CN111350291B - A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper - Google Patents
A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper Download PDFInfo
- Publication number
- CN111350291B CN111350291B CN202010209364.6A CN202010209364A CN111350291B CN 111350291 B CN111350291 B CN 111350291B CN 202010209364 A CN202010209364 A CN 202010209364A CN 111350291 B CN111350291 B CN 111350291B
- Authority
- CN
- China
- Prior art keywords
- annular
- steel cylinder
- friction plate
- friction
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 title claims abstract description 37
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 174
- 239000010959 steel Substances 0.000 claims abstract description 174
- 239000003190 viscoelastic substance Substances 0.000 claims abstract description 38
- 238000004873 anchoring Methods 0.000 claims description 12
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920001971 elastomer Polymers 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 239000004945 silicone rubber Substances 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 238000004073 vulcanization Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000928 Yellow copper Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Dampers (AREA)
Abstract
本发明公开了一种变阻尼变刚度粘弹性‑摩擦复合阻尼器,包括两个对称的圆筒式粘弹性阻尼器单元和两个圆筒式摩擦阻尼器单元,摩擦阻尼器单元套设在圆筒式粘弹性阻尼器单元外侧。圆筒式粘弹性阻尼器单元由内向外依次为环形内钢筒、环形粘弹性材料层、环形中钢筒,环形内钢筒中部套设有弹性元件,环形内钢筒两端均设封闭钢板,环形中钢筒的两端部的内侧均设置有圆柱体粘弹性材料,环形中钢筒的两端设置连接锚固钢板;摩擦阻尼器单元由内向外依次为环形中钢筒、环形摩擦片、环形摩擦板、环形外钢筒,环形摩擦板分为第一环形摩擦板和第二环形摩擦板,环形外钢筒由上半环形外钢筒和下半环形外钢筒采用螺栓装配连接组成。
The invention discloses a variable damping variable stiffness viscoelasticity-friction composite damper, comprising two symmetrical cylindrical viscoelastic damper units and two cylindrical friction damper units, wherein the friction damper units are sleeved on a circle Outside of the cartridge viscoelastic damper unit. The cylindrical viscoelastic damper unit is sequentially composed of an annular inner steel cylinder, an annular viscoelastic material layer, and an annular middle steel cylinder from the inside to the outside. An elastic element is sleeved in the middle of the annular inner steel cylinder, and closed steel plates are provided at both ends of the annular inner steel cylinder. , the inner sides of both ends of the annular middle steel cylinder are provided with cylindrical viscoelastic materials, and the two ends of the annular middle steel cylinder are provided with connecting anchor steel plates; the friction damper unit is sequentially composed of the annular middle steel cylinder, annular friction plate, The annular friction plate and the annular outer steel cylinder are divided into a first annular friction plate and a second annular friction plate.
Description
技术领域technical field
本发明涉及一种阻尼器,尤其涉及一种变阻尼变刚度粘弹性-摩擦复合阻尼器,属于耗能减震技术领域。The invention relates to a damper, in particular to a variable damping variable stiffness viscoelasticity-friction composite damper, belonging to the technical field of energy consumption and shock absorption.
背景技术Background technique
粘弹性阻尼器和摩擦阻尼器都是土木工程中最常用的阻尼器。传统的粘弹性阻尼器是一种适合于抗风振和小震的阻尼器,它可以在小位移下开始耗能,并且疲劳性能和耗能性能良好。而传统的摩擦阻尼器是只能提供不变的摩擦力,阻尼力不能随着位移的增大而出现明显的变化,不具备在风振、小震、中震以及大震不同的地震激励下提供不同的阻尼力的特点,并且长期多次的小位移作用(风振和小震)下磨损疲劳现象严重。摩擦阻尼器起滑力值设定过高时,阻尼会出现不滑或滑动位移过小而不能发挥良好的耗能作用;起滑力值设定过低时,在中震和大震下提供的阻尼力过小,不能满足所需的耗能能力。因此,采用摩擦变系数和调整预紧力的方法来实现不同激励和不同阶段提供不同阻力,同时又将粘弹性阻尼器的优点相结合,开发一种变阻尼变刚度粘弹性-摩擦复合阻尼器很有必要。Both viscoelastic dampers and friction dampers are the most commonly used dampers in civil engineering. The traditional viscoelastic damper is a kind of damper suitable for anti-wind vibration and small shock, it can start to dissipate energy under small displacement, and has good fatigue performance and energy dissipation performance. However, the traditional friction damper can only provide constant friction force, and the damping force cannot change significantly with the increase of displacement. It provides the characteristics of different damping force, and the phenomenon of wear and fatigue is serious under the action of long-term and multiple small displacements (wind vibration and small shock). When the sliding force value of the friction damper is set too high, the damping will be non-slip or the sliding displacement is too small to exert a good energy dissipation effect; The damping force is too small to meet the required energy dissipation capacity. Therefore, the method of variable coefficient of friction and adjustment of preload force is used to realize different excitation and different resistance at different stages, and at the same time, the advantages of viscoelastic damper are combined to develop a variable damping and variable stiffness viscoelastic-friction composite damper. necessary.
发明内容SUMMARY OF THE INVENTION
本发明目的是针对现有摩擦阻尼器存在的问题,提供一种变阻尼变刚度粘弹性-摩擦复合阻尼器,该复合阻尼器同时具备粘弹性阻尼器和变系数摩擦阻尼器的技术优点,既能有效减小结构在小震和风振下的振动响应,又能使阻尼器在中震和大震下产生良好的耗能能力,同时具有疲劳性能良好的优势。The purpose of the present invention is to provide a variable damping and variable stiffness viscoelasticity-friction composite damper in view of the problems existing in the existing friction dampers. The composite damper has the technical advantages of a viscoelastic damper and a variable coefficient friction damper at the same time. It can effectively reduce the vibration response of the structure under small earthquake and wind vibration, and can make the damper produce good energy dissipation capacity under medium and large earthquakes, and at the same time has the advantage of good fatigue performance.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种变阻尼变刚度粘弹性-摩擦复合阻尼器,整体为对称结构,包括两个圆筒式粘弹性阻尼器单元和两个圆筒式摩擦阻尼器单元,所述两个圆筒式粘弹性阻尼器单元对称相对连接,两个摩擦阻尼器单元分别对应套装在两个圆筒式粘弹性阻尼器单元外部;其中,A variable damping variable stiffness viscoelasticity-friction composite damper, the whole is a symmetrical structure, comprising two cylindrical viscoelastic damper units and two cylindrical friction damper units, the two cylindrical viscoelasticity The damper units are symmetrically connected relative to each other, and the two friction damper units are respectively sleeved outside the two cylindrical viscoelastic damper units; wherein,
所述圆筒式粘弹性阻尼器单元其各部件为同轴设置,由内向外依次为环形内钢筒、环形粘弹性材料层、环形中钢筒,所述环形内钢筒中段外部套装有弹性元件,所述环形中钢筒分为左环形中钢筒、右环形中钢筒分别套装在环形内钢筒左段和右段并与弹性元件相连,所述左环形中钢筒、右环形中钢筒和环形内钢筒之间填充所述环形粘弹性材料层;所述环形中钢筒相远离两端分别连接有连接锚固钢板;The components of the cylindrical viscoelastic damper unit are coaxially arranged, and from the inside to the outside are an annular inner steel cylinder, an annular viscoelastic material layer, and an annular middle steel cylinder. Element, the annular middle steel cylinder is divided into a left annular middle steel cylinder and a right annular middle steel cylinder, which are respectively sleeved on the left and right sections of the annular inner steel cylinder and are connected with the elastic element. The annular viscoelastic material layer is filled between the steel cylinder and the annular inner steel cylinder; connecting anchor steel plates are respectively connected at the opposite ends of the annular middle steel cylinder;
所述摩擦阻尼器单元其各部件为同轴设置,由内向外依次为环形中钢筒、环形摩擦片、环形摩擦板、环形外钢筒,所述外钢筒套装在环形中钢筒外部,所述环形摩擦片套装在环形中钢筒上,所述环形摩擦板贴设在环形外钢筒内壁的凹槽中,且环形摩擦片与环形摩擦板摩擦接触。Each part of the friction damper unit is arranged coaxially, and from the inside to the outside, it is an annular middle steel cylinder, an annular friction plate, an annular friction plate, and an annular outer steel cylinder, and the outer steel cylinder is sleeved outside the annular middle steel cylinder, The annular friction plate is sleeved on the annular middle steel cylinder, the annular friction plate is attached to the groove on the inner wall of the annular outer steel cylinder, and the annular friction plate is in frictional contact with the annular friction plate.
进一步地,所述环形摩擦板分为第一环形摩擦板和第二环形摩擦板,且第一环形摩擦板的摩擦系数较小,第二环形摩擦板的摩擦系数较大。Further, the annular friction plate is divided into a first annular friction plate and a second annular friction plate, and the friction coefficient of the first annular friction plate is smaller, and the friction coefficient of the second annular friction plate is larger.
进一步地,所述环形中钢筒的外表面等间距设置若干环形固定凹槽,环形固定凹槽的尺寸与所述环形摩擦片的尺寸相匹配,且所述环形固定凹槽的深度为5mm~20mm。Further, a plurality of annular fixing grooves are arranged at equal intervals on the outer surface of the annular middle steel cylinder, the size of the annular fixing groove is matched with the size of the annular friction plate, and the depth of the annular fixing groove is 5mm~ 20mm.
进一步地,所述环形外钢筒由上半环形外钢筒和下半环形外钢筒采用螺栓装配连接组成,所述第一环形摩擦板由第一上半环形摩擦板和第一下半环形摩擦板组成,第一上半环形摩擦板和第一下半环形摩擦板分别对应贴设在上半环形外钢筒和下半环形外钢筒的内壁环形凹槽之中;所述第二环形摩擦板由第二上半环形摩擦板和第二下半环形摩擦板组成,第二上半环形摩擦板和第二下半环形摩擦板分别对应贴设在上半环形外钢筒和下半环形外钢筒的内壁环形凹槽之中,上半环形外钢筒和下半环形外钢筒、第一上半环形摩擦板和第一下半环形摩擦板、第二上半环形摩擦板和第二下半环形摩擦板之间设置有粘弹性可压缩垫片。Further, the annular outer steel cylinder is composed of an upper semi-annular outer steel cylinder and a lower semi-annular outer steel cylinder which are assembled and connected by bolts, and the first annular friction plate is composed of a first upper semi-annular friction plate and a first lower semi-annular friction plate. The friction plate is composed of a first upper half-annular friction plate and a first lower half-annular friction plate correspondingly attached to the inner wall annular grooves of the upper half-annular outer steel cylinder and the lower half-annular outer steel cylinder; the second annular The friction plate is composed of a second upper half annular friction plate and a second lower half annular friction plate. The second upper half annular friction plate and the second lower half annular friction plate are respectively attached to the upper half annular outer steel cylinder and the lower half annular friction plate respectively. Among the annular grooves on the inner wall of the outer steel cylinder, the upper half-annular outer steel cylinder and the lower half-annular outer steel cylinder, the first upper half-annular friction plate and the first lower half-annular friction plate, the second upper half-annular friction plate and the third A viscoelastic compressible gasket is arranged between the two lower half annular friction plates.
进一步地,所述环形内钢筒相远离两端设有左封闭钢板和右封闭钢板,所述左环形中钢筒和右环形中钢筒相远离两端内部设置有圆柱体粘弹性材料。Further, a left closed steel plate and a right closed steel plate are provided at the opposite ends of the annular inner steel cylinder, and a cylindrical viscoelastic material is provided at the opposite ends of the left annular middle steel cylinder and the right annular middle steel cylinder.
优选地,所述左环形中钢筒与右环形中钢筒之间距离为80mm~180mm。Preferably, the distance between the left annular middle steel cylinder and the right annular middle steel cylinder is 80mm˜180mm.
进一步地,所述环形内钢筒、环形中钢筒与环形粘弹性材料层之间通过高温高压硫化方式或胶粘方式连接。Further, the annular inner steel cylinder, the annular middle steel cylinder and the annular viscoelastic material layer are connected by high temperature and high pressure vulcanization or gluing.
进一步地,环形中钢筒与其内部的圆柱体粘弹性材料通过高温高压硫化方式或胶粘方式连接。Further, the steel cylinder in the ring is connected with the cylindrical viscoelastic material inside by high temperature and high pressure vulcanization or gluing.
优选地,连接锚固钢板分为左连接锚固钢板和右连接锚固钢板,所述环形外钢筒的左端面与左连接锚固钢板之间的间隔距离为200mm~400mm,所述环形外钢筒的右端面与右连接锚固钢板之间的间隔距离为200mm~400mm。Preferably, the connecting and anchoring steel plates are divided into left connecting anchoring steel plates and right connecting anchoring steel plates, the distance between the left end face of the annular outer steel cylinder and the left connecting anchoring steel plate is 200mm-400 mm, and the right end of the annular outer steel cylinder is 200mm to 400mm. The distance between the surface and the right connecting anchor steel plate is 200mm to 400mm.
优选地,所述弹性元件为高强弹簧,所述环形粘弹性材料层和圆柱体粘弹性材料均为高阻尼三元异丙橡胶复合材料或高阻尼的硅橡胶复合材料,所述的环形摩擦片为高耐磨钢质摩擦片,所述第一环形摩擦板为聚四氟乙烯板,第二环形摩擦板为黄铜板。Preferably, the elastic element is a high-strength spring, the annular viscoelastic material layer and the cylindrical viscoelastic material are both high-damping ternary isopropyl rubber composite materials or high-damping silicone rubber composite materials, and the annular friction plate It is a high wear-resistant steel friction plate, the first annular friction plate is a polytetrafluoroethylene plate, and the second annular friction plate is a brass plate.
相比于现有技术,本发明技术方案具有的有益效果为:Compared with the prior art, the beneficial effects of the technical solution of the present invention are:
本发明复合阻尼器同时具备粘弹性阻尼器和变系数摩擦阻尼器的技术优点,在小震或风振作用下,粘弹性阻尼器开始工作耗能,承担大部分耗能作用,且耗能性能和疲劳性能良好;在中震和大震作用下,粘弹性阻尼器和摩擦阻尼器同时工作,共同耗散地震能量,使阻尼器耗散能力显著提高,这既能保证阻尼器有效减小结构在小震和风振下的振动响应,又能使阻尼器在中震和大震下产生更好的耗能能力,同时在小震或风振作用下,避免摩擦阻尼器发生磨损疲劳而使整个阻尼器失效,大幅度提高了阻尼器整体的使用寿命,中震和大震作用下,阻尼器的限位作用防止粘弹性材料发生剪切破坏;本发明复合阻尼器在小震、风振和中震、大震下均能够对结构的振动起到很好的减震效果。The composite damper of the present invention has the technical advantages of viscoelastic damper and variable coefficient friction damper at the same time. Under the action of small shock or wind vibration, the viscoelastic damper starts to work and consumes energy, bears most of the energy consumption, and has high energy consumption performance. Good fatigue performance; under moderate and large earthquakes, viscoelastic dampers and friction dampers work at the same time to dissipate seismic energy together, so that the dissipation capacity of the damper is significantly improved, which can not only ensure that the damper can effectively reduce the structure The vibration response under small earthquake and wind vibration can also make the damper produce better energy dissipation capacity under medium and large earthquakes. The damper fails, which greatly increases the overall service life of the damper. Under the action of medium and large earthquakes, the limiting effect of the damper prevents shear damage of the viscoelastic material; It can have a good damping effect on the vibration of the structure under moderate earthquakes and large earthquakes.
在不同激励下较好调整阻尼性能的能力技术优点,根据所需阻尼力性能的要求,通过调整环形摩擦板和摩擦片的材料、尺寸以及调节预紧力的大小满足所需阻尼力(刚度和阻尼)的大小。设置在环形内钢筒中部的高强弹性元件在受压和受拉时均可提供较大的弹性恢复刚度,这增加了整个阻尼器抵抗变形的能力,使阻尼器具有自复位功能;中钢筒的端部的圆柱体粘弹性材料挤压变形既提供挤压耗能作用,又提供较大刚度起限位作用,保证了内筒和中筒之间的环形粘弹性材料层不被剪切破坏。各粘弹性材料层的边缘约束良好,使其耐疲劳性能良好;摩擦阻尼器单元采用装配式连接,保证其具有摩擦片易于更换、单元利用率高等优点。The technical advantages of the ability to better adjust the damping performance under different excitations. According to the requirements of the required damping force performance, the required damping force (stiffness and damping) size. The high-strength elastic element arranged in the middle of the annular inner steel cylinder can provide greater elastic recovery rigidity under compression and tension, which increases the ability of the entire damper to resist deformation and enables the damper to have a self-reset function; the middle steel cylinder The extrusion deformation of the cylindrical viscoelastic material at the end not only provides the effect of extrusion energy dissipation, but also provides greater rigidity to play a limiting role, ensuring that the annular viscoelastic material layer between the inner cylinder and the middle cylinder is not damaged by shearing. . The edges of each viscoelastic material layer are well restrained, which makes it have good fatigue resistance; the friction damper unit is connected by assembly, which ensures that it has the advantages of easy replacement of friction plates and high unit utilization rate.
附图说明Description of drawings
图1为本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2为图1中环形内钢筒、环形粘弹性层、环形左中钢筒、第二环形摩擦板和环形外钢筒A-A向剖视图;Fig. 2 is the sectional view of the annular inner steel cylinder, the annular viscoelastic layer, the annular left middle steel cylinder, the second annular friction plate and the annular outer steel cylinder A-A in Fig. 1;
图3为图1中环形内钢筒、环形粘弹性层、环形右中钢筒、第一环形摩擦板和环形外钢筒B-B向剖视图;Fig. 3 is the B-B sectional view of the annular inner steel cylinder, the annular viscoelastic layer, the annular right middle steel cylinder, the first annular friction plate and the annular outer steel cylinder in Fig. 1;
图4为图1中环形右中钢筒、圆柱体粘弹性材料C-C向剖视图;Fig. 4 is the C-C sectional view of the annular right middle steel cylinder and the cylindrical viscoelastic material in Fig. 1;
图5为本发明中连接锚固钢板的结构示意图;Fig. 5 is the structural schematic diagram of connecting and anchoring steel plates in the present invention;
图中:1弹性元件,2环形内钢筒,3-1左环形粘弹性材料层,3-2右环形粘弹性材料层,4-1左环形中钢筒,4-2右环形中钢筒,5-1左环形摩擦片,5-2右环形摩擦片,6-1第一上半环形摩擦板,6-2第一下半环形摩擦板,7-1第二上半环形摩擦板,7-2第二下半环形摩擦板,8-1上半环形钢筒,8-2下半环形钢筒,9-1左封闭钢板,9-2右封闭钢板,10-1左圆柱体粘弹性材料,10-2右圆柱体粘弹性材料,11-1左连接锚固钢板,11-2右连接锚固钢板,12-1左带孔连接件,12-2右带孔连接件,13高强螺栓,14粘弹性可压缩垫片。In the figure: 1 elastic element, 2 annular inner steel cylinder, 3-1 left annular viscoelastic material layer, 3-2 right annular viscoelastic material layer, 4-1 left annular middle steel cylinder, 4-2 right annular middle steel cylinder , 5-1 left annular friction plate, 5-2 right annular friction plate, 6-1 first upper half annular friction plate, 6-2 first lower half annular friction plate, 7-1 second upper half annular friction plate, 7-2 Second lower half annular friction plate, 8-1 upper half annular steel cylinder, 8-2 lower half annular steel cylinder, 9-1 left closed steel plate, 9-2 right closed steel plate, 10-1 left cylinder stick Elastic material, 10-2 right cylinder viscoelastic material, 11-1 left connecting anchor steel plate, 11-2 right connecting anchor steel plate, 12-1 left connecting piece with holes, 12-2 right connecting piece with holes, 13 high-strength bolts , 14 viscoelastic compressible gaskets.
具体实施方式Detailed ways
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。The present invention can be better understood from the following examples. However, those skilled in the art can easily understand that the contents described in the embodiments are only used to illustrate the present invention, and should not and will not limit the present invention described in detail in the claims.
实施例,请结合参照图1-5:Examples, please refer to Figures 1-5 in combination:
本发明变阻尼变刚度粘弹性-摩擦复合阻尼器,阻尼器整体为对称结构,包括两个圆筒式粘弹性阻尼器单元和两个圆筒式摩擦阻尼器单元,所述两个圆筒式粘弹性阻尼器单元对称相对连接,两个摩擦阻尼器单元分别对应套设在两个圆筒式粘弹性阻尼器单元外侧,其中,The variable damping variable stiffness viscoelasticity-friction composite damper of the present invention has a symmetrical structure as a whole, including two cylindrical viscoelastic damper units and two cylindrical friction damper units. The viscoelastic damper units are symmetrically connected relative to each other, and the two friction damper units are respectively sleeved on the outer sides of the two cylindrical viscoelastic damper units, wherein,
所述圆筒式粘弹性阻尼器单元其各部件为同轴设置,由内向外依次为环形内钢筒2、环形粘弹性材料层3、环形中钢筒4,环形内钢筒2分为左、中、右三段,环形中钢筒4分为左环形中钢筒4-1和右环形中钢筒4-2,其中左环形中钢筒4-1和右环形中钢筒4-2套装在环形内钢筒2的左段和右段,二者之间间隔一定距离,优选的所述间隔距离为80mm~180mm。环形内钢筒2与左环形中钢筒4-1和右环形中钢筒4-2之间填充有环形粘弹性材料层3,所述环形内钢筒2与左环形中钢筒4-1和右环形中钢筒4-2、环形粘弹性材料层3通过高温高压硫化方式或胶粘方式连接,保证它们之间的整体性且防止震动时它们之间产生脱离。环形内钢筒2中段套装有弹性元件1,弹性元件1两端分别与左环形中钢筒4-1和右环形中钢筒4-2固定连接,优选地,弹性元件1为高强弹簧以保证其挤压、拉伸抗性。所述环形内钢筒2两端设有左封闭钢板9-1和右封闭钢板9-2,大震作用下,封闭板可均匀与圆柱体粘弹性材料10接触产生挤压变形耗能,同时圆柱体粘弹性材料提供较大刚度起限位作用,防止环形粘弹性材料层3发生大位移剪切破坏,所述环形中钢筒4的相互远离的两端的内部均设置有圆柱体粘弹性材料10,所述环形中钢筒4与圆柱体粘弹性材料10通过高温高压硫化方式或高强胶粘方式连接,所述圆柱体粘弹性材料10挤压变形时既提供挤压耗能作用,又提供较大刚度起限位作用,保证了环形内筒2和环形中筒4之间的环形粘弹性材料层3不被剪切破坏。所述左环形中钢筒4-1的外端部设置有左连接锚固钢板11-1,右环形中钢筒4-2的外端部设置有右连接锚固钢板11-2,环形中钢筒4与连接锚固钢板11焊接固定连接,所述连接锚固钢板11外侧均设置有带孔连接件,所述连接锚固钢板11与有带孔连接件12焊接固定连接,通过带孔连接件12可将本发明固定于建筑物需要防震处。The components of the cylindrical viscoelastic damper unit are arranged coaxially. From the inside to the outside, they are an annular
所述摩擦阻尼器单元其各部件为同轴设置,由内向外依次为环形中钢筒4、环形摩擦片5、第一环形摩擦板6和第二环形摩擦板7、环形外钢筒8。所述环形外钢筒8套装在环形中钢筒4外部,二者之间设置有环形摩擦片5和环形摩擦板6。所述环形中钢筒4外壁等距离设置有若干环形固定凹槽,所述环形摩擦片5套装在所述固定凹槽内进而固定在环形中钢筒4外壁上。所述环形摩擦板分为第一环形摩擦板6和第二环形摩擦板7,所述第一环形摩擦板6由第一上半环形摩擦板6-1和第一下半环形摩擦6-2板组成,第一上半环形摩擦板6-1和第一下半环形摩擦板6-2分别对应贴设在上半环形外钢筒8-1和下半环形外钢筒8-2的内壁凹槽之中;所述第二环形摩擦板7由第二上半环形摩擦板7-1和第二下半环形摩擦板7-2组成,第二上半环形摩擦板7-1和第二下半环形摩擦板7-2分别对应贴设在上半环形外钢筒8-1和下半环形外钢筒8-2的内壁凹槽之中,上半环形外钢筒8-1和下半环形外钢筒8-2、第一上半环形摩擦板6-1和第一下半环形摩擦板6-2、第二上半环形摩擦板7-1和第二下半环形摩擦板7-2之间设置有粘弹性可压缩垫片14;所述内壁环形凹槽的深度为5mm~20mm。),所述环形摩擦板分为第一环形摩擦板6和第二环形摩擦板7,其中第一环形摩擦板6的摩擦系数较小,第二环形摩擦板7的摩擦系数较大,摩擦阻尼器起滑力值设定过高时,阻尼会出现不滑或滑动位移过小而不能发挥良好的耗能作用;起滑力值设定过低时,在中震和大震下提供的阻尼力过小,不能满足所需的耗能能力。因此,采用摩擦变系数和调整预紧力的方法来实现不同激励和不同阶段提供不同阻力,优选地,所述第一环形摩擦板6为聚四氟乙烯板,第二环形摩擦板7为黄铜板,所述的环形摩擦片5为高耐磨钢质摩擦片。The components of the friction damper unit are coaxially arranged, and from the inside to the outside are the annular middle steel cylinder 4 , the annular friction plate 5 , the first annular friction plate 6 , the second annular friction plate 7 , and the annular outer steel cylinder 8 . The annular outer steel cylinder 8 is sleeved on the outside of the annular middle steel cylinder 4, and an annular friction plate 5 and an annular friction plate 6 are arranged between the two. The outer wall of the annular middle steel cylinder 4 is provided with a plurality of annular fixing grooves at equal distances, and the annular friction plate 5 is sleeved in the fixing grooves and then fixed on the outer wall of the annular middle steel cylinder 4 . The annular friction plate is divided into a first annular friction plate 6 and a second annular friction plate 7. The first annular friction plate 6 is composed of a first upper half annular friction plate 6-1 and a first lower half annular friction plate 6-2. The first upper half annular friction plate 6-1 and the first lower half annular friction plate 6-2 are respectively attached to the inner walls of the upper half annular outer steel cylinder 8-1 and the lower half annular outer steel cylinder 8-2 respectively. in the groove; the second annular friction plate 7 is composed of the second upper half annular friction plate 7-1 and the second lower half annular friction plate 7-2, the second upper half annular friction plate 7-1 and the second The lower half annular friction plate 7-2 is respectively attached to the inner wall grooves of the upper half annular outer steel cylinder 8-1 and the lower half annular outer steel cylinder 8-2, and the upper half annular outer steel cylinder 8-1 and the lower The semi-annular outer steel cylinder 8-2, the first upper semi-annular friction plate 6-1 and the first lower semi-annular friction plate 6-2, the second upper semi-annular friction plate 7-1 and the second lower semi-annular friction plate 7 A viscoelastic
所述环形外钢筒8由上半环形外钢筒8-1和下半环形外钢筒8-2采用高强螺栓13装配连接组成,上半环形外钢筒8-1和下半环形外钢筒8-2之间设置有粘弹性可压缩垫片14,所述粘弹性可压缩垫片14设置有与高强螺栓装13相匹配的孔洞,根据所需预紧力大小可通过高强螺栓13进行调节。The annular outer steel cylinder 8 is composed of an upper semi-annular outer steel cylinder 8-1 and a lower semi-annular outer steel cylinder 8-2 which are assembled and connected by high-
所述环形外钢筒8的左端面与左连接锚固钢板11-1之间的间隔距离为200mm~400mm,所述环形外钢筒8的右端面与右连接锚固钢板11-2之间的间隔距离为200mm~400mm。The distance between the left end face of the annular outer steel cylinder 8 and the left connecting anchor steel plate 11-1 is 200mm to 400 mm, and the interval between the right end face of the annular outer steel cylinder 8 and the right connecting anchor steel plate 11-2 The distance is 200mm to 400mm.
优选地,所述环形粘弹性材料层3和圆柱体粘弹性材料10均为高阻尼三元异丙橡胶复合材料或高阻尼的硅橡胶复合材料。Preferably, the annular viscoelastic material layer 3 and the cylindrical viscoelastic material 10 are both high-damping ternary isopropyl rubber composite materials or high-damping silicone rubber composite materials.
使用时:将本变阻尼变刚度粘弹性-摩擦复合阻尼器采用人字形支撑、腋撑或对角斜撑布置于建筑结构层间。When in use: The variable damping variable stiffness viscoelasticity-friction composite damper is arranged between the layers of the building structure with herringbone support, armpit support or diagonal diagonal support.
在小震和风振下,环形内钢筒2和环形中钢筒4之间的环形粘弹性材料层3发生剪切变形承担大部分耗能作用,环形摩擦片5与第一环形摩擦板6相对摩擦承担小部分耗能作用。Under small shocks and wind vibrations, the annular viscoelastic material layer 3 between the annular
在中震,环形内钢筒2和环形中钢筒4之间的环形粘弹性材料3层产生剪切变形、以及环形摩擦片5与第一环形摩擦板6和第二环形摩擦板7相对滑动摩擦共同耗能,耗能能力大幅度提升。In the middle of the earthquake, the annular viscoelastic material 3 layer between the annular
在大震下,环形内钢筒2和环形中钢筒4之间的环形粘弹性材料层3产生剪切变形、环形摩擦片5与第一环形摩擦板6和第二环形摩擦板7相对滑动摩擦以及圆柱体粘弹性材料10挤压变形共同耗能,耗能能力大幅度提升,并且提供较大刚度起限位作用,保证了环形内钢筒2和环形中钢筒4之间的环形粘弹性材料层不被剪切破坏。Under a large earthquake, the annular viscoelastic material layer 3 between the annular
另外,设置在环形内钢筒2中部的高强弹性元件1在受压和受拉时均可提供较大的弹性恢复刚度,这增加了整个阻尼器抵抗变形的能力,使阻尼器具有自复位功能。In addition, the high-strength
根据所需阻尼力性能的要求,可通过调整环形摩擦板6、7的摩擦系数、尺寸以及通过高强螺栓13调节预紧力的大小满足刚度和阻尼的需求。According to the requirements of the required damping force performance, the rigidity and damping requirements can be met by adjusting the friction coefficient and size of the annular friction plates 6 and 7 and adjusting the size of the pre-tightening force through the high-
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. However, these obvious changes or changes derived from the spirit of the present invention are still within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010209364.6A CN111350291B (en) | 2020-03-23 | 2020-03-23 | A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010209364.6A CN111350291B (en) | 2020-03-23 | 2020-03-23 | A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111350291A CN111350291A (en) | 2020-06-30 |
CN111350291B true CN111350291B (en) | 2021-08-03 |
Family
ID=71191055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010209364.6A Active CN111350291B (en) | 2020-03-23 | 2020-03-23 | A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111350291B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111962701B (en) * | 2020-08-14 | 2021-09-21 | 中交鹭建有限公司 | Self-resetting lead friction-viscoelasticity composite damper and working method thereof |
CN112922182B (en) * | 2021-01-28 | 2022-04-19 | 武汉工程大学 | A self-reset variable damping variable stiffness viscoelasticity and friction composite damper |
CN113309809B (en) * | 2021-04-13 | 2022-04-05 | 中国电力科学研究院有限公司 | Damping device and design method thereof |
CN113882544B (en) * | 2021-10-19 | 2022-11-18 | 湖北文理学院 | Spatial multidirectional viscoelastic-shape memory alloy damping system |
CN113914503B (en) * | 2021-11-18 | 2025-05-13 | 南京林业大学 | A wall horizontal connector device based on friction energy dissipation and self-centering |
CN114645580B (en) * | 2022-04-16 | 2023-07-18 | 北京工业大学 | Self-resetting and variable stiffness friction damping device based on permanent magnet repulsion |
CN116164068A (en) * | 2023-04-26 | 2023-05-26 | 江苏佳力得新材料科技有限公司 | Self-resetting composite type variable friction damper and use method thereof |
CN118774284B (en) * | 2024-08-19 | 2025-06-17 | 中国地震局工程力学研究所 | A compression type two-stage cylindrical adjustable friction energy dissipator used between building floors |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11141174A (en) * | 1997-11-14 | 1999-05-25 | Asahi Chem Ind Co Ltd | Vibration control structure of building |
CN1973098A (en) * | 2004-03-03 | 2007-05-30 | 蒙特利尔艾科尔工艺技术公司 | Self-centering energy dissipative brace apparatus with tensioning elements |
CN205669554U (en) * | 2016-05-20 | 2016-11-02 | 济南大学 | A kind of damper of viscous friction compound action |
CN106869570A (en) * | 2017-04-10 | 2017-06-20 | 兰州理工大学 | Self-resetting moving seesaw-type becomes friction composite buffer |
CN108412067A (en) * | 2018-01-29 | 2018-08-17 | 东南大学 | A kind of assembled variable damping variation rigidity viscoplasticity damper and its anti-shock methods |
CN108442559A (en) * | 2018-05-21 | 2018-08-24 | 大连理工大学 | A kind of high-damping rubber-friction composite damper |
-
2020
- 2020-03-23 CN CN202010209364.6A patent/CN111350291B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11141174A (en) * | 1997-11-14 | 1999-05-25 | Asahi Chem Ind Co Ltd | Vibration control structure of building |
CN1973098A (en) * | 2004-03-03 | 2007-05-30 | 蒙特利尔艾科尔工艺技术公司 | Self-centering energy dissipative brace apparatus with tensioning elements |
CN205669554U (en) * | 2016-05-20 | 2016-11-02 | 济南大学 | A kind of damper of viscous friction compound action |
CN106869570A (en) * | 2017-04-10 | 2017-06-20 | 兰州理工大学 | Self-resetting moving seesaw-type becomes friction composite buffer |
CN108412067A (en) * | 2018-01-29 | 2018-08-17 | 东南大学 | A kind of assembled variable damping variation rigidity viscoplasticity damper and its anti-shock methods |
CN108442559A (en) * | 2018-05-21 | 2018-08-24 | 大连理工大学 | A kind of high-damping rubber-friction composite damper |
Also Published As
Publication number | Publication date |
---|---|
CN111350291A (en) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111350291B (en) | A Variable Damping Variable Stiffness Viscoelasticity-Friction Composite Damper | |
CN109881806B (en) | Self-resetting ripple friction-changing damper | |
CN201827286U (en) | Double-piston rod viscous damper with elastic damping | |
CN108331193B (en) | A square sleeve type self-resetting metal friction damper | |
CN110345187B (en) | Composite self-resetting energy dissipation and shock absorption device and using method thereof | |
CN103032504B (en) | Inverted double-out-rod stay cable oil damper based on thin-wall small hole throttling | |
CN101956780B (en) | a viscous damper | |
CN104455189A (en) | Three-dimensional isolation support | |
CN101994775B (en) | Composite damping single-piston rod viscous damper | |
CN104372871A (en) | Rigidity-variable oil damper | |
CN106989131A (en) | A kind of SMA point of big stroke of valve sleeve actively adjusts damper | |
CN106223507A (en) | A kind of high-performance supporting member based on Self-resetting power consumption | |
WO2020042390A1 (en) | Core material for shock insulation support, shock insulation support having friction core and preparation method therefor | |
CN108442559A (en) | A kind of high-damping rubber-friction composite damper | |
CN2926306Y (en) | A New Type of Viscous Shear Damper for Vibration Reduction of Stayed Cables | |
CN106121078A (en) | A kind of magnetic fluid mutative damp energy dissipation brace with reset function | |
CN110965462B (en) | A seismic isolation support with air damping tube | |
CN109811638B (en) | A friction pendulum self-resetting vibration isolation device based on STP | |
CN203808279U (en) | Cylinder-type metal rubber isolation bearing | |
CN107558786A (en) | A kind of spring damping collaboration is every vibration damping/shake device | |
CN110080592A (en) | A kind of multidimensional hinged ball drum type brake viscoplasticity Self-resetting shock-absorption device and its shock-dampening method | |
CN110017050A (en) | Self-resetting shock isolating pedestal | |
CN108842920B (en) | An Assembled Seismic Isolation System | |
CN108317300B (en) | Multi-directional viscoelasticity vibration isolation and reduction device for pipeline and vibration isolation and reduction method for pipeline | |
CN113969688A (en) | A pullout-resistant three-dimensional vibration isolation friction pendulum bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |