10を用いて微小振動用制振装置として摩擦ダンパー8を採用し、大振動用制振装置として前述と同じ油圧ダンパー9を採用したハイブリッドダンパーBの構成について詳細に説明する。尚、前記ハイブリッドダンパーAと同様に構成したものは同一の符号を付して説明を省略する。
【0037】
前記ハイブリッドダンパーAに適用した粘弾性ダンパー7の代わりに、ハイブリッドダンパーBの中央部に配置される微小振動用制振装置となる摩擦ダンパー8は、図9に示すように、ダンパー取付部14の突出部14aの端部が断面H型の嵌合部材8aの両端部の嵌合部に夫々嵌合すると共に一方の嵌合部には潤滑シート8bを介在させ、ダンパー取付部14の突出部14aに形成されたボルト孔14c,14d及び嵌合部材8aの嵌合部に形成された図示しないボルト孔及び潤滑シート8bに形成された孔8b1 にボルト15を挿通して該ボルト15にナット16を螺合して締着固定される。
【0038】
前記潤滑シート8bとしては、例えばテフロンシート(登録商標)等を使用すれば好ましい。
【0039】
摩擦ダンパー8の嵌合部材8aの一端部の嵌合部に対応するダンパー取付部14の突出部14aには図8及び図9に示すようにボルト15の軸の外径に対応した幅と所定の長さを有する長穴14dが形成されており、この長穴14dが形成された側のダンパー取付部14の突出部14aと嵌合部材8aの嵌合部との間には図10に示すようにボルト15を挿通するための孔8b1 を形成した所定の摩擦係数を有する潤滑シート8bを図9に示すようにダンパー取付部14の突出部14aの表裏両面に介在させるように二重に折り曲げて挿通し、ボルト15及びナット16により所定のトルクで締着固定している。
【0040】
そして、ブレース5,6を介して摩擦ダンパー8に所定の力が作用した際に潤滑シート8bを介在させた側のボルト15及びナット16がダンパー取付部14の突出部14aに設けた長穴14dに沿ってスライドすることでブレース5,6に作用する微小振動を減衰する機能を有する。
【0041】
他の構成は前記ハイブリッドダンパーAと同様に構成され、同様な効果を得ることが出来る。
【0042】
上記のように構成した各ハイブリッドダンパーA,Bによれば、油圧ダンパー9により粘弾性ダンパー7または摩擦ダンパー8の変形量を抑えることが出来、粘弾性ダンパー7の弾性変形範囲内或いは摩擦ダンパー8の変位追従性範囲内に変形量を抑えることで、復元可能な制振装置を実現することが出来、大地震の後で粘弾性ダンパー7や摩擦ダンパー8を交換する必要がないのでメンテナンス等の必要がなく、ハイブリッドダンパーA,B及びブレース5,6が破損することも無いので快適な居住性を維持することが出来る。
【0043】
特に、前記ハイブリッドダンパーBのように微小振動用制振装置を摩擦ダンパー8で構成した場合には復元量を大きく設定出来るので変位追従性の範囲を大きく設定することで超強振動にも対応出来る。
【0044】
上記のように間柱3,4及びハイブリッドダンパーA,Bを設けたブレース5,6によって構成された壁パネルでは、上下梁1,2に発生した微小振動は各上下梁1,2から間柱3,4に伝達され、ブレース5,6を介してダンパー取付部14或いはハイブリッドダンパーAでは更に粘弾性ダンパー7のプレート7b,7cに伝達される。
【0045】
粘弾性ダンパー7を使用した場合、微小振動が伝達された粘弾性ダンパー7では、プレート7b,7cに作用する微小振動が粘弾性体7aに伝達され、該粘弾性体7aは微小振動に応じて変形する。従って、微小振動は粘弾性体7aの変形によって吸収或いは減衰される。
【0046】
一方、摩擦ダンパー8を使用した場合、微小振動が伝達された摩擦ダンパー8では、ダンパー取付部14に作用する微小振動が潤滑シート8bに伝達され、該潤滑シート8bの摩擦係数及びボルト15及びナット16の締着トルクに応じてダンパー取付部14が嵌合部材8aに対して長穴14dに沿ってスライドして微小振動が吸収或いは減衰される。
【0047】
上下梁1,2に微小振動が発生している場合には、その振幅が小さいため油圧ダンパー9のシリンダー9a及びピストン9bは略微小振動に応じて振動してダンパーの作用を発揮せず、専ら粘弾性ダンパー7または摩擦ダンパー8により微小振動が吸収或いは減衰される。
【0048】
そして、上下梁1,2に地震等の大振動が発生した場合には、その振幅が大きいため油圧ダンパー9の作用により大振動が吸収或いは減衰される。
【0049】
前記ハイブリッドダンパーA,Bを設けたブレース5,6の構成は図1で示した構成以外に、例えば、図11に示すように、間柱3,4の上下部にブレース5,6を「X」字形状に斜めに掛け渡して固定しても良いし、図12に示すように、間柱3,4の中央部に2本の継ぎ材13を上下梁1,2に平行に配置して固定して開口17を形成し、間柱4の上下部と継ぎ材13と間柱3との接続部との間にブレース5,6を斜めに掛け渡して固定しても良い。また、図13に示すように、間柱3の上部と間柱4の下部及び該間柱4の下部と間柱18の上部にブレース5,6を斜めに掛け渡して固定しても良い。
【0050】
前記ブレース5,6に設けられるハイブリッドダンパーA,Bを構成する粘弾性ダンパー7または摩擦ダンパー8及び油圧ダンパー9の配置数は、該粘弾性ダンパー7または摩擦ダンパー8及び油圧ダンパー9の有する減衰特性や予め想定された微小振動レベル及び大振動レベル等の条件に基づいて必要な所定の数だけ配置される。
【0051】
即ち、粘弾性ダンパー7または摩擦ダンパー8及び油圧ダンパー9の配置数を適宜設定することによってブレース5,6による剛性、減衰性を所望の条件に応じて極めて容易に調整することが出来る。
