JP3828886B2 - Selective surface modification / cleaning method - Google Patents

Selective surface modification / cleaning method Download PDF

Info

Publication number
JP3828886B2
JP3828886B2 JP2003393443A JP2003393443A JP3828886B2 JP 3828886 B2 JP3828886 B2 JP 3828886B2 JP 2003393443 A JP2003393443 A JP 2003393443A JP 2003393443 A JP2003393443 A JP 2003393443A JP 3828886 B2 JP3828886 B2 JP 3828886B2
Authority
JP
Japan
Prior art keywords
light
excimer
mask
substrate
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003393443A
Other languages
Japanese (ja)
Other versions
JP2005156279A (en
Inventor
政夫 井上
美智恵 原地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Original Assignee
Aida Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd filed Critical Aida Engineering Ltd
Priority to JP2003393443A priority Critical patent/JP3828886B2/en
Publication of JP2005156279A publication Critical patent/JP2005156279A/en
Application granted granted Critical
Publication of JP3828886B2 publication Critical patent/JP3828886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Cleaning In General (AREA)

Description

本発明は物質表面の改質・洗浄方法に関する。更に詳細には、本発明はエキシマUV光により化学分析用マイクロチップなどの物質表面の一部を選択的に改質及び/又は洗浄する方法に関する。   The present invention relates to a method for modifying and cleaning a material surface. More particularly, the present invention relates to a method for selectively modifying and / or cleaning a part of a material surface such as a microchip for chemical analysis using excimer UV light.

従来より、(1)濡れ性や印刷性、密着性の改善、(2)細胞やタンパク質などの吸着性の改善、(3)官能基の導入、及び(4)有機物や油膜などの除去の様な目的のために、物質表面の改質及び/又は洗浄が行われてきた。   Conventionally, (1) improved wettability, printability, adhesion, (2) improved adsorption of cells and proteins, (3) introduction of functional groups, and (4) removal of organic matter and oil film, etc. For this purpose, material surface modification and / or cleaning has been performed.

物質表面の改質及び/又は洗浄は例えば、プラズマやコロナ放電、電子ビーム、紫外線(UV光)、真空紫外線(VUV光)などを利用して行われるのが一般的である。特に、最近は、特許文献1に記載されているように、エキシマによる真空紫外光(エキシマUV光)の利用が盛んになってきた。エキシマUV光としては、放電性ガスの種類により次のような波長(中心波長)のものがある。126nm(Ar)、146nm(Kr)、172nm(Xe)、222nm(KrCl)、及び308nm(XeCl)。エキシマUV光を放射する照射ランプは例えばキセノンガスを封入した誘電体バリヤ放電ランプである。この誘電体バリヤ放電ランプは、キセノン原子が励起されたエキシマ状態となり(Xe )、このエキシマ状態から再びキセノン原子に解離するときに波長約172nmの光を発生する。この波長172nmの光を酸素に照射すると、従来の低圧水銀ランプから放射される波長185nmの光を酸素に照射する場合よりも高濃度のオゾンが得られ、更にまた、この高濃度のオゾンから活性酸化性分解物もえられる。これら高濃度オゾンと活性酸化性分解物との相乗作用により処理対象物の表面の改質及び/又は洗浄効果が飛躍的に高められる。誘電体バリヤ放電ランプは特許文献2及び特許文献3に詳述されている。 The modification and / or cleaning of the material surface is generally performed using, for example, plasma, corona discharge, electron beam, ultraviolet light (UV light), vacuum ultraviolet light (VUV light), or the like. In particular, recently, as described in Patent Document 1, the use of vacuum ultraviolet light (excimer UV light) by excimers has become active. Excimer UV light includes the following wavelengths (center wavelengths) depending on the type of discharge gas. 126 nm (Ar 2 ), 146 nm (Kr 2 ), 172 nm (Xe 2 ), 222 nm (KrCl), and 308 nm (XeCl). An irradiation lamp that emits excimer UV light is, for example, a dielectric barrier discharge lamp in which xenon gas is sealed. This dielectric barrier discharge lamp becomes an excimer state in which xenon atoms are excited (Xe 2 * ), and generates light having a wavelength of about 172 nm when dissociated again from this excimer state into xenon atoms. When this light having a wavelength of 172 nm is irradiated to oxygen, ozone having a higher concentration than that obtained by irradiating oxygen with a light having a wavelength of 185 nm emitted from a conventional low-pressure mercury lamp can be obtained. An oxidative degradation product is also obtained. Due to the synergistic action of these high-concentration ozone and the active oxidative degradation product, the surface modification and / or cleaning effect of the object to be treated is dramatically enhanced. Dielectric barrier discharge lamps are described in detail in US Pat.

最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内に所定の形状の流路を構成するマイクロチャネル及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うことが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル及びポートなどの微細構造を有する構造物は総称して「マイクロチップ」と呼ばれる。(マイクロチップはマイクロ流体デバイスと呼ばれることもある。)   Recently, as is known by the names such as Microscale Total Analysis Systems (μTAS) or Lab-on-Chip, a microchannel that forms a flow path of a predetermined shape in a substrate and Providing a fine structure such as a port and performing various operations such as chemical reaction, synthesis, purification, extraction, generation and / or analysis of substances within the fine structure has been proposed and partially put into practical use. A structure manufactured for such a purpose and having a fine structure such as a microchannel and a port in a substrate is generically called a “microchip”. (A microchip is sometimes called a microfluidic device.)

マイクロチップは遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロチップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。   Microchips can be used for a wide range of applications such as genetic analysis, clinical diagnosis, drug screening and environmental monitoring. Compared with the same type of equipment of the common size, the microchip is (1) significantly less sample and reagent usage, (2) shorter analysis time, (3) higher sensitivity, (4) carried on-site, It can be analyzed in the field and (5) can be disposable.

このようなマイクロチップの分野においても、マイクロチャネル内の親水化(すなわち、濡れ性改善)と疎水化を作り分けたり(例えば、特許文献4参照)、コーティング剤の塗布性改善、機能性材料による修飾性の改善、細胞やタンパク質などの吸着性の改善などが必要とされることがある。また、特別な例では、マイクロチップを構成するポリジメチルシロキサン(PDMS)基板とガラス基板とを恒久接着(パーマネント・ボンディング)するための前処理として、PDMS基板に酸素プラズマを照射することにより表面改質を行うことがある。これは、酸素プラズマ照射によりPDMS基板表面に水酸基が形成され、その水酸基の作用によりガラス基板との恒久接着が達成されるものとされている。   Also in the field of such microchips, hydrophilicization (that is, improvement of wettability) and hydrophobization in the microchannel can be made separately (see, for example, Patent Document 4), coating properties of coating agents are improved, and functional materials are used. There are cases where improvement of modification property, improvement of adsorptivity of cells, proteins, etc. is required. In a special example, as a pretreatment for permanently bonding (permanent bonding) a polydimethylsiloxane (PDMS) substrate and a glass substrate constituting a microchip, surface modification is performed by irradiating the PDMS substrate with oxygen plasma. May do quality. This is because hydroxyl groups are formed on the surface of the PDMS substrate by oxygen plasma irradiation, and permanent adhesion to the glass substrate is achieved by the action of the hydroxyl groups.

マイクロチップなどの分野では、基板表面を改質及び/又は洗浄する場合、基板表面の一部だけを選択的に処理する必要がある。収束光や電子ビームを用いた処理方法では、収束光や電子ビームを走査して処理部のみに照射することができるが、処理時間が長くかかり、走査機能を有しているため、処理装置も高価である。一方、プラズマやエキシマUV光を用いる処理方法は、処理面を一度に処理でき、安価で生産性がある反面、選択的に処理するためには、マスクを用いる必要が出てくる。しかし、プラズマやエキシマUV光のどちらの処理方法も、酸素プラズマやエキシマUV光によって発生したオゾンや励起酸素原子が、直接処理面に到達して作用しなければならず、一般的な光学系のマスクを用いることはできない。   In fields such as microchips, when modifying and / or cleaning a substrate surface, only a portion of the substrate surface needs to be selectively treated. In a processing method using convergent light or an electron beam, the convergent light or electron beam can be scanned and irradiated only to the processing unit. However, since the processing time is long and the scanning function is provided, the processing apparatus is also used. Expensive. On the other hand, a processing method using plasma or excimer UV light can process the processing surface at a time and is inexpensive and productive. However, in order to perform selective processing, it is necessary to use a mask. However, in both processing methods of plasma and excimer UV light, ozone and excited oxygen atoms generated by oxygen plasma and excimer UV light must directly reach the processing surface and act. A mask cannot be used.

このマスクを用いる表面処理方法の場合、処理面に対して非処理部が極端に小さかったり、あるいは小さな非処理部が多数分散して配置されていると、マスクが作成不可能となる。このような事例を図4及び図5により説明する。図4に示すように、マイクロチップのPDMS基板などのような処理対象物40の処理面42の特定な一部44(非処理部)は表面改質及び/又は洗浄を行わず、その他の面は全て処理を行うものとする。   In the case of the surface treatment method using this mask, if the non-processed portion is extremely small with respect to the processing surface, or if a large number of small non-processed portions are dispersed and arranged, the mask cannot be created. Such a case will be described with reference to FIGS. As shown in FIG. 4, a specific portion 44 (non-processing portion) of the processing surface 42 of the processing object 40 such as a PDMS substrate of a microchip is not subjected to surface modification and / or cleaning, and other surfaces. Are all processed.

この事例のように、非処理部が処理面の一部であり、かつ複数箇所に分散して分布して存在すると、単一のマスクを作成することが困難になる。そのため、図5に示すように、処理対象物40の処理面42の上に、非処理部の形状に合わせて酸素プラズマ等を遮断するパターン46を個別に配置することになる。よって、それぞれのパターン46を個別に適正な位置にアライメントしなければならず、位置決めや配置などの作業が煩雑になる。また、非処理部44が複雑な形状であったり、極めて微細な形状であったりすると、パターン46の作成や取り扱いが困難となる。   As in this case, if the non-processing part is a part of the processing surface and is distributed and distributed in a plurality of locations, it is difficult to create a single mask. Therefore, as shown in FIG. 5, a pattern 46 for blocking oxygen plasma or the like is individually arranged on the processing surface 42 of the processing object 40 in accordance with the shape of the non-processing portion. Therefore, each pattern 46 must be individually aligned at an appropriate position, and operations such as positioning and arrangement become complicated. If the non-processing part 44 has a complicated shape or an extremely fine shape, it is difficult to create and handle the pattern 46.

特許第2705023号明細書Japanese Patent No. 2,705,023 特開平2−7353号公報Japanese Patent Laid-Open No. 2-7353 米国特許第4837484号明細書US Pat. No. 4,837,484 特開2000−27813号公報JP 2000-27813 A

従って、本発明の目的は、物質表面の一部を選択的に改質及び/又は洗浄する安価で効率的な方法を提供することである。   Accordingly, it is an object of the present invention to provide an inexpensive and efficient method for selectively modifying and / or cleaning a portion of a material surface.

前記課題を解決するために、本発明は下記の構成を採用する。
(1)(1)中心波長172nmのエキシマUV光に対して透過性を有する基材の一方の面上に所定の形状の遮光パターンを有するマスクを準備するステップと、
(2)処理対象物を準備するステップと、
(3)前記処理対象物の被処理面上に前記マスクの遮光パターンを有する面を位置合わせして載置するステップと、
(4)前記マスクの上面からエキシマUV光を照射するステップとからなる選択的な表面改質・洗浄方法。
(2)前記マスク用基材は石英ガラス、サファイア、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、フッ化リチウムからなる群から選択される材料から形成されている。
(3)前記遮光パターンはフォトレジスト又は金属膜から形成されており、その厚さが10μm〜200μmの範囲内である。
(4)前記処理対象物はポリジメチルシロキサン(PDMS)から形成されている。
(5)(1)中心波長172nmのエキシマUV光に対して透過性を有する基材からなるマスクを準備するステップと、
(2)一方の表面に所定の形状と、深さ及び幅を有するチャネル状の凹部が形成された処理対象物を準備するステップと、
(3)前記処理対象物の凹部形成面上に前記マスクを載置するステップと、
(4)前記マスクの上面からエキシマUV光を照射することにより前記処理対象物の凹部内表面を親水化するステップとからなる選択的な表面改質・洗浄方法。
(6)前記マスク用基材は石英ガラス、サファイア、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、フッ化リチウムからなる群から選択される材料から形成されている。
(7)前記処理対象物はポリジメチルシロキサン(PDMS)から形成されたマイクロチップである。
In order to solve the above problems, the present invention adopts the following configuration.
(1) (1) preparing a mask having a light-shielding pattern of a predetermined shape on one surface of a substrate having transparency to excimer UV light having a center wavelength of 172 nm;
(2) a step of preparing a processing object;
(3) a step of aligning and placing the surface having the light shielding pattern of the mask on the surface to be processed of the processing object;
(4) A selective surface modification / cleaning method comprising a step of irradiating excimer UV light from the upper surface of the mask.
(2) The mask substrate is formed of a material selected from the group consisting of quartz glass, sapphire, calcium fluoride, magnesium fluoride, barium fluoride, and lithium fluoride.
(3) The said light shielding pattern is formed from the photoresist or the metal film, The thickness exists in the range of 10 micrometers-200 micrometers.
(4) The processing object is formed of polydimethylsiloxane (PDMS).
(5) (1) preparing a mask made of a base material having transparency to excimer UV light having a center wavelength of 172 nm;
(2) preparing a processing object in which a channel-shaped recess having a predetermined shape and a depth and width is formed on one surface;
(3) placing the mask on the recess forming surface of the processing object;
(4) A selective surface modification / cleaning method comprising the step of hydrophilizing the inner surface of the concave portion of the processing object by irradiating excimer UV light from the upper surface of the mask.
(6) The mask substrate is formed of a material selected from the group consisting of quartz glass, sapphire, calcium fluoride, magnesium fluoride, barium fluoride, and lithium fluoride.
(7) The object to be processed is a microchip formed from polydimethylsiloxane (PDMS).

本発明によれば、選択的に表面改質・洗浄する用途において、非処理部が処理面に対して相対的に小さく、あるいは非処理部が複数分布している処理対象物に対し、マスクの製作が容易で、処理時のアライメントも行い易い表面改質・洗浄方法が得られる。また、本発明によれば、ポロジメチルシロキサンなどから形成されるマイクロチップなどのような処理対象物の一方の表面にチャネルなどの凹部が形成されている場合、これら凹部だけを選択的に親水化することもできる。   According to the present invention, in applications where surface modification / cleaning is selectively performed, a mask is formed on a processing object in which a non-processing portion is relatively small with respect to a processing surface or a plurality of non-processing portions are distributed. A surface modification / cleaning method that is easy to manufacture and easy to align during processing is obtained. In addition, according to the present invention, when a recess such as a channel is formed on one surface of an object to be processed such as a microchip formed from polydimethylsiloxane or the like, only the recess is selectively hydrophilized. You can also

以下、図面を参照しながら本発明の好ましい実施態様について具体的に説明する。図1は、本発明の表面改質・洗浄方法を実施するために使用されるマスクの一例の概要断面図である。マスク1は基本的に、エキシマUV光に対して光透過性である基材3と、この基材3の一方の面に配設された、エキシマUV光を透過しない物質で、非処理部に対応する形状に成形された所定の厚みを有するパターン5とからなる。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic sectional view of an example of a mask used for carrying out the surface modification / cleaning method of the present invention. The mask 1 is basically a base material 3 that is transparent to excimer UV light, and a substance that is disposed on one surface of the base material 3 and does not transmit excimer UV light. And a pattern 5 having a predetermined thickness formed into a corresponding shape.

図2は、図1に示されたマスク1を用いて本発明の表面改質・洗浄方法を実施する状態を示す説明図である。図2に示されるように、マスク1のパターン5が形成された面を処理対象物7の処理面9とを位置合わせし、パターン5と処置面9が密着するように配置する。この時、パターン5以外の処理面と基材3との間にパターン5の厚みに応じて適当な間隙が発生し、これにより空気層11が形成される。このように、酸素を含むガス雰囲気(一般的には空気雰囲気)下でマスク1の上面側からエキシマUV光を適量照射する。エキシマUV光透過性の基材3を透過したエキシマUV光によりマスク1と処理対象物7との間隙の空気層11にある酸素分子から生成されたオゾンや励起酸素分子の作用及び処理面に直接照射されるエキシマUV光のフォトンエネルギーの作用により、処理対象物7の処理面9は所望の表面改質・洗浄が行われる。一方、パターン5により遮蔽された処理対象物の非処理面13は、オゾンや励起酸素分子が生成されず、更にエキシマUV光のフォトンエネルギーの影響も受けないので、表面改質・洗浄は行われない。   FIG. 2 is an explanatory view showing a state in which the surface modification / cleaning method of the present invention is carried out using the mask 1 shown in FIG. As shown in FIG. 2, the surface of the mask 1 on which the pattern 5 is formed is aligned with the processing surface 9 of the processing object 7, and the pattern 5 and the treatment surface 9 are arranged so as to be in close contact with each other. At this time, an appropriate gap is generated between the processing surface other than the pattern 5 and the substrate 3 according to the thickness of the pattern 5, thereby forming the air layer 11. In this way, an appropriate amount of excimer UV light is irradiated from the upper surface side of the mask 1 in a gas atmosphere containing oxygen (generally an air atmosphere). The excimer UV light transmitted through the excimer UV light-transmitting substrate 3 directly affects the action of ozone and excited oxygen molecules generated from the oxygen molecules in the air layer 11 in the gap between the mask 1 and the object 7 to be processed. The processing surface 9 of the processing object 7 is subjected to desired surface modification and cleaning by the action of the photon energy of the irradiated excimer UV light. On the other hand, the non-processed surface 13 of the object to be processed shielded by the pattern 5 does not generate ozone or excited oxygen molecules, and is not affected by the photon energy of the excimer UV light. Absent.

エキシマUV光の照射強度は一般的に、5mW/cm〜30mW/cmの範囲内が好ましい。照射強度が5mW/cm未満の場合、処理時間が長くなり過ぎ作業効率が低下する。一方、照射強度が30mW/cm超の場合、このような高い照射強度を有する装置は少なく、有っても高価であるばかりか、照射有効面積が小さく、処理対象物の大きさが限られる。また、ランプを複数本密に並べるため、照射強度の均一性が低い場合もあり、その結果、処理の程度の不均一が生じることもある。エキシマUV光の照射時間は一般的に、10秒間〜5分間の範囲内が好ましい。エキシマUV光の照射時間は照射強度と相反関係にあり、照射強度が高い場合、照射時間は短くなる。選択された照射ランプの有する照射強度に対する最適な照射時間は実験を繰り返すことにより当業者が容易に決定することができる。 The irradiation intensity of the excimer UV light generally preferably in the range of 5mW / cm 2 ~30mW / cm 2 . When the irradiation intensity is less than 5 mW / cm 2 , the processing time becomes too long and the working efficiency is lowered. On the other hand, when the irradiation intensity is more than 30 mW / cm 2 , there are few devices having such a high irradiation intensity, and even if they are expensive, the irradiation effective area is small and the size of the object to be processed is limited. . In addition, since a plurality of lamps are arranged densely, the uniformity of irradiation intensity may be low, and as a result, the degree of processing may be uneven. In general, the excimer UV light irradiation time is preferably in the range of 10 seconds to 5 minutes. The irradiation time of the excimer UV light has a reciprocal relationship with the irradiation intensity. When the irradiation intensity is high, the irradiation time is shortened. The optimum irradiation time for the irradiation intensity of the selected irradiation lamp can be easily determined by those skilled in the art by repeating the experiment.

マスク1の基材3は例えば、石英ガラスあるいはサファイア(Al)やフッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)又はフッ化リチウム(LiF)などの合成光学結晶から形成された板状材などを使用することができる。これらの材料はエキシマUV光を少なくとも50%以上透過する能力を有することが好ましい。エキシマUV光透過率が50%未満の場合、所望の表面改質・洗浄効果が得られない。言うまでもなく、基材3はエキシマUV光透過率100%であることが最も好ましい。 The base material 3 of the mask 1 is, for example, quartz glass, sapphire (Al 2 O 3 ), calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), barium fluoride (BaF 2 ), or lithium fluoride (LiF). A plate-like material formed from a synthetic optical crystal such as can be used. These materials preferably have the ability to transmit at least 50% of excimer UV light. When the excimer UV light transmittance is less than 50%, a desired surface modification / cleaning effect cannot be obtained. Needless to say, the substrate 3 most preferably has an excimer UV light transmittance of 100%.

マスク1のパターン5の形成材料としては、エキシマUV光の透過率が0%の物質ばかりでなく、透過率が10%以下の物質であれば本発明で使用することができる。一般的に、エキシマUV光などの真空紫外光(VUV光)を透過する物質は少ないので、パターンの形成しやすい物質をパターン形成材料として使用することが好ましい。パターン5は例えば、基材3の表面にレジストを塗布し、マスクパターンを通して露光し、フォトエッチングすることにより所定のレジストパターンを形成するか又は一旦アルミニウムあるいはクロムなどの金属膜を蒸着などの常法により形成し、その上でレジストを用いたエッチング技法により金属パターンを形成することにより得られる。表面改質・洗浄を行わない非処理面が微細でなければ、ステンレスなどの薄板を非処理面の形状に切り取り、それを基材3の所定位置に貼り付けることによってもパターン5を形成することができる。   As a material for forming the pattern 5 of the mask 1, not only a substance having an excimer UV light transmittance of 0% but also a substance having a transmittance of 10% or less can be used in the present invention. In general, since there are few substances that transmit vacuum ultraviolet light (VUV light) such as excimer UV light, it is preferable to use a substance that can easily form a pattern as the pattern forming material. For pattern 5, for example, a resist is applied to the surface of substrate 3, exposed through a mask pattern, and a predetermined resist pattern is formed by photoetching, or a metal film such as aluminum or chromium is once deposited. And a metal pattern is formed thereon by an etching technique using a resist. If the non-treated surface that is not subjected to surface modification / cleaning is not fine, a pattern 5 can also be formed by cutting a thin plate such as stainless steel into the shape of the non-treated surface and affixing it to a predetermined position of the substrate 3 Can do.

パターン5は10μm〜200μm程度の厚みを有することが好ましい。パターン5の厚みが10μm未満の場合、マスク1の基材3と表面改質・洗浄を行うべき処理対象物7の処理面9との間の間隙を均一に保つことが困難になり、結果的に表面改質・洗浄処理が不均一となる。パターン5の厚みが200μm超の場合、厚すぎてフォトレジストで形成することが困難になるばかりか、間隙を設けることによる効果が飽和し、不経済となる。パターン5の厚みが少なくとも50μmあれば十分な表面改質・洗浄処理効果が見込め、これはエキシマUV光を直接照射した場合とほぼ同程度の表面改質・洗浄処理効果である。   The pattern 5 preferably has a thickness of about 10 μm to 200 μm. When the thickness of the pattern 5 is less than 10 μm, it becomes difficult to maintain a uniform gap between the base material 3 of the mask 1 and the processing surface 9 of the processing object 7 to be surface-modified / cleaned. In addition, the surface modification / cleaning process becomes uneven. When the thickness of the pattern 5 exceeds 200 μm, it is too thick to make it difficult to form with a photoresist, and the effect of providing a gap is saturated, which is uneconomical. If the thickness of the pattern 5 is at least 50 μm, a sufficient surface modification / cleaning treatment effect can be expected. This is almost the same surface modification / cleaning treatment effect as that obtained when the excimer UV light is directly irradiated.

図3は本発明による別の表面改質・洗浄方法を実施する状態を示す説明図である。図3に示されるように、処理対象物7Aの表面にチャネルなどのような凹部15が存在し、その凹部15のみを表面改質・洗浄処理したい場合、パターンなどが全く形成されていない平板状の基材3Aをそのまま処理対象物7Aに貼り合わせて密着させる。その後、基材3Aの上面からエキシマUV光を照射する。処理対象物7Aの凹部15は、そこに含まれる空気からオゾンや励起酸素原子が生成され、これらにより凹部15の内表面の改質及び/又は洗浄が行われる。一方、その他の部分は空気が全く存在しないのでオゾンや励起酸素原子は生成されず、従って、殆ど表面改質・洗浄処理されないか、あるいは極僅かしか処理されない。   FIG. 3 is an explanatory view showing a state in which another surface modification / cleaning method according to the present invention is carried out. As shown in FIG. 3, when a recess 15 such as a channel exists on the surface of the processing object 7A and only the recess 15 is to be subjected to surface modification / cleaning treatment, a flat plate shape on which no pattern or the like is formed is formed. The base material 3A is directly adhered to the processing object 7A and adhered thereto. Thereafter, excimer UV light is irradiated from the upper surface of the substrate 3A. In the recess 15 of the processing object 7A, ozone and excited oxygen atoms are generated from the air contained therein, whereby the inner surface of the recess 15 is modified and / or cleaned. On the other hand, since no air is present in the other portions, ozone and excited oxygen atoms are not generated. Therefore, the surface modification / cleaning treatment is hardly performed or only a very small amount is processed.

図3において、処理対象物7AがPDMS基板であり、基材3Aが対面基板からなるマイクロチップである場合、PDMSは空気雰囲気中で高い疎水性を有する。一度親水化しても長期間空気中に放置すると、また疎水性に戻ってしまう。そこで、親水性を必要とする直前に、このPDMS基板(処理対象物7A)に対面基板(基材3A)側からエキシマUV光を照射することで、マイクロチップの形状のままPDMS基板内部のチャネル(凹部15)を適宜表面改質・洗浄処理を行うことにより、チャネル(凹部15)を再び親水化して使用することができる。また、チャネルの特定部分だけを選択的に親水化したければ、チャネルのその他の部分をマスクで遮光してエキシマUV光を照射すればよい。チャネル内に酸素(空気)が存在しても、エキシマUV光が照射されなければ、表面改質・洗浄に必要な酸素や活性酸化性分解物が生成されないからである。この場合、対面基板は石英ガラス製であることが好ましい。   In FIG. 3, when the processing object 7A is a PDMS substrate and the base material 3A is a microchip made of a facing substrate, the PDMS has high hydrophobicity in an air atmosphere. Even if it is once hydrophilized, if it is left in the air for a long period of time, it will become hydrophobic again. Therefore, immediately before the hydrophilicity is required, the PDMS substrate (processing object 7A) is irradiated with excimer UV light from the facing substrate (base material 3A) side, so that the channel inside the PDMS substrate remains in the form of a microchip. By subjecting the (concave portion 15) to surface modification / cleaning treatment as appropriate, the channel (concave portion 15) can be made hydrophilic again and used. If only a specific part of the channel is to be selectively made hydrophilic, the other part of the channel may be shielded with a mask and irradiated with excimer UV light. This is because even if oxygen (air) is present in the channel, oxygen and active oxidative decomposition products necessary for surface modification and cleaning are not generated unless the excimer UV light is irradiated. In this case, the facing substrate is preferably made of quartz glass.

また、処理対象物7がPDMS基板の場合、パターン付きマスクを通してエキシマUV光を照射すると、PDMS基板とシリカガラス板との間で選択的に恒久接着する部分を創り出すことができる。例えば、PDMS基板にパターン付きマスクを通してエキシマUV光を照射すると、エキシマUV光が照射されたPDMS基板の処理面はガラス板と恒久接着するが、パターンで遮光されエキシマUV光が照射されなかった非処理面はガラス板と恒久接着しないように構成することができる。   Further, when the processing object 7 is a PDMS substrate, a portion that selectively adheres permanently between the PDMS substrate and the silica glass plate can be created by irradiating excimer UV light through a patterned mask. For example, when excimer UV light is irradiated to a PDMS substrate through a mask with a pattern, the treated surface of the PDMS substrate irradiated with the excimer UV light is permanently bonded to the glass plate, but is not shielded by the pattern and irradiated with the excimer UV light. The treated surface can be configured not to be permanently bonded to the glass plate.

エキシマUV光を放射する誘電体バリヤ放電ランプと共に遠紫外光を放射する光源を併用することもできる。誘電体バリヤ放電ランプから放射される波長172nmのエキシマUV光によりオゾン及び活性酸化性分解物を生成させて、このオゾン及び活性酸化性分解物に遠紫外光である波長254nmの光を照射すると、これらの活性度が一層高められ、表面改質・洗浄効果が飛躍的に向上される。遠紫外光光源は、高圧水銀ランプ、低圧水銀ランプ、クリプトンフッ素エキシマランプ、又はクリプトンフッ素エキシマレーザなどである。   A light source that emits far ultraviolet light can be used in combination with a dielectric barrier discharge lamp that emits excimer UV light. When excimer UV light having a wavelength of 172 nm emitted from a dielectric barrier discharge lamp is used to generate ozone and an active oxidative decomposition product, and the ozone and the active oxidative decomposition product are irradiated with light having a wavelength of 254 nm, which is far ultraviolet light, These activities are further enhanced, and the surface modification / cleaning effect is dramatically improved. The far ultraviolet light source is a high pressure mercury lamp, a low pressure mercury lamp, a krypton fluorine excimer lamp, a krypton fluorine excimer laser, or the like.

図1に示されるような断面構造を有するマスクを作製した。基材3は板厚1mmで、波長172nmのエキシマUV光に対する透過率が90%以上である合成石英(東ソー・クォーツ(株)製、グレードED−H)から形成した。ステンレス製の薄板(厚さ50μm)を直径5mmの円形に切り抜き、これを基材3の一方の面に接着することにより遮光パターン5を形成した。処理対象物としては、板厚2mmのPDMS基板を使用した。エキシマUV光源としては、東京都千代田区に所在するウシオ電機(株)から市販されている誘電体バリヤ放電ランプを使用した。PDMS基板の一方の面上にパターン付き合成石英基材からなるマスクを貼り合わせ、合成石英基材の上面から誘電体バリヤ放電ランプにより、大気圧、空気雰囲気下でエキシマUV光を照射した。誘電体バリヤ放電ランプ直下の照射強度を10mW/cmとし、照射時間を1分間、2分間及び3分間と変化させて、処理面と非処理面の濡れ性を測定した。濡れ性の評価は一般的に用いられている水滴の接触角を測定することにより行った。エキシマUV光が照射される処理面の処理前は約100度と高い疎水性を示していたが、照射時間1分間では約50度、照射時間2分間では約25度、照射時間3分間ではほぼ0度と完全に親水性になっていたが、ステンレス薄板のパターン5で遮光された部分の非処理面の接触角は処理前と同じ100度のままであった。 A mask having a cross-sectional structure as shown in FIG. 1 was produced. The substrate 3 was formed of synthetic quartz (grade ED-H, manufactured by Tosoh Quartz Co., Ltd.) having a plate thickness of 1 mm and a transmittance of 90% or more for excimer UV light having a wavelength of 172 nm. A thin plate made of stainless steel (thickness: 50 μm) was cut into a circle having a diameter of 5 mm, and this was adhered to one surface of the substrate 3 to form the light shielding pattern 5. A PDMS substrate having a plate thickness of 2 mm was used as the processing object. As the excimer UV light source, a dielectric barrier discharge lamp commercially available from USHIO INC. Located in Chiyoda-ku, Tokyo was used. A mask made of a synthetic quartz substrate with a pattern was bonded to one surface of the PDMS substrate, and excimer UV light was irradiated from the upper surface of the synthetic quartz substrate with a dielectric barrier discharge lamp under atmospheric pressure and air atmosphere. The wettability of the treated surface and the non-treated surface was measured by changing the irradiation intensity immediately below the dielectric barrier discharge lamp to 10 mW / cm 2 and changing the irradiation time to 1, 2, and 3 minutes. Evaluation of wettability was performed by measuring the contact angle of a commonly used water droplet. Before treatment of the treatment surface irradiated with excimer UV light, it showed a high hydrophobicity of about 100 degrees, but it was about 50 degrees for an irradiation time of 1 minute, about 25 degrees for an irradiation time of 2 minutes, and almost at an irradiation time of 3 minutes. Although it was completely hydrophilic at 0 degrees, the contact angle of the non-treated surface of the portion shielded from light by the pattern 5 of the stainless steel thin plate remained the same 100 degrees as before the treatment.

基材として、遮光パターンを有しないこと以外は実施例1で使用したものと同じ材質の基材を使用した。処理対象物としては、板厚2mmで、一方の表面に深さ50μmで幅200μmで、長さが3mmのチャネルが形成されたPDMS基板を使用した。このPDMS基板のチャネル形成面に前記基材を貼り合わせた。基材の上面から誘電体バリヤ放電ランプにより、大気圧、空気雰囲気下でエキシマUV光を照射した。誘電体バリヤ放電ランプ直下の照射強度を10mW/cmとし、照射時間を3分間とした。チャネル部分とその他の部分との濡れ性を測定した。チャネル部分の接触角はほぼ0度であったが、その他の部分の接触角は50度であった。これにより、本発明によれば、PDMS基板のチャネル部分だけを選択的に親水化させることができることが確認された。 As a base material, the base material of the same material as what was used in Example 1 was used except not having a light-shielding pattern. As a processing target, a PDMS substrate having a plate thickness of 2 mm, a channel having a depth of 50 μm, a width of 200 μm, and a length of 3 mm on one surface was used. The base material was bonded to the channel forming surface of the PDMS substrate. Excimer UV light was irradiated from the upper surface of the base material with a dielectric barrier discharge lamp under atmospheric pressure and air atmosphere. The irradiation intensity immediately below the dielectric barrier discharge lamp was 10 mW / cm 2 and the irradiation time was 3 minutes. The wettability between the channel part and other parts was measured. The contact angle of the channel portion was almost 0 degrees, but the contact angle of the other portions was 50 degrees. Thereby, according to the present invention, it was confirmed that only the channel portion of the PDMS substrate can be selectively hydrophilized.

実施例1で表面改質・洗浄処理されたPDMS基板からマスクを剥がし、石英ガラス板を貼り合わせた。その結果、エキシマUV光が照射されたPDMS基板の処理面はガラス板と恒久接着したが、パターンで遮光されエキシマUV光が照射されなかった非処理面はガラス板と恒久接着しないことが確認された。   The mask was peeled off from the PDMS substrate surface-modified and cleaned in Example 1, and a quartz glass plate was bonded. As a result, it was confirmed that the treated surface of the PDMS substrate irradiated with the excimer UV light was permanently bonded to the glass plate, but the non-treated surface not shielded with the pattern and irradiated with the excimer UV light was not permanently bonded to the glass plate. It was.

本発明の選択的な表面改質・洗浄方法は、遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどのPDMS製マイクロチップを用いる幅広い用途に使用できる。その他、半導体製造分野など精密な選択的表面改質・洗浄が必要な全ての分野で使用できる。   The selective surface modification / cleaning method of the present invention can be used for a wide range of applications using PDMS microchips such as gene analysis, clinical diagnosis, drug screening and environmental monitoring. In addition, it can be used in all fields that require precise selective surface modification and cleaning, such as the semiconductor manufacturing field.

本発明の表面改質・洗浄方法で使用するマスクの一例の概要断面図である。It is a schematic sectional drawing of an example of the mask used with the surface modification and washing | cleaning method of this invention. 図1に示されたマスクを用いて本発明の表面改質・洗浄方法を実施する状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state which implements the surface modification and cleaning method of this invention using the mask shown by FIG. 本発明の表面改質・洗浄方法の別の実施態様を示す説明図である。It is explanatory drawing which shows another embodiment of the surface modification and washing | cleaning method of this invention. 従来技術の表面改質・洗浄方法により処理される対象物の一例の概要斜視図である。It is a general | schematic perspective view of an example of the target object processed by the surface modification and washing | cleaning method of a prior art. 図4に示された処理対象物を従来技術の表面改質・洗浄方法により処理する状態を示す説明図である。It is explanatory drawing which shows the state which processes the process target object shown by FIG. 4 by the surface modification and washing | cleaning method of a prior art.

符号の説明Explanation of symbols

1 マスク
3,3A 基材
5 レジストパターン
7,7A 処理対象物
9 処理面
11 空気層
13 非処理面
15 チャネル(凹部)
DESCRIPTION OF SYMBOLS 1 Mask 3, 3A Base material 5 Resist pattern 7, 7A Process target 9 Process surface 11 Air layer 13 Non-process surface 15 Channel (recessed part)

Claims (3)

選択的な表面改質・洗浄方法であって、
(1)中心波長172nmのエキシマUV光に対して透過性を有する基材からなるマスクを準備するステップと、
(2)一方の表面に所定の形状と、深さ及び幅を有するチャネル状の凹部が形成された処理対象物を準備するステップと、
(3)前記処理対象物の凹部形成面上に前記マスクを載置するステップと、
(4)前記マスクの上面からエキシマUV光を照射することにより前記処理対象物の凹部内表面を親水化するステップとからなることを特徴とする選択的な表面改質・洗浄方法
A selective surface modification and cleaning method,
(1) preparing a mask made of a substrate having transparency to excimer UV light having a center wavelength of 172 nm;
(2) preparing a processing object in which a channel-shaped recess having a predetermined shape and a depth and width is formed on one surface;
(3) placing the mask on the recess forming surface of the processing object;
(4) A selective surface modification / cleaning method comprising the step of hydrophilizing the inner surface of the recess of the object to be processed by irradiating excimer UV light from the upper surface of the mask
前記マスク用基材は石英ガラス、サファイア、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、フッ化リチウムからなる群から選択される材料から形成されていることを特徴とする請求項1に記載の方法。 The mask substrate is quartz glass, sapphire, calcium fluoride, magnesium fluoride, barium fluoride, according to claim 1, characterized in that it is formed from a material selected from the group consisting of lithium fluoride Method. 前記処理対象物はポリジメチルシロキサン(PDMS)から形成されたマイクロチップであることを特徴とする請求項1に記載の方法。 The method of claim 1 , wherein the object to be treated is a microchip formed from polydimethylsiloxane (PDMS).
JP2003393443A 2003-11-25 2003-11-25 Selective surface modification / cleaning method Expired - Fee Related JP3828886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393443A JP3828886B2 (en) 2003-11-25 2003-11-25 Selective surface modification / cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393443A JP3828886B2 (en) 2003-11-25 2003-11-25 Selective surface modification / cleaning method

Publications (2)

Publication Number Publication Date
JP2005156279A JP2005156279A (en) 2005-06-16
JP3828886B2 true JP3828886B2 (en) 2006-10-04

Family

ID=34719801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393443A Expired - Fee Related JP3828886B2 (en) 2003-11-25 2003-11-25 Selective surface modification / cleaning method

Country Status (1)

Country Link
JP (1) JP3828886B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940614B2 (en) * 2005-09-29 2012-05-30 大日本印刷株式会社 Pattern forming body manufacturing method and pattern forming body manufacturing apparatus
JP2007094159A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Method for manufacturing pattern formation
JP4760315B2 (en) * 2005-11-09 2011-08-31 ウシオ電機株式会社 Joining method
JP5551632B2 (en) * 2011-02-17 2014-07-16 浜松ホトニクス株式会社 Surface treatment method and surface treatment apparatus for sample manipulation element
JP2016026904A (en) * 2012-12-07 2016-02-18 アルプス電気株式会社 Joined member and production method of joined member
JP6508433B2 (en) * 2016-11-02 2019-05-08 ウシオ電機株式会社 UV processing unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948227A (en) * 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
JP2001324816A (en) * 2000-05-16 2001-11-22 Nikon Corp Pattern forming method and exposure device

Also Published As

Publication number Publication date
JP2005156279A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US5669979A (en) Photoreactive surface processing
KR100189794B1 (en) Process for oxidation of an article surface
US5814156A (en) Photoreactive surface cleaning
KR0157608B1 (en) Removal of surface contaminants by irradiation from a high energy source
TWI226508B (en) Laser machining method and apparatus
US9662684B2 (en) Method and apparatus for treating substrates
JP2705023B2 (en) Oxidation method of workpiece
JP3828886B2 (en) Selective surface modification / cleaning method
JP5975527B2 (en) Method for cleaning photomask-related substrate and method for manufacturing photomask-related substrate
EP3353605B1 (en) A method for treating substrates with an aqueous liquid medium exposed to uv-radiation
JPH07505577A (en) Removal of surface contaminants by irradiation
US20070165782A1 (en) Soft x-ray processing device and soft x-ray processing method
JP4214233B2 (en) Fine processing method and fine structure of transparent material
CN102859436A (en) Method and system for removing material and transferring pattern
JP4798778B2 (en) Apparatus and method for cleaning ultraviolet irradiation window
Lapczyna et al. Rapid prototype fabrication of smooth microreactor channel systems in PMMA by VUV laser ablation at 157 nm for applications in genome analysis and biotechnology
JP2007211328A (en) Method for bonding adjacent optical parts
JP2005317555A (en) Excimer lamp and excimer irradiation device
JP2000011960A (en) Surface treatment device and method using dielectric barrier discharge lamp
WO2017175556A1 (en) Surface treatment method and mask, and surface treatment device
JP2017080820A (en) Manufacturing method of fluid device, and the fluid device
KR20050082372A (en) Photo-assisted etching technique of gold and apparatus for the same
JPH08165369A (en) Method for preventing deposition of contaminant on surface of resin
JP2008286838A (en) Exposure mask, pattern forming device and pattern forming method
JP3533918B2 (en) Light source device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140714

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees