JP2016026904A - Joined member and production method of joined member - Google Patents

Joined member and production method of joined member Download PDF

Info

Publication number
JP2016026904A
JP2016026904A JP2012267735A JP2012267735A JP2016026904A JP 2016026904 A JP2016026904 A JP 2016026904A JP 2012267735 A JP2012267735 A JP 2012267735A JP 2012267735 A JP2012267735 A JP 2012267735A JP 2016026904 A JP2016026904 A JP 2016026904A
Authority
JP
Japan
Prior art keywords
base material
hydrophilic layer
nonpolar solvent
joined
joining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012267735A
Other languages
Japanese (ja)
Inventor
義尚 谷口
Yoshinao Taniguchi
義尚 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012267735A priority Critical patent/JP2016026904A/en
Priority to PCT/JP2013/082105 priority patent/WO2014087923A1/en
Publication of JP2016026904A publication Critical patent/JP2016026904A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4895Solvent bonding, i.e. the surfaces of the parts to be joined being treated with solvents, swelling or softening agents, without adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • B01J2219/0084For changing surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/038Bonding techniques not provided for in B81C2203/031 - B81C2203/037

Abstract

PROBLEM TO BE SOLVED: To provide a joined member joined firmly, and having a fine space excellent in tolerance to a nonpolar solvent; and to provide a production method of the joined member.SOLUTION: In a joined member 1 formed by joining together a first substrate 11 comprising a cycloolefin resin and having a recessed part 20 formed thereon, and a second substrate 12 comprising a cycloolefin resin, and having a fine space 5 formed by the recessed part 20 and the second substrate 12, the first substrate 11 and the second substrate 12 are joined with a paraffinic material, and a hydrophilized layer 11a impermeable to a nonpolar solvent is formed in the recessed part 20.SELECTED DRAWING: Figure 3

Description

本発明は、微細空間を有する接合部材及び接合部材の製造方法に関する。   The present invention relates to a joining member having a fine space and a method for manufacturing the joining member.

マイクロリアクタや分析用チップとして、2枚の基材を接合した接合部材によって形成された流路プレートが使用されている。このような接合部材を大量生産する方法として、樹脂材料からなる基材が用いられている。   As a microreactor or an analysis chip, a flow path plate formed by a joining member obtained by joining two substrates is used. As a method for mass-producing such joining members, a base material made of a resin material is used.

シクロオレフィン樹脂を基材に用いる場合、接着剤や熱溶着では接合までに多くの製造時間を必要とし、かつ細かい流路をつぶしてしまうという問題点があった。そこで、特許文献1では、真空紫外光処理による光接合技術が開発された。図12は、特許文献1に開示された樹脂製微小流路化学デバイス100における真空紫外線処理のプロセスの模式図である。図12(a)に示すように、真空紫外線光源110から真空紫外線111が照射されて、2枚の基材103、104の接合面に真空紫外線処理が行われ、表面改質層107、108が形成された。図12(b)に示すように、引き続く接合プロセスで、2枚の基材103、104が加熱加圧され、接合された。   When a cycloolefin resin is used as a base material, the adhesive and the heat welding require a lot of manufacturing time until joining, and there is a problem that a fine flow path is crushed. Therefore, in Patent Document 1, an optical bonding technique using vacuum ultraviolet light processing has been developed. FIG. 12 is a schematic diagram of a vacuum ultraviolet treatment process in the resin microchannel chemical device 100 disclosed in Patent Document 1. As shown in FIG. 12A, the vacuum ultraviolet light 111 is irradiated from the vacuum ultraviolet light source 110, the vacuum ultraviolet treatment is performed on the bonding surfaces of the two substrates 103 and 104, and the surface modification layers 107 and 108 are formed. Been formed. As shown in FIG. 12B, in the subsequent bonding process, the two base materials 103 and 104 were heated and pressed to be bonded.

特許文献2では、無極性溶媒であるパラフィンを用いて接合する技術が開発された。図13は、特許文献2に開示された接合部材によるマイクロチッププレート200を、厚さ方向から切断した部分断面図である。シクロオレフィンポリマー(シクロオレフィン樹脂)からなる第1基材202と第2基材203とが、パラフィンの接着層205を介して、加熱しながら加圧されることにより接合されて、図13に示すように、流路204が形成されている。   In patent document 2, the technique joined using paraffin which is a nonpolar solvent was developed. FIG. 13 is a partial cross-sectional view of the microchip plate 200 made of the joining member disclosed in Patent Document 2, cut from the thickness direction. A first base material 202 and a second base material 203 made of cycloolefin polymer (cycloolefin resin) are joined together by being heated and pressurized through a paraffin adhesive layer 205, as shown in FIG. Thus, the flow path 204 is formed.

特開2006−187730号公報JP 2006-187730 A 国際公開2009/131070号International Publication No. 2009/131070

しかしながら、真空紫外線処理による光接合技術では、処理された面が親水化されるために、真空紫外線処理後に吸着した水分によって接合後の接合強度が不足する場合があった。このため、接合強度が不十分な接合基板を用いたマイクロリアクタや分析用チップが使用中に破損するという問題があった。   However, in the optical bonding technique using the vacuum ultraviolet treatment, the treated surface is hydrophilized, so that the bonding strength after bonding may be insufficient due to moisture adsorbed after the vacuum ultraviolet treatment. For this reason, there has been a problem that a microreactor or an analysis chip using a bonded substrate with insufficient bonding strength is damaged during use.

一方、シクロオレフィン樹脂は、無極性溶媒への耐性が十分でないため、無極性溶媒が過剰に拡散するとワレやクラックを引き起こすことが知られている。言い換えると、シクロオレフィン樹脂は無極性溶媒に対する耐薬品性が不足している。このため、無極性溶媒であるパラフィンを用いて接合する場合、接合に必要な以上に塗布することは好ましくない。しかし、図13に示すように接着部分でない箇所にパラフィンを塗布すると、加熱加圧時にパラフィンが過剰に残留してしまうことがあった。このような場合、パラフィンを用いて強固に接合されても、例えば、流路部に過剰のパラフィンが付着していると、シクロオレフィン樹脂の基材にワレやクラックを引き起こしたり、過剰のパラフィンによって流路部の内壁が膨潤して流路を塞いでしまったりする問題があった。   On the other hand, since the cycloolefin resin is not sufficiently resistant to a nonpolar solvent, it is known that cracking and cracking occur when the nonpolar solvent diffuses excessively. In other words, the cycloolefin resin lacks chemical resistance against nonpolar solvents. For this reason, when joining using paraffin which is a nonpolar solvent, it is not preferable to apply more than necessary for joining. However, as shown in FIG. 13, when paraffin is applied to a portion that is not an adhesive portion, the paraffin sometimes remains excessively during heating and pressurization. In such a case, even if it is firmly joined using paraffin, for example, if excessive paraffin adheres to the flow path, cracking or cracking may occur in the base material of the cycloolefin resin. There has been a problem that the inner wall of the channel portion swells and blocks the channel.

本発明は、上述した課題を解決して、強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間を有する接合部材及び接合部材の製造方法を提供するものである。   This invention solves the subject mentioned above and provides the manufacturing method of the joining member which has the fine space excellent in the tolerance to a nonpolar solvent while being joined firmly, and a joining member.

この課題を解決するために、本発明は、シクロオレフィン樹脂からなり凹部が形成された第1基材と、シクロオレフィン樹脂からなる第2基材と、が接合されて、前記凹部と前記第2基材とによって形成された微細空間を有する接合部材であって、前記第1基材と前記第2基材とがパラフィン系の材料により接合されており、前記凹部には無極性溶媒が浸透しない親水化層が形成されていることを特徴とする。   In order to solve this problem, in the present invention, a first base material made of a cycloolefin resin and having a recess formed therein is joined to a second base material made of a cycloolefin resin, and the recess and the second base material are joined together. A joining member having a fine space formed by a base material, wherein the first base material and the second base material are joined by a paraffinic material, and a nonpolar solvent does not penetrate into the concave portion. A hydrophilic layer is formed.

親水化層が形成された凹部は、無極性溶媒であるパラフィン系の材料が浸透しない。第1基材と第2基材との接合部はパラフィン系の材料により接合されているので、接合強度が安定し、かつ、強固に接合されている。また、第1基材の凹部に形成されている親水化層は、無極性溶媒が浸透(拡散)せず、無極性溶媒を弾く性質を有している。すなわち、親水化層を有している凹部には、無極性溶媒が拡散しにくく、また、無極性溶媒が滞留しなくなる。したがって、第1基材と第2基材とが強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間を有する接合部材を提供することができる。   A paraffinic material that is a nonpolar solvent does not penetrate into the recesses in which the hydrophilic layer is formed. Since the joining part of the 1st substrate and the 2nd substrate is joined by the paraffin type material, joining strength is stabilized and it joins firmly. In addition, the hydrophilic layer formed in the concave portion of the first base material has a property that the nonpolar solvent does not penetrate (diffuse) and repels the nonpolar solvent. That is, the nonpolar solvent hardly diffuses in the concave portion having the hydrophilic layer, and the nonpolar solvent does not stay. Therefore, while the 1st base material and the 2nd base material are joined firmly, the joining member which has the fine space excellent in the tolerance to a nonpolar solvent can be provided.

また、本発明の接合部材において、前記微細空間の内面全域にわたって前記親水化層が形成されていることを特徴とする。第1基材の凹部と凹部に対応する第2基材の部分とに、微細空間の内面全域にわたって親水化層が形成されていると無極性溶媒が拡散しにくく、また、無極性溶媒が滞留しなくなる。したがって、無極性溶媒への耐性がより向上する。   In the bonding member of the present invention, the hydrophilic layer is formed over the entire inner surface of the fine space. If a hydrophilic layer is formed over the entire inner surface of the fine space in the concave portion of the first base material and the portion of the second base material corresponding to the concave portion, the nonpolar solvent is difficult to diffuse and the nonpolar solvent is retained. No longer. Therefore, resistance to nonpolar solvents is further improved.

さらに、本発明の接合部材において、前記親水化層は、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層であることが好ましい。形成された親水化層の表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層であれば、無極性溶媒が拡散しないので無極性溶媒への耐性がさらに向上する。このため、微細空間に無極性溶媒を流入させるような場合であっても、無極性溶媒が浸透せず、膨潤することがない。 Furthermore, in the joining member of the present invention, the hydrophilic layer is preferably a modified layer that has been modified so that the sum of the polar component of the surface free energy and the hydrogen bonding component is 100 mJ / m 2 or more. . If the modified layer is modified so that the total of the polar component of the surface free energy and the hydrogen bonding component of the formed hydrophilic layer is 100 mJ / m 2 or more, the nonpolar solvent does not diffuse, so it is nonpolar Resistance to the solvent is further improved. For this reason, even when a nonpolar solvent is allowed to flow into the fine space, the nonpolar solvent does not penetrate and does not swell.

また、本発明は、シクロオレフィン樹脂からなる第1基材及び第2基材が接合された接合部材の製造方法であって、第1凹部が形成された前記第1基材と前記第2基材とを用意する工程と、前記第1基材の前記第1凹部を含む一部に紫外線を照射する工程と、前記第1凹部と前記第2基材とによって微細空間を形成するために、前記第1基材及び前記第2基材のいずれか又は両方にパラフィン系の材料を塗布して、前記第1基材と前記第2基材とを対向させて加熱加圧する工程と、を有することを特徴とする。   Moreover, this invention is a manufacturing method of the joining member by which the 1st base material and 2nd base material which consist of cycloolefin resin were joined, Comprising: The said 1st base material and said 2nd base in which the 1st recessed part was formed In order to form a fine space by the step of preparing a material, the step of irradiating a part of the first base material including the first concave portion with ultraviolet light, and the first concave portion and the second base material, Applying a paraffinic material to one or both of the first base material and the second base material, and heating and pressurizing the first base material and the second base material to face each other. It is characterized by that.

紫外線を照射する工程によって、第1基材の一部に親水化層が形成される。親水化層は、パラフィン系の材料の濡れ性が小さく、第1基材にパラフィン系の材料を塗布した場合にもパラフィン系の材料が浸透しない領域になる。パラフィン系の材料が浸透しないので、親水化層が形成された第1凹部はパラフィン系の材料によって膨潤してしまうことがない。したがって、接合部材に形成された微細空間を閉塞することが抑制され、無極性溶媒への耐性に優れている。さらに、第1基材及び第2基材の紫外線を照射していない領域は、パラフィン系の材料により接合されるので、第1基材と第2基材との接合強度は安定し、かつ、強固に接合することができる。したがって、第1基材と第2基材とが強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間を有する接合部材を容易に製造することができる。   A hydrophilic layer is formed on a part of the first substrate by the step of irradiating with ultraviolet rays. The hydrophilic layer is a region in which the paraffinic material does not permeate even when the paraffinic material is applied to the first base material because the wettability of the paraffinic material is small. Since the paraffinic material does not permeate, the first recess in which the hydrophilic layer is formed is not swollen by the paraffinic material. Therefore, it is suppressed that the fine space formed in the joining member is blocked, and the resistance to the nonpolar solvent is excellent. Furthermore, since the area | region which has not irradiated the ultraviolet-ray of a 1st base material and a 2nd base material is joined by a paraffin type material, the joint strength of a 1st base material and a 2nd base material is stable, and It can be firmly joined. Therefore, it is possible to easily manufacture a joining member having a fine space in which the first base material and the second base material are firmly joined and excellent in resistance to a nonpolar solvent.

また、本発明の接合部材の製造方法において、前記第2基材における前記第1凹部と対応する部分を含む一部に紫外線を照射する工程を、さらに有することを特徴とする。第1基材の紫外線を照射した第1凹部を含む一部の領域に加え、さらに、第2基材において、紫外線を照射した第1凹部と対応する部分を含む一部の領域はパラフィン系の材料が塗れずに、他の領域はパラフィン系の材料により接合される。紫外線を照射して親水化層が形成された領域は無極性溶媒によって膨潤してしまうことがない。したがって、接合部材に形成された微細空間の内面全域にわたって親水化層を有し、無極性溶媒への耐性がさらに向上した接合部材を容易に製造することができる。   Moreover, in the manufacturing method of the joining member of this invention, it further has the process of irradiating a part including the part corresponding to the said 1st recessed part in a said 2nd base material with an ultraviolet-ray. In addition to the partial region including the first concave portion irradiated with the ultraviolet rays of the first base material, the partial region including the portion corresponding to the first concave portion irradiated with the ultraviolet rays in the second base material is a paraffin type. The other areas are joined by a paraffinic material without the material being applied. The region where the hydrophilic layer is formed by irradiating ultraviolet rays is not swollen by the nonpolar solvent. Therefore, it is possible to easily manufacture a joining member having a hydrophilic layer over the entire inner surface of the fine space formed in the joining member and further improving resistance to a nonpolar solvent.

また、本発明の接合部材の製造方法において、前記第2基材には、前記第1凹部と対応する第2凹部が形成されていることを特徴とする。第2基材において、紫外線を照射した第1凹部と対応する第2凹部が形成され、第2凹部を含む一部の領域はパラフィン系の材料が塗れずに、他の領域はパラフィン系の材料により接合される。第2凹部を有するので、比較的大きな微細空間が形成された接合部材を容易に製造することができる。   Moreover, in the manufacturing method of the joining member of this invention, the 2nd recessed part corresponding to the said 1st recessed part is formed in the said 2nd base material, It is characterized by the above-mentioned. In the second base material, a second concave portion corresponding to the first concave portion irradiated with ultraviolet rays is formed, a part of the region including the second concave portion is not coated with a paraffinic material, and the other region is a paraffinic material. Are joined together. Since it has a 2nd recessed part, the joining member in which the comparatively big fine space was formed can be manufactured easily.

さらに、前記紫外線を照射する工程において、前記親水化層は、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層とすることを特徴とする。形成された親水化層の表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層であれば、微細空間に無極性溶媒を流入させるような場合にも、親水化層には無極性溶媒が浸透しない。これにより、無極性溶媒への耐性に優れた微細空間を有する接合部材を確実に製造することができる。 Furthermore, in the step of irradiating with ultraviolet rays, the hydrophilic layer is a modified layer that has been modified so that the sum of the polar component of the surface free energy and the hydrogen bonding component is 100 mJ / m 2 or more. Features. If the modified layer is modified so that the total of the polar component of the surface free energy and the hydrogen bonding component of the formed hydrophilic layer is 100 mJ / m 2 or more, a nonpolar solvent is allowed to flow into the fine space. Even in such a case, the nonpolar solvent does not penetrate into the hydrophilic layer. Thereby, the joining member which has the fine space excellent in tolerance to a nonpolar solvent can be manufactured reliably.

本発明の接合部材によれば、第1基材と第2基材とがパラフィン系の材料により接合されており、微細空間を形成するための凹部には無極性溶媒が浸透しない親水化層が形成されている。凹部以外の第1基材と第2基材とはパラフィン系の材料により接合されているので、接合強度が安定し、かつ、強固に接合されている。また、親水化層を有している凹部には、無極性溶媒が拡散しにくく、また、無極性溶媒が滞留しなくなる。したがって、第1基材と第2基材とが強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間を有する接合部材を提供することができる。   According to the joining member of the present invention, the first base material and the second base material are joined by a paraffin-based material, and the hydrophilic layer that does not allow the nonpolar solvent to permeate is formed in the concave portion for forming the fine space. Is formed. Since the first base material and the second base material other than the recesses are joined by a paraffinic material, the joining strength is stable and the joints are firmly joined. Further, the nonpolar solvent is difficult to diffuse in the recess having the hydrophilic layer, and the nonpolar solvent does not stay. Therefore, while the 1st base material and the 2nd base material are joined firmly, the joining member which has the fine space excellent in the tolerance to a nonpolar solvent can be provided.

本発明の接合部材の製造方法によれば、第1基材は、微細空間を形成するための第1凹部を含む一部に紫外線を照射して無極性溶媒が浸透しない親水化層を形成され、第1基材及び第2基材のいずれか又は両方にパラフィン系の材料を塗布して第2基材と接合される。これにより、第1基材及び第2基材は、パラフィン系の材料により接合されるので、接合強度は安定し、かつ、強固に接合することができる。一方、親水化層は、パラフィン系の材料が残留しないので、膨潤してしまうことがない。このため、接合部材に形成された微細空間を閉塞することが抑制される。したがって、第1基材と第2基材とが強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間を有する接合部材を容易に製造することができる。   According to the method for manufacturing a joining member of the present invention, the first base material is formed with a hydrophilic layer that is irradiated with ultraviolet light to a part including the first concave portion for forming a fine space and does not penetrate a nonpolar solvent. The paraffinic material is applied to one or both of the first base material and the second base material and bonded to the second base material. Thereby, since a 1st base material and a 2nd base material are joined by a paraffin type material, joining strength is stabilized and it can join firmly. On the other hand, the hydrophilic layer does not swell because no paraffinic material remains. For this reason, it is suppressed that the fine space formed in the joining member is blocked. Therefore, it is possible to easily manufacture a joining member having a fine space in which the first base material and the second base material are firmly joined and excellent in resistance to a nonpolar solvent.

本発明の実施形態の接合部材を示す斜視図である。It is a perspective view which shows the joining member of embodiment of this invention. 本発明の実施形態の接合部材を示す平面図である。It is a top view which shows the joining member of embodiment of this invention. 図2のIII−III線で切断した模式断面図である。It is the schematic cross section cut | disconnected by the III-III line | wire of FIG. 図3の接合部材を製造するための製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process for manufacturing the joining member of FIG. 本発明の実施形態の第1変形例を示す模式断面図である。It is a schematic cross section which shows the 1st modification of embodiment of this invention. 本発明の製造工程の第2変形例を示す説明図である。It is explanatory drawing which shows the 2nd modification of the manufacturing process of this invention. 本発明の製造工程の第1変形例を示す説明図である。It is explanatory drawing which shows the 1st modification of the manufacturing process of this invention. 本発明の実施形態の第2変形例を示す模式断面図である。It is a schematic cross section which shows the 2nd modification of embodiment of this invention. 実施例における接合強度を示す説明図である。It is explanatory drawing which shows the joint strength in an Example. 実施例における接合強度を示す説明図である。It is explanatory drawing which shows the joint strength in an Example. 実施例における表面自由エネルギーを示す説明図である。It is explanatory drawing which shows the surface free energy in an Example. 従来の樹脂製微小流路化学デバイスにおける真空紫外線処理のプロセスの模式図であり、(a)は真空紫外線処理工程の模式断面図であり、(b)は接合工程の模式断面図である。It is a schematic diagram of the process of the vacuum ultraviolet-ray process in the conventional resin microchannel chemical device, (a) is a schematic cross section of a vacuum ultraviolet-ray process, (b) is a schematic cross section of a joining process. 従来の接合部材によるマイクロチッププレートを、厚さ方向から切断した部分断面図である。It is the fragmentary sectional view which cut | disconnected the microchip plate by the conventional joining member from the thickness direction.

以下、本発明を実施するための形態について図面を用いて詳細に説明する。なお、分かりやすいように、図面の各種寸法を適宜変更している。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. For easy understanding, various dimensions in the drawings are appropriately changed.

以下に本実施形態における接合部材1について、図1〜図3を用いて説明する。図1は本発明の実施形態の接合部材1を示す斜視図である。図2は本発明の実施形態の接合部材1を示す平面図である。図3は図2のIII−III線で切断した模式断面図である。   Below, the joining member 1 in this embodiment is demonstrated using FIGS. 1-3. FIG. 1 is a perspective view showing a joining member 1 according to an embodiment of the present invention. FIG. 2 is a plan view showing the joining member 1 according to the embodiment of the present invention. 3 is a schematic cross-sectional view taken along line III-III in FIG.

図1及び図2に示すように、接合部材1は第1基材11と第2基材12との接合面に微細空間5が形成されている。微細空間5は、幅100μm、深さ40μmの矩形断面を有し、図1に示すように、Y2側からY1側に延伸されて、Y1側で分岐されている。微細空間5の端部には、Z1方向に貫通する貫通孔6が接続されている。貫通孔6は、微細空間5を流路として使用する場合、流体の流入口及び流出口となる部分である。   As shown in FIGS. 1 and 2, the joining member 1 has a minute space 5 formed on the joining surface between the first base material 11 and the second base material 12. The minute space 5 has a rectangular cross section with a width of 100 μm and a depth of 40 μm, and is extended from the Y2 side to the Y1 side and branched on the Y1 side as shown in FIG. A through hole 6 penetrating in the Z1 direction is connected to the end of the minute space 5. The through-hole 6 is a portion that serves as an inflow port and an outflow port for fluid when the fine space 5 is used as a flow path.

第1基材11は、シクロオレフィン樹脂からなり、射出成形によって矩形の薄板状に成形されている。同様に、第2基材12は、シクロオレフィン樹脂からなり、射出成形によって矩形の薄板状に成形されている。図3に示すように、第1基材11には、凹部20が形成されている。凹部20には、親水化層11aが形成されている。親水化層11aは、真空紫外光を照射されたことによって、基材であるシクロオレフィン樹脂の被照射面が改質された改質層である。親水化層11aの厚さは1μmオーダーと推定されるが、図3等では分かりやすく模式的に表わしている。   The first base material 11 is made of a cycloolefin resin, and is formed into a rectangular thin plate by injection molding. Similarly, the 2nd base material 12 consists of cycloolefin resin, and is shape | molded by the rectangular thin plate shape by injection molding. As shown in FIG. 3, a recess 20 is formed in the first base material 11. In the recess 20, a hydrophilic layer 11 a is formed. The hydrophilic layer 11a is a modified layer in which the irradiated surface of the cycloolefin resin as a base material is modified by being irradiated with vacuum ultraviolet light. The thickness of the hydrophilic layer 11a is estimated to be on the order of 1 μm, but is schematically shown in FIG.

親水化層11aは、水分子に対する親和性が高いという意味の親水性を有する層であり、親水性は簡便には水の濡れ性で評価することができる。親水化層11aは水の濡れ性が良く、脂質や無極性溶媒等の油に対する親和性が低く、油の濡れ性が悪い、すなわち無極性溶媒等の油を弾く性質を有している。   The hydrophilization layer 11a is a layer having hydrophilicity in the sense that it has a high affinity for water molecules, and the hydrophilicity can be simply evaluated by the wettability of water. The hydrophilic layer 11a has good wettability with water, low affinity with oils such as lipids and nonpolar solvents, and poor oil wettability, that is, has a property of repelling oils such as nonpolar solvents.

第1基材11及び第2基材12に用いるシクロオレフィン樹脂は、例えば、日本ゼオン製の商品名ゼオネックスやゼオノア、三井化学製の商品名アペル、日本合成ゴム製の商品名アートン、日本化成工業製の商品名オプトレッツ、ポリプラスチックス製の商品名トーパスを使用できる。   The cycloolefin resin used for the first base material 11 and the second base material 12 is, for example, trade names ZEONEX and ZEONOR made by ZEON Corporation, trade name APPEL made by Mitsui Chemicals, trade name ARTON made by Nippon Synthetic Rubber, Nippon Kasei Kogyo Co., Ltd. The product name Optrez made by Polyplastics and the product name Topas made by Polyplastics can be used.

第2基材12は、親水化層11aが形成された凹部20と第2基材12とによって微細空間5を形成できるように、第1基材11と接合されている。微細空間5が形成されている領域以外の第1基材11と第2基材12とがパラフィン系の材料により接合されて、接合部30になっている。   The 2nd base material 12 is joined to the 1st base material 11 so that the minute space 5 can be formed with the recessed part 20 in which the hydrophilization layer 11a was formed, and the 2nd base material 12. FIG. The first base material 11 and the second base material 12 other than the region where the fine space 5 is formed are joined by a paraffin-based material to form a joint portion 30.

本実施形態では、第1基材11と第2基材12とが、n−ヘプタデカン(n−Heptadecane)により接合されて、接合部30が形成されている。シクロオレフィン樹脂からなる第1基材11と第2基材12とを接合する直前にn−ヘプタデカンが塗布され、第1基材11と第2基材12とがn−ヘプタデカンを介して貼り合わされて接合されている。この場合、接合部30は殆ど厚さを有していない。   In this embodiment, the 1st base material 11 and the 2nd base material 12 are joined by n-heptadecane (n-Heptadecane), and the junction part 30 is formed. Immediately before joining the first base material 11 and the second base material 12 made of cycloolefin resin, n-heptadecane is applied, and the first base material 11 and the second base material 12 are bonded together via n-heptadecane. Are joined. In this case, the joining part 30 has almost no thickness.

n−ヘプタデカンは、化学式C1736の材料で、無極性溶媒の代表的な種類であるパラフィン系の材料である。本明細書で、パラフィン系の材料とは、殆ど分散成分で構成される無極性溶媒である炭化水素系であり、C2042以下の分子を含む総称である。無極性溶媒は、親水性材料への濡れ性が低い性質を有している。したがって、真空紫外光が照射されて親水化層11aが形成されている凹部20には、無極性溶媒であるn−ヘプタデカンは付着しない。 n-Heptadecane is a material of the chemical formula C 17 H 36 and is a paraffinic material that is a typical kind of nonpolar solvent. In the present specification, the paraffinic material is a hydrocarbon-based nonpolar solvent composed almost of dispersed components, and is a generic name including molecules of C 20 H 42 or less. Nonpolar solvents have the property of low wettability to hydrophilic materials. Therefore, n-heptadecane, which is a nonpolar solvent, does not adhere to the recess 20 where the hydrophilic layer 11a is formed by irradiation with vacuum ultraviolet light.

なお、接合部30に適用可能なパラフィン系の材料は、n−ヘプタデカンに限定されるものではない。   In addition, the paraffinic material applicable to the junction part 30 is not limited to n-heptadecane.

接合部30に用いることができる材料は、無極性溶媒が望ましい。ここで、無極性溶媒とは、表面自由エネルギーが分散成分のみで構成されているものだけでなく、5%以下、好ましくは1%以下、の極性成分が含まれているものを含んでいる。代表的な無極性溶媒は、炭化水素系のパラフィン(化学式C2n+2)、ナフテン(化学式C2n)等である。本発明に適用するパラフィン系の材料とは、パラフィン及びナフテンの数平均分子量は、100〜1000の範囲内、好ましくは200〜600の範囲内であり、平均炭素数は、7〜72程度、好ましくは、16〜45程度である。 The material that can be used for the joint 30 is preferably a nonpolar solvent. Here, the nonpolar solvent includes not only a solvent whose surface free energy is composed only of a dispersed component but also a solvent containing a polar component of 5% or less, preferably 1% or less. Typical nonpolar solvents are hydrocarbon paraffin (chemical formula C n H 2n + 2 ), naphthene (chemical formula C n H 2n ), and the like. The number average molecular weight of paraffin and naphthene is within the range of 100 to 1000, preferably within the range of 200 to 600, and the average carbon number is about 7 to 72, preferably with the paraffinic material applied to the present invention. Is about 16-45.

第1基材11及び第2基材12に用いるシクロオレフィン樹脂は、極性溶媒には耐薬品性があるが、無極性溶媒には耐薬品性がない。例えば、シクロオレフィンポリマー樹脂に油がつくと脆くなりクラックが生じる現象が起きる。これは、シクロオレフィンポリマー樹脂にとって克服が難しい現象であった。そのため、シクロオレフィン樹脂製のマイクロリアクタでは、油等の無極性溶媒に弱く、耐薬品性の観点からエマルジョンの合成に利用することは不可能であった。本実施形態の接合部材1による流路プレートは、耐薬品性が要求される微細空間5に無極性溶媒への耐性を有する親水化層11aが形成されているので、エマルジョン等の合成を行うマイクロリアクタにも適用できる。   The cycloolefin resin used for the first base material 11 and the second base material 12 has chemical resistance in the polar solvent, but does not have chemical resistance in the nonpolar solvent. For example, when a cycloolefin polymer resin is oiled, it becomes brittle and cracks occur. This was a phenomenon difficult to overcome for cycloolefin polymer resins. Therefore, the cycloolefin resin microreactor is weak against nonpolar solvents such as oil and cannot be used for the synthesis of emulsion from the viewpoint of chemical resistance. In the flow path plate by the joining member 1 of the present embodiment, the microreactor that synthesizes an emulsion or the like because the hydrophilic layer 11a having resistance to a nonpolar solvent is formed in the fine space 5 in which chemical resistance is required. It can also be applied to.

<製造方法>
次に、本発明の製造方法について、図4を用いて説明する。図4は、図3の接合部材を製造するための製造工程を示す説明図である。
<Manufacturing method>
Next, the manufacturing method of this invention is demonstrated using FIG. FIG. 4 is an explanatory view showing a manufacturing process for manufacturing the joining member of FIG. 3.

図4(a)に示すように、第1基材11及び第2基材12を用意し、第1基材11には射出成形によって第1凹部21(凹部20)が形成されている。   As shown to Fig.4 (a), the 1st base material 11 and the 2nd base material 12 are prepared, and the 1st recessed part 21 (recessed part 20) is formed in the 1st base material 11 by injection molding.

次に、図4(b)に示すように、マスク材51の開口を通して、第1凹部21に光源60の真空紫外光を照射する工程を行う。光源60と第1基材11とは1mm〜10mm程度の空間が設けられ、マスク材51は第1基材11とほぼ密着している状態(セミ・コンタクト)が好ましい。マスク材51は金属板のエッチング加工によって開口を設けた金属マスク、又は、真空紫外光を透過する合成石英基板に遮光膜をパターニングしたフォトマスクである。あるいは、他の材料から同様の手法で形成してもよい。真空紫外光を照射する工程によって、第1基材11の第1凹部21に無極性溶媒が浸透しない親水化層11aを形成できる。親水化層11aは、シクロオレフィン樹脂の改質層である。   Next, as shown in FIG. 4B, a process of irradiating the first recess 21 with vacuum ultraviolet light from the light source 60 through the opening of the mask material 51 is performed. It is preferable that the light source 60 and the first base material 11 have a space of about 1 mm to 10 mm, and the mask material 51 is in close contact with the first base material 11 (semi-contact). The mask material 51 is a metal mask provided with an opening by etching a metal plate, or a photomask obtained by patterning a light shielding film on a synthetic quartz substrate that transmits vacuum ultraviolet light. Or you may form by the same method from another material. By the step of irradiating the vacuum ultraviolet light, the hydrophilic layer 11a in which the nonpolar solvent does not penetrate into the first recess 21 of the first base material 11 can be formed. The hydrophilic layer 11a is a modified layer of cycloolefin resin.

図4(c)に示すように、この表面にパラフィン系の材料31を塗布する工程によって、親水化層11aが形成された第1凹部21を除く他の領域に、パラフィン系の材料31が塗布される。パラフィン系の材料31は、殆ど分散成分で構成される無極性溶媒である炭化水素系であり、例えば、n−ヘプタデカンである。このとき、第1凹部21には無極性溶媒であるパラフィン系の材料31が塗布されない。続いて、図4(d)に示すように、第1基材11と第2基材12とを対向させて加熱加圧する工程によって、接合を行う。これにより、第1基材11の第1凹部21と第2基材12とによって、微細空間5を形成することができる。   As shown in FIG. 4 (c), the paraffinic material 31 is applied to the other region except the first recess 21 where the hydrophilic layer 11a is formed by the step of applying the paraffinic material 31 to the surface. Is done. The paraffinic material 31 is a hydrocarbon-based nonpolar solvent composed of almost dispersed components, for example, n-heptadecane. At this time, the paraffinic material 31 that is a nonpolar solvent is not applied to the first recess 21. Subsequently, as shown in FIG. 4D, bonding is performed by a process of heating and pressurizing the first base material 11 and the second base material 12 facing each other. Thereby, the fine space 5 can be formed by the first concave portion 21 and the second base material 12 of the first base material 11.

なお、図4(c)において、第1基材11の表面にパラフィン系の材料31を塗布する代わりに、第2基材12の表面にパラフィン系の材料を塗布してもよい。この場合は、第2基材12における第1凹部21と対応する部分はパラフィン系の材料が塗布されているので、塗布されたパラフィン系の材料は第2基材12における第1凹部21と対応する部分にも浸透する。また、この部分は改質されていないので、無極性溶媒への溶媒耐性は用いているシクロオレフィン樹脂のままである。   In FIG. 4C, instead of applying the paraffinic material 31 to the surface of the first base material 11, a paraffinic material may be applied to the surface of the second base material 12. In this case, since the portion corresponding to the first recess 21 in the second base material 12 is coated with a paraffin-based material, the applied paraffin-based material corresponds to the first recess 21 in the second base material 12. It penetrates into the parts that do. Moreover, since this part is not modified, the solvent resistance to the nonpolar solvent remains the cycloolefin resin used.

この製造方法によれば、第1基材11は、微細空間5を形成するための第1凹部21を含む一部に紫外線を照射して無極性溶媒が浸透しない親水化層11aが形成され、第1基材11にパラフィン系の材料31を塗布して、加熱加圧されて、第2基材12と接合される。これにより、第1基材11及び第2基材12は、パラフィン系の材料31により接合されるので、接合強度は安定し、かつ、強固に接合することができる。一方、親水化層11aは、パラフィン系の材料31が残留しないので、膨潤してしまうことがない。このため、接合部材1に形成された微細空間5を閉塞することが抑制される。このため、微細空間に無極性溶媒が流入した場合であっても、無極性溶媒が浸透せず、膨潤することがない。したがって、第1基材11と第2基材12とが強固に接合されているとともに、無極性溶媒への耐性に優れた微細空間5を有している接合部材1を容易に製造することができる。   According to this manufacturing method, the first base material 11 is formed with the hydrophilic layer 11a in which a nonpolar solvent does not penetrate by irradiating a part including the first recess 21 for forming the fine space 5 with ultraviolet rays, A paraffinic material 31 is applied to the first substrate 11, heated and pressurized, and joined to the second substrate 12. Thereby, since the 1st base material 11 and the 2nd base material 12 are joined by paraffinic material 31, joining strength is stabilized and it can join firmly. On the other hand, the hydrophilic layer 11a does not swell because the paraffinic material 31 does not remain. For this reason, it is suppressed that the fine space 5 formed in the joining member 1 is closed. For this reason, even when the nonpolar solvent flows into the fine space, the nonpolar solvent does not penetrate and does not swell. Therefore, it is possible to easily manufacture the joining member 1 having the fine space 5 excellent in resistance to the nonpolar solvent while the first base material 11 and the second base material 12 are firmly joined. it can.

なお、貫通孔6においても、無極性溶媒が浸透しない親水化層が形成されていることが好ましい。貫通孔6の側壁に紫外線を照射することによって、貫通孔6にも親水化層を形成することが可能である。   In addition, it is preferable that the hydrophilic layer which a nonpolar solvent does not osmose | permeate also in the through-hole 6 is formed. By irradiating the side wall of the through hole 6 with ultraviolet rays, a hydrophilic layer can be formed also in the through hole 6.

(第1変形例)
以下に第1変形例について、図4〜図6を用いて説明する。図5は、第1変形例を示す模式断面図である。図6は、第1変形例の製造方法である。
(First modification)
Hereinafter, a first modification will be described with reference to FIGS. FIG. 5 is a schematic cross-sectional view showing a first modification. FIG. 6 shows a manufacturing method according to the first modification.

図5に示すように、第2基材12は、親水化層12aが形成されている。   As shown in FIG. 5, the 2nd base material 12 has the hydrophilic layer 12a formed.

第1基材11は、図4(b)の真空紫外光を照射する工程まで同じである。第2基材12は、図6(b)に示すように、マスク材52の開口を通して、第1凹部21(凹部20)に対応する部分に光源60の真空紫外光を照射する工程が追加される。マスク材52は、マスク材51と同様にして形成されたものである。   The 1st base material 11 is the same until the process of irradiating the vacuum ultraviolet light of FIG.4 (b). As shown in FIG. 6B, the second base material 12 is added with a step of irradiating the portion corresponding to the first concave portion 21 (the concave portion 20) with the vacuum ultraviolet light of the light source 60 through the opening of the mask material 52. The The mask material 52 is formed in the same manner as the mask material 51.

さらに、図6(c)に示すように、第2基材12の表面にパラフィン系の材料32を塗布する工程によって、親水化層12aが形成されていない領域に、パラフィン系の材料32が塗布される。このとき、親水化層12aには無極性溶媒であるパラフィン系の材料32が塗布されない。続いて、図6(d)に示すように、第1基材11と第2基材12とを対向させて加熱加圧する工程によって、接合を行う。これにより、第1基材11の第1凹部21と第2基材12とによって、微細空間5を形成することができる。   Further, as shown in FIG. 6C, the paraffinic material 32 is applied to the region where the hydrophilic layer 12a is not formed by the step of applying the paraffinic material 32 to the surface of the second substrate 12. Is done. At this time, the paraffinic material 32 which is a nonpolar solvent is not applied to the hydrophilic layer 12a. Subsequently, as shown in FIG. 6D, bonding is performed by a process of heating and pressurizing the first base material 11 and the second base material 12 facing each other. Thereby, the fine space 5 can be formed by the first concave portion 21 and the second base material 12 of the first base material 11.

この製造方法によれば、第1基材11は、第1凹部21を含む一部に紫外線を照射して親水化層11aが形成され、さらに、第2基材12において第1凹部21と対応する部分に紫外線を照射して親水化層12aが形成されている。続いて、第2基材12にパラフィン系の材料32を塗布して、加熱加圧されて、第1基材11と接合される。これにより、第1基材11及び第2基材12は、パラフィン系の材料32により接合されるので、接合強度は安定し、かつ、強固に接合することができる。一方、親水化層11a、12aは、パラフィン系の材料32が残留しないので、膨潤してしまうことがない。この接合部材2は、形成された微細空間5の内面全域にわたって親水化層11a、12aを有し、用いているシクロオレフィン樹脂に比べて、無極性溶媒への溶媒耐性が向上する。このため、接合部材2に形成された微細空間5を閉塞することが抑制される。したがって、この製造方法によって製造された接合部材2は、第1基材11と第2基材12とが強固に接合されているとともに、無極性溶媒への耐性を有する微細空間5が形成されている。   According to this manufacturing method, the first base material 11 is irradiated with ultraviolet rays to a part including the first concave portion 21 to form the hydrophilic layer 11 a, and further corresponds to the first concave portion 21 in the second base material 12. The hydrophilic layer 12a is formed by irradiating the portion to be irradiated with ultraviolet rays. Subsequently, a paraffinic material 32 is applied to the second base material 12, heated and pressurized, and joined to the first base material 11. Thereby, since the 1st base material 11 and the 2nd base material 12 are joined by paraffinic material 32, joining strength is stabilized and it can join firmly. On the other hand, the hydrophilic layers 11a and 12a do not swell because the paraffinic material 32 does not remain. This joining member 2 has hydrophilic layers 11a and 12a over the entire inner surface of the formed fine space 5, and the solvent resistance to a nonpolar solvent is improved as compared with the cycloolefin resin used. For this reason, it is suppressed that the fine space 5 formed in the joining member 2 is blocked. Therefore, in the joining member 2 produced by this production method, the first base material 11 and the second base material 12 are firmly joined, and the fine space 5 having resistance to a nonpolar solvent is formed. Yes.

なお、図6(c)の工程は、第2基材12の表面にパラフィン系の材料32を塗布する代わりに、図4(c)のように、第1基材11の表面にパラフィン系の材料31を塗布してもよい。また、第1基材11と第2基材12との両基材の接合面にパラフィン系の材料31、32を塗布してもよい。   6C, instead of applying the paraffinic material 32 to the surface of the second substrate 12, the paraffinic material is applied to the surface of the first substrate 11 as shown in FIG. Material 31 may be applied. Alternatively, paraffinic materials 31 and 32 may be applied to the joint surfaces of both the first base material 11 and the second base material 12.

(第2変形例)
以下に第2変形例について、図7〜図8を用いて説明する。図7は、第2変形例を示す模式断面図である。図8は、第2変形例の製造方法である。
(Second modification)
Hereinafter, a second modification will be described with reference to FIGS. FIG. 7 is a schematic cross-sectional view showing a second modification. FIG. 8 shows a manufacturing method of the second modification.

なお、第2変形例は、第2基材12の断面形状が異なっているが、材質等は同じであるため、同一の符号を用いた。   In the second modification, although the cross-sectional shape of the second base material 12 is different, the same reference numerals are used because the materials are the same.

図7に示すように、第2基材12には、第1凹部21と対応する第2凹部22が形成されている。第2基材12において、紫外線を照射した第1凹部21と対応する第2凹部22が形成され、第2凹部22はパラフィン系の材料32が塗れずに、他の領域はパラフィン系の材料32により接合される。   As shown in FIG. 7, the second base 12 is formed with a second recess 22 corresponding to the first recess 21. In the second base material 12, a second concave portion 22 corresponding to the first concave portion 21 irradiated with ultraviolet rays is formed. The second concave portion 22 is not coated with a paraffinic material 32, and other regions are paraffinic material 32. Are joined together.

第2凹部22を有するので、比較的大きな微細空間5を形成する場合に適している。   Since it has the 2nd recessed part 22, it is suitable when forming the comparatively large fine space 5. FIG.

図8(a)に示すように、第2基材12には、射出成形によって、第1凹部21と対応する第2凹部22が形成されている。   As shown to Fig.8 (a), the 2nd recessed part 22 corresponding to the 1st recessed part 21 is formed in the 2nd base material 12 by injection molding.

次に、図8(b)に示すように、マスク材51の開口を通して、第1凹部21に光源60の真空紫外光を照射する工程を行う。光源60と第1基材11とは1mm〜10mm程度の空間が設けられ、マスク材51は第1基材11とほぼ密着している状態(セミ・コンタクト)が好ましい。マスク材51は金属板のエッチング加工によって開口を設けた金属マスク、又は、真空紫外光を透過する合成石英基板に遮光膜をパターニングしたフォトマスクである。あるいは、他の材料から同様の手法で形成してもよい。真空紫外光を照射する工程によって、第1基材11の第1凹部21に無極性溶媒が浸透しない親水化層11aを形成できる。親水化層11aは、シクロオレフィン樹脂の改質層である。また、第2基材12は、マスク材52の開口を通して、第2凹部22に光源60の真空紫外光を照射する。マスク材52は、マスク材51と同様にして形成されたものである。真空紫外光を照射する工程によって、第2基材12の第2凹部22に無極性溶媒が浸透しない親水化層12aを形成できる。親水化層12aは、シクロオレフィン樹脂の改質層である。   Next, as shown in FIG. 8B, a process of irradiating the first recess 21 with vacuum ultraviolet light from the light source 60 through the opening of the mask material 51 is performed. It is preferable that the light source 60 and the first base material 11 have a space of about 1 mm to 10 mm, and the mask material 51 is in close contact with the first base material 11 (semi-contact). The mask material 51 is a metal mask provided with an opening by etching a metal plate, or a photomask obtained by patterning a light shielding film on a synthetic quartz substrate that transmits vacuum ultraviolet light. Or you may form by the same method from another material. By the step of irradiating the vacuum ultraviolet light, the hydrophilic layer 11a in which the nonpolar solvent does not penetrate into the first recess 21 of the first base material 11 can be formed. The hydrophilic layer 11a is a modified layer of cycloolefin resin. Further, the second substrate 12 irradiates the second recess 22 with the vacuum ultraviolet light of the light source 60 through the opening of the mask material 52. The mask material 52 is formed in the same manner as the mask material 51. By the step of irradiating the vacuum ultraviolet light, the hydrophilic layer 12a in which the nonpolar solvent does not penetrate into the second recess 22 of the second substrate 12 can be formed. The hydrophilic layer 12a is a modified layer of cycloolefin resin.

図8(c)に示すように、第1基材11の表面にパラフィン系の材料31を塗布する工程によって、親水化層11aが形成された第1凹部21を除く他の領域に、パラフィン系の材料31が塗布される。このとき、第1凹部21には無極性溶媒であるパラフィン系の材料31が塗布されない。また、第2基材12の表面にパラフィン系の材料32を塗布する工程によって、親水化層12aが形成された第2凹部22を除く他の領域に、パラフィン系の材料32が塗布される。このとき、第2凹部22には無極性溶媒であるパラフィン系の材料32が塗布されない。続いて、図8(d)に示すように、第1基材11と第2基材12とを対向させて加熱加圧する工程によって、接合を行う。これにより、第1基材11の第1凹部21と第2基材12の第2凹部22とによって、微細空間5を形成することができる。   As shown in FIG. 8 (c), the paraffinic material is applied to other regions except for the first concave portion 21 where the hydrophilic layer 11a is formed by the step of applying the paraffinic material 31 to the surface of the first base material 11. The material 31 is applied. At this time, the paraffinic material 31 that is a nonpolar solvent is not applied to the first recess 21. Moreover, the paraffinic material 32 is apply | coated to the area | region other than the 2nd recessed part 22 in which the hydrophilic layer 12a was formed by the process of apply | coating the paraffinic material 32 to the surface of the 2nd base material 12. FIG. At this time, the paraffinic material 32 that is a nonpolar solvent is not applied to the second recess 22. Subsequently, as shown in FIG. 8D, bonding is performed by a process of heating and pressurizing the first base material 11 and the second base material 12 facing each other. Thereby, the fine space 5 can be formed by the first concave portion 21 of the first base material 11 and the second concave portion 22 of the second base material 12.

この製造方法によれば、第1基材11は、第1凹部21を含む一部に紫外線を照射して親水化層11aが形成され、さらに、第2基材12において第2凹部22を含む一部に紫外線を照射して親水化層12aが形成されている。続いて、第1基材11にパラフィン系の材料31を、また、第2基材12にパラフィン系の材料32を、それぞれ塗布して、加熱加圧されて、第1基材11と第2基材12とが接合される。これにより、第1基材11及び第2基材12は、パラフィン系の材料31、32により接合されるので、接合強度は安定し、かつ、強固に接合することができる。一方、親水化層11a、12aは、パラフィン系の材料31、32が残留しないので、膨潤してしまうことがない。この接合部材3は、形成された微細空間5の内面全域にわたって親水化層11a、12aを有し、用いているシクロオレフィン樹脂に比べて、無極性溶媒への溶媒耐性が向上する。このため、接合部材3に形成された微細空間5を閉塞することが抑制される。したがって、この製造方法によって製造された接合部材3は、第1基材11と第2基材12とが強固に接合されているとともに、無極性溶媒への耐性を有する微細空間5が形成されている。   According to this manufacturing method, the first base material 11 is irradiated with ultraviolet rays to a part including the first recess 21 to form the hydrophilic layer 11 a, and further includes the second recess 22 in the second base material 12. A hydrophilic layer 12a is formed by irradiating a part with ultraviolet rays. Subsequently, the paraffinic material 31 is applied to the first base material 11, and the paraffinic material 32 is applied to the second base material 12, and the first base material 11 and the second base material 11 are heated and pressurized. The base material 12 is joined. Thereby, since the 1st base material 11 and the 2nd base material 12 are joined by the paraffinic materials 31 and 32, joining strength is stabilized and it can join firmly. On the other hand, the hydrophilic layers 11a and 12a do not swell because the paraffinic materials 31 and 32 do not remain. The joining member 3 has hydrophilic layers 11a and 12a over the entire inner surface of the formed fine space 5, and the solvent resistance to a nonpolar solvent is improved as compared with the cycloolefin resin used. For this reason, it is suppressed that the fine space 5 formed in the joining member 3 is blocked. Therefore, in the joining member 3 produced by this production method, the first base material 11 and the second base material 12 are firmly joined, and the fine space 5 having resistance to a nonpolar solvent is formed. Yes.

以下、本発明の実施例により、接合部材の接合強度と、親水化層の無極性溶媒への耐性について説明する。   Hereinafter, according to an embodiment of the present invention, the bonding strength of the bonding member and the resistance of the hydrophilic layer to the nonpolar solvent will be described.

第1基材11及び第2基材12には、日本ゼオン製の商品名ゼオネックス480Rを用い、基材の厚みは1mmである。製作した破壊試験用サンプルの大きさは、70mm×30mmである。凹部20は、長さ10mm、幅100μm、深さ40μmで、成形用の金型によって形成され、サンプルのほぼ中央部分に配置された。   As the first base material 11 and the second base material 12, a trade name ZEONEX 480R manufactured by Nippon Zeon Co., Ltd. is used, and the thickness of the base material is 1 mm. The size of the manufactured sample for destructive testing is 70 mm × 30 mm. The recess 20 had a length of 10 mm, a width of 100 μm, and a depth of 40 μm, was formed by a molding die, and was arranged at a substantially central portion of the sample.

凹部20に真空紫外光(ウシオ電機製SUS05、波長172nm、出力10mW/cm)を照射した。このとき、光源と第1基材11との間隔は5mm、照射時間は5分であった。 The recess 20 was irradiated with vacuum ultraviolet light (SUS05 manufactured by USHIO INC., Wavelength 172 nm, output 10 mW / cm 2 ). At this time, the space | interval of a light source and the 1st base material 11 was 5 mm, and irradiation time was 5 minutes.

引き続き、第1基材11にn−ヘプタデカンを塗布し、第1基材11と第2基材12とを貼り合わせた状態で、面方向に1.65MPaの圧力を加え、摂氏70度の加熱を行いながら、5分間の接合を行った。   Subsequently, n-heptadecane is applied to the first base material 11, and the first base material 11 and the second base material 12 are bonded to each other, and a pressure of 1.65 MPa is applied in the surface direction to heat at 70 degrees Celsius. Bonding for 5 minutes was performed.

このようにして作成した実施例は、基材が破壊される前に基材同士が剥がれることは見られなかった。また、凹部20と第2基材12とによって形成された微細空間5が閉塞されてしまう不具合は観察されなかった。   In the examples thus prepared, it was not observed that the substrates were peeled off before the substrates were destroyed. Moreover, the malfunction that the fine space 5 formed by the recessed part 20 and the 2nd base material 12 was obstruct | occluded was not observed.

また、n−ヘプタデカンを介した接合の効果は以下の比較例の実験により確認された。   Moreover, the effect of joining via n-heptadecane was confirmed by the experiment of the following comparative example.

真空紫外光(ウシオ電機製SUS05、波長172nm、出力10mW/cm)を、光源と第1基材との間隔は5mmで、真空紫外光を第1基材11及び第2基材12の接合面全面に亘って、照射した。真空紫外光を照射する照射時間を変えたサンプルを多数作成して、真空紫外光が照射された基材面でのn−ヘプタデカンを介した接合を行い、それぞれの接合強度を測定した。なお、この測定サンプルの接合面積は26mm×26mmとした。この結果を図9及び図10に示す。 Vacuum ultraviolet light (SUS05 manufactured by Ushio, wavelength 172 nm, output 10 mW / cm 2 ), the distance between the light source and the first substrate is 5 mm, and vacuum ultraviolet light is bonded to the first substrate 11 and the second substrate 12. Irradiation was performed over the entire surface. A number of samples with different irradiation times for irradiation with vacuum ultraviolet light were prepared, and bonding via n-heptadecane was performed on the substrate surface irradiated with vacuum ultraviolet light, and the respective bonding strengths were measured. The bonding area of this measurement sample was 26 mm × 26 mm. The results are shown in FIGS.

図9は、n−ヘプタデカンを塗布して接合したサンプルの、塗布直前に行った真空紫外光の照射時間と測定された接合強度との関係をまとめたグラフである。図10は、真空紫外光の照射後にn−ヘプタデカンを塗布して接合した比較例2と、真空紫外光の照射のみによって接合した比較例3との、それぞれの接合強度を測定したサンプルにおける真空紫外光の照射時間との関係をまとめたグラフである。図9に示すように、比較例1(真空紫外光を照射していない基材面でのn−ヘプタデカンを介した接合)の接合強度は300Nであった。これに対して、図9及び図10の比較例2(1分以上の照射時間で真空紫外光が照射された基材面でのn−ヘプタデカンを介した接合)の接合強度は、50N以下であった。図10に示すように、真空紫外光のみによる比較例3は、照射時間が長いほど接合強度が大きくなるが、照射時間が4分〜5分で、真空紫外光による接合強度(比較例1)と、真空紫外光が照射された基材面でのn−ヘプタデカンを介した接合強度(比較例2)とがほぼ一致した。すなわち、4分以上の照射時間で、n−ヘプタデカンを介した接合を得られなくなっていることを意味している。   FIG. 9 is a graph summarizing the relationship between the irradiation time of vacuum ultraviolet light performed immediately before coating and the measured bonding strength of the sample coated and bonded with n-heptadecane. FIG. 10 shows vacuum ultraviolet rays in samples in which the bonding strengths of Comparative Example 2 in which n-heptadecane was applied and bonded after irradiation with vacuum ultraviolet light and Comparative Example 3 in which bonding was performed only by irradiation with vacuum ultraviolet light were measured. It is the graph which put together the relationship with the irradiation time of light. As shown in FIG. 9, the bonding strength of Comparative Example 1 (bonding through n-heptadecane on the base material surface not irradiated with vacuum ultraviolet light) was 300N. On the other hand, the bonding strength of Comparative Example 2 in FIGS. 9 and 10 (bonding via n-heptadecane on the substrate surface irradiated with vacuum ultraviolet light for an irradiation time of 1 minute or more) is 50 N or less. there were. As shown in FIG. 10, in Comparative Example 3 using only vacuum ultraviolet light, the bonding strength increases as the irradiation time increases. However, the irradiation time is 4 minutes to 5 minutes, and the bonding strength using vacuum ultraviolet light (Comparative Example 1). And the bonding strength (comparative example 2) via n-heptadecane on the surface of the substrate irradiated with vacuum ultraviolet light substantially coincided. That is, it means that the junction via n-heptadecane cannot be obtained in an irradiation time of 4 minutes or more.

これは、真空紫外光の照射によって改質された親水化層を有するシクロオレフィン樹脂にはn−ヘプタデカンを付着できなくなり、真空紫外光による接合(第1基材11の親水化層と第2基材12の親水化層との直接接合)になったためであると思われる。すなわち、真空紫外光による接合に比べて、パラフィン系の材料を介した接合は大きな接合強度(比較例1)が得られるが、パラフィン系の材料を介した接合と真空紫外光による接合とが同時に行われているわけではない。むしろ、真空紫外光が照射された基材面はパラフィン系の材料を介した接合を行うことができない、相反する接合条件であることを意味している。   This is because n-heptadecane cannot be attached to a cycloolefin resin having a hydrophilic layer modified by irradiation with vacuum ultraviolet light, and bonding with vacuum ultraviolet light (the hydrophilic layer of the first substrate 11 and the second group) This is considered to be due to the direct bonding with the hydrophilic layer of the material 12. In other words, compared to bonding using vacuum ultraviolet light, bonding using a paraffin-based material provides a large bonding strength (Comparative Example 1), but bonding using a paraffin-based material and bonding using vacuum ultraviolet light are performed simultaneously. It is not done. Rather, it means that the substrate surface irradiated with vacuum ultraviolet light is in a conflicting bonding condition in which bonding via a paraffinic material cannot be performed.

次に、真空紫外光を照射する照射時間に対する表面自由エネルギーの測定によって、基材であるシクロオレフィン樹脂(日本ゼオン製の商品名ゼオネックス480R)に形成される親水化層の評価を行った。図11は、基材の全面に亘って、真空紫外光を照射する照射時間を変えたサンプルの、それぞれの表面自由エネルギーを測定した結果である。真空紫外光を照射する照射時間を変えたサンプルを多数作成して、水、1−ブロモナフタレン、エチレングリコールの3液で接触角の測定を行った後、北崎・畑理論を用いてそれぞれの表面自由エネルギーの分散成分、極性成分及び水素結合成分を算出した。真空紫外光を照射していないシクロオレフィン樹脂は、表面自由エネルギーの極性成分がほぼ0であり、分散成分のみで構成されている無極性である。真空紫外光を照射すると、表面自由エネルギーの極性成分が0から300mJ/mに増加していることが分かる。照射時間が1分〜4分の間で、表面自由エネルギーの極性成分が100mJ/m以下になる現象が見られた。これは、真空紫外光の照射直後は基材表面に吸着している有機物が分解等で揮発して表面自由エネルギーが増加するが、シクロオレフィン樹脂が改質された改質層の形成はあまり進んでいないためである。 Next, the hydrophilic layer formed on the cycloolefin resin (trade name ZEONEX 480R manufactured by Nippon Zeon Co., Ltd.) as a base material was evaluated by measuring the surface free energy with respect to the irradiation time for irradiation with vacuum ultraviolet light. FIG. 11 shows the results of measuring the surface free energy of each sample with different irradiation times for irradiation with vacuum ultraviolet light over the entire surface of the substrate. After preparing many samples with different irradiation times for irradiation with vacuum ultraviolet light and measuring the contact angle with three liquids of water, 1-bromonaphthalene, and ethylene glycol, each surface using Kitazaki and Hata theory Free energy dispersive component, polar component and hydrogen bond component were calculated. The cycloolefin resin that has not been irradiated with vacuum ultraviolet light has almost no polar component of surface free energy, and is non-polarized only composed of a dispersed component. It can be seen that when the vacuum ultraviolet light is irradiated, the polar component of the surface free energy increases from 0 to 300 mJ / m 2 . There was a phenomenon that the polar component of the surface free energy became 100 mJ / m 2 or less when the irradiation time was between 1 minute and 4 minutes. This is because immediately after irradiation with vacuum ultraviolet light, organic substances adsorbed on the substrate surface volatilize due to decomposition or the like and the surface free energy increases, but the formation of a modified layer in which the cycloolefin resin is modified progresses so much. This is because it is not.

図9〜図11に示す評価結果によれば、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上であれば、水の濡れ性が高く、無極性溶媒の濡れ性が低いと考察される。 According to the evaluation results shown in FIGS. 9 to 11, if the sum of the polar component of the surface free energy and the hydrogen bonding component is 100 mJ / m 2 or more, the wettability of water is high and the wettability of the nonpolar solvent is high. Considered low.

シクロオレフィン樹脂は、本来、表面自由エネルギーが分散成分のみで構成されており、無極性溶媒に対する耐薬品性がない。そのため、無極性溶媒が浸透して膨潤してしまう問題があった。シクロオレフィン樹脂が改質された改質層は、極性成分と水素結合成分を有することによって、無極性溶媒が付着しなくなるため、無極性溶媒であるn−ヘプタデカン等のパラフィン系の材料がシクロオレフィン樹脂に拡散しなくなる。すなわち、シクロオレフィン樹脂に形成された親水化層は無極性溶媒への耐性を有している。このため、微細空間に無極性溶媒が流入させるような場合であっても、無極性溶媒が浸透せず、膨潤することがない。   The cycloolefin resin originally has a surface free energy composed only of a dispersed component, and has no chemical resistance to a nonpolar solvent. Therefore, there has been a problem that the nonpolar solvent penetrates and swells. Since the modified layer in which the cycloolefin resin is modified has a polar component and a hydrogen bonding component, a nonpolar solvent does not adhere to the modified layer, and therefore a paraffinic material such as n-heptadecane, which is a nonpolar solvent, is a cycloolefin. It will not diffuse into the resin. That is, the hydrophilic layer formed on the cycloolefin resin has resistance to a nonpolar solvent. For this reason, even when the nonpolar solvent is allowed to flow into the fine space, the nonpolar solvent does not penetrate and does not swell.

図11に示すように、5分以上の真空紫外光の照射時間で、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上に急速に改質されている。このことから、親水化層は、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上、好ましくは150mJ/m以上となるように改質された改質層であることが好ましい。すなわち、形成された親水化層の表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上、とくに、150mJ/m以上であれば、無極性溶媒であるパラフィン系の材料を付着させることができない。 As shown in FIG. 11, the total of the polar component of the surface free energy and the hydrogen bond component is rapidly modified to 100 mJ / m 2 or more in the irradiation time of vacuum ultraviolet light of 5 minutes or more. Therefore, it hydrophilic layer, the sum of the polar component and hydrogen bond component of surface free energy 100 mJ / m 2 or more, preferably modified layer modified so that 150 mJ / m 2 or more Is preferred. That is, the sum of the polar component and hydrogen bond component of surface free energy of the formed hydrophilic layer is 100 mJ / m 2 or more, in particular, if the 150 mJ / m 2 or more, the paraffinic material which is non-polar solvent It cannot be attached.

本実施例に記載の親水化層の形成条件に依らず、真空紫外光の波長や出力等が異なる場合においても、形成された親水化層の表面自由エネルギーの極性成分と水素結合成分との合計が上述の測定値であれば、形成された接合部材は、同様の効果を奏する。   Regardless of the formation conditions of the hydrophilic layer described in this example, even when the wavelength and output of the vacuum ultraviolet light are different, the total of the polar component of the surface free energy of the formed hydrophilic layer and the hydrogen bonding component If it is the above-mentioned measured value, the formed joining member has the same effect.

1、2、3 接合部材
5 微細空間
6 貫通孔
11 第1基材
12 第2基材
11a、12a 親水化層
20 凹部
21 第1凹部
22 第2凹部
30 接合部
31、32 パラフィン系の材料
1, 2, 3 Joining member 5 Fine space 6 Through-hole 11 1st base material 12 2nd base material 11a, 12a Hydrophilization layer 20 Recessed part 21 1st recessed part 22 2nd recessed part 30 Joining part 31, 32 Paraffin type material

Claims (7)

シクロオレフィン樹脂からなり凹部が形成された第1基材と、シクロオレフィン樹脂からなる第2基材と、が接合されて、前記凹部と前記第2基材とによって形成された微細空間を有する接合部材であって、
前記第1基材と前記第2基材とがパラフィン系の材料により接合されており、
前記凹部には無極性溶媒が浸透しない親水化層が形成されていることを特徴とする接合部材。
The 1st base material which consists of cycloolefin resin and the recessed part was formed, and the 2nd base material which consists of cycloolefin resin are joined, and it has the fine space formed by the said recessed part and the said 2nd base material A member,
The first base material and the second base material are joined by a paraffinic material,
A bonding member, wherein a hydrophilic layer that does not allow a nonpolar solvent to permeate is formed in the recess.
前記微細空間の内面全域にわたって前記親水化層が形成されていることを特徴とする請求項1に記載の接合部材。   The joining member according to claim 1, wherein the hydrophilic layer is formed over the entire inner surface of the fine space. 前記親水化層は、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層であることを特徴とする請求項2に記載の接合部材。 3. The bonding according to claim 2, wherein the hydrophilic layer is a modified layer that is modified so that a sum of a polar component of surface free energy and a hydrogen bonding component is 100 mJ / m 2 or more. Element. シクロオレフィン樹脂からなる第1基材及び第2基材が接合された接合部材の製造方法であって、
第1凹部が形成された前記第1基材と、前記第2基材と、を用意する工程と、
前記第1基材の前記第1凹部を含む一部に紫外線を照射する工程と、
前記第1凹部と前記第2基材とによって微細空間を形成するために、前記第1基材及び前記第2基材のいずれか又は両方にパラフィン系の材料を塗布して、前記第1基材と前記第2基材とを対向させて加熱加圧する工程と、
を有することを特徴とする接合部材の製造方法。
A method for producing a joined member in which a first base material and a second base material made of cycloolefin resin are joined,
Preparing the first base material on which the first recess is formed and the second base material;
Irradiating part of the first base material including the first recess with ultraviolet rays;
In order to form a fine space by the first recess and the second base material, a paraffinic material is applied to one or both of the first base material and the second base material, and the first base A step of heating and pressurizing the material and the second base material,
The manufacturing method of the joining member characterized by having.
前記第2基材における前記第1凹部と対応する部分を含む一部に紫外線を照射する工程を、さらに有することを特徴とする請求項4に記載の接合部材の製造方法。   The method for manufacturing a joining member according to claim 4, further comprising a step of irradiating a part of the second base material including a portion corresponding to the first concave portion with ultraviolet rays. 前記第2基材には、前記第1凹部と対応する第2凹部が形成されていることを特徴とする請求項5に記載の接合部材の製造方法。   The method for manufacturing a joining member according to claim 5, wherein a second recess corresponding to the first recess is formed in the second base material. 前記紫外線を照射する工程において、前記親水化層は、表面自由エネルギーの極性成分と水素結合成分との合計が100mJ/m以上となるように改質された改質層であることを特徴とする請求項4乃至請求項6のいずれかに記載の接合部材の製造方法。
In the step of irradiating with ultraviolet rays, the hydrophilic layer is a modified layer that has been modified so that the sum of the polar component of the surface free energy and the hydrogen bonding component is 100 mJ / m 2 or more. The manufacturing method of the joining member in any one of Claim 4 thru | or 6.
JP2012267735A 2012-12-07 2012-12-07 Joined member and production method of joined member Pending JP2016026904A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012267735A JP2016026904A (en) 2012-12-07 2012-12-07 Joined member and production method of joined member
PCT/JP2013/082105 WO2014087923A1 (en) 2012-12-07 2013-11-28 Bonded member and method for producing bonded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267735A JP2016026904A (en) 2012-12-07 2012-12-07 Joined member and production method of joined member

Publications (1)

Publication Number Publication Date
JP2016026904A true JP2016026904A (en) 2016-02-18

Family

ID=50883341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267735A Pending JP2016026904A (en) 2012-12-07 2012-12-07 Joined member and production method of joined member

Country Status (2)

Country Link
JP (1) JP2016026904A (en)
WO (1) WO2014087923A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155086A1 (en) * 2017-02-22 2018-08-30 アルプス電気株式会社 Flow channel chip and method for manufacturing flow channel chip
WO2020031556A1 (en) * 2018-08-07 2020-02-13 ウシオ電機株式会社 Plate
WO2023127757A1 (en) * 2021-12-28 2023-07-06 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic chip
US11970681B2 (en) 2018-08-07 2024-04-30 Ushio Denki Kabushiki Kaisha Plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7202042B1 (en) * 2022-04-30 2023-01-11 慶應義塾 Medical device and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021391B2 (en) * 2003-09-09 2007-12-12 住友ベークライト株式会社 Microchip substrate bonding method and microchip
JP3828886B2 (en) * 2003-11-25 2006-10-04 アイダエンジニアリング株式会社 Selective surface modification / cleaning method
JP2008058132A (en) * 2006-08-31 2008-03-13 Ushio Inc Method of manufacturing microchip
KR20090117758A (en) * 2007-03-02 2009-11-12 코니카 미놀타 옵토 인코포레이티드 Microchip manufacturing method
JP2008284626A (en) * 2007-05-16 2008-11-27 Miraial Kk Micro-flow channel device
JP5576040B2 (en) * 2007-12-27 2014-08-20 アルプス電気株式会社 Resin article peeling method and microchip peeling method
JP5279825B2 (en) * 2008-04-22 2013-09-04 アルプス電気株式会社 Joining member and manufacturing method thereof
JP2012206098A (en) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd Manufacturing method for microchannel chip made of resin and microchannel chip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155086A1 (en) * 2017-02-22 2018-08-30 アルプス電気株式会社 Flow channel chip and method for manufacturing flow channel chip
JPWO2018155086A1 (en) * 2017-02-22 2019-08-08 アルプスアルパイン株式会社 Channel chip and method for manufacturing channel chip
WO2020031556A1 (en) * 2018-08-07 2020-02-13 ウシオ電機株式会社 Plate
TWI812734B (en) * 2018-08-07 2023-08-21 日商牛尾電機股份有限公司 plate medium
US11970681B2 (en) 2018-08-07 2024-04-30 Ushio Denki Kabushiki Kaisha Plate
WO2023127757A1 (en) * 2021-12-28 2023-07-06 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic chip

Also Published As

Publication number Publication date
WO2014087923A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
Matellan et al. Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices
WO2014087923A1 (en) Bonded member and method for producing bonded member
DE102013106596B4 (en) Method of forming biochips with non-organic contact pads for improved heat management
Agha et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices
Shiroma et al. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
RU2710567C1 (en) Devices for fluids and methods for making such devices
TWI456256B (en) Method of making an electrowetting device, apparatus for carrying out the method and electrowetting device
EP2286126A1 (en) Compression valve and method for producing it
EP2687290A1 (en) Microfluidic storage device for storing a fluid, method for its manufacture and use of the same
JP2010043928A (en) Manufacturing method of biochip, and the biochip
Rahmanian et al. Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels
JP2012223889A (en) Method for laser bonding
JP6806374B2 (en) Nanofluid devices and chemical analyzers
JP2016529116A (en) Fabrication of microfluidic chip packages or assemblies having separable chips
JP5933518B2 (en) Bonding method and manufacturing method of microchannel device
JP4383446B2 (en) Method for bonding microstructured substrates
WO2012124449A1 (en) Method for producing resin molding die, resin molding die, resin molding die set, method for producing microchip substrate, and method for producing microchip using said die
KR101511040B1 (en) producing method for a micro fluidic chip with selectively patterned plasmonic structure on micro channel
US20060272716A1 (en) Method of adhesiveless lamination of polymer films into microfluidic networks with high dimensional fidelity
US11185857B2 (en) Fluid flow device and method for making the same
US10285640B2 (en) Process and method for fabricating wearable and flexible microfluidic devices and systems
EP1333937B1 (en) Method for the connection of plastic pieces
FR3032132A1 (en) MICROFLUIDIC DEVICE AND METHOD FOR PRODUCING A MICROFLUIDIC DEVICE
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same