【0052】
従って、鉄骨構造の建物を設計するに際し、建物に作用する微小振動レベル及び想定される大振動レベルの条件が設定された時、間柱3,4やブレース5,6、粘弾性ダンパー7または摩擦ダンパー8及び油圧ダンパー9に何等設計変更を加えることなく、粘弾性ダンパー7または摩擦ダンパー8及び油圧ダンパー9の配置数を設定するのみによって、前記設定条件に対応し得る剛性、減衰性を持った壁パネルを構成することが可能となる。
【0053】
また、建物における二次部材の配置位置に対応して前記ハイブリッドダンパーA,Bを設けたブレース5,6を取り付けることで、重心と剛心の偏心距離を調整して建物の剛性を調整することが出来る。このため、建物に微小振動が作用した時、骨組に生じる虞のある捩れを防止することが出来る。
【0054】
また、本発明に係る建物の制振構造は、間仕切壁内や帳壁の裏面に設置することが出来るので、設計プランを変更することなく建物の剛性を調整することが出来る。
【0055】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、鉄骨構造のブレースに微小振動用制振装置と大振動用制振装置とを平面上に並列に且つ一体的に設けたことで微小振動と大振動の両方に適用出来る上、大振動レベルでの微小振動用制振装置の負担が小さくなり好ましい。
【0056】
また、微小振動用制振装置と大振動用制振装置とを並列にブレースに設けたことで耐力壁に取り付ける場合と比較して施工が簡単であり、且つ、設計上も単純計算で済む。また、開口部のある壁面にも取り付けることが出来るので開口部の面の補強も兼ねることが出来、好ましい。
【0057】
また、前記微小振動用制振装置と前記大振動用制振装置とを一体的に設けたことで、工場生産が可能で現場の作業工数が低減され、工期を短縮することが出来る。
【0058】
また、前記微小振動用制振装置と前記大振動用制振装置とを平面上に並設したことで、空間専有体積を小さく出来るので壁厚を薄くして居住空間を広くとれる。
【0059】
また、前記微小振動用制振装置を粘弾性ダンパーまたは摩擦ダンパーで構成し、前記大振動用制振装置を油圧ダンパーで構成したことで、油圧ダンパーにより粘弾性ダンパーまたは摩擦ダンパーの変形量を抑えることが出来、粘弾性ダンパーの弾性変形範囲内及び摩擦ダンパーの変位追従性範囲内に変形量を抑えることで、復元可能な制振装置を実現することが出来、大地震の後で粘弾性ダンパーや摩擦ダンパーを交換する必要がないのでメンテナンス等の必要がなく、各ダンパー及びブレースが破損することも無いので快適な居住性を維持することが出来る。
【0060】
特に、前記微小振動用制振装置を摩擦ダンパーで構成した場合には復元量を大きく設定することが出来るので変位追従性の範囲を大きく設定することで超強振動にも対応出来る。
【0061】
また、建物における二次部材の配置位置に対応して前記微小振動用制振装置と前記大振動用制振装置とを並設して設けたブレースを取り付けることで、重心と剛心の偏心距離を調整して建物の剛性を調整することが出来る。このため、建物に微小振動が作用した時、骨組に生じる虞のある捩れを防止することが出来る。
【0062】
また、本発明に係る建物の制振構造は、間仕切壁内や帳壁の裏面に設置することが出来るので、設計プランを変更することなく建物の剛性を調整することが出来る。
【図面の簡単な説明】
【図1】 本発明に係る建物の制振構造の一例を示す図である。
【図2】 微小振動用制振装置と大振動用制振装置とを一体的に設けたハイブリッドダンパーの構成を示す図である。
【図3】 各ダンパーを取り付けるダンパー取付部の構成を示す図である。
【図4】 微小振動用制振装置となる粘弾性ダンパーの構成を示す図である。
【図5】 微小振動用制振装置となる粘弾性ダンパーの構成を示す図である。
【図6】 大振動用制振装置となる油圧ダンパーの構成を示す図である。
【図7】 微小振動用制振装置と大振動用制振装置とを一体的に設けたハイブリッドダンパーの他の構成を示す図である。
【図8】 各ダンパーを取り付けるダンパー取付部の他の構成を示す図である。
【図9】 微小振動用制振装置となる摩擦ダンパーの構成を示す図である。
【図10】 摩擦ダンパーに使用される潤滑シートの構成を示す図である。
【図11】 本発明に係る建物の制振構造の他の構成を示す図である。
【図12】 本発明に係る建物の制振構造の他の構成を示す図である。
【図13】 本発明に係る建物の制振構造の他の構成を示す図である。
【符号の説明】
1,2…上下梁
3,4…間柱
5,6…ブレース
7…粘弾性ダンパー
7a…粘弾性体
7b,7c…プレート
7d…ボルト孔
8…摩擦ダンパー
8a……嵌合部材
8b…潤滑シート
8b1…孔
9…油圧ダンパー
9a…シリンダー
9b…ピストン
9b1…ロッド
9c…オリフィス
9d,9e…係合部
9f…ボルト孔
10…補強金物
11,12…間柱取付金物
13…継ぎ材
14…ダンパー取付部
14a…突出部
14b…鍔部
14c…ボルト孔
14d…長穴
15…ボルト
16…ナット
17…開口
18…間柱
A,B…ハイブリッドダンパー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control structure of a building, and more particularly to a vibration control structure suitable for medium- and low-rise steel frame buildings such as a house and an office.
[0002]
[Prior art]
Generally, in a steel structure building, a structural calculation is performed based on a preset design standard. The design criteria mainly include horizontal forces acting on the structure due to the assumed earthquake, and vibrations having a relatively large amplitude are targeted.
[0003]
On the other hand, small and medium vibrations such as vibrations generated by vehicles traveling on the road and indoor walks may act on medium- and low-rise steel buildings such as houses and offices. In addition, the rigidity of the medium- and low-rise steel building at the micro vibration level is not limited to the framework, but the secondary members such as the book wall and the partition wall contribute to the reality.
[0004]
When microvibration is applied to the building, depending on the arrangement and amount of secondary members, the building may be twisted completely regardless of the result of properly designed structure. There is a risk of effect. That is, when an unlimited number of secondary members are arranged on a frame constructed according to the result of structural calculation, even if a slight external force (microvibration) is applied due to an increase in the eccentric distance between the center of gravity and the rigid center. There was a problem of causing torsional vibration.
[0005]
Therefore, the present inventor attaches a viscoelastic damper having rigidity and a damping property between the bearing walls only to a minute level of vibration such as vibration generated by a vehicle traveling on a road or vibration generated by walking indoors. A new technology relating to the structure of a rigid adjustment wall panel has been proposed, and a patent application has been filed by Japanese Patent Application No. 6-13619.
[0006]
In addition, bracing is arranged between the upper and lower beams as a reinforcing method against minute vibrations in steel structure buildings, but the rigidity is increased. However, if the cross-sectional area of the braces is not significantly increased, a slight external force (micro vibration) is generated. There was a problem that the burden capacity when acting was small.
[0007]
[Problems to be solved by the invention]
However, although the technique described in the above-mentioned Japanese Patent Application No. 6-13619 is effective for vibration at a minute level, the viscoelastic damper is damaged if a large earthquake occurs. When this viscoelastic damper is provided in a brace, for example, when a large earthquake occurs and the viscoelastic damper is damaged, the brace is cut off, resulting in poor living conditions.
[0008]
Also, if the viscoelastic damper breaks and the brace breaks, it is necessary to replace the viscoelastic damper after the earthquake has passed, and there is no brace until the replacement, resulting in poor comfort It becomes a state.
[0009]
On the other hand, there is a request to install a vibration control device for large vibrations for small earthquakes and typhoons even if it is not a large earthquake, but it is necessary to install vibration control devices for micro vibrations and large vibrations separately. Since it is bulky, the wall thickness becomes large, and it is not preferable because it limits the living space.
[0010]
The present invention solves the above-mentioned problems, and the object of the present invention is to provide a vibration control structure for a building that can be applied to both minute vibrations and large vibrations and that does not require replacement even after an earthquake and can take a large living space. It is what.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the building damping structure according to the present invention includes a steel structure brace of a medium- and low-rise steel building, a vibration control device for micro-vibration by vehicles and walking, and a vibration control for large vibrations by earthquakes and typhoons. The vibration control device for micro vibrations and the vibration control device for large vibrations are composed of a total of three vibration control devices, and the device for micro vibrations. the damping device one placed substantially at the center, before Symbol for the large vibration direction of extension of the brace across the fine small vibration damping device in line symmetry axis of symmetry outside the micro vibration damping device One damping device is arranged, the minute vibration damping device is constituted by a viscoelastic damper or a friction damper, and the large vibration damping device is constituted by a hydraulic damper .
[0012]
According to the above configuration, the brace of the steel structure of the middle- and low-rise steel building, the vibration control device for minute vibrations by vehicles and walking, and the vibration control device for large vibrations by earthquake and typhoon are arranged in parallel and integrally on a plane. The vibration control device for micro vibration and the vibration control device for large vibration are composed of three or more vibration control devices in total, and the vibration control device for micro vibration is arranged at a substantially central portion. The vibration control device for large vibration is arranged outside the vibration control device for micro vibration, and the vibration control device for micro vibration is provided at the center (center) of the brace, so that it can be applied to both micro vibration and large vibration. In addition, the burden on the vibration control device for micro vibration at a large vibration level is reduced, which is preferable. Moreover, the propagation property of the force of micro vibration with small amplitude is good. On the other hand, since the large vibration has a large amplitude, even if it is slightly deviated from the center (center) of the brace, the propagation of vibration force is not impaired.
[0013]
Further, since the vibration control device for micro vibration and the vibration control device for large vibration are provided in parallel in the brace, the construction is simpler than the case where the vibration control device is attached to the load bearing wall, and the design is simple. Moreover, since it can also be attached to the wall surface with an opening part, it can also serve as reinforcement of the surface of an opening part, and is preferable.
[0014]
In addition, since the vibration control device for micro vibration and the vibration control device for large vibration are provided integrally, factory production is possible, the number of on-site work steps is reduced, and the work period can be shortened.
[0015]
In addition, since the vibration control device for micro vibration and the vibration control device for large vibration are arranged side by side on a plane, the space-occupying volume can be reduced, so that the wall thickness can be reduced and the living space can be widened.
[0016]
Further, it is preferable to arrange the vibration control device for large vibrations symmetrically with respect to the vibration control device for micro vibrations because the force balance is good.
[0017]
The number of the vibration control devices for micro vibrations and the vibration control devices for large vibrations can be increased as necessary in consideration of the design and the volume that can be occupied. It is preferable to concentrate on the center (center) of the brace.
[0018]
Further, the micro-vibration damping device constituted by a viscoelastic dampers or friction dampers, the damping device for a large vibration is formed of the hydraulic damper to suppress the deformation of the viscoelastic damper or friction damper by hydraulic dampers By controlling the amount of deformation within the elastic deformation range of the viscoelastic damper and the displacement followability range of the friction damper, a recoverable vibration damping device can be realized, and the viscoelastic damper after a large earthquake. Since there is no need to replace the friction damper, there is no need for maintenance, etc., and each damper and brace will not be damaged, so that comfortable comfort can be maintained.
[0019]
In particular, when the vibration damping device for micro vibrations is constituted by a friction damper, the amount of restoration can be set large, so that it is possible to cope with super strong vibration by setting the range of displacement followability large.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a vibration control structure for a building according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram showing an example of a building damping structure according to the present invention, and FIG. 2 is a diagram showing a configuration of a hybrid damper in which a minute vibration damping device and a large vibration damping device are integrally provided. 3 is a diagram showing a configuration of a damper mounting portion for mounting each damper, FIGS. 4 and 5 are diagrams showing a configuration of a viscoelastic damper serving as a vibration damping device for minute vibration, and FIG. 6 is a hydraulic pressure serving as a vibration damping device for large vibration. FIG. 7 is a diagram showing a configuration of a damper, FIG. 7 is a diagram showing another configuration of a hybrid damper in which a vibration damping device for micro vibration and a vibration damping device for large vibration are integrally provided, and FIG. 8 is a damper mounting portion for mounting each damper. FIG. 9 is a diagram showing a configuration of a friction damper serving as a vibration damping device for micro vibrations, FIG. 10 is a diagram showing a configuration of a lubricating sheet used for the friction damper, and FIGS. It is a figure which shows the other structure of the damping structure of the building which concerns on this invention.
[0021]
As an example of a vibration control structure for a building according to the present invention, as shown in FIG. 1, micro vibrations are applied to braces 5 and 6 that are slanted between studs 3 and 4 provided between upper and lower beams 1 and 2 of a steel structure. Hybrid dampers A and B in which a viscoelastic damper 7 or a friction damper 8 serving as a vibration damping device and a hydraulic damper 9 serving as a large vibration damping device are arranged in parallel and integrally on a plane are provided. The vibration control structure of the building will be explained.
[0022]
In FIG. 1, a reinforcing hardware 10 is fixed to a predetermined position where the columns 3 and 4 of the upper and lower beams 1 and 2 are arranged by fixing members such as bolts and nuts. 3 and 4 are fixed to the upper and lower beams 1 and 2.
[0023]
Interstitial metal fittings 11 and 12 are respectively fixed to the upper and lower parts and the central part of the intermediary pillars 3 and 4, and the joint material 13 that joins the intermediary pillars 3 and 4 to the intermediary pillar attachment metal 12 attached to the central part of the intermediary pillars 3 and 4 Is fixed.
[0024]
As shown in FIG. 1, there is a minute vibration at the center between the spacer mounting hardware 11 attached to the upper and lower portions of the spacers 3 and 4 and the spacer mounting hardware 12 attached to the center of the spacers 3 and 4. Hybrid dampers A and B in which a viscoelastic damper 7 or a friction damper 8 serving as a vibration damping device and a hydraulic damper 9 serving as a vibration damping device for large vibrations are arranged in parallel and integrally on a plane on both sides thereof. Braces 5 and 6 provided substantially in the center are slanted and fixed in a “<” shape.
[0025]
As shown in FIG. 1, the hybrid dampers A and B provided at the substantially central portions of the braces 5 and 6 are provided with viscoelastic dampers 7 or friction dampers 8 serving as vibration control devices for minute vibrations. And two hydraulic dampers 9 serving as large vibration damping devices are arranged on both sides of the minute vibration damping device.
[0026]
The braces 5 and 6 provided with the studs 3 and 4, the reinforcing hardware 10, the joint material 13, and the hybrid dampers A and B are supplied to the construction site in the state of finished products produced in the factory in advance. A wall panel structure can be formed by fixing the upper and lower beams 1 and 2 with a fixing member such as.
[0027]
The intermediate columns 3 and 4 are formed to have a length equal to the distance between the opposing surfaces of the upper and lower beams 1 and 2 (inter-beam distance), and both ends in the longitudinal direction are fixed to the upper and lower beams 1 and 2. Therefore, the minute vibration and the large vibration acting on each of the upper and lower beams 1 and 2 are transmitted to the respective studs 3 and 4, and further transmitted to the braces 5 and 6 through the stud mounting hardware 11 and 12 fixed to the studs 3 and 4. Is done.
[0028]
Next, the configuration of the hybrid damper A in which the viscoelastic damper 7 is employed as a vibration damping device for micro vibration and the hydraulic damper 9 is employed as a vibration damping device for large vibration will be described in detail with reference to FIGS.
[0029]
As shown in FIGS. 2 and 3, viscoelastic dampers 7 are fixed to the ends of the braces 5 and 6 on the hybrid damper A side on the axis of the braces 5 and 6 and on both sides of the viscoelastic dampers 7. A damper mounting portion 14 made of a flat plate having a substantially T shape for mounting two hydraulic dampers 9 side by side on a plane substantially parallel to the surface of the wall panel is formed. Bolt holes 14c are respectively formed in the protruding portion 14a and the flange portions 14b on both sides.
[0030]
As shown in FIGS. 4 and 5, the viscoelastic damper 7 serving as a vibration damping device for micro vibration disposed at the center of the hybrid damper A is a surface of a viscoelastic body 7 a having a damping property made of plastic rubber or elastic rubber. In addition, plates 7b and 7c formed in a predetermined shape are attached to the back surface and have a function of attenuating minute vibrations acting on the plates 7b and 7c by the viscoelastic body 7a.
[0031]
Further, a bolt hole 7d for attaching the end portion to the protruding portion 14a of the damper attaching portion 14 is formed at the end portion of the plates 7b, 7c opposite to the viscoelastic body 7a.
[0032]
The hydraulic damper 9 which is a vibration damping device for large vibrations disposed on both sides of the viscoelastic damper 7 which is a vibration damping device for micro vibrations of the hybrid damper A uses a general hydraulic damper as shown in FIG. I can do it. In FIG. 6, 9a is a cylinder, 9b is a piston, 9b1 is a rod fixed to the piston 9b, and 9c is an orifice provided in the piston 9b.
[0033]
The hydraulic damper 9 has a function of attenuating a large vibration due to a resistance generated by a pressure difference generated on both sides of the orifice 9c when oil flows through the cylinder 9a through the orifice 9c.
[0034]
Engaging portions 9d and 9e are provided at the ends of the rod 9b1 fixed to the cylinder 9a and the piston 9b, respectively, and the engaging portions 9d and 9e are attached with dampers respectively. A bolt hole 9f for attaching to the flange portion 14b of the portion 14 is formed.
[0035]
A bolt 15 is inserted into the bolt hole 14c of the projecting portion 14a of the damper mounting portion 14 provided at one end of the braces 5 and 6 and the bolt hole 7d of the plates 7b and 7c of the viscoelastic damper 7, and a nut is inserted into the bolt 15. 16 is screwed and fastened, and a bolt 15 is inserted through the bolt hole 14c of the flange 14b of the damper mounting portion 14 and the bolt holes 9f of the engaging portions 9d and 9e of the hydraulic damper 9 to the bolt 15. The nut 16 is screwed and fastened to form a hybrid damper A having one viscoelastic damper 7 in the center and two hydraulic dampers 9 on both sides in the center of the braces 5 and 6. Can be done.
[0036]
Next, the configuration of the hybrid damper B that employs the friction damper 8 as a vibration control device for micro vibration and the same hydraulic damper 9 as described above as the vibration control device for large vibration will be described in detail with reference to FIGS. . In addition, what was comprised similarly to the said hybrid damper A attaches | subjects the same code | symbol, and abbreviate | omits description.
[0037]
Instead of the viscoelastic damper 7 applied to the hybrid damper A, a friction damper 8 serving as a vibration control device for minute vibrations arranged at the center of the hybrid damper B includes a damper mounting portion 14 as shown in FIG. The end portions of the projecting portions 14a are fitted into the fitting portions at both ends of the fitting member 8a having an H-shaped section, and a lubricating sheet 8b is interposed in one of the fitting portions, so that the projecting portions 14a of the damper mounting portion 14 are interposed. A bolt 15 is inserted into a bolt hole (not shown) formed in the fitting portion of the fitting member 8a and a bolt hole (not shown) formed in the fitting member 8a and a hole 8b1 formed in the lubricating sheet 8b, and a nut 16 is inserted into the bolt 15. It is screwed and fastened.
[0038]
For example, a Teflon sheet (registered trademark) is preferably used as the lubricating sheet 8b.
[0039]
The protrusion 14a of the damper mounting portion 14 corresponding to the fitting portion at one end of the fitting member 8a of the friction damper 8 has a width corresponding to the outer diameter of the bolt 15 as shown in FIGS. 10d is formed between the protrusion 14a of the damper mounting portion 14 on the side where the long hole 14d is formed and the fitting portion of the fitting member 8a. As shown in FIG. 9, the lubricating sheet 8b having a predetermined coefficient of friction formed with a hole 8b1 through which the bolt 15 is inserted is folded twice so as to be interposed between the front and back surfaces of the protruding portion 14a of the damper mounting portion 14. The bolt 15 and the nut 16 are fastened and fixed with a predetermined torque.
[0040]
Then, when a predetermined force is applied to the friction damper 8 via the braces 5 and 6, the bolt 15 and the nut 16 on the side where the lubricating sheet 8b is interposed are provided in the elongated hole 14d provided in the protruding portion 14a of the damper mounting portion 14. It has a function which attenuates the minute vibration which acts on braces 5 and 6 by sliding along.
[0041]
Other configurations are the same as those of the hybrid damper A, and the same effects can be obtained.
[0042]
According to the hybrid dampers A and B configured as described above, the amount of deformation of the viscoelastic damper 7 or the friction damper 8 can be suppressed by the hydraulic damper 9, and the elastic damper 9 can be within the elastic deformation range of the viscoelastic damper 7 or the friction damper 8. By suppressing the amount of deformation within the displacement following range, it is possible to realize a recoverable vibration damping device, and it is not necessary to replace the viscoelastic damper 7 and the friction damper 8 after a large earthquake. There is no need, and the hybrid dampers A and B and the braces 5 and 6 are not damaged, so that comfortable comfort can be maintained.
[0043]
In particular, when the vibration control device for minute vibrations is configured by the friction damper 8 as in the hybrid damper B, the amount of restoration can be set large, so that it is possible to cope with super strong vibration by setting the range of displacement followability large. .
[0044]
In the wall panel constituted by the braces 5 and 6 provided with the spacers 3 and 4 and the hybrid dampers A and B as described above, the minute vibrations generated in the upper and lower beams 1 and 2 are caused from the upper and lower beams 1 and 2, respectively. 4, and further transmitted to the plates 7 b and 7 c of the viscoelastic damper 7 via the braces 5 and 6 in the damper mounting portion 14 or the hybrid damper A.
[0045]
When the viscoelastic damper 7 is used, in the viscoelastic damper 7 to which the minute vibration is transmitted, the minute vibration acting on the plates 7b and 7c is transmitted to the viscoelastic body 7a, and the viscoelastic body 7a responds to the minute vibration. Deform. Therefore, the minute vibration is absorbed or attenuated by the deformation of the viscoelastic body 7a.
[0046]
On the other hand, when the friction damper 8 is used, in the friction damper 8 to which the minute vibration is transmitted, the minute vibration acting on the damper mounting portion 14 is transmitted to the lubricating sheet 8b, the friction coefficient of the lubricating sheet 8b, the bolt 15 and the nut. The damper mounting portion 14 slides along the elongated hole 14d with respect to the fitting member 8a according to the fastening torque of 16, and minute vibration is absorbed or attenuated.
[0047]
When minute vibrations are generated in the upper and lower beams 1 and 2, the amplitude thereof is small, so that the cylinder 9 a and the piston 9 b of the hydraulic damper 9 vibrate in response to substantially minute vibrations and do not exhibit the action of the damper. Microvibration is absorbed or attenuated by the viscoelastic damper 7 or the friction damper 8.
[0048]
When a large vibration such as an earthquake occurs in the upper and lower beams 1 and 2, the large vibration is absorbed or attenuated by the action of the hydraulic damper 9 because the amplitude is large.
[0049]
The configuration of the braces 5 and 6 provided with the hybrid dampers A and B is not limited to the configuration shown in FIG. 1, but, for example, as shown in FIG. It may be fixed in a slanting manner in the shape of a letter, or as shown in FIG. 12, two joint members 13 are arranged in the center of the intermediate columns 3 and 4 in parallel with the upper and lower beams 1 and 2 and fixed. Then, the opening 17 may be formed, and the braces 5 and 6 may be obliquely spanned and fixed between the upper and lower portions of the intermediate pillar 4 and the connecting portion between the joint member 13 and the intermediate pillar 3. Further, as shown in FIG. 13, braces 5 and 6 may be obliquely spanned and fixed to the upper part of the intermediate pillar 3 and the lower part of the intermediate pillar 4 and the lower part of the intermediate pillar 4 and the upper part of the intermediate pillar 18.
[0050]
The number of arrangement of the viscoelastic damper 7 or the friction damper 8 and the hydraulic damper 9 constituting the hybrid dampers A and B provided in the braces 5 and 6 is the damping characteristic of the viscoelastic damper 7 or the friction damper 8 and the hydraulic damper 9. Or a predetermined number necessary based on conditions such as a presumed minute vibration level and a large vibration level.
[0051]
That is, by appropriately setting the number of arrangements of the viscoelastic damper 7 or the friction damper 8 and the hydraulic damper 9, the rigidity and damping of the braces 5 and 6 can be adjusted very easily according to desired conditions.
[0052]
Therefore, when designing a steel structure building, when the conditions of the minute vibration level acting on the building and the assumed large vibration level are set, the inter-columns 3 and 4, the braces 5 and 6, the viscoelastic damper 7 or the friction damper are set. A wall having rigidity and damping properties that can correspond to the setting conditions only by setting the number of viscoelastic dampers 7 or friction dampers 8 and hydraulic dampers 9 without making any design changes to 8 and hydraulic dampers 9 A panel can be configured.
[0053]
Further, by attaching the braces 5 and 6 provided with the hybrid dampers A and B corresponding to the arrangement positions of the secondary members in the building, the eccentric distance between the center of gravity and the rigid center is adjusted to adjust the rigidity of the building. I can do it. For this reason, it is possible to prevent torsion that may occur in the frame when minute vibrations act on the building.
[0054]
Moreover, since the vibration damping structure of a building according to the present invention can be installed in the partition wall or on the back surface of the book wall, the rigidity of the building can be adjusted without changing the design plan.
[0055]
【The invention's effect】
Since the present invention has the above-described configuration and operation, micro vibrations can be obtained by providing a micro-vibration damping device and a large-vibration damping device in parallel and integrally on a plane in a steel structure brace. It can be applied to both vibration and large vibration, and the load on the vibration control device for micro vibration at a large vibration level is reduced.
[0056]
Further, since the vibration control device for micro vibration and the vibration control device for large vibration are provided in parallel in the brace, the construction is simpler than the case where the vibration control device is attached to the load bearing wall, and the design is simple. Moreover, since it can also be attached to the wall surface with an opening part, it can also serve as reinforcement of the surface of an opening part, and is preferable.
[0057]
In addition, since the vibration control device for micro vibration and the vibration control device for large vibration are provided integrally, factory production is possible, the number of on-site work steps is reduced, and the work period can be shortened.
[0058]
In addition, since the vibration control device for micro vibration and the vibration control device for large vibration are arranged side by side on a plane, the space-occupying volume can be reduced, so that the wall thickness can be reduced and the living space can be widened.
[0059]
Further, the micro-vibration damping device constituted by a viscoelastic dampers or friction dampers, the damping device for a large vibration is formed of the hydraulic damper to suppress the deformation of the viscoelastic damper or friction damper by hydraulic dampers By controlling the amount of deformation within the elastic deformation range of the viscoelastic damper and the displacement followability range of the friction damper, a recoverable vibration damping device can be realized, and the viscoelastic damper after a large earthquake. Since there is no need to replace the friction damper, there is no need for maintenance, etc., and each damper and brace will not be damaged, so that comfortable comfort can be maintained.
[0060]
In particular, when the vibration damping device for minute vibrations is constituted by a friction damper, the amount of restoration can be set large, so that it is possible to cope with super-strong vibrations by setting a large range of displacement followability.
[0061]
Also, by attaching a brace provided with the vibration control device for micro vibration and the vibration control device for large vibration corresponding to the arrangement position of the secondary member in the building, the eccentric distance between the center of gravity and the rigid center Can be adjusted to adjust the rigidity of the building. For this reason, it is possible to prevent torsion that may occur in the frame when minute vibrations act on the building.
[0062]
Moreover, since the vibration damping structure of a building according to the present invention can be installed in the partition wall or on the back surface of the book wall, the rigidity of the building can be adjusted without changing the design plan.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a vibration control structure for a building according to the present invention.
FIG. 2 is a diagram showing a configuration of a hybrid damper in which a minute vibration damping device and a large vibration damping device are integrally provided.
FIG. 3 is a diagram showing a configuration of a damper mounting portion for mounting each damper.
FIG. 4 is a diagram showing a configuration of a viscoelastic damper serving as a vibration damping device for minute vibrations.
FIG. 5 is a diagram showing a configuration of a viscoelastic damper serving as a vibration damping device for minute vibrations.
FIG. 6 is a diagram illustrating a configuration of a hydraulic damper serving as a vibration damping device for large vibrations.
FIG. 7 is a diagram showing another configuration of a hybrid damper in which a minute vibration damping device and a large vibration damping device are integrally provided.
FIG. 8 is a diagram showing another configuration of a damper mounting portion for mounting each damper.
FIG. 9 is a diagram showing a configuration of a friction damper serving as a vibration damping device for minute vibrations.
FIG. 10 is a diagram illustrating a configuration of a lubricating sheet used for a friction damper.
FIG. 11 is a diagram illustrating another configuration of the vibration control structure for a building according to the present invention.
FIG. 12 is a diagram showing another configuration of the vibration control structure for a building according to the present invention.
FIG. 13 is a diagram illustrating another configuration of the vibration control structure for a building according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 ... Up-and-down beam 3, 4 ... Spacer 5, 6 ... Brace 7 ... Viscoelastic damper 7a ... Viscoelastic body 7b, 7c ... Plate 7d ... Bolt hole 8 ... Friction damper 8a ... Fitting member 8b ... Lubrication sheet
8b1 ... Hole 9 ... Hydraulic damper 9a ... Cylinder 9b ... Piston
9b1 ... Rod 9c ... Orifice 9d, 9e ... Engagement part 9f ... Bolt hole
10 ... Reinforcing hardware
11, 12, ...
13: Joint material
14 ... Damper mounting part
14a ... Projection
14b ... Buttocks
14c ... Bolt hole
14d ... Long hole
15 ... Bolt
16 ... Nut
17 ... Opening
18 ... Space pillar A, B ... Hybrid damper

Claims (1)

中低層鉄骨建物の鉄骨構造のブレースに、車両、歩行による微小振動用制振装置と、地震、台風による大振動用制振装置とを平面上に並列に且つ一体的に設け、
前記微小振動用制振装置と前記大振動用制振装置とは両者を合わせて3つの制振装置で構成され、且つ、前記微小振動用制振装置を略中央部に1つ配置し、前記微小振動用制振装置の外側に該微小振動用制振装置を挟んで前記ブレースの延びる方向を対称軸として線対称に前記大振動用制振装置を1つずつ配置し、
前記微小振動用制振装置を粘弾性ダンパーまたは摩擦ダンパーで構成し、前記大振動用制振装置を油圧ダンパーで構成したことを特徴とする建物の制振構造。
On the brace of the steel structure of the middle- and low-rise steel building, a vibration control device for minute vibrations by vehicles and walking, and a vibration control device for large vibrations by earthquakes and typhoons are provided in parallel and integrally on a plane.
Wherein the micro-vibration damping device with a large vibration damping device consists of three damping device combined both and, one placing the micro vibration damping device at a substantially central portion, front The large vibration damping devices are arranged one by one in line symmetry with the direction in which the braces extend sandwiching the minute vibration damping device outside the minute vibration damping device,
A building vibration control structure , wherein the vibration control device for minute vibrations is constituted by a viscoelastic damper or a friction damper, and the vibration control device for large vibrations is constituted by a hydraulic damper .
JP31313297A 1997-11-14 1997-11-14 Building vibration control structure Expired - Lifetime JP3830254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31313297A JP3830254B2 (en) 1997-11-14 1997-11-14 Building vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31313297A JP3830254B2 (en) 1997-11-14 1997-11-14 Building vibration control structure

Publications (2)

Publication Number Publication Date
JPH11141174A JPH11141174A (en) 1999-05-25
JP3830254B2 true JP3830254B2 (en) 2006-10-04

Family

ID=18037498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31313297A Expired - Lifetime JP3830254B2 (en) 1997-11-14 1997-11-14 Building vibration control structure

Country Status (1)

Country Link
JP (1) JP3830254B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073238A2 (en) * 2000-03-29 2001-10-04 The Research Foundation Of The State University Of New York At Buffalo Highly effective seismic energy dissipation apparatus
JP3516930B2 (en) * 2001-04-13 2004-04-05 株式会社大本組 Skeleton infill compatible reinforced concrete frame
JP4551258B2 (en) * 2005-03-31 2010-09-22 東海ゴム工業株式会社 Seismic control structure of lightweight steel house
JP4635700B2 (en) * 2005-04-26 2011-02-23 東海ゴム工業株式会社 Building seismic control structure
JP2007016538A (en) * 2005-07-11 2007-01-25 Mokken Giken Kk Vibration damper built in building
JP4829714B2 (en) * 2006-08-07 2011-12-07 アジアンシルバーウッド株式会社 Damping wall structure of steel house
JP2008095497A (en) * 2007-11-08 2008-04-24 Sekisui Chem Co Ltd Vibration control structure of building
JP5050835B2 (en) * 2007-12-21 2012-10-17 積水ハウス株式会社 Seismic damper effect comparison verification device
CN102936967B (en) * 2012-11-15 2015-08-12 北京筑福国际工程技术有限责任公司 Old house masonry structure transforms safe refuge warehouse
JP6779480B2 (en) * 2016-07-25 2020-11-04 学校法人東京理科大学 Vibration control device
JP2019152301A (en) * 2018-03-06 2019-09-12 三和テッキ株式会社 Vibration resistance reinforcing vibration isolation device of building
JP7286463B2 (en) * 2019-07-31 2023-06-05 清水建設株式会社 vibration damping device
CN111350291B (en) * 2020-03-23 2021-08-03 湖北文理学院 Variable-damping variable-rigidity viscoelastic-friction composite damper

Also Published As

Publication number Publication date
JPH11141174A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3830254B2 (en) Building vibration control structure
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP2018506662A (en) Wall panel damping device
JP4631280B2 (en) Seismic control pier
JP4913660B2 (en) Steel stairs
JPH10140873A (en) Vibration damping structure of building
JPH07331923A (en) Construction of rigidity adjustable panel and fitting method thereof
JP4464307B2 (en) Seismic control structure of lightweight steel house
JP3800519B2 (en) H-steel built-in seismic damper
JPH10131543A (en) Vibration-mitigating structural member
JPH03122376A (en) Dynamic vibration reducer utilizing curtain wall
JPH03235856A (en) Earthquake-isolating steel structural beam
JP4277649B2 (en) Composite damper and column beam structure
JP3209800U (en) Damping structure and damping panel
JP2001336305A (en) Vibration control device
JP3463085B2 (en) Seismic building
JP2004300912A (en) Vibration control damper coping with habitability
JP4603918B2 (en) Seismic control structure of lightweight steel house
JP3020089B2 (en) Damping structure beam
JP2573525B2 (en) Partition wall damping structure
JPH11190148A (en) Vibration control structure for building frame
JPH11200662A (en) Vibration control structure
JP2001059363A (en) Vibration control damper, and vibration control frame
JP2004131962A (en) Building reinforcing member equipped with external force attenuation element
JP3028033B2 (en) Damping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term