JP3824359B2 - 動きベクトル検出方法および装置 - Google Patents

動きベクトル検出方法および装置 Download PDF

Info

Publication number
JP3824359B2
JP3824359B2 JP27902196A JP27902196A JP3824359B2 JP 3824359 B2 JP3824359 B2 JP 3824359B2 JP 27902196 A JP27902196 A JP 27902196A JP 27902196 A JP27902196 A JP 27902196A JP 3824359 B2 JP3824359 B2 JP 3824359B2
Authority
JP
Japan
Prior art keywords
motion vector
field
search range
input
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27902196A
Other languages
English (en)
Other versions
JPH10108193A (ja
Inventor
正尊 茂木
義治 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27902196A priority Critical patent/JP3824359B2/ja
Publication of JPH10108193A publication Critical patent/JPH10108193A/ja
Application granted granted Critical
Publication of JP3824359B2 publication Critical patent/JP3824359B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、画像の記録・通信・伝送および放送等における動き補償予測符号化方式の動画像符号化装置に係り、特に動きベクトル検出対象画面の部分領域が符号化済みの参照画面のどの部分領域から動いたものかを表す動きベクトルを検出する動きベクトル検出方法およびその方法を用いた動きベクトル検出装置に関する。
【0002】
【従来の技術】
動画像信号は情報量が膨大であるため、単にディジタル化して伝送や記録を行おうとすると、極めて広帯域の伝送路や、大容量の記録媒体を必要とする。そこで、テレビ電話、テレビ会議、CATVおよび画像ファイル装置等では、動画像信号を少ないデータ量に圧縮符号化する技術が用いられる。
【0003】
動画像信号の圧縮符号化技術の一つとして、動き補償予測符号化方式が知られている。この動き補償予測符号化方式では、符号化済みの画面を参照画面とし、入力画面の部分領域に対して参照画面の最も相関の高い部分領域を検出することにより、入力画面の部分領域が参照画面のどの部分領域から動いたものかを表す動きベクトルを求め、入力画面の部分領域と動きベクトルにより示される参照画面の部分領域との差分である予測誤差信号を符号化する。
【0004】
一般に、動画像信号を得るための画面の走査方法としては、1ラインずつ順々に走査する順次走査(ノンインタレーススキャンニング−non-interlaced scanning −)と、1ラインずつ間を空けて走査する飛び越し走査(インタレーススキャンニング−interlaced scanning −)がある。1回の飛び越し走査によって得られる1ラインずつ間引かれた画面をフィールドと呼び、1回の順次走査または2回の飛び越し走査によって得られる完全な画面をフレームと呼ぶ。
【0005】
順次走査によって得られるノンインタレース画像のように、同一フレーム内のフィールド間では動きが存在しない場合には、フレーム構成によって検出した動きベクトル(以下、フレーム動きベクトルという)を用いる動き補償予測方法が有効となることが多い。
【0006】
これに対して、飛び越し走査によって得られるインタレース画像においては、一般に同一フレーム内であってもフィールド間に動きが存在するので、フィールド構成によって検出した動きベクトル(以下、フィールド動きベクトルという)を用いる動き補償予測方法が有効となる場合が多い。
【0007】
そこで従来では、同一フレーム内のフィールド間に動きが存在する場合と、動きがしない場合の双方に対応できるように、入力画面のフレーム構成の部分領域と、その部分領域を形成するフィールド構成の各部分領域について、それぞれ個別に動きベクトルを検出していた。
【0008】
例えば、ISO-IEC/JTC1/SC29/WG11/N0400に示される手法では、以下の手順によって、フレームで構成される部分領域およびフィールドで構成される部分領域についての動きベクトルをそれぞれ検出していた。
【0009】
まず、図4に示すように入力画面(入力フレーム)302中のフレーム構成の部分領域305の白丸で示す奇数ラインと黒丸で示す偶数ライン、つまりフィールド構成の各部分領域と、参照画面(参照フレーム)301中のフレーム構成の部分領域306のフィールド構成の部分領域との間の誤差量である予測誤差量を算出する。
【0010】
そして、入力フレーム302中のフィールド構成の各部分領域についてこの予測誤差量の値を評価し、その値が最も小さくなる動きベクトルをフィールド動きベクトルとして検出する。次に、入力フレーム302中のフィールド構成の各部分領域に対して算出した予測誤差量の和を求める。そして、この予測誤差量の和を評価し、その値が最も小さくなる動きベクトルをフレーム動きベクトルとして検出する。
【0011】
ここで、図4に示されるように、入力フレーム302中のフィールド構成の各部分領域に対応する参照フレーム301中のフィールド構成の部分領域は、参照フレーム301中のフレーム構成の部分領域を形成するように組み合わされている。すなわち、参照フレーム301中のフィールド構成の各部分領域は、それぞれ参照フレーム301中のフレーム構成の部分領域の奇数ラインと偶数ラインになっている。
【0012】
このような手順によりフレーム動きベクトルとフィールド動きベクトルの双方を検出した後、フレーム構成の部分領域に対して検出した1つのフレーム動きベクトルを用いた場合の予測誤差量と、同一フレームを構成する2つのフィールドの部分領域に対して検出した2つのフィールド動きベクトルを用いた場合の予測誤差量の和とを比較して、その値が最も小さくなる予測方法における動きベクトルを動き補償に使用していた。
【0013】
しかし、このようにフレーム動きベクトルとフィールド動きベクトルの両方を検出する方法は、一つの入力画面についての動きベクトル検出のために必要な演算量が増大するという問題がある。
【0014】
一方、MPEGのように、参照画面と入力画面が必ずしも隣接していない場合もあり、このような場合は参照画面と入力画面が時間的に離れ、その間隔が大きくなることがある。参照画面と入力画面との間隔が大きくなると、それだけ参照画面からの動きの量も大きくなる。従って、画面間隔が離れた参照画面から画像の動きに追随させて動きベクトル検出を行うためには、動きベクトル検出の探索範囲を広げなくてはならず、動きベクトルの検出に要する演算量が膨大となってしまう。
【0015】
このよう問題に対し、テレスコピック探索と呼ばれる手法を用いて、演算量を削減させつつ、離れた参照画面からの動きベクトルの検出を行う方法が考えられている。テレスコピック探索では、1画面前の画面上で同じ位置の部分領域に対して検出した動きベクトルを基準として、設定位置をシフトさせた探索範囲で動きベクトル検出を行う。
【0016】
テレスコピック探索で前述のフレーム動きベクトルとフィールド動きベクトルの両方を検出する場合には、図5に示すように動きベクトルを検出しようとする入力フレーム(入力フレーム2)403より1フレーム前の入力フレーム(入力フレーム1)402のうち、入力フレーム403中の部分領域405と同じ位置の部分領域404に対して検出したフレーム動きベクトルを探索範囲の設定の基準として、探索範囲406を矢印408のようにシフトさせた探索範囲407を参照フレーム401内に設定し、この探索範囲407についてフレーム単位のテレスコピック探索を行う方法がとられている。
【0017】
しかし、このようにフレーム単位のテレスコピック探索を行う方法は、動きの大きいインタレース画像に対して追随させようとすると、探索範囲を大きくしなくてはならないため、動きベクトル検出に要する演算量が増加し、ひいては回路規模の増加を招いてしまい、演算量を削減するというテレスコピック探索の本来の目的を果たせなくなるという問題点があった。
【0018】
【発明が解決しようとする課題】
上述したように、フィールド動きベクトルとフレーム動きベクトルの両方を検出する従来の動きベクトル検出方法では、一つの入力画面についての動きベクトル検出に要する演算量が多いという問題点があった。
【0019】
また、フレーム単位のテレスコピック探索を行う方法は、動きの大きいインタレース画像に対しても追随するには探索範囲を大きくとらなれけばならず、動きベクトル検出に要する演算量が増加し、ひいては回路規模の増加を招くという問題点があった。
【0020】
本発明は、このような従来の問題点を解決するためになされたものであり、少ない演算量で大きい動きに追随することができ、かつフレーム動きベクトルの検出精度を高めて動きの小さな画像に対する動きベクトルの検出性能を向上させることができる動きベクトル検出方法および動きベクトル検出装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
上記の課題を解決するため、本発明はフィールド単位のテレスコピック探索を行うことにより、少ない演算量で大きい動きに追随することができるようにし、さらに入力画面の両フィールドの各々の部分領域に対する探索範囲が重なる領域については、入力画面の両フィールドの各々の部分領域に対して算出した誤差量を足し合わせ、その足し合わされた値を評価量に使用することにより、演算量の増加を招くことなくフレーム動きベクトルの検出精度を高めるようにしたことを骨子とするものである。
【0022】
すなわち、本発明は第1および第2のフィールドで構成される入力フレーム上の部分領域が参照フィールドで構成される参照フレーム上のどの部分領域から動いたかを示す動きベクトル情報を検出する際、第1の動きベクトル探索範囲を参照フィールド上に設定し、該第1の動きベクトル探索範囲内の第1の動きベクトル候補に対する第1の予測誤差を算出して第1の予測誤差が最小となる第1の動きベクトルをフィールド動きベクトルとして検出し、この第1の動きベクトルに基づいて、入力フレームの第2のフィールド中の部分領域に対する第2の動きベクトル探索範囲を参照フィールド上に設定し、該第2の動きベクトル探索範囲内の第2の動きベクトル候補に対する第2の予測誤差を算出して第2の予測誤差が最小となる第2の動きベクトルをフィールド動きベクトルとして検出し、第1の動きベクトル探索範囲と第2の動きベクトル探索範囲とが重なる領域に相当する参照フレーム上の領域である第3の動きベクトル探索範囲内の第3の動きベクトル侯補に対する第3の予測誤差を該第3の動きベクトル探索範囲内について前記第1および第2の予測誤差を加算することで算出して第3の予測誤差が最小となる第3の動きベクトルをフレーム動きベクトルとして検出し、第1、第2および第3の動きベクトルから最適な動きベクトルを選択することを特徴とする。
【0023】
また、第3の動きベクトルを検出するために、第1の動きベクトルを検出する際に用いた第1の予測誤差を記憶しておき、この記憶した第1の予測誤差を第2の予測誤差と加算して第3の予測誤差を求めるようにする。
【0024】
このように本発明によると、フィールド単位のテレスコピック探索を行って第1および第2の動きベクトルを検出することにより、動きベクトルの探索に様子演算量を増加させることなく、大きい動きに追従できる。しかも、フレーム動きベクトルである第3の動きベクトルの探索精度を高めることができるので、探索に用する演算量を増やすことなく、動きの小さい画像に対する動きベクトルの検出性能も向上する。
【0025】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態を説明する。
図1に示すフローチャートを用いて、本実施形態に係る動きベクトル検出方法の検出手順を説明する。
【0026】
まず、入力フィールドの部分領域、すなわちフィールド構成の入力画面の部分領域を設定する(ステップS01)。
次に、参照フィールド、すなわちフィールド構成の複数の参照画面上に、動きベクトルの探索範囲を設定する(ステップS02)。この探索範囲の設定に際しては、テレスコピック探索による動きベクトルの検出順で1フィールド前の入力フィールド上で同じ位置の部分領域に対して検出したフィールド動きベクトルが指し示す位置を基準とする。
【0027】
次に、フィールド構成およびフレーム構成の入力部分領域(入力画面の部分領域)との誤差量が最小となる参照部分領域(参照画面の部分領域)の位置を検出する(ステップS03〜S09)。
【0028】
すなわち、まずステップS03において入力フィールドの部分領域と参照フィールドの部分領域との間の誤差量を算出する。
ステップS04においては、これら入力フィールドおよび参照フィールドの部分領域間の誤差量を評価量として、以前の誤差量と同じかそれよりも小さい場合には、動きベクトルおよび誤差量を更新することにより、各フィールド毎のフィールド動きベクトルを検出する。
【0029】
ステップS05では、現在動きベクトル検出を行っている入力フィールドがテレスコピック探索による動きベクトルの検出順で1フィールド前の入力フィールドと同一フレームを構成するか否かを判断する。この判断の結果、現在動きベクトル検出を行っている入力フィールドが1フィールド前の入力フィールドと同一フレームを構成しない場合には、ステップS07において誤差量を予測誤差記憶部に記憶する。
【0030】
また、ステップS05において現在動きベクトル検出を行っている入力フィールドが1フィールド前の入力フィールドと同一フレームを構成している場合には、次のステップS06において誤差量の加算を行い、加算した誤差量を評価量として、以前の加算された誤差量と同じかそれよりも小さい場合には、動きベクトルおよび加算された誤差量を更新することによって、フレーム動きベクトルを検出する。
【0031】
その際、同一フレームを構成する、前入力フィールドと現入力フィールドの2つの入力フィールドの各入力部分領域に対する探索範囲が重なる領域については、現入力部分領域に対する誤差量と予測誤差記憶部に記憶された前入力部分領域に対する誤差量を加算し、探率範囲が重ならない領域については、例えばデフォルトで設定した大きい値を加算することによって、誤差量の評価の際に選択されないようにしたりする。
【0032】
ステップS08において、探索範囲内の探索が終了したか否かが判断され、終了していない場合には、ステップS09において参照フィールドの部分領域を更新して、ステップS03ないしS08の動作を繰り返すことになる。
【0033】
一方、ステップS08において探索範囲内の探索が終了したと判断された場合には、ステップS10に進む。
ステップS10では、現在動きベクトル検出を行っている入力フィールドがテレスコピック探索による動きベクトルの検出順で1フィールド前の入力フィールドと同一フレームを構成するか否かを判断する。この判断の結果、現在動きベクトル検出を行っている入力フィールドが1フィールド前の入力フィールドと同ーフレームを構成しない場合には、ステップS11で入力フィールドを切り替えて、ステップS01からステップS09までの処理を繰り返す。また、同一フレームを構成する場合には、ステップS12に進みフィールド動きベクトルおよびフレーム動きベクトルの検出が完了する。
【0034】
ステップS13では、最適な動きベクトルの検出を行う。例えば、フィールド動きベクトルとフレーム動きベクトルのうち、動き補償予測に適する方を選択する。また、必要に応じて、1/2画素精度の動きベクトル検出を行う。
【0035】
次に、図2を用いて上述した動きベクトル検出手順を用いる本発明の一実施形態に係る動きベクトル検出装置を含む動画像符号化装置について説明する。
この動画像符号化装置は、動画像信号が入力される入力端子101、第1の画像メモリ102、第1の動きベクトル検出部103、第2の動きベクトル検出/予測部104、第2の画像メモリ105、フレーム遅延器106、減算器107、直交変換器108、量子化器109、逆量子化器110、逆直交変換器111、遅延器112、加算器113、可変長符号化器114、符号化データを出力する出力端子115、予測誤差記憶部116、加算器117、および予測誤差評価部118からなる。
【0036】
以下、各部の構成について説明すると、まず第1の画像メモリ102は、入力画面の画像信号、すなわち入力端子101から入力される画像信号を1画面分記憶する。
【0037】
第1の動きベクトル検出部103は、第1に、入力端子101から入力される画像信号の複数画素で構成されるフィールド構成の部分領域に対して、第1の画像メモリ102に記憶されている過去に入力された画面からのフィールド動きベクトル侯補を検出し、そのフィールド動きベクトル候補を第2の動きベクトル検出/予測部104に出力する。
【0038】
第1の動きべクトル検出部103は、第2に、算出した部分領域間の誤差量を予測誤差記憶部116と加算器117に出力する。
第1の動きベクトル検出部103は、第3に、算出した誤差量を予測誤差記憶部116に書き込む際の書き込みアドレス情報と、テレスコピック探索によって探索中心位置が移動した分だけ書き込みアドレスからシフトさせた読み出しアドレス情報と、前入力フィールドと同一フレームを構成するか否かを示す情報とを予測誤差記憶部116および予測誤差評価部118とに出力する。
【0039】
予測誤差記憶部116は、第1に、前入力フィールドと同一フレームを構成しない場合には、第1の動きベクトル検出部103から入力される書き込みアドレス情報で示される位置に、第1の動きベクトル検出部103から入力される誤差量を記憶する。
【0040】
予測誤差記憶部116は、第2に、前入力フィールドと同一フレームを構成する場合で同一フレームを構成する各入力部分領域に対して順定した探索範囲が重なっている領域内の場合には、第1の動きベクトル検出部103から入力される読み出しアドレス情報で示される位置に記憶されている誤差量を加算器117に出力する。
【0041】
予測誤差記憶部116は、第3に、前入力フィールドと同一フレームを構成する場合で同一フレームを構成する各入力部分領域に対して設定した探索範囲が重なり合っていない領域内の場合、または前入力フィールドと同一フレームを構成しない場合には、デフォルトで設定した大きい値を加算器117に出力する。
【0042】
加算器117は、第1の動きベクトル検出部103から入力される誤差量と、予測誤差記憶部116から入力される誤差量とを加算して予測誤差評価部118に出力する。
【0043】
予測誤差評価部118は、加算器117から入力される加算された誤差量を評価して第1の画像メモリ102に記憶されている過去に入力された画面からのフレーム動きベクトル侯補を検出し、そのフレーム動きベクトル侯補を第2の動きベクトル検出/予測部104に出力する。
【0044】
第2の動きベクトル検出/予測部104は、第1に、局部再生されかつ第2の画像メモリ105に記憶された過去の画面を参照して、1/2画素精度の動きベクトルを検出する。その際、第1の動きベクトル検出部103から入力されるフィールド動きベクトル侯補の近傍を高精度で再探索して、1/2画素精度のフィールド動きベクトルを検出する。
【0045】
第2の動きベクトル検出/予測部104は、第2に、予測誤差評価部118から入力されるフレーム動きベクトル候補の近傍を高精度で再探索して1/2画素精度のフレーム動きベクトルを検出する。そして、これら1/2画素精度の動きベクトルを検出すると共に、その中から入力画面の部分領域の動き補償予測符号化を行うのにより適した動きベクトルを選択して、その動きベクトルに従った予測信号を生成し、その予測信号と予測モードと動きベクトル情報を出力する。
【0046】
減算器107は、第2の動きベクトル検出/予測部104から出力される予測信号と、遅延器106を介して入力される画像信号との差分信号を算出して出力する。減算器107から出力される差分信号は、複数の差分信号毎に直交変換器108により周波数成分に変換され、量子化器109により再量子化処理が施される。
【0047】
可変長符号化器114は、量子化器109から出力される再量子化信号を第2の動きベクトル検出部104から出力される予測モードと動きベクトル情報と共に可変長符号化して出力端子115に出力する。
【0048】
また、量子化器109から出力される再量子化信号は、逆量子化器110により逆量子化処理が施され、さらに逆直交変換器111により差分信号に逆変換される。
【0049】
加算器113は、逆直交変換器111から出力される差分信号と遅延器112を介して入力される予測信号との加算により局部再生信号を生成する。この局部再生信号は、次の入力画面に対する予測信号生成に使用するために、第2の画像メモリ105に記憶される。
【0050】
次に、図3を用いて本実施形態における部分領域間の予測誤差量の算出方法の一例について説明する。ここでは、前方予測の例について述べる。
まず、入力トップフィールド205上の入力部分領域213に対して、参照トップフィールド203および参照ボトムフィールド204のそれぞれに探索範囲217および218を設定する。
【0051】
次に、それぞれの探索範囲217および218内の参照部分領域と入力部分領域213との間の誤差量を算出し、予測誤差記憶部116に記憶する。探索範囲内の全ての参照部分領域について、誤差量算出と予測誤差記憶部116への記憶を行う。また、部分領域間誤差量を評価量として、この評価量が最小値をとる参照部分領域の位置情報を入力部分領域213に対するフィールド動ベクトルとする。ここで、フィールド動きベクトルとしては、参照トップフィールド203および参照ボトムフィールド204のそれぞれにおいて評価量が最小となる動きベクルからさらに一方を選択する。
【0052】
次に、検出したフィールド動きベクトルを基準として、入力トップフィールド205と同一入力フレーム202を構成する入力ボトムフィールド206上の入力部分領域214に対して、参照トップフィールド203および参照ボトムフィールド204のそれぞれに、探索範囲219および220を設定する。
【0053】
次に、それぞれの探索範囲内の参照部分領域と入力部分領域214との間の誤差量を算出する。
次に、入力トップフィールド205上の入力部分領域213に対して2つの参照フィールド203,204上に設定した探索範囲217,218と、入力ボトムフィールド206上の入力部分領域214に対して2つの参照フィールド203,204上に設定した探索範囲219,220とが重なる領域で、予測誤差記憶部116に記憶されている入力トップフィールド205上の入力部分領域213に対して算出した誤差量と、入力ボトムフィールド206上の入力部分領域214に対して算出した誤差量とを加算器117で加算する。
【0054】
ここで、誤差量の加算は次のようにして行う。例えば、探索範囲が重なる領域内について、入力トップフィールド205上の入力部分領域213と参照トップフィールド203上の参照部分領域210との間の誤差量と、入力ボトムフィールド206上の入力部分領域214と参照ボトムフィールド204上の参照部分領域212との間の誤差量とを加算する。入力部分領域213と入力部分領域214とは、入力フレーム202上の入力部分領域209のそれぞれトップフィールドラインとボトムフィールドラインに相当し、参照部分領域210と参照部分領域212とは、参照フレーム201上の参照部分領域207のそれぞれトップフィールドラインとボトムフィールドラインに相当する。従って、この加算された誤差量は、入力フレーム202上の入力部分領域209と参照フレーム201上の参照部分領域207との間の誤差量に相当する。
【0055】
また例えば、参照トップフィールド203上で参照部分領域210と垂直位置が1フィールドライン異なる参照部分領域211と入力ボトムフィールド206上の入力部分領域214との間の誤差量と、参照ボトムフィールド204上の参照部分領域212と入力トップフィールド205上の入力部分領域213との間の誤差量とを加算する。
【0056】
参照部分領域211と参照部分領域212とは、参照フレーム201上の、参照部分領域207と垂直位置が1フレームライン異なる参照部分領域208のそれぞれトップフィールドラインとボトムフィールドラインとに相当する。従って、この加算された誤差量は、入力フレーム202上の入力部分領域209と参照フレーム201上の参照部分領域208との間の誤差量に相当する。
【0057】
これらの例に示すように、参照フレーム201上で参照部分領域が1画素/1フレームラインずつシフトしてゆく組み合わせとなるように、フィールド部分領域間の誤差量を加算する。この加算された誤差量を評価量として、該評価量が最小値となる部分領域の位置を入力部分領域209に対するフレーム動きベクトルとする。
【0058】
また、入力部分領域214に対して、加算されないフィールド部分領域間誤差量評価量として、この評価量が最小値をとる参照部分領域の位置情報を入力ボトムフィールド206上の入力部分領域214に対するフィールド動きベクトルとする。ここで、フィールド動きベクトルは、参照トップフィールド203および参照ボトムフィールド204のそれぞれにおいて評価量が最小となる動きベクトルからさらに一方を選択する。
【0059】
以上、本発明の実施形態を説明してきたが、これらはあくまで実施の一例を示したものであり、ここに示したもの以外にも本発明の主旨を逸脱しない範囲で様々な形態を取り得ることはもちろんである。
【0060】
【発明の効果】
以上説明したように、本発明では第1の入力フィールド中の部分領域に対する動きベクトル探索範囲を参照画面上に設定して第1の動きベクトルを検出した後、第1の動きベクトルに基づき第2の入力フィールド中の部分領域に対する動きベクトル探索範囲を参照画面上に設定して第2の動きベクトルを検出し、2つの参照フィールドを合わせたフレームで構成される領域を探索範囲としたときの予測誤差を第1、第2の動きベクトルの検出時に求めた予測誤差の和で算出して第3の動きベクトルを検出し、これら3種類の動きベクトルから最適な動きベクトルを検出している。
【0061】
従って、本発明によればフィールド単位のテレスコピック探索により第1および第2の動きベクトル検出を行うことにより、少ない探索演算量で大きい動きに追随できる上に、フレーム動きベクトルである第3の動きベクトルの探索精度を高めることができるため、探索演算量を増やすことなく、動きの小さい画像に対する動きベクトルの検出性能も向上させることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る動きベクトル検出方法を説明するためのフローチャート
【図2】同実施形態に係る動きベクトル検出装置を含む動画像符号化装置の構成を示すブロック図
【図3】同実施形態における部分領域間の予測誤差量算出方法を説明するための図
【図4】従来技術に基づく部分領域間の予測誤差量算出方法を説明するための図
【図5】従来技術に基づくフレーム単位のテレスコピック探索の概念を表す図
【符号の説明】
101…動画像信号入力端子
102…第1の画像メモリ
103…第1の動きベクトル検出部
104…第2の動きベクトル検出/予測部
105…第2の画像メモリ
106…フレーム遅延器
107…減算器
108…直交変換器
109…量子化器
110…逆量子化器
111…逆直交変換器
112…遅延器
113…加算器
114…可変長符号化器
115…符号化データ出力端子
116…予測誤差記憶部
117…加算器
118…予測誤差評価部

Claims (4)

  1. 第1および第2フィールドで構成される入力フレーム上の部分領域が参照フィールドで構成される参照フレーム上のどの部分領域から動いたかを示す動きベクトル情報を検出する動きベクトル検出方法において、
    前記入力フレームの第1のフィールド中の部分領域に対する第1の動きベクトル探索範囲を前記参照フィールド上に設定し、該第1の動きベクトル探索範囲内の第1の動きベクトル候補に対する第1の予測誤差を算出して第1の予測誤差が最小となる第1の動きベクトルをフィールド動きベクトルとして検出するステップと、
    前記第1の動きベクトルに基づいて、前記入力フレームの第2のフィールド中の部分領域に対する第2の動きベクトル探索範囲を前記参照フィールド上に設定し、該第2の動きベクトル探索範囲内の第2の動きベクトル候補に対する第2の予測誤差を算出して第2の予測誤差が最小となる第2の動きベクトルをフィールド動きベクトルとして検出するステップと、
    前記第1の動きベクトル探索範囲と第2の動きベクトル探索範囲とが重なる領域に相当する前記参照フレーム上の領域である第3の動きベクトル探索範囲内の第3の動きベクトル侯補に対する第3の予測誤差を該第3の動きベクトル探索範囲内について前記第1および第2の予測誤差を加算することで算出して第3の予測誤差が最小となる第3の動きベクトルをフレーム動きベクトルとして検出するステップと、
    前記第1、第2および第3の動きベクトルから最適な動きベクトルを選択するステップと、
    を有することを特徴とする動きベクトル検出方法。
  2. 前記第1の予測誤差を記憶しておき、前記第3の動きベクトル探索範囲については記憶した第1の予測誤差と前記第2の予測誤差を加算して前記第3の予測誤差を求めることを特徴とする請求項1に記載の動きベクトル検出方法。
  3. 第1および第2フィールドで構成される入力フレーム上の部分領域が参照フィールドで構成される参照フレーム上のどの部分領域から動いたかを示す動きベクトル情報を検出する動きベクトル検出装置において、
    前記入力フレームの第1のフィールド中の部分領域に対する第1の動きベクトル探索範囲を前記参照フィールド上に設定し、該第1の動きベクトル探索範囲内の第1の動きベクトル候補に対する第1の予測誤差を算出して第1の予測誤差が最小となる第1の動きベクトルをフィールド動きベクトルとして検出する手段と、
    前記第1の動きベクトルに基づいて、前記入力フレームの第2のフィールド中の部分領域に対する第2の動きベクトル探索範囲を前記参照フィールド上に設定し、該第2の動きベクトル探索範囲内の第2の動きベクトル候補に対する第2の予測誤差を算出して第2の予測誤差が最小となる第2の動きベクトルをフィールド動きベクトルとして検出する手段と、
    前記第1の動きベクトル探索範囲と第2の動きベクトル探索範囲とが重なる領域に相当する前記参照フレーム上の領域である第3の動きベクトル探索範囲内の第3の動きベクトル侯補に対する第3の予測誤差を該第3の動きベクトル探索範囲内について前記第1および第2の予測誤差を加算することで算出して第3の予測誤差が最小となる第3の動きベクトルをフレーム動きベクトルとして検出する手段と、
    を有することを特徴とする動きベクトル検出装置。
  4. 前記第3の動きベクトルをフレーム動きベクトルとして検出する手段は、
    前記第1の予測誤差を記憶する記憶手段と、
    前記第3の動きベクトル探索範囲については前記記憶手段に記憶された第1の予測誤差と前記第2の予測誤差を加算して前記第3の予測誤差を求める加算手段と、
    を含むことを特徴とする請求項3に記載の動きベクトル検出装置。
JP27902196A 1996-09-30 1996-09-30 動きベクトル検出方法および装置 Expired - Fee Related JP3824359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27902196A JP3824359B2 (ja) 1996-09-30 1996-09-30 動きベクトル検出方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27902196A JP3824359B2 (ja) 1996-09-30 1996-09-30 動きベクトル検出方法および装置

Publications (2)

Publication Number Publication Date
JPH10108193A JPH10108193A (ja) 1998-04-24
JP3824359B2 true JP3824359B2 (ja) 2006-09-20

Family

ID=17605296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27902196A Expired - Fee Related JP3824359B2 (ja) 1996-09-30 1996-09-30 動きベクトル検出方法および装置

Country Status (1)

Country Link
JP (1) JP3824359B2 (ja)

Also Published As

Publication number Publication date
JPH10108193A (ja) 1998-04-24

Similar Documents

Publication Publication Date Title
US7929609B2 (en) Motion estimation and/or compensation
Nam et al. A fast hierarchical motion vector estimation algorithm using mean pyramid
JP4002396B2 (ja) 動きベクトル決定方法及び装置
KR100287211B1 (ko) 양방향 움직임 추정방법 및 장치
KR100688383B1 (ko) 파노라마 영상의 움직임 추정 및 보상
US6430224B1 (en) Stereo video data coding apparatus
JP3813320B2 (ja) 動きベクトル検出方法および装置
JP3152765B2 (ja) 画像符号化装置
US5923786A (en) Method and device for encoding and decoding moving images
US7221390B1 (en) Computer-assisted motion compensation of a digitized image
JP3824359B2 (ja) 動きベクトル検出方法および装置
JP3063380B2 (ja) 高能率符号化装置
WO2019187096A1 (ja) 復号方法、復号装置、符号化装置及びプログラム
KR20000045075A (ko) 움직임 추정방법
JP3173508B2 (ja) 動画像復号化方法、及び、動画像復号化装置
KR100547120B1 (ko) 그룹화에 의한 영화 영상 검출 방법 및 장치
JP3085289B2 (ja) 動画像符号化方法、及び、動画像符号化装置
JP3480015B2 (ja) 画像データの生成装置および生成方法
JP4250807B2 (ja) フィールド周波数変換装置および変換方法
JP3585628B2 (ja) 動きベクトル検出装置
JP3455635B2 (ja) 動きベクトル検出装置
JP2000050278A (ja) 動きベクトル算出方法及び動きベクトル算出プログラムを記録した記録媒体
JP3171249B2 (ja) 動画像符号化の動きベクトル探索方法
JPH0715654A (ja) 静止画像合成方法
JPH11110563A (ja) 被写体の動き検出方法及び装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040219

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees