JP3829499B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3829499B2
JP3829499B2 JP27608498A JP27608498A JP3829499B2 JP 3829499 B2 JP3829499 B2 JP 3829499B2 JP 27608498 A JP27608498 A JP 27608498A JP 27608498 A JP27608498 A JP 27608498A JP 3829499 B2 JP3829499 B2 JP 3829499B2
Authority
JP
Japan
Prior art keywords
heat source
source fluid
tank
passage
fluid inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27608498A
Other languages
Japanese (ja)
Other versions
JP2000105097A (en
Inventor
尚規 杉本
充 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17564592&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3829499(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27608498A priority Critical patent/JP3829499B2/en
Priority to DE19942458A priority patent/DE19942458B4/en
Publication of JP2000105097A publication Critical patent/JP2000105097A/en
Application granted granted Critical
Publication of JP3829499B2 publication Critical patent/JP3829499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般的に言って、空気と熱源流体(温水等)との間で熱交換を行う熱交換器に関するもので、より具体的には、車両用空調装置における温水式暖房用熱交換器に用いて好適なものである。
【0002】
【従来の技術】
従来、車両用空調装置における温水式暖房用熱交換器では、特開平9−250895号公報記載のように、空気流れ方向の前後で温水がUターンして流れるものが知られている。この前後Uターン方式のものでは、熱交換コア部の一端側に配置される温水入出用タンクを図9のごとく構成している。すなわち、この温水入出用タンク14内部に仕切り板23を配置し、この仕切り板23により、タンク14の内部空間を温水入口パイプ20と連通する温水入口空間24および温水出口パイプ21と連通する温水出口空間25とに空気流れ方向Aの前後に仕切っている。
【0003】
温水入口パイプ20からの温水は、温水入口空間24から熱交換コア部のチューブのうち、空気流れ方向前後の片側のチューブ通路を通過し、その後に、熱交換コア部の他端側でUターンする。その後、温水は熱交換コア部のチューブのうち、空気流れ方向前後の他の片側のチューブ通路を通過してからタンク内の温水出口空間25に流入し、温水出口パイプ21から外部へ流出する。
【0004】
【発明が解決しようとする課題】
ところで、上記の従来構造によると、空気流れ方向Aと直交方向に真っ直ぐに延びる仕切り板23により2つの空間24、25を仕切っているので、これらの空間24、25とそれぞれ連通するように温水入口、出口パイプ20、21を配置する際、2つの空間24、25の空気流れ方向Aの厚さ寸法をそれぞれ温水入口、出口パイプ20、21より大きくする必要がある。その結果、タンク14の全体の空気流れ方向Aの厚さ寸法Dがどうしても大きくなってしまい、熱交換器の小型化を阻害している。
【0005】
また、上記の従来構造によると、温水入口、出口パイプ20、21の位置が必然的に図9の寸法Lだけずれることになり、両パイプ20、21を同一直線上に配置できない。その結果、暖房用熱交換器を例えば水平配置する場合には、温水入口、出口パイプ20、21の上下方向での設置高さを必然的に異なる高さにしなければならず、この両パイプ20、21の位置選択の自由度が低くなり、暖房用熱交換器の車両搭載性を悪化させる。
【0006】
また、タンク14は、タンク本体部16とこれに接合されるシートメタル(図示せず)とにより所定のタンク形状を構成するようになっており、そして、このシートメタルに仕切り板23の端部が接合されるのであるが、シートメタルにはチューブの端部が挿通され、接合されるチューブ穴が形成され、複雑な凹凸形状になっているので、シートメタルや仕切り板23の成形上の寸法ばらつきによりシートメタルと仕切り板23の端部との間に隙間が発生して、接合(ろう付け)不良を発生しやすい。
【0007】
この仕切り板23の接合不良が発生すると、温水入口、出口パイプ20、21の間を短絡する内部温水洩れが発生して、熱交換器の放熱性能を低下させる。さらには、暖房用熱交換器への温水流量を調整して吹出空気温度を調整するタイプの空調装置では、温水流量の微小流量調整時に内部温水洩れにより、暖房用熱交換器の吹出空気温度分布を悪化させるという問題が生じる。
【0008】
本発明は上記点に鑑みてなされたもので、熱交換コア部の一端側に配置される流体入出用タンクの内部空間を空気流れ方向の前後において熱源流体入口側と熱源流体出口側の空間に仕切る熱交換器において、タンクの空気流れ方向の厚さ寸法を縮小することを目的とする。
また、本発明は、仕切り板の接合不良による内部流体洩れを防止することを他の目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1〜5記載の発明では、熱源流体入口パイプ(20)および熱源流体出口パイプ(21)を熱源流体入出用タンク(14)に対して空気流れ方向(A)と直交方向に延びる略一直線上に配置し、
仕切り板(23)に、タンク(14)内の熱源流体出口空間(25)側へ湾曲して、熱源流体入口パイプ(20)からの熱源流体をチューブ(12)の第1通路(12a)に案内する第1湾曲部(23b)を形成するとともに、
仕切り板(23)に、熱源流体入口空間(24)側へ湾曲して、チューブ(12)の第2通路(12b)からの熱源流体を熱源流体出口パイプ(21)に案内する第2湾曲部(23c)を形成したことを特徴としている。
【0010】
これによると、熱源流体の出入口パイプ(20、21)を略一直線上に配置しても、仕切り板(23)により入口側熱源流体と出口側熱源流体との仕切り作用を発揮するとともに、第1、第2湾曲部(23b)による案内作用によって熱源流体のスムースな流れを確保することができる。
よって、熱源流体の入出作用に支障をきたすことなく、出入口パイプ(20、21)の直線的配置によりタンク(14)の空気流れ方向の厚さ寸法(D)を縮小することができ、熱交換器を小型化できる。
【0011】
また、出入口パイプ(20、21)の直線的配置により、例えば、熱交換器水平配置の場合に、出入口パイプ(20、21)をともに上下方向の同一高さに配置することができる。従来のように、出入口パイプ(20、21)を異なった高さ位置に配置しなければならない場合に比して、出入口パイプ(20、21)の位置選択の自由度が増して車両等への搭載性を改善できる。
【0012】
本発明は、請求項2に記載のように、熱交換コア部(11)の他端側に、第1通路(12a)からの温水を第2通路(12b)へUターンさせるUターン用タンク(15)を配置した熱交換器において好適に実施できる。
また、本発明は、具体的には、請求項3に記載のように、熱源流体入口パイプ(20)および熱源流体出口パイプ(21)を熱源流体入出用タンク(14)に対して空気流れ方向(A)と直交方向の両端側に配置し、仕切り板(23)の2つの湾曲部(23b)(23c)を、熱源流体入口パイプ(20)および熱源流体出口パイプ(21)に対応して空気流れ方向(A)と直交方向の両端側に配置し、2つの湾曲部(23b)(23c)の間には熱源流体入出用タンク(14)の中央部に位置する平板部(23a)を一体に形成した構成とすることができる。
【0013】
特に、請求項4記載の発明では、チューブは、空気流れ方向(A)と平行な断面偏平状の偏平チューブ(12)であり、また、熱源流体入出用タンク(14)は、偏平チューブ(12)の端部を固定するシートメタル(18)と、熱源流体入口パイプ(20)および熱源流体出口パイプ(21)が配置されるタンク本体部(16)とから構成されており、
シートメタル(18)には偏平チューブ(12)の端部が挿入され、接合される複数の長穴状のチューブ挿入穴(22)を設けるとともに、この複数の長穴状のチューブ挿入穴(22)相互の間に嵌合穴(26)を設け、
仕切り板(23)のうち、シートメタル(18)側の端部(23d)に、嵌合穴(26)に嵌合される嵌合突起(27)を設け、嵌合穴(26)に嵌合突起(27)を嵌合した状態で、仕切り板(23)をシートメタル(18)に接合することを特徴としている。
【0014】
これによると、熱交換器をろう付けにより一体接合する場合に、シートメタル(18)や仕切り板(23)の成形上の寸法ばらつきがあっても、嵌合穴(26)と嵌合突起(27)との嵌合部によりろう付けの起点となる接触部を必ず形成することができ、シートメタル(18)と仕切り板(23)との間の接合(ろう付け)性を向上できる。これにより、仕切り板(23)の接合不良による内部流体洩れを防止することができる。
【0015】
また、請求項5記載の発明では、請求項4における嵌合穴(26)の代わりに、複数の長穴状のチューブ挿入穴(22)相互の間に、このチューブ挿入穴(22)と連通するスリット状嵌合溝(30)を設け、このスリット状嵌合溝(30)に仕切り板(23)の嵌合突起(27)を嵌合した状態で、仕切り板(23)をシートメタル(18)に接合することを特徴としている。
【0016】
これによっても、スリット状嵌合溝(30)と嵌合突起(27)との嵌合部によりろう付けの起点となる接触部を必ず形成することができるので、請求項4と同様に、シートメタル(18)と仕切り板(23)との間の接合(ろう付け)性を向上して、仕切り板(23)の接合不良による内部流体洩れを防止することができる。
【0017】
特に、請求項5記載の発明によると、スリット状嵌合溝(30)をチューブ挿入穴(22)と連通するように形成しているから、仕切り板(23)にチューブ挿入穴(22)周縁部のバーリング形状等に対応した複雑な形状を設ける必要がなくなる。そのため、仕切り板(23)の接合(ろう付け)性をより一層向上できる。
【0018】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は第1実施形態による熱交換器の全体形状を示すもので、車両用空調装置における温水式の暖房用熱交換器に適用した例を示している。この熱交換器10では、車両エンジン(図示せず)から供給される温水(エンジン冷却水)を熱源流体として用い、この温水の熱を暖房空気中に放熱することより暖房空気を加熱するようになっている。
【0020】
この熱交換器10では、熱交換コア部11を偏平チューブ12とコルゲートフィン13とにより構成している。図1では中央部に破断部があるため縦長となっているが、実際は、熱交換用コア部11の上下方向寸法に比して左右方向の幅方向寸法が大きい横長形状になっている。
偏平チューブ12は、熱交換コア部11への暖房用空気の流れ方向Aに対して平行な偏平状(図3参照)に形成されており、この偏平チューブ12は図1、3の左右方向に多数個並列配置されている。そして、この多数個の偏平チューブ12の相互間に波形状に成形されたコルゲートフィン13を配置し接合している。このコルゲートフィン11aには周知のごとく暖房用空気の流れ方向に対して所定角度で斜めに多数のルーバ(図示せず)が切り起こし成形されている。
【0021】
また、偏平チューブ12は、図3に示すように空気流れ方向(チューブ断面長手方向)Aの中央部に仕切り部12cを有し、この仕切り部12cによりチューブ内通路を第1通路(風下側通路)12aと第2通路(風上側通路)12bとに仕切っている。ここで、偏平チューブ12内部の第1通路12aは温水入口側の通路であって風下側に位置し、また、第2通路12bは温水出口側の通路であって風上側に位置することにより、温水流れと空気流れとが対向流型に構成してある。これにより、熱交換コア部11は、偏平チューブ12の第1通路(風下通路)12aにより構成される第1コア部11aと、第2通路(風上通路)12bにより構成される第2コア部11bが空気流れ方向Aの前後に区分して形成される。
【0022】
偏平チューブ12は、1枚の平板状のアルミニウム薄板材を曲げ成形して、両通路12a、12bの中間部位に仕切り部12cを形成した断面偏平状に成形されるもので、その具体的材質としては、例えば、芯材(A3000系)の片面(チューブ外側の面)にろう材(A4000系)をクラッドしたアルミニウムクラッド材を用いる。コルゲートフィン13はろう材をクラッドしないアルミニウムベア材(A3000系)を波形状に成形したものである。
【0023】
熱交換器10では、熱交換用コア部11の両端側には、それぞれ、偏平チューブ12への温水の分配、偏平チューブ12からの温水の集合を行う第1、第2タンク14、15が配置されている。熱交換用コア部11の一端(上端)側の第1タンク14は温水入出用のタンクで、他端(下端)側の第2タンク15は温水のUターン用のタンクである。図1において、矢印Bは温水のUターン方向を示しており、この温水のUターンにより偏平チューブ12内の両通路12a、12bを温水が上下逆方向に流れる。
【0024】
第1、第2の両タンク14、15はそれぞれタンク本体部16、17とシートメタル18、19とにより所定のタンク形状(細長い直方体状)を構成している。
次に、温水入出用の第1タンク14の具体的構造を図2により詳細に説明すると、タンク本体部16の左右方向の一端(左端)側の上面壁面には温水入口パイプ20の取付穴16aが形成され、この取付穴16aに温水入口パイプ20が挿入され、接合されている。また、タンク本体部16の左右方向の他端(右端)側には温水出口パイプ21の取付穴16bが形成され、この取付穴16bに温水出口パイプ21が挿入され、接合されている。
【0025】
ここで、上記の温水入口パイプ20および温水出口パイプ21はいずれも円形の丸パイプであり、かつ、この両パイプ20、21は図2(a)に示すようにタンク左右方向(空気流れ方向Aと直交方向)に延びる同一直線上に配置されている。一方、シートメタル18は図2(b)、(c)に示すようにタンク本体部16の開口端を閉じる板形状になっており、そして、シートメタル18には偏平チューブ12の端部を挿入するための長穴状のチューブ挿入穴22(図3)がタンク左右方向に多数、並列に形成されている。このチューブ挿入穴22の周縁部には、図3に示すようにタンク内側へ突出する打ち出し部22aがバーリング加工されており、この打ち出し部22aにより偏平チューブ12の端部とシートメタル18とを確実に接触させて接合している。
【0026】
次に、温水出入口側の第1タンク14の内部には仕切り板23が配置されている。この仕切り板23は第1タンク14の内部空間を空気流れ方向Aの前後に仕切るためのもので、空気流れ方向Aの下流側に温水入口パイプ20と連通する温水入口空間24を区画し、空気流れ方向Aの上流側に温水出口パイプ21と連通する温水出口空間25を区画する。
【0027】
このように、両空間24、25を区画することと、両パイプ20、21を前述のごとくタンク左右方向に延びる同一直線上に配置することとを両立させるために、仕切り板23の具体的形状は以下のごとく工夫してある。
すなわち、仕切り板23において、タンク左右方向の中央部位にはタンク本体部16の前後の壁面と平行に延びる平板部23aが形成され、そして、仕切り板23のうち、タンク左右方向の両側部位には第1、第2湾曲部23b、23cが形成されている。ここで、左側の第1湾曲部23bは平板部23aから温水出口空間25側へ向かって湾曲することより、温水入口パイプ20からの流入温水が図2(b)のごとく温水入口空間24を経てスムースに偏平チューブ12内の第1通路12a内に案内され流入するようにしてある。
【0028】
また、右側の第2湾曲部23cは平板部23aから逆に温水入口空間24側へ向かって湾曲することより、偏平チューブ12内の第2通路12bからの温水が図2(c)のごとく温水出口空間25を経てスムースに温水出口パイプ20へ向かって案内されるようにしてある。
仕切り板23のうち、シートメタル18側の端部23dはタンク左右方向に沿ってタンク左右方向の全長にわたって直線状に延びる部分を形成しており、この端部23dとシートメタル18とのろう付け性向上のために次のような工夫がしてある。すなわち、シートメタル18において、長穴状のチューブ挿入穴22相互の間には仕切り部12cに隣接して矩形状の嵌合穴26が開けてある。一方、仕切り板23のうち、シートメタル18側の端部23dには嵌合突起27がシートメタル18側へ突出形成されている。この嵌合突起27は嵌合穴26に対応して嵌合穴26と同数設けられ、嵌合穴26内に嵌合し得る大きさに設計されている。
【0029】
また、仕切り板23の端部23dにおいて、この嵌合突起27相互の間には、偏平チューブ12の端部のうち、仕切り部12cと当接する凹部28、およびシートメタル18のチューブ挿入穴22の周縁部の打ち出し部(バーリング部)22aと嵌合する円弧部29が形成されている。
なお、仕切り板23のうち、この端部23dと反対側の端部23e(図3)は左右の湾曲部23b、23cと平板部23aとの組み合わせからなる曲がり形状(図2(a)の平面形状参照)でもって、タンク本体部16の上面壁の内面に接合される。
【0030】
温水Uターン用の第2タンク15は、偏平チューブ12の第1通路12aからの温水を矢印Bのように第2通路12bへ向かってUターンさせるものであるから、タンク内部空間を仕切る必要はなく、タンク内部は1つの空間を形成している。従って、シートメタル19には、図3のチューブ挿入穴22に相当する長穴状のチューブ挿入穴(図示せず)を開けておくだけでよい。
【0031】
また、コア部11のチューブ積層方向の最外側(図1の左右両端部)に位置するコルゲートフィン13のさらに外側にはサイドプレート29、30が配設され、このサイドプレート29、30は最外側のコルゲートフィン13およびシートメタル18、19に接合される。
なお、タンク本体部16、17およびシートメタル18、19は芯材(A3000系)の片面(外側面)のみにろう材(A4000系)をクラッドした片面アルミニウムクラッド材で成形され、仕切り板23は芯材(A3000系)の両面にろう材(A4000系)をクラッドした両面アルミニウムクラッド材で成形されている。
【0032】
上記した熱交換器では、その他の部材もすべてアルミニウム(アルミニウム合金を含む)で形成され、図1の組付状態に組付けた後に、この組付体をろう付け炉に搬入して、各部材間を一体ろう付けすることより、熱交換器全体の組付が完了する。
ところで、このろう付け前の組付工程において、仕切り板23はシートメタル18に対して嵌合突起27を嵌合穴26に嵌合するから、仕切り板23やシートメタル18の成形上の寸法ばらつきが生じても、嵌合突起27と嵌合穴26との嵌合部では、この両者間の相対位置調整により寸法ばらつきを吸収できる。従って、成形上の寸法ばらつきに影響されることなく、仕切り板23とシートメタル18間の接触部を常に確実に形成できる。
【0033】
その結果、この嵌合突起27と嵌合穴26との嵌合接触部をろう付けの起点として、仕切り板23とシートメタル18とを良好にろう付けにより接合できる。そのため、仕切り板23の接合不良によるタンク14内での内部温水洩れ(温水入口、出口パイプ20、21の間を短絡する温水流れ)の発生を防止できる。
次に、上記構成において作動を説明すると、熱交換器10の温水入出用タンク14の温水入口パイプ20と温水出口パイプ21は、車両走行用の水冷式エンジン(図示せず)の温水回路に接続されるので、車両エンジンの運転時には車両側ウォータポンプの作動により温水が循環する。車両エンジンからの温水は入口パイプ20から仕切り板23の湾曲部23bの案内によりタンク14内の温水入口空間24内に流入し、ここから、偏平チューブ12の第1通路12a内にスムースに流入する。
【0034】
温水は第1通路12aを通過した後、Uターン用のタンク15に至り、ここで、温水は図1の矢印Bのように流れ方向を反転して偏平チューブ12の第2通路12b内に流入する。次に、温水は、この第2通路12bを通過した後、タンク14内の温水出口空間25内に流入し、仕切り板23の湾曲部23cの案内により温水は温水出口空間25から温水出口パイプ21へスムースに流れる。
【0035】
一方、車両用空調装置の送風機により空調空気は矢印A方向に送風され、偏平チューブ12とコルゲートフィン13との間の空隙部を通過する。このとき、送風空気は偏平チューブ12内の温水と熱交換して加熱され、温風となる。車室内への吹出空気温度の調整は、例えば、熱交換器10への温水流量を温水弁(図示せず)により調整することにより行うことができる。
【0036】
なお、熱交換器10において、偏平チューブ12の温水入口側の第1通路12aを空気流れ方向Aの下流側に配置し、温水出口側の第2通路12bを空気流れ方向Aの上流側に配置することにより、効率の良い対向流の熱交換を行うことができる。
(第2実施形態)
図6〜図8は第2実施形態であり、仕切り板23のうち、シートメタル18側の端部23dとシートメタル18とのろう付け性向上のための組付構造の他の例である。
【0037】
第1実施形態では、シートメタル18において、長穴状のチューブ挿入穴22相互の間に仕切り部12cに隣接して矩形状の嵌合穴26を開けているが、第2実施形態ではこの嵌合穴26を廃止し、その代わりに、シートメタル18において、長穴状のチューブ挿入穴22の中央位置(偏平チューブ12の仕切り部12cと同一位置)に、チューブ挿入穴22と連通するスリット状の嵌合溝30を開けている。このスリット状の嵌合溝30はチューブ挿入穴22の長手方向(空気流れ方向A)と直交する方向に延びるものである。
【0038】
一方、仕切り板23のうち、シートメタル18側の端部23dに突出形成される嵌合突起27は上記スリット状の嵌合溝30に嵌合するため、第1実施形態の場合より幅広く形成してある。
ところで、第1実施形態では円弧部29をチューブ挿入穴22の周縁部の打ち出し部(バーリング部)22aと嵌合する形状に成形する必要があり、その寸法精度を出すのが難しい。これに対し、第2実施形態によると、嵌合突起27相互の間には第1実施形態の円弧部29を形成する必要がなくなって、偏平チューブ12の端部の仕切り部12cと当接する凹部28を設けるだけでよい。その結果、第1実施形態に比して第2実施形態の方が仕切り板23とシートメタル18とのろう付け性をより一層向上できる。
【0039】
なお、第2実施形態では、チューブ挿入穴22と連通するスリット状嵌合溝30の形成により、シートメタル18の剛性が低下して、シートメタル18が変形しやすくなる恐れがあるので、スリット状嵌合溝30をタンク左右方向(空気流れ方向Aと直交方向)に連続して形成せずに、タンク左右方向の途中部位にスリット状嵌合溝30を分断して、チューブ挿入穴22相互間の部位を空気流れ方向Aで連結する部分を形成した方が好ましい。
【0040】
(他の実施形態)
なお、上記した実施形態では、熱交換器のチューブ12として一枚の金属薄板にて第1、第2の通路12a、12bを一体成形するタイプのものについて説明したが、第1、第2の通路12a、12bをそれぞれ独立に成形した2本のチューブで構成してもよいことは勿論である。
【0041】
また、温水入出用のタンク14において、温水入口パイプ20と温水出口パイプ21とを完全に一直線上に配置せず、微小量だけ、この両パイプ20、21をずらして配置しても実用上は差し支えない。
また、上記した実施形態では、本発明を車両用空調装置における温水式暖房用熱交換器に適用した場合について説明したが、本発明はこれに限らず、温水等の熱源流体と空気との間で熱交換を行う熱交換器一般に広く適用可能である。例えば、冷水と空気との間で熱交換を行う冷水式の冷房用熱交換器に本発明を適用してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す熱交換器の斜視図である。
【図2】(a)は図1の熱交換器における温水入出用タンクの上面図、(b)は(a)のC−C断面図、(c)は(a)のD−D断面図である。
【図3】図1の熱交換器の要部の分解斜視図である。
【図4】図3の組付状態の断面図で、図5のE−E断面を示す。
【図5】図3の組付状態の上面図である。
【図6】本発明の第2実施形態を示すもので、図3に相当する要部の分解斜視図である。
【図7】図6の組付状態の断面図で、図8のF−F断面を示す。
【図8】図6の組付状態の上面図である。
【図9】従来の熱交換器における温水入出用タンクの断面図である。
【符号の説明】
11…熱交換コア部、12…偏平チューブ、12a…第1通路、
12b…第2通路、13…コルゲートフィン、14…温水入出用タンク、
15…温水Uターン用タンク、16、17…タンク本体部、
18、19…シートメタル、20…温水入口パイプ、21…温水出口パイプ、
22…チューブ挿入穴、23…仕切り板、23a…平板部、
23b、23c…第1、第2湾曲部、26…嵌合穴、27…嵌合突起、
30…スリット状嵌合溝。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention generally relates to a heat exchanger that exchanges heat between air and a heat source fluid (hot water or the like), and more specifically, heat exchange for hot water heating in a vehicle air conditioner. It is suitable for use in a vessel.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a hot water heating heat exchanger in a vehicle air conditioner is known in which hot water flows in a U-turn before and after the air flow direction as described in JP-A-9-250895. In this front-rear U-turn type, the hot water in / out tank disposed on one end side of the heat exchange core is configured as shown in FIG. That is, a partition plate 23 is arranged inside the hot water inlet / outlet tank 14, and the partition plate 23 allows the hot water outlet space 24 and the hot water outlet pipe 21 to communicate the internal space of the tank 14 with the hot water inlet pipe 20. The space 25 is partitioned before and after the air flow direction A.
[0003]
Hot water from the hot water inlet pipe 20 passes through the tube passage on one side of the tube of the heat exchange core part from the hot water inlet space 24 and before and after the air flow direction, and then U-turns on the other end side of the heat exchange core part. To do. Thereafter, the hot water passes through the tube passage on the other side of the heat exchange core portion before and after the air flow direction, and then flows into the hot water outlet space 25 in the tank and flows out from the hot water outlet pipe 21 to the outside.
[0004]
[Problems to be solved by the invention]
By the way, according to the above conventional structure, since the two spaces 24 and 25 are partitioned by the partition plate 23 extending straight in the direction orthogonal to the air flow direction A, the hot water inlet is connected to each of the spaces 24 and 25. When the outlet pipes 20 and 21 are arranged, it is necessary to make the thickness dimension in the air flow direction A of the two spaces 24 and 25 larger than the hot water inlet and the outlet pipes 20 and 21, respectively. As a result, the thickness dimension D of the entire tank 14 in the air flow direction A inevitably increases, which hinders the downsizing of the heat exchanger.
[0005]
Further, according to the above-described conventional structure, the positions of the hot water inlet and outlet pipes 20 and 21 are inevitably shifted by the dimension L in FIG. 9, and the pipes 20 and 21 cannot be arranged on the same straight line. As a result, when the heating heat exchanger is disposed horizontally, for example, the installation heights of the hot water inlet and outlet pipes 20 and 21 in the vertical direction must be different from each other. , 21 position selection freedom is reduced, and the vehicle mountability of the heating heat exchanger is deteriorated.
[0006]
The tank 14 is configured to have a predetermined tank shape by the tank main body 16 and a sheet metal (not shown) joined thereto, and the end of the partition plate 23 is formed on the sheet metal. However, since the end of the tube is inserted into the sheet metal and the tube hole to be joined is formed and has a complicated uneven shape, the dimensions in forming the sheet metal and the partition plate 23 are formed. Due to the variation, a gap is generated between the sheet metal and the end portion of the partition plate 23, and a bonding (brazing) defect is likely to occur.
[0007]
When the joining failure of the partition plate 23 occurs, an internal hot water leak that short-circuits between the hot water inlet and the outlet pipes 20 and 21 occurs, thereby degrading the heat dissipation performance of the heat exchanger. Furthermore, in the type of air conditioner that adjusts the temperature of the blown air by adjusting the flow rate of hot water to the heat exchanger for heating, the temperature distribution of the blown air in the heat exchanger for heating is caused by internal hot water leakage when adjusting the minute flow rate of the hot water flow rate. The problem of worsening occurs.
[0008]
The present invention has been made in view of the above points, and the internal space of the fluid inlet / outlet tank disposed on one end side of the heat exchange core portion is divided into a space on the heat source fluid inlet side and the heat source fluid outlet side in the air flow direction. The purpose of the partitioning heat exchanger is to reduce the thickness dimension of the tank in the air flow direction.
Another object of the present invention is to prevent internal fluid leakage due to poor bonding of partition plates.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first to fifth aspects of the present invention, the heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21) are arranged in the air flow direction (A) with respect to the heat source fluid inlet / outlet tank (14). Arranged on a substantially straight line extending in a direction orthogonal to the
The partition plate (23) curves toward the heat source fluid outlet space (25) in the tank (14), and the heat source fluid from the heat source fluid inlet pipe (20) flows into the first passage (12a) of the tube (12). Forming the first curved portion (23b) to be guided;
A second bending portion that curves toward the heat source fluid inlet space (24) and guides the heat source fluid from the second passage (12b) of the tube (12) to the heat source fluid outlet pipe (21) in the partition plate (23). (23c) is formed.
[0010]
According to this, even if the inlet / outlet pipes (20, 21) for the heat source fluid are arranged substantially in a straight line, the partition plate (23) exerts the partition action between the inlet side heat source fluid and the outlet side heat source fluid, and the first A smooth flow of the heat source fluid can be ensured by the guiding action by the second bending portion (23b).
Therefore, the thickness dimension (D) in the air flow direction of the tank (14) can be reduced by the linear arrangement of the inlet / outlet pipes (20, 21) without hindering the input / output operation of the heat source fluid, and heat exchange The device can be downsized.
[0011]
Further, due to the linear arrangement of the inlet / outlet pipes (20, 21), for example, in the case of horizontal heat exchanger arrangement, the inlet / outlet pipes (20, 21) can be arranged at the same height in the vertical direction. Compared to the case where the entrance / exit pipes (20, 21) must be arranged at different height positions as in the prior art, the degree of freedom in selecting the position of the entrance / exit pipes (20, 21) is increased, so Mountability can be improved.
[0012]
According to the present invention, as described in claim 2, a U-turn tank that makes U-turn the hot water from the first passage (12a) to the second passage (12b) on the other end side of the heat exchange core portion (11). It can implement suitably in the heat exchanger which has arrange | positioned (15).
Further, according to the present invention, specifically, the heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21) are arranged in the direction of air flow with respect to the heat source fluid inlet / outlet tank (14). (A) are arranged at both ends in the direction orthogonal to the two curved portions (23b) (23c) of the partition plate (23) corresponding to the heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21). A flat plate portion (23a) located at the center portion of the heat source fluid inlet / outlet tank (14) is disposed between the two curved portions (23b) and (23c). It can be set as the structure formed integrally.
[0013]
In particular, in the invention of claim 4, the tube is a flat tube (12) having a flat cross section parallel to the air flow direction (A), and the heat source fluid inlet / outlet tank (14) is a flat tube (12). ) And a tank body (16) in which the heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21) are arranged,
The end portion of the flat tube (12) is inserted into the sheet metal (18), and a plurality of long hole-like tube insertion holes (22) to be joined are provided, and the plurality of long hole-like tube insertion holes (22) are provided. ) Provide a fitting hole (26) between them,
A fitting projection (27) to be fitted into the fitting hole (26) is provided at the end (23d) on the sheet metal (18) side of the partition plate (23), and fitted into the fitting hole (26). The partition plate (23) is joined to the sheet metal (18) with the mating protrusion (27) fitted.
[0014]
According to this, when the heat exchanger is integrally joined by brazing, the fitting hole (26) and the fitting projection ( 27), a contact portion serving as a starting point of brazing can be formed without fail, and the joining (brazing) property between the sheet metal (18) and the partition plate (23) can be improved. Thereby, internal fluid leakage due to poor bonding of the partition plate (23) can be prevented.
[0015]
In the invention according to claim 5, instead of the fitting hole (26) in claim 4, the tube insertion hole (22) communicates with each other between the plurality of elongated tube insertion holes (22). In the state where the slit-like fitting groove (30) is provided, and the fitting projection (27) of the partition plate (23) is fitted into the slit-like fitting groove (30), the partition plate (23) is made of sheet metal ( 18).
[0016]
Also according to this, since the contact portion that becomes the starting point of brazing can be surely formed by the fitting portion between the slit-like fitting groove (30) and the fitting protrusion (27), The joining (brazing) property between the metal (18) and the partition plate (23) can be improved, and internal fluid leakage due to poor joining of the partition plate (23) can be prevented.
[0017]
In particular, according to the invention described in claim 5, since the slit-like fitting groove (30) is formed so as to communicate with the tube insertion hole (22), the periphery of the tube insertion hole (22) is formed in the partition plate (23). It is not necessary to provide a complicated shape corresponding to the burring shape of the part. Therefore, the joining (brazing) property of the partition plate (23) can be further improved.
[0018]
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows the overall shape of a heat exchanger according to the first embodiment, and shows an example applied to a hot water heating heat exchanger in a vehicle air conditioner. In this heat exchanger 10, warm water (engine cooling water) supplied from a vehicle engine (not shown) is used as a heat source fluid, and the heating air is heated by radiating the heat of the warm water into the heating air. It has become.
[0020]
In this heat exchanger 10, the heat exchange core portion 11 is constituted by a flat tube 12 and a corrugated fin 13. In FIG. 1, the center portion has a fractured portion and is vertically long. However, in actuality, the heat exchanging core portion 11 has a horizontally long shape in which the widthwise dimension in the left-right direction is larger.
The flat tube 12 is formed in a flat shape (see FIG. 3) parallel to the flow direction A of the heating air to the heat exchange core portion 11, and the flat tube 12 extends in the left-right direction in FIGS. Many are arranged in parallel. And the corrugated fin 13 shape | molded by the waveform between the many flat tubes 12 is arrange | positioned and joined. As is well known, a number of louvers (not shown) are cut and raised on the corrugated fins 11a at a predetermined angle with respect to the flow direction of the heating air.
[0021]
Further, as shown in FIG. 3, the flat tube 12 has a partition portion 12c at the center of the air flow direction (tube cross-sectional longitudinal direction) A, and the partition portion 12c serves as a first passage (leeward side passage). ) 12a and a second passage (windward passage) 12b. Here, the first passage 12a inside the flat tube 12 is a passage on the warm water inlet side and located on the leeward side, and the second passage 12b is a passage on the warm water outlet side and located on the windward side. The hot water flow and the air flow are configured in a counterflow type. Thereby, the heat exchange core part 11 is the 2nd core part comprised by the 1st core part 11a comprised by the 1st channel | path (leeward passage) 12a of the flat tube 12, and the 2nd channel | path (windward passage) 12b. 11b is formed separately in front and rear in the air flow direction A.
[0022]
The flat tube 12 is formed by bending a single flat aluminum sheet material into a flat cross-sectional shape in which a partition portion 12c is formed at an intermediate portion between both passages 12a and 12b. For example, an aluminum clad material in which a brazing material (A4000 series) is clad on one side (surface outside the tube) of a core material (A3000 series) is used. The corrugated fin 13 is formed by corrugated aluminum bare material (A3000 series) that is not clad with a brazing material.
[0023]
In the heat exchanger 10, first and second tanks 14 and 15 for distributing hot water to the flat tube 12 and collecting hot water from the flat tube 12 are arranged on both ends of the heat exchange core 11, respectively. Has been. The first tank 14 on one end (upper end) side of the heat exchanging core 11 is a hot water in / out tank, and the second tank 15 on the other end (lower end) side is a U-turn tank for hot water. In FIG. 1, an arrow B indicates the U-turn direction of the hot water, and the hot water flows up and down in both the passages 12 a and 12 b in the flat tube 12 by the U-turn of the hot water.
[0024]
The first and second tanks 14 and 15 each have a predetermined tank shape (elongated rectangular parallelepiped shape) by the tank main body portions 16 and 17 and the sheet metals 18 and 19.
Next, the specific structure of the first tank 14 for entering and leaving the hot water will be described in detail with reference to FIG. 2. The mounting hole 16 a of the hot water inlet pipe 20 is formed on the upper wall surface of the tank body 16 on one end (left end) side in the left-right direction. The hot water inlet pipe 20 is inserted into the attachment hole 16a and joined. A mounting hole 16b for the hot water outlet pipe 21 is formed on the other end (right end) side in the left-right direction of the tank body 16, and the hot water outlet pipe 21 is inserted into and joined to the mounting hole 16b.
[0025]
Here, each of the hot water inlet pipe 20 and the hot water outlet pipe 21 is a circular round pipe, and both the pipes 20 and 21 are arranged in the tank lateral direction (air flow direction A as shown in FIG. 2A). Are arranged on the same straight line extending in the direction perpendicular to the direction. On the other hand, the sheet metal 18 has a plate shape that closes the open end of the tank body 16 as shown in FIGS. 2B and 2C, and the end of the flat tube 12 is inserted into the sheet metal 18. A large number of elongated tube insertion holes 22 (FIG. 3) are formed in parallel in the left-right direction of the tank. As shown in FIG. 3, a punched portion 22a protruding to the inside of the tank is burringed at the peripheral edge of the tube insertion hole 22, and the end of the flat tube 12 and the sheet metal 18 are securely connected by the punched portion 22a. It is in contact with and joined.
[0026]
Next, a partition plate 23 is disposed inside the first tank 14 on the warm water inlet / outlet side. This partition plate 23 is for partitioning the internal space of the first tank 14 in the front and rear direction of the air flow direction A, and defines a hot water inlet space 24 communicating with the hot water inlet pipe 20 on the downstream side of the air flow direction A. A hot water outlet space 25 communicating with the hot water outlet pipe 21 is defined on the upstream side in the flow direction A.
[0027]
Thus, in order to achieve both the partitioning of the spaces 24 and 25 and the disposition of the pipes 20 and 21 on the same straight line extending in the left-right direction of the tank as described above, the specific shape of the partition plate 23 Is devised as follows.
That is, in the partition plate 23, a flat plate portion 23a extending in parallel with the front and rear wall surfaces of the tank main body portion 16 is formed at a central portion in the left-right direction of the tank. First and second curved portions 23b and 23c are formed. Here, the first curved portion 23b on the left side is curved from the flat plate portion 23a toward the hot water outlet space 25, so that the inflowing hot water from the hot water inlet pipe 20 passes through the hot water inlet space 24 as shown in FIG. It is smoothly guided and flows into the first passage 12a in the flat tube 12.
[0028]
Further, since the second curved portion 23c on the right side is curved toward the hot water inlet space 24 side from the flat plate portion 23a, the hot water from the second passage 12b in the flat tube 12 is heated as shown in FIG. The hot water outlet pipe 20 is smoothly guided through the outlet space 25.
Of the partition plate 23, the end 23 d on the sheet metal 18 side forms a portion extending linearly over the entire length in the left-right direction of the tank along the left-right direction of the tank, and brazing the end 23 d and the sheet metal 18. The following measures have been taken to improve performance. That is, in the sheet metal 18, a rectangular fitting hole 26 is formed adjacent to the partition portion 12 c between the elongated hole-like tube insertion holes 22. On the other hand, in the partition plate 23, a fitting protrusion 27 is formed to protrude toward the sheet metal 18 at an end 23d on the sheet metal 18 side. The same number of fitting protrusions 27 as the fitting holes 26 are provided corresponding to the fitting holes 26, and the fitting protrusions 27 are designed to have a size capable of fitting into the fitting holes 26.
[0029]
Further, at the end 23 d of the partition plate 23, between the fitting protrusions 27, the recess 28 that contacts the partition 12 c and the tube insertion hole 22 of the sheet metal 18 among the ends of the flat tube 12. A circular arc portion 29 is formed to be fitted to a peripheral portion (burring portion) 22a.
Of the partition plate 23, an end 23e (FIG. 3) opposite to the end 23d is a curved shape (a plane of FIG. 2A) formed by a combination of left and right curved portions 23b, 23c and a flat plate portion 23a. The shape of the tank body 16 is joined to the inner surface of the upper surface wall.
[0030]
The second tank 15 for the hot water U-turn makes the U-turn the hot water from the first passage 12a of the flat tube 12 toward the second passage 12b as shown by an arrow B, and therefore it is necessary to partition the tank internal space. The inside of the tank forms a single space. Therefore, it is only necessary to make a long hole-like tube insertion hole (not shown) corresponding to the tube insertion hole 22 of FIG.
[0031]
Further, side plates 29 and 30 are disposed on the outer side of the corrugated fins 13 located on the outermost side (left and right end portions in FIG. 1) of the core portion 11 in the tube stacking direction. The corrugated fins 13 and the sheet metals 18 and 19 are joined.
The tank body parts 16 and 17 and the sheet metals 18 and 19 are formed of a single-sided aluminum clad material in which a brazing material (A4000 series) is clad only on one side (outer side) of the core material (A3000 series). It is formed of a double-sided aluminum clad material in which a brazing material (A4000 series) is clad on both sides of a core material (A3000 series).
[0032]
In the above heat exchanger, all other members are also formed of aluminum (including an aluminum alloy), and after assembling in the assembled state of FIG. The assembly of the entire heat exchanger is completed by brazing the gap together.
By the way, in the assembly process before brazing, since the partition plate 23 fits the fitting protrusions 27 into the fitting holes 26 with respect to the sheet metal 18, dimensional variation in molding of the partition plate 23 and the sheet metal 18. Even if this occurs, in the fitting portion between the fitting protrusion 27 and the fitting hole 26, the dimensional variation can be absorbed by adjusting the relative position between them. Therefore, the contact portion between the partition plate 23 and the sheet metal 18 can always be reliably formed without being affected by the dimensional variation in molding.
[0033]
As a result, the partition plate 23 and the sheet metal 18 can be satisfactorily joined by brazing using the fitting contact portion between the fitting protrusion 27 and the fitting hole 26 as a starting point of brazing. Therefore, it is possible to prevent the occurrence of internal hot water leakage (warm water flow that short-circuits between the hot water inlet and the outlet pipes 20 and 21) in the tank 14 due to poor connection of the partition plate 23.
Next, the operation in the above configuration will be described. The hot water inlet pipe 20 and the hot water outlet pipe 21 of the hot water inlet / outlet tank 14 of the heat exchanger 10 are connected to a hot water circuit of a water-cooled engine (not shown) for vehicle travel. Therefore, the hot water circulates by the operation of the vehicle-side water pump during operation of the vehicle engine. Hot water from the vehicle engine flows into the hot water inlet space 24 in the tank 14 from the inlet pipe 20 by the guide of the curved portion 23b of the partition plate 23, and smoothly flows into the first passage 12a of the flat tube 12 from here. .
[0034]
The hot water passes through the first passage 12a and then reaches the U-turn tank 15, where the hot water reverses the flow direction as shown by the arrow B in FIG. 1 and flows into the second passage 12b of the flat tube 12. To do. Next, the hot water passes through the second passage 12b and then flows into the hot water outlet space 25 in the tank 14, and the hot water is guided from the hot water outlet space 25 to the hot water outlet pipe 21 by guidance of the curved portion 23c of the partition plate 23. It flows smoothly.
[0035]
On the other hand, the conditioned air is blown in the direction of arrow A by the blower of the vehicle air conditioner and passes through the gap between the flat tube 12 and the corrugated fin 13. At this time, the blown air is heated by exchanging heat with the warm water in the flat tube 12 to become warm air. Adjustment of the temperature of the air blown into the passenger compartment can be performed, for example, by adjusting the flow rate of hot water to the heat exchanger 10 using a hot water valve (not shown).
[0036]
In the heat exchanger 10, the first passage 12a on the warm water inlet side of the flat tube 12 is disposed on the downstream side in the air flow direction A, and the second passage 12b on the warm water outlet side is disposed on the upstream side in the air flow direction A. By doing so, it is possible to perform efficient countercurrent heat exchange.
(Second Embodiment)
6-8 is 2nd Embodiment, and is the other example of the assembly | attachment structure for the brazing property improvement of the edge part 23d by the side of the sheet metal 18 and the sheet metal 18 among the partition plates 23. FIG.
[0037]
In the first embodiment, in the sheet metal 18, a rectangular fitting hole 26 is opened adjacent to the partition portion 12 c between the long hole-like tube insertion holes 22. In the second embodiment, this fitting is performed. The joint hole 26 is abolished, and instead, in the sheet metal 18, a slit shape communicating with the tube insertion hole 22 at the center position of the elongated hole-shaped tube insertion hole 22 (the same position as the partition portion 12 c of the flat tube 12). The fitting groove 30 is opened. The slit-like fitting groove 30 extends in a direction orthogonal to the longitudinal direction (air flow direction A) of the tube insertion hole 22.
[0038]
On the other hand, in the partition plate 23, the fitting protrusion 27 formed to protrude from the end portion 23d on the sheet metal 18 side is fitted to the slit-like fitting groove 30, so that it is formed wider than the case of the first embodiment. It is.
By the way, in 1st Embodiment, it is necessary to shape | mold the circular arc part 29 in the shape fitted with the punching part (burring part) 22a of the peripheral part of the tube insertion hole 22, and it is difficult to get the dimensional accuracy. On the other hand, according to the second embodiment, there is no need to form the arc portion 29 of the first embodiment between the fitting protrusions 27, and the concave portion that contacts the partition portion 12 c at the end of the flat tube 12. It is only necessary to provide 28. As a result, the brazing property between the partition plate 23 and the sheet metal 18 can be further improved in the second embodiment compared to the first embodiment.
[0039]
In the second embodiment, the formation of the slit-like fitting groove 30 that communicates with the tube insertion hole 22 reduces the rigidity of the sheet metal 18 and the sheet metal 18 may be easily deformed. Instead of continuously forming the fitting groove 30 in the left-right direction of the tank (perpendicular to the air flow direction A), the slit-like fitting groove 30 is divided in the middle of the left-right direction of the tank, and the tube insertion holes 22 are separated from each other. It is preferable to form a portion that connects these parts in the air flow direction A.
[0040]
(Other embodiments)
In the above-described embodiment, the type in which the first and second passages 12a and 12b are integrally formed with a single thin metal plate as the tube 12 of the heat exchanger has been described. Of course, the passages 12a and 12b may be formed of two tubes formed independently.
[0041]
Further, in the hot water inlet / outlet tank 14, the hot water inlet pipe 20 and the hot water outlet pipe 21 are not completely arranged in a straight line, but even if the pipes 20, 21 are shifted by a minute amount, they are practically used. There is no problem.
Further, in the above-described embodiment, the case where the present invention is applied to a hot water heating heat exchanger in a vehicle air conditioner has been described. However, the present invention is not limited to this, and a heat source fluid such as hot water and an air are not used. In general, it can be widely applied to heat exchangers that perform heat exchange. For example, the present invention may be applied to a cold water type cooling heat exchanger that performs heat exchange between cold water and air.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat exchanger showing a first embodiment of the present invention.
2A is a top view of a hot water inlet / outlet tank in the heat exchanger of FIG. 1, FIG. 2B is a sectional view taken on line CC in FIG. 2A, and FIG. 2C is a sectional view taken on line DD in FIG. It is.
3 is an exploded perspective view of a main part of the heat exchanger of FIG. 1. FIG.
4 is a cross-sectional view of the assembled state of FIG. 3, showing a cross section taken along line EE of FIG.
FIG. 5 is a top view of the assembled state of FIG. 3;
6 shows a second embodiment of the present invention, and is an exploded perspective view of a main part corresponding to FIG. 3. FIG.
7 is a cross-sectional view of the assembled state of FIG. 6, showing a cross-section FF of FIG.
8 is a top view of the assembled state of FIG. 6;
FIG. 9 is a sectional view of a hot water inlet / outlet tank in a conventional heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Heat exchange core part, 12 ... Flat tube, 12a ... 1st channel | path,
12b ... second passage, 13 ... corrugated fin, 14 ... warm water tank
15 ... Tank for hot water U-turn, 16, 17 ... Tank body,
18, 19 ... sheet metal, 20 ... hot water inlet pipe, 21 ... hot water outlet pipe,
22 ... Tube insertion hole, 23 ... Partition plate, 23a ... Flat plate part,
23b, 23c ... 1st, 2nd bending part, 26 ... Fitting hole, 27 ... Fitting protrusion,
30: A slit-like fitting groove.

Claims (5)

熱源流体が流通するチューブ(12)と、このチューブ(112)に接合されたフィン部材(13)とからなる熱交換コア部(11)を備え、
前記チューブ(12)により構成される熱源流体の通路が、前記熱交換コア部(11)への空気流れ方向(A)の前後において入口側の第1通路(12a)と出口側の第2通路(12b)に分割されており、
前記熱交換コア部(11)の一端側に、前記第1通路(12a)および前記第2通路(12b)への熱源流体入出用のタンク(14)を配置するとともに、
前記熱源流体入出用タンク(14)内に前記空気流れ方向(A)と直交方向に延びる仕切り板(23)を配置し、この仕切り板(23)により前記熱源流体入出用タンク(14)の内部空間を熱源流体入口空間(24)と熱源流体出口空間(25)とに仕切り、
前記熱源流体入出用タンク(14)に、前記熱源流体入口空間(24)に連通する熱源流体入口パイプ(20)および前記熱源流体出口空間(25)に連通する熱源流体出口パイプ(21)を配置し、
前記熱源流体入口空間(24)に前記第1通路(12a)を連通させ、前記熱源流体出口空間(25)に前記第2通路(12b)を連通させる熱交換器において、
前記熱源流体入口パイプ(20)および前記熱源流体出口パイプ(21)を前記熱源流体入出用タンク(14)に対して前記空気流れ方向(A)と直交方向に延びる略一直線上に配置し、
前記仕切り板(23)に、前記熱源流体出口空間(25)側へ湾曲して、前記熱源流体入口パイプ(20)からの熱源流体を前記第1通路(12a)に案内する第1湾曲部(23b)を形成するとともに、
前記仕切り板(23)に、前記熱源流体入口空間(24)側へ湾曲して、前記第2通路(12b)からの熱源流体を前記熱源流体出口パイプ(21)に案内する第2湾曲部(23c)を形成したことを特徴とする熱交換器。
A heat exchange core portion (11) comprising a tube (12) through which a heat source fluid flows and a fin member (13) joined to the tube (112);
The heat source fluid passage constituted by the tube (12) has a first passage (12a) on the inlet side and a second passage on the outlet side before and after the air flow direction (A) to the heat exchange core portion (11). (12b),
While disposing a tank (14) for heat source fluid in and out of the first passage (12a) and the second passage (12b) on one end side of the heat exchange core portion (11),
A partition plate (23) extending in a direction orthogonal to the air flow direction (A) is disposed in the heat source fluid input / output tank (14), and the partition plate (23) allows the inside of the heat source fluid input / output tank (14). Partition the space into a heat source fluid inlet space (24) and a heat source fluid outlet space (25);
A heat source fluid inlet pipe (20) communicating with the heat source fluid inlet space (24) and a heat source fluid outlet pipe (21) communicating with the heat source fluid outlet space (25) are disposed in the heat source fluid inlet / outlet tank (14). And
In the heat exchanger, the first passage (12a) is communicated with the heat source fluid inlet space (24), and the second passage (12b) is communicated with the heat source fluid outlet space (25).
The heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21) are arranged on a substantially straight line extending in a direction perpendicular to the air flow direction (A) with respect to the heat source fluid inlet / outlet tank (14),
A first curved portion (curved on the partition plate (23) toward the heat source fluid outlet space (25) to guide the heat source fluid from the heat source fluid inlet pipe (20) to the first passage (12a) ( 23b)
A second curved portion (curved on the partition plate (23) toward the heat source fluid inlet space (24) to guide the heat source fluid from the second passage (12b) to the heat source fluid outlet pipe (21). A heat exchanger characterized by forming 23c).
前記熱交換コア部(11)の他端側に、前記第1通路(12a)からの温水を前記第2通路(12b)へUターンさせるUターン用タンク(15)を配置したことを特徴とする請求項1に記載の熱交換器。A U-turn tank (15) for U-turning hot water from the first passage (12a) to the second passage (12b) is disposed on the other end side of the heat exchange core portion (11). The heat exchanger according to claim 1. 前記熱源流体入口パイプ(20)および前記熱源流体出口パイプ(21)は前記熱源流体入出用タンク(14)に対して前記空気流れ方向(A)と直交方向の両端側に配置され、
前記仕切り板(23)の前記2つの湾曲部(23b)(23c)は、前記熱源流体入口パイプ(20)および前記熱源流体出口パイプ(21)に対応して前記空気流れ方向(A)と直交方向の両端側に配置され、
前記2つの湾曲部(23b)(23c)の間には前記熱源流体入出用タンク(14)の中央部に位置する平板部(23a)が一体に形成されていることを特徴とする請求項1または2に記載の熱交換器。
The heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21) are disposed on both ends of the heat source fluid inlet / outlet tank (14) in the direction orthogonal to the air flow direction (A),
The two curved portions (23b) (23c) of the partition plate (23) are orthogonal to the air flow direction (A) corresponding to the heat source fluid inlet pipe (20) and the heat source fluid outlet pipe (21). Arranged at both ends of the direction,
The flat plate part (23a) located in the center part of the said heat source fluid inlet / outlet tank (14) is integrally formed between the said two curved parts (23b) (23c). Or the heat exchanger of 2.
前記チューブは、前記空気流れ方向(A)と平行な断面偏平状の偏平チューブ(12)であり、
また、前記熱源流体入出用タンク(14)は、前記偏平チューブ(12)の端部を固定するシートメタル(18)と、前記熱源流体入口パイプ(20)および前記熱源流体出口パイプ(21)が配置されるタンク本体部(16)とから構成されており、
前記シートメタル(18)には前記偏平チューブ(12)の端部が挿入され、接合される複数の長穴状のチューブ挿入穴(22)が設けられており、
この複数の長穴状のチューブ挿入穴(22)相互の間に嵌合穴(26)が設けられており、
前記仕切り板(23)のうち、前記シートメタル(18)側の端部(23d)に、前記嵌合穴(26)に嵌合される嵌合突起(27)が設けられており、
前記嵌合穴(26)に前記嵌合突起(27)を嵌合した状態で、前記仕切り板(23)を前記シートメタル(18)に接合することを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。
The tube is a flat tube (12) having a flat cross section parallel to the air flow direction (A),
The heat source fluid inlet / outlet tank (14) includes a sheet metal (18) for fixing an end of the flat tube (12), the heat source fluid inlet pipe (20), and the heat source fluid outlet pipe (21). It is composed of the tank body part (16) to be arranged,
The sheet metal (18) is provided with a plurality of elongated tube insertion holes (22) into which the ends of the flat tubes (12) are inserted and joined,
A fitting hole (26) is provided between the plurality of elongated hole-like tube insertion holes (22),
Of the partition plate (23), a fitting projection (27) fitted into the fitting hole (26) is provided at an end (23d) on the sheet metal (18) side,
The partition plate (23) is joined to the sheet metal (18) in a state in which the fitting protrusion (27) is fitted in the fitting hole (26). The heat exchanger as described in any one.
前記チューブは、前記空気流れ方向(A)と平行な断面偏平状の偏平チューブ(12)であり、
また、前記熱源流体入出用タンク(14)は、前記偏平チューブ(12)の端部を固定するシートメタル(18)と、前記熱源流体入口パイプ(20)および前記熱源流体出口パイプ(21)が配置されるタンク本体部(16)とから構成されており、
前記シートメタル(18)には前記偏平チューブ(12)の端部が挿入され、接合される複数の長穴状のチューブ挿入穴(22)が設けられており、
この複数の長穴状のチューブ挿入穴(22)相互の間に、このチューブ挿入穴(22)と連通するスリット状嵌合溝(30)が設けられており、
前記仕切り板(23)のうち、前記シートメタル(18)側の端部(23d)に、前記スリット状嵌合溝(30)に嵌合される嵌合突起(27)が設けられており、
前記スリット状嵌合溝(30)に前記嵌合突起(27)を嵌合した状態で、前記仕切り板(23)を前記シートメタル(18)に接合することを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。
The tube is a flat tube (12) having a flat cross section parallel to the air flow direction (A),
The heat source fluid inlet / outlet tank (14) includes a sheet metal (18) for fixing an end of the flat tube (12), the heat source fluid inlet pipe (20), and the heat source fluid outlet pipe (21). It is composed of the tank body part (16) to be arranged,
The sheet metal (18) is provided with a plurality of elongated tube insertion holes (22) into which the ends of the flat tubes (12) are inserted and joined,
A slit-like fitting groove (30) communicating with the tube insertion hole (22) is provided between the plurality of elongated hole-like tube insertion holes (22).
In the partition plate (23), an end (23d) on the sheet metal (18) side is provided with a fitting protrusion (27) fitted into the slit-like fitting groove (30),
The said partition plate (23) is joined to the said sheet metal (18) in the state which fitted the said fitting protrusion (27) in the said slit-shaped fitting groove (30). The heat exchanger as described in any one of these.
JP27608498A 1998-09-29 1998-09-29 Heat exchanger Expired - Fee Related JP3829499B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27608498A JP3829499B2 (en) 1998-09-29 1998-09-29 Heat exchanger
DE19942458A DE19942458B4 (en) 1998-09-29 1999-09-06 Heat exchanger for a vehicle air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27608498A JP3829499B2 (en) 1998-09-29 1998-09-29 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2000105097A JP2000105097A (en) 2000-04-11
JP3829499B2 true JP3829499B2 (en) 2006-10-04

Family

ID=17564592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27608498A Expired - Fee Related JP3829499B2 (en) 1998-09-29 1998-09-29 Heat exchanger

Country Status (2)

Country Link
JP (1) JP3829499B2 (en)
DE (1) DE19942458B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497347B1 (en) * 2007-06-05 2015-03-04 한라비스테온공조 주식회사 Heat exchanger

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031278A1 (en) * 1999-10-28 2001-05-03 Siemens Westinghouse Power Corporation Heat exchanger
KR20040005902A (en) * 2001-03-29 2004-01-16 쇼와 덴코 가부시키가이샤 Header for use in heat exchangers, heat exchanger and method for manufacturing the same
DE102004003789A1 (en) * 2004-01-23 2005-08-18 Behr Gmbh & Co. Kg heat exchangers
DE102004027402A1 (en) * 2004-06-04 2005-12-22 Behr Gmbh & Co. Kg heat exchangers
EP1731864A1 (en) * 2005-06-11 2006-12-13 Modine Manufacturing Company Metallic heat exchanger and method for manufacturing the same
KR100957665B1 (en) * 2005-06-11 2010-05-12 모다인 매뉴팩츄어링 컴파니 Fully-Metal Heat Exchanger and Method for its Production
JP4731212B2 (en) * 2005-06-16 2011-07-20 株式会社日本クライメイトシステムズ Heat exchanger
KR100831876B1 (en) * 2006-08-22 2008-05-22 모딘코리아 유한회사 Header tank and heat exchanger including the same
JP4850634B2 (en) * 2006-09-01 2012-01-11 株式会社ティラド Heat exchanger
DE102008029958A1 (en) * 2008-06-26 2009-12-31 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
DE102009021180A1 (en) 2009-05-13 2010-11-18 Behr Gmbh & Co. Kg Heat exchanger for use as heating device in motor vehicle air conditioning system, has inlet and outlet connecting pieces, where inlet axis of inlet piece and/or outlet axis of outlet piece are aligned to area level at specific angle
DE102009043689A1 (en) 2009-10-01 2011-04-07 Behr Gmbh & Co. Kg Heat exchanger
AU2011201083B2 (en) 2010-03-18 2013-12-05 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
US9309839B2 (en) 2010-03-18 2016-04-12 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
DE102010053478B4 (en) * 2010-12-04 2018-05-30 Modine Manufacturing Co. Heat exchanger and production process for heat exchangers
DE102012200516A1 (en) * 2012-01-13 2013-07-18 Behr Gmbh & Co. Kg Heat exchanger for motor car, has tube sheet whose adjacent regions are stepped between two pipes at different levels
GB2521574B (en) * 2012-10-10 2019-01-16 Trane Int Inc A header for an evaporator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254399A (en) * 1995-01-19 1996-10-01 Zexel Corp Heat exchanger
JPH08240395A (en) * 1995-03-06 1996-09-17 Zexel Corp Heat exchanger
JPH09250895A (en) * 1996-03-14 1997-09-22 Zexel Corp Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497347B1 (en) * 2007-06-05 2015-03-04 한라비스테온공조 주식회사 Heat exchanger

Also Published As

Publication number Publication date
DE19942458A1 (en) 2000-03-30
JP2000105097A (en) 2000-04-11
DE19942458B4 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP3829499B2 (en) Heat exchanger
US7740058B2 (en) Plate heat exchanger
EP0947792B1 (en) Refrigerant evaporator and manufacturing method for the same
EP0625686B1 (en) Laminated heat exchanger
US8074708B2 (en) Heat exchanger
EP0995962B1 (en) Double heat exchanger having condenser and radiator
US20060237178A1 (en) Heat exchanger
JPH116693A (en) Heat-exchanger for air-conditioner in vehicle
JP2015534030A (en) Heat exchanger
GB2356040A (en) Double heat exchanger for vehicle air conditioner
WO2007088850A1 (en) Heat exchanger for vehicle
US20090151918A1 (en) Heat Exchanger for Automobile and Fabricating Method Thereof
JPH0763492A (en) Heat exchanger
JP2007232356A (en) Heat exchanger for vehicle
JPH09126685A (en) Heat exchanger
US11603790B2 (en) Heat exchanger
JP4109746B2 (en) Integrated heat exchanger
JP4682494B2 (en) Heat exchanger
JP5002796B2 (en) Heat exchanger
JP2000039288A (en) Header for heat exchanger
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JP2018105509A (en) Heat exchanger
JP4931481B2 (en) Heat exchanger and manufacturing method thereof
US5653283A (en) Laminated type heat exchanger
JP2005195318A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees