JP3824076B2 - Film carrier tape manufacturing method - Google Patents

Film carrier tape manufacturing method Download PDF

Info

Publication number
JP3824076B2
JP3824076B2 JP2002089092A JP2002089092A JP3824076B2 JP 3824076 B2 JP3824076 B2 JP 3824076B2 JP 2002089092 A JP2002089092 A JP 2002089092A JP 2002089092 A JP2002089092 A JP 2002089092A JP 3824076 B2 JP3824076 B2 JP 3824076B2
Authority
JP
Japan
Prior art keywords
lead
carrier tape
film carrier
plating
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002089092A
Other languages
Japanese (ja)
Other versions
JP2002329756A (en
Inventor
伸晃 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002089092A priority Critical patent/JP3824076B2/en
Publication of JP2002329756A publication Critical patent/JP2002329756A/en
Application granted granted Critical
Publication of JP3824076B2 publication Critical patent/JP3824076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フィルムキャリアテープの製造方法に関する。
【0002】
【背景技術】
半導体装置の高密度実装を追求すると、ベアチップ実装が理想的である。しかしながら、ベアチップの状態では、品質の保証及び取り扱いが難しい。そこで、ベアチップをパッケージ化するもののパッケージサイズがベアチップのサイズに近いパッケージとしてCSP(Chip Scale/Size Package)が開発されている。
【0003】
そして各種形態にて開発されているCSP型の半導体装置の中で、1つの形態として、半導体チップの能動面側にフレキシブル基板が設けられており、このフレキシブル基板に複数の外部電極が形成されているものがある。このCSP型の半導体装置では、外部電極が半導体チップのエリア内に設けられる。従って、例えばQFP(Quad Flat Package)やTCP(Tape Carrier Package)のように、パッケージ本体の側面からリードが張りだしたいわゆる「アウタリード」を有していない。
【0004】
また、フレキシブル基板を用いたCSP型の半導体装置において、例えば、国際公開WO95/08856号公報に記載されるように、半導体チップの能動面とフレキシブル基板との間に樹脂を注入して、熱ストレスの吸収を図ることも知られている。この樹脂によって、半導体チップの電極との接合部を全て覆えば、電極の腐食を防止することができる。
【0005】
さらに、半導体チップをフレキシブル基板に実装するときに、フィルムキャリアテープを使用すれば、取り扱いが一層容易になり、量産性にも優れる。フィルムキャリアテープを用いる方式においては、半導体チップの樹脂封止を行ってから、個々の半導体装置がフィルムキャリアから切断される。
【0006】
ここで、フィルムキャリアテープに形成される配線には、金メッキが施されている。金メッキは、電気メッキ(「電解メッキ」ともいう)の方法により施される。電気メッキ法においては、配線の全てを導通させて、半導体チップとの実装領域の外側まで配線を引き出しておくことが一般的であった。引き出された配線は、電気メッキのための電極として用いられた。なお従来はアウターリードが存在し、そのアウタリードをそのまま引き出すことにより、電気メッキ用の配線としても利用していた。また、既存のフレキシブル基板を用いる場合には、電気メッキ用のメッキリードを必要とする。通常、接続リードと直結してメッキリードは設けられており、この構造は従来のTCPに用いられるTAB(Tape Automated Bonding)用基板が知られている。
【0007】
しかしながら、この従前から存在するTAB用基板をそのまま用いてCSP型の半導体装置に適用しようとした場合には、各接続リードがそのまま各メッキリードに直結していることから、通常アウタリードと呼ばれる箇所で切断すると各リード端面がパッケージ端面から突出してしまい、リード端面部は必ず露出してしまう。CSP型の半導体装置においては、パッケージ外形をチップサイズに近くすることで、チップ外形とパッケージ外形との距離が非常に狭まる。従って、パッケージ化して半導体チップを保護するとはいっても、従来のパッケージに比して、より半導体チップを取り巻く環境を含めた信頼性の向上に勤める必要がある。特に前述の従来構造をそのままCSP型の半導体装置に用いた場合、リードの切断面から半導体チップの電極までの距離が非常に短いこと、更にはリード端部は何も覆われずに露出してしまう構造でもあることから、リードを介して電極の腐食が進み易い。また、隣設するリード間の間隔もますます狭ピッチ化が進むことで、露出した切断面に例えば導電性の異物が介在する等によりリードのショートが発生し、機能が損なわれることもあり得る。
【0008】
一方、フィルムキャリアテープから個々の半導体装置を切断し、その後に樹脂を注入すれば、この問題を避けることができる。しかし、この場合には、バラバラになった半導体装置を個別に扱わねばならず、フィルムキャリアテープを用いた方式の長所を活かすことができない。
【0009】
本発明は、上述したような課題を解決するものであり、その目的は、パッケージサイズがチップサイズに近い半導体装置を得るためのフィルムキャリアテープの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係るフィルムキャリアテープの製造方法は、
封止される予定の領域内に形成されて半導体チップの電極及び外部電極に接合される複数の接続リードと、該接続リードに接続されて前記封止の領域外まで形成される少なくとも一つのメッキリードと、このメッキリードが接続されるメッキ電極と、を有して全てが導通した状態の導通パターンを、フィルムに形成する工程を含む。
【0011】
あるいは、本発明に係るフィルムキャリアテープの製造方法は、
フィルムにリード孔を形成する工程と、
前記フィルムの前記リード孔を含む領域上に金属箔を設ける工程と、
前記金属箔からパッド部、接続リード、メッキリード、メッキ電極並びに接続部からなる導電パターンを形成する工程と、
前記メッキ電極を通じて、前記導電パターンにメッキ処理を施す工程と、
前記接続部を加工して配線パターンを形成する工程と、
を含む。
【0012】
ここで、前記配線パターンを形成する工程は、前記接続部を打ち抜くことにより行ってもよい。
【0013】
また、複数の前記接続部を一括して打ち抜くことで工程数を減らすことができる。
【0014】
あるいは、前記打ち抜きは、各接続部毎に対応して行われてもよい。
【0015】
各接続部は、円形穴によって打ち抜いてもよい。
【0016】
あるいは、前記円形穴は楕円形状をなし、前記楕円形状の長径の方向は半導体装置の外周を形成する辺と略直交する方向に向けられてもよい。
【0017】
また、前記メッキ処理を施す工程の前に、前記導電パターンにおける前記メッキ処理の行われる領域を除く領域に保護膜を設けてもよい。
【0018】
前記保護膜として樹脂が用いられてもよい。
【0019】
前記樹脂としてソルダレジストを用いてもよい。
【0020】
本発明に係る樹脂封止型の半導体装置に用いられるフィルムキャリアテープは、
樹脂封止されるべき領域内で外部電極が形成されたパッド部と、
樹脂封止されるべき領域内に配置され、各々の前記外部電極と半導体チップの各電極とを接続する複数の接続リードと、
樹脂封止の領域外に形成される少なくとも一つのメッキリードと、
いずれかの前記接続リードと前記メッキリードとを電気的に接続する複数の接続部と、
前記接続部に形成され、前記接続リードと前記メッキリードとの電気的絶縁を図るための少なくとも一つの孔と、
前記メッキリードが接続されるメッキ電極と、
を有し、
前記パッド部、前記接続リード、前記メッキリード、前記接続部並びに前記メッキ電極には、電気メッキが施されている。
【0021】
前記孔は矩形の穴からなり、複数の前記接続部に対して跨って形成されてもよい。
【0022】
あるいは、複数の前記孔が形成され、
各孔は円形又は楕円形の穴からなり、各々の前記接続部に対応して形成されてもよい。
【0023】
または、前記孔は楕円形状をなし、前記楕円形状のうちの長径の方向は半導体装置の外周を形成する辺と略直交する方向に向けられてもよい。
【0024】
以上のような孔を形成することで、接続部の端面が孔から露出し、この露出した接続部の端面は、樹脂封止により被覆される。これにより、接続部から接続リードへの腐食を防止することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0026】
図1〜図7は、本実施形態の前提となる参考例に係る半導体装置の製造方法をフィルムキャリアテープの製造段階から説明する図である。特に図1〜図5においては、フィルムキャリアテープの製造工程を説明するものであり、図6及び図7の工程は図1〜図5の工程にて製造されたフィルムキャリアテープと半導体チップとをボンディングする以降の工程であり、必ずしも図1〜図5の工程に引き続き直ぐに(連続的に)行わなくてもよい。
【0027】
まず、図1に示すように、母材となるフィルム10を用意する。フィルム10は、ポリイミドやポリエステル等の樹脂で形成されたテープ状(長尺状)のもので、搭載される半導体チップ(図示せず)の大きさに応じて幅が決定される。このフィルム10は、電気的に絶縁性を有するとともに可撓性を有する材料が適している。
【0028】
このフィルム10に、図2に示すように、スプロケット孔12及びリード孔14を例えば打ち抜き加工やレーザー加工やケミカルエッチング加工等周知の穴あけ技術を用いて形成する。リード孔14は、図6に示すように、搭載される半導体チップ40の電極42に対応する領域に形成される。すなわち、リード孔14は、接続リード24と電極42とのボンディングを行うために形成される。
【0029】
次に、フィルム10に接着剤を塗布しておき、電気的導通の図れる部材として金属箔、例えばその一例として銅箔16を、図示しないが熱ローラ等の加熱及び加圧手段で圧接しながら貼り付ける。図3は、フィルム10に銅箔16を貼りつけた状態を示している。
【0030】
そして、湿式のエッチングを行うことにより、箔状の銅箔16から図4に示すように所望の導電パターン20を形成する。
【0031】
導電パターン20は、パッド部22、接続リード24、メッキリード26、メッキ電極28及び接続部29を含み、導電パターン20の段階では、全てが電気的に導通した状態となっている。パッド部22は、例えばハンダボール等のバンプを設けて外部電極を構成するためのものである。従って、パッド部22は平面的にみればその表面は平坦状で、且つ所定の面積(通常、接続リード24より幅広)を有している。なお、パッド部22自体が凸状に形成されて、予めバンプとしての機能を有していてもよい。また、パッド部22は半導体装置製造後においても図示された如く、ランドのままの状態であってもよい。但し、この場合には、実装される部材(実装基板)側に、ハンダ等の接合部材を設ける必要がある。パッド部22は、半導体チップがフィルムキャリアテープに搭載されたとき(図7を参照)に、半導体チップ40領域の内側で、かつ、モールド材36による樹脂封止の領域内に配置される。
【0032】
接続リード24は、その一方の端部は外部電極を形成するためのパッド部22に接続されており、パッド部22と電気的導通が図られる。なお、パッド部22に比べて接続リード24は細く形成されている。接続リード24は電気的導通が良好に図られる程度の幅が確保されていればよく、狭ピッチを考えると必然的にパッド部22よりも細くなる。このことは接続リード24のみならず、接続リード24の延長上にある接続部29においても同様である。また、接続リード24の他方の端部は、図4に示されたようにリード孔14を通過している(跨いでいる)。接続リード24におけるこのリード孔14内に位置する部位にて半導体チップ40の電極42と接続される。接続リード24は、パッド部22と同様に、後述するモールド材36による樹脂封止の領域内(図7参照)に配置される。接続リード24は、リード孔14のメッキリード26側の辺からメッキリード26までの区間をつなぐ接続部29を介してメッキリード26と電気的に接続されている。ここで、メッキリード26は、樹脂封止の領域外に位置するように形成されている。つまり、接続部29は、樹脂封止の領域内の接続リード24から、樹脂封止の領域外のメッキリード26に至るまで形成されている。各々のメッキリード26は、テープ状フィルム10の短手方向に形成されるとともに、メッキ電極28に接続されている。メッキ電極28は、テープ状フィルム10の長手方向に形成されている。なお、図4に示す導電パターン20の両隣りには図示しないが、メッキ電極28に接続された同様の導電パターンが連続して形成されている。
【0033】
次に、メッキ電極28を通じて、電気メッキ(電解メッキ)の方法によって、導電パターン20全体に金メッキを施す。なお、メッキ処理としては金メッキの他にスズやハンダによるメッキ処理でも良い。接合等の状況に応じて周知の方法を用いればよい。そして、図5に示すように、接続リード24とメッキリード26との間(すなわち、リード孔14のメッキリード側の辺とメッキリード26との間)に位置する接続部29の少なくとも一部を切削して、図4の導電パターン20から配線パターン(回路パターン)30を形成する。切削する方法は、機械的な方法でも化学的な方法でも問わず、周知の技術を用いることができる。また、切削される該当部は完全に打ち抜かなくても、例えば接続リード24とメッキリード26とが電気的に非導通状態、即ち接続リード24のみその端部が自由端にできればよく、該当部分(該当する位置のパターン)のみをハーフエッチングする等でもよい。言い換えると、ベースであるフィルム10は必ずしも完全に取り除かなくてもよい。こうして、所定の回路が形成された長尺状のフィルムキャリアテープ34が得られる。また、配線パターン30が形成された状態においては、接続部29におけるパッド部22と電気的に接続された側、即ちリード孔14と孔32との間に位置する配線も含めて接続リード24という。なお、配線パターン30が形成された工程以降において、単に接続リードといった場合には、リード孔14と孔32との間に位置する配線も含んでいる。
【0034】
なお、接続部29を打ち抜く工程は、メッキ処理工程後であって、半導体チップ40の電極42に対するボンディング工程(図6参照)前に行われる。また、本例では接続部29を打ち抜くことで、孔32が形成される。孔32は、同図では細長い矩形の穴であるが、その形状はこれに限るものではない。孔32を形成する一対の長手辺のうちの一方は、図7に示すように、樹脂封止の領域内に位置し、他方は樹脂封止の領域外に位置させる。そして、打ち抜かれた接続部29の端面は、孔32を形成する長手辺の位置と面一になっており、孔32内側においてその端部は露出している。この露出した接続部29の端面は、樹脂にて被覆される。要するに、孔32は、所望の回路を形成するために加え、接続部29の露出端面を被覆するために形成されるものでもある。
【0035】
次に、図6に示すように、半導体チップ40の上方にフィルムキャリアテープ34を配置する。より詳しくは、フィルムキャリアテープのうちでもフレキシブル基板に相当する部位が半導体チップ40の上方にて位置合わせされる。ここで、最終的にフィルムキャリアテープ34から離されて半導体装置個片になった時に、基板として残る部位がフレキシブル基板に相当する。
【0036】
半導体チップ40の電極42は、フィルムキャリアテープ34のリード孔14を臨むように配置される。用いられる半導体チップの適正なサイズは、同図のようにリード孔の内側を形成する辺を超えた位置に半導体チップ端部が位置するものから、孔32におけるリード孔14側の辺に至るまでのサイズのものならば、そのサイズは問わない。また、半導体チップ40とフィルムキャリアテープ34との間に所定ギャップが形成されるようにする。このとき、半導体チップ40の電極42の上に、接続リード24が配置されるように位置決めを行う。そして、複数の電極42と複数の接続リード24とを一括または1箇所ずつボンディングする。ボンディングのために、電極42又は接続リード24のいずれか一方にバンプが形成されることが好ましい。
【0037】
なお、本参考例における配線パターン30の形成位置は、フィルムキャリアテープ34に半導体チップ40が配置されたときに、フィルムの半導体チップが相対向する面とは反対側の面に設けられている。したがって、配線パターン30の表面にソルダレジストなどの樹脂を塗布して、絶縁及び保護を図ることが好ましい。なお電気メッキをしたい部分以外は、予め上記樹脂で覆うようにすることも可能である。ここで電気メッキをしたい部分とは具体的には接続リードやランド等を指す。このようにすれば不要部分にメッキは塗布されないので、メッキ処理に用いるメッキ材の無駄を省くことができる。あるいは、配線パターン30を、半導体チップ40側に向けてフィルムキャリアテープ34を配置すれば、ソルダレジストなどの塗布を省略することができる。
【0038】
次に、図7に示すように、モールド材によって半導体チップ40を封止する。なお、符号36がモールド材の位置する領域である。また、図8は、図7のVIII−VIII線断面図である。
【0039】
詳しくは、モールド材36は、リード孔14から、半導体チップ40とフィルムキャリアテープ34との間のギャップに注入される。そして、モールド材36は、半導体チップ40の電極42を覆う。
【0040】
また、フィルムキャリアテープ34の孔32にて端部が露出する接続部29の端面29a(即ち、接続リードの端部)も覆うように、モールド材36を充填する。こうすることで、半導体チップ40の電極42に接続される接続部29の端面29a(接続リードの端部)が樹脂により覆われて露出しないようになる。これによって、接続部29側から接続リード24、更には半導体チップ40の電極42への腐食が防止され絶縁も図られるので、半導体装置の信頼性が向上する。
【0041】
こうして、モールド材36による封止が終わると、モールド材36の位置する領域の外側で母体となるフィルムキャリアテープ34から切り離す。切り離す場合に、一括で型抜きを行って、フィルムキャリアテープ34の母体から、パッケージに利用されたフィルムキャリアテープ34部分(すなわち、フレキシブル基板部位)を打ち抜く。打ち抜く位置に関しては、例えば、切断位置を孔32領域内で、且つ樹脂封止された領域よりも外側にすれば、配線パターンの引き廻し方向(フィルムの長手方向)に関しては既に加工されており、今回の打ち抜き工程時に外的付加がかからない。
【0042】
一方、孔32の更に外側で、孔にかからない位置にて打ち抜くことも可能である。このように、孔32を切り欠かないように打ち抜くことで、最終的な半導体装置の外形が、直線性を有するようになる。この場合には、その後の工程において、半導体装置の外形認識が容易になるという利点がある。
【0043】
次に、図9及び図10は、本発明の実施形態(上記参考例の変形)を示す図であり、図7の部分拡大図に対応する。
【0044】
図9に示すフィルムキャリアテープ50において、個々の接続部52が、円形穴54によってそれぞれ打ち抜かれ、メッキリード56から切断されている。すなわちこの円形穴は、接続部52の幅よりも広い直径を有する。接続部52を打ち抜く工程は、メッキ処理工程後であって、半導体チップの電極に対するボンディング工程前に行われる。円形を選択した理由は、樹脂の流れ込み性並びに密着性を考慮したものである。
【0045】
そして、一点鎖線58の位置まで樹脂封止して、円形穴54から露出する接続部52の端面を樹脂にて覆うようにする。その後、二点鎖線59の位置で最終的な打ち抜きを行って、半導体装置を得る。半導体チップの電極と接続されている各接続リードの端部は、樹脂にて完全に覆われることになり、こうして得られた半導体装置も、上記参考例と同様の効果を奏する。
【0046】
また、図10に示すフィルムキャリアテープ60においては、個々の接続部62が、長穴64によってそれぞれ打ち抜かれ、メッキリード66から切断されている。長穴、すなわち、言い換えると楕円形状である。そして、一点鎖線68の位置まで樹脂を封止して、長穴64から露出する接続部62の端面を覆うようにする。その後、最終的な打ち抜きを行う位置は、長穴64の内側の二点鎖線69の位置である。つまり、最終的な打ち抜きを行うと、長穴64を切り欠いた形状となる。こうして、半導体装置を得ることができる。なお、第9図及び第10図での最終的な打ち抜き位置59、69は、この限りではない。この点は後に説明する。
【0047】
図10では、同図に示すように長穴の長径の方向はパッケージの外周を形成する辺と略直交方向に設けてあり、このようにすれば接続部の界面は図9の例に比べて更にパッケージの外周から引き込まれたところに位置する。したがって、外気と接するまでの距離がより増すことで、リードの腐食防止効果をより高めることができる。また、長穴にすれば樹脂との接触領域を広げることも可能となり、樹脂と基板との接着強度が更に高められる。その際、長穴の長径の方向をパッケージの外周を形成する辺に対して略直交方向に設けたので、隣設する接続リードのピッチ間隔を狭ピッチに対応することができる。ただし、ある程度ピッチの制限が緩い場合には、長穴の長径の方向を気にする必要はなく、上記と同様にパッケージの外周を形成する辺と略直交方向に設けてもよいし、その直行方向(すなわち、パッケージの外周を形成する辺と略平行方向)に設けても差し支えはない。
【0048】
また図9及び図10においては、樹脂封止位置58、68と、最終的な型抜き(切断)位置59、69とをずらしたことで、更により詳しくいうと、パッケージとしてみたときに樹脂封止位置の更に外側に切断(打ち抜き)位置を設けたことで、最終的な半導体装置の外形が、直線性を有するようになる。そして、その後の工程において、半導体装置の外形認識が容易になる。また切断工程にて樹脂封止部に損傷を与える心配がないことによる。
【0049】
一方、必ずしも樹脂封止位置と切断(打ち抜き)位置とはずらさなければならない訳はなく、同じにしても良い。また、穴内の樹脂の位置よりは外側で且つ穴内に納まる位置にて切断しても良い。なお、打ち抜き位置と樹脂封止位置とを同じにするとしても、穴内において樹脂の引き込んだ形に改めて打ち抜く必要はなく、樹脂封止部の最外形直線状に打ち抜けばよい。いずれにしても、各接続リードにつながる各接続部の端部は、穴(円形穴、長穴等)が形成されていて、基板(フィルムキャリアテープ)の端部からは引き込まれた位置に設けられるため、接続部端部は樹脂にて覆われた状態が保たれていることになる。
【0050】
上記実施形態において、メッキ処理を行うときに、電解メッキの他に周知の無電解メッキ法を用いてもよい。またフィルムキャリアテープ自体も本例のように導電パターン、接着剤、フィルムの3層からなるテープに限られるものでなく、例えば前述の構成から接着剤の除かれた2層のテープを用いてもよい。
【0051】
なお、上記各実施形態においては、電極が2辺に形成されたチップを用いたが、4辺に電極が設けられた場合も同様に適用可能であることはいうまでもない。その際にはテープの4方向に矩形穴が設けられることになる。
【0052】
また、本例では、外部電極が半導体チップ領域の内側方向に引き込まれる、いわゆるファンインタイプを説明したが、ファンインタイプとその逆のファンアウトタイプを融合させての適用も可能である。この場合にはファンインタイプは本例を用いてファンアウトタイプは従前の技術を用いて行えば可能である。
【0053】
そして、図11は、上記実施形態を適用して製造された半導体装置110を実装した回路基板100を示す。詳細図は示さないが、半導体装置110のパッド部22と回路基板100上に形成された接続部(例えば、ランド)とが電気的に接続されている。接続部材としては、例えば周知のハンダが用いられて、両者(半導体装置110のパッド部と回路基板100の接続部)間に介在させて接続を図るというものである。接続部材としては、ハンダ以外にも、例えば異方性導電接着剤を用いる等、各種接続手段を用いることが可能である。
【図面の簡単な説明】
【図1】 図1は、参考例に係る半導体装置の製造方法を説明する図である。
【図2】 図2は、参考例に係る半導体装置の製造方法を説明する図である。
【図3】 図3は、参考例に係る半導体装置の製造方法を説明する図である。
【図4】 図4は、参考例に係る半導体装置の製造方法を説明する図である。
【図5】 図5は、参考例に係る半導体装置の製造方法を説明する図である。
【図6】 図6は、参考例に係る半導体装置の製造方法を説明する図である。
【図7】 図7は、参考例に係る半導体装置の製造方法を説明する図である。
【図8】 図8は、図7のVIII−VIII線断面図である。
【図9】 図9は、本実施形態を示す図である。
【図10】 図10は、本実施形態を示す図である。
【図11】 図11は、本実施形態を適用して製造された半導体装置を実装した回路基板を示す図である。
【符号の説明】
20 導電パターン
24 接続リード
26 メッキリード
28 メッキ電極
29 接続部
30 配線パターン
36 モールド材
42 電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a film carrier tape.
[0002]
[Background]
In pursuit of high-density mounting of semiconductor devices, bare chip mounting is ideal. However, quality assurance and handling are difficult in the bare chip state. Therefore, CSP (Chip Scale / Size Package) has been developed as a package in which a bare chip is packaged, but the package size is close to the size of the bare chip.
[0003]
Among the CSP type semiconductor devices developed in various forms, as one form, a flexible substrate is provided on the active surface side of the semiconductor chip, and a plurality of external electrodes are formed on the flexible substrate. There is something. In this CSP type semiconductor device, the external electrode is provided in the area of the semiconductor chip. Therefore, for example, there is no so-called “outer lead” in which a lead protrudes from the side surface of the package body, such as QFP (Quad Flat Package) and TCP (Tape Carrier Package).
[0004]
Further, in a CSP type semiconductor device using a flexible substrate, as described in, for example, International Publication WO95 / 08856, a resin is injected between the active surface of the semiconductor chip and the flexible substrate, thereby causing thermal stress. It is also known to absorb water. If all the joints with the electrodes of the semiconductor chip are covered with this resin, corrosion of the electrodes can be prevented.
[0005]
Furthermore, when a semiconductor chip is mounted on a flexible substrate, if a film carrier tape is used, handling becomes easier, and mass productivity is excellent. In the system using a film carrier tape, each semiconductor device is cut from the film carrier after resin sealing of the semiconductor chip.
[0006]
Here, the wiring formed on the film carrier tape is gold-plated. Gold plating is performed by an electroplating (also referred to as “electrolytic plating”) method. In the electroplating method, it is general that all the wiring is made conductive and the wiring is drawn to the outside of the mounting area with the semiconductor chip. The drawn wiring was used as an electrode for electroplating. Conventionally, there is an outer lead, and the outer lead is pulled out as it is, and used as a wiring for electroplating. In addition, when an existing flexible substrate is used, a plating lead for electroplating is required. Usually, a plating lead is provided directly connected to a connection lead, and a TAB (Tape Automated Bonding) substrate used for a conventional TCP is known for this structure.
[0007]
However, when this conventional TAB substrate is used as it is and applied to a CSP type semiconductor device, each connection lead is directly connected to each plating lead, so that it is usually at a place called an outer lead. When cut, each lead end face protrudes from the package end face, and the lead end face is always exposed. In the CSP type semiconductor device, the distance between the chip outer shape and the package outer shape is very narrowed by making the package outer shape close to the chip size. Therefore, although it is packaged to protect the semiconductor chip, it is necessary to work to improve reliability including the environment surrounding the semiconductor chip as compared with the conventional package. In particular, when the above-described conventional structure is used as it is in a CSP type semiconductor device, the distance from the lead cut surface to the electrode of the semiconductor chip is very short, and the lead end is exposed without being covered. Because of this structure, the corrosion of the electrode is likely to proceed through the lead. Also, as the pitch between adjacent leads is further narrowed, the lead may be short-circuited due to, for example, conductive foreign matter existing on the exposed cut surface, and the function may be impaired. .
[0008]
On the other hand, this problem can be avoided by cutting individual semiconductor devices from the film carrier tape and then injecting resin. In this case, however, the separated semiconductor devices must be handled individually, and the advantages of the system using the film carrier tape cannot be utilized.
[0009]
The present invention solves the above-described problems, and an object thereof is to provide a film carrier tape manufacturing method for obtaining a semiconductor device having a package size close to the chip size.
[0010]
[Means for Solving the Problems]
The method for producing a film carrier tape according to the present invention comprises:
A plurality of connection leads formed in a region to be sealed and bonded to the electrodes of the semiconductor chip and the external electrodes, and at least one plating connected to the connection leads and formed outside the sealing region The method includes a step of forming a conductive pattern on a film, having a lead and a plating electrode to which the plating lead is connected, in a state where all of the leads are conductive.
[0011]
Alternatively, the manufacturing method of the film carrier tape according to the present invention,
Forming a lead hole in the film;
Providing a metal foil on a region including the lead hole of the film;
Forming a conductive pattern comprising a pad portion, a connection lead, a plating lead, a plating electrode and a connection portion from the metal foil;
A step of plating the conductive pattern through the plating electrode;
Processing the connection portion to form a wiring pattern;
including.
[0012]
Here, the step of forming the wiring pattern may be performed by punching the connection portion.
[0013]
Moreover, the number of steps can be reduced by punching a plurality of the connecting portions together.
[0014]
Or the said punching may be performed corresponding to each connection part.
[0015]
Each connecting portion may be punched out by a circular hole.
[0016]
Alternatively, the circular hole may have an elliptical shape, and the major axis direction of the elliptical shape may be directed in a direction substantially orthogonal to a side forming the outer periphery of the semiconductor device.
[0017]
Moreover, you may provide a protective film in the area | region except the area | region where the said plating process is performed in the said conductive pattern before the process of performing the said plating process.
[0018]
A resin may be used as the protective film.
[0019]
A solder resist may be used as the resin.
[0020]
The film carrier tape used in the resin-encapsulated semiconductor device according to the present invention is
A pad portion in which external electrodes are formed in a region to be resin-sealed;
A plurality of connection leads which are arranged in a region to be resin-sealed and connect each external electrode and each electrode of the semiconductor chip;
At least one plating lead formed outside the resin-sealed region;
A plurality of connection portions for electrically connecting any one of the connection leads and the plating lead;
At least one hole formed in the connection portion for achieving electrical insulation between the connection lead and the plating lead;
A plating electrode to which the plating lead is connected;
Have
The pad portion, the connection lead, the plating lead, the connection portion, and the plating electrode are electroplated.
[0021]
The hole may be a rectangular hole and may be formed across a plurality of the connection portions.
[0022]
Alternatively, a plurality of the holes are formed,
Each hole may be a circular or elliptical hole, and may be formed corresponding to each of the connecting portions.
[0023]
Alternatively, the hole may have an elliptical shape, and a major axis direction of the elliptical shape may be directed in a direction substantially orthogonal to a side forming the outer periphery of the semiconductor device.
[0024]
By forming the hole as described above, the end face of the connecting portion is exposed from the hole, and the exposed end face of the connecting portion is covered with resin sealing. Thereby, the corrosion from a connection part to a connection lead can be prevented.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
1-7 is a figure explaining the manufacturing method of the semiconductor device which concerns on the reference example used as the premise of this embodiment from the manufacturing stage of a film carrier tape. In particular, in FIGS. 1 to 5, the manufacturing process of the film carrier tape is described. The processes of FIGS. 6 and 7 include the film carrier tape and the semiconductor chip manufactured in the processes of FIGS. 1 to 5. This is a subsequent process after bonding, and is not necessarily performed immediately (continuously) following the process of FIGS.
[0027]
First, as shown in FIG. 1, a film 10 serving as a base material is prepared. The film 10 is a tape (long) formed of a resin such as polyimide or polyester, and the width is determined according to the size of a semiconductor chip (not shown) to be mounted. The film 10 is suitably made of a material having electrical insulation and flexibility.
[0028]
As shown in FIG. 2, the sprocket hole 12 and the lead hole 14 are formed in the film 10 by using a well-known drilling technique such as punching, laser processing, or chemical etching. As shown in FIG. 6, the lead hole 14 is formed in a region corresponding to the electrode 42 of the semiconductor chip 40 to be mounted. That is, the lead hole 14 is formed for bonding the connection lead 24 and the electrode 42.
[0029]
Next, an adhesive is applied to the film 10, and a metal foil, for example, a copper foil 16 as an example of a member capable of electrical conduction, is applied while being pressed by a heating and pressing means such as a heat roller (not shown). wear. FIG. 3 shows a state in which the copper foil 16 is attached to the film 10.
[0030]
Then, a desired conductive pattern 20 is formed from the foil-like copper foil 16 as shown in FIG. 4 by performing wet etching.
[0031]
The conductive pattern 20 includes a pad portion 22, a connection lead 24, a plating lead 26, a plating electrode 28, and a connection portion 29. At the stage of the conductive pattern 20, all are in an electrically conductive state. The pad portion 22 is for forming external electrodes by providing bumps such as solder balls. Accordingly, the pad portion 22 has a flat surface when viewed in plan and has a predetermined area (usually wider than the connection lead 24). Note that the pad portion 22 itself may be formed in a convex shape and have a function as a bump in advance. Further, the pad portion 22 may remain in a land state as shown in the drawing even after the semiconductor device is manufactured. However, in this case, it is necessary to provide a joining member such as solder on the side of the member to be mounted (mounting substrate). When the semiconductor chip is mounted on the film carrier tape (see FIG. 7), the pad portion 22 is disposed inside the region of the semiconductor chip 40 and in the region sealed with the molding material 36.
[0032]
One end of the connection lead 24 is connected to a pad portion 22 for forming an external electrode, and electrical connection with the pad portion 22 is achieved. Note that the connection lead 24 is formed thinner than the pad portion 22. The connection lead 24 only needs to have a width sufficient to achieve good electrical continuity, and is inevitably thinner than the pad portion 22 in consideration of a narrow pitch. This applies not only to the connection lead 24 but also to the connection portion 29 on the extension of the connection lead 24. Further, the other end portion of the connection lead 24 passes (strides) the lead hole 14 as shown in FIG. The connection lead 24 is connected to the electrode 42 of the semiconductor chip 40 at a portion located in the lead hole 14. The connection leads 24 are arranged in a region of resin sealing with a molding material 36 described later (see FIG. 7), similarly to the pad portion 22. The connection lead 24 is electrically connected to the plating lead 26 via a connection portion 29 that connects a section from the side of the lead hole 14 on the plating lead 26 side to the plating lead 26. Here, the plating lead 26 is formed so as to be located outside the resin sealing region. That is, the connection portion 29 is formed from the connection lead 24 in the resin-sealed region to the plating lead 26 outside the resin-sealed region. Each plating lead 26 is formed in the short direction of the tape-like film 10 and is connected to the plating electrode 28. The plating electrode 28 is formed in the longitudinal direction of the tape-like film 10. Although not shown on both sides of the conductive pattern 20 shown in FIG. 4, a similar conductive pattern connected to the plating electrode 28 is continuously formed.
[0033]
Next, the entire conductive pattern 20 is plated with gold through the plating electrode 28 by an electroplating (electrolytic plating) method. The plating process may be a plating process with tin or solder in addition to gold plating. A known method may be used depending on the situation such as joining. Then, as shown in FIG. 5, at least a part of the connection portion 29 located between the connection lead 24 and the plating lead 26 (that is, between the side of the lead hole 14 on the side of the plating lead and the plating lead 26). By cutting, a wiring pattern (circuit pattern) 30 is formed from the conductive pattern 20 of FIG. A known technique can be used as a cutting method regardless of a mechanical method or a chemical method. Further, even if the corresponding portion to be cut is not completely punched out, for example, the connection lead 24 and the plating lead 26 are in an electrically non-conductive state, that is, only the connection lead 24 may have its end portion free. Only the pattern at the corresponding position) may be half-etched. In other words, the base film 10 does not necessarily have to be completely removed. Thus, a long film carrier tape 34 on which a predetermined circuit is formed is obtained. In the state in which the wiring pattern 30 is formed, the connection lead 24 including the wiring located between the lead hole 14 and the hole 32, that is, the side electrically connected to the pad part 22 in the connection part 29. . In addition, after the process of forming the wiring pattern 30, when the connection lead is simply used, the wiring located between the lead hole 14 and the hole 32 is also included.
[0034]
Note that the step of punching the connection portion 29 is performed after the plating process and before the bonding step (see FIG. 6) for the electrodes 42 of the semiconductor chip 40. In this example, the hole 32 is formed by punching out the connecting portion 29. The hole 32 is an elongated rectangular hole in the figure, but the shape is not limited to this. As shown in FIG. 7, one of the pair of long sides forming the hole 32 is located in the resin-sealed region, and the other is located outside the resin-sealed region. The end face of the punched connection portion 29 is flush with the position of the long side forming the hole 32, and the end portion is exposed inside the hole 32. The exposed end surface of the connection portion 29 is covered with resin. In short, the hole 32 is formed to cover the exposed end face of the connection portion 29 in addition to forming a desired circuit.
[0035]
Next, as shown in FIG. 6, the film carrier tape 34 is disposed above the semiconductor chip 40. More specifically, a portion corresponding to the flexible substrate in the film carrier tape is aligned above the semiconductor chip 40. Here, when the semiconductor device is finally separated from the film carrier tape 34 and becomes a semiconductor device piece, the portion remaining as the substrate corresponds to the flexible substrate.
[0036]
The electrode 42 of the semiconductor chip 40 is disposed so as to face the lead hole 14 of the film carrier tape 34. The appropriate size of the semiconductor chip to be used is from the one where the end of the semiconductor chip is located beyond the side forming the inner side of the lead hole as shown in the figure to the side of the hole 32 on the lead hole 14 side. If it is of the size, the size does not matter. Further, a predetermined gap is formed between the semiconductor chip 40 and the film carrier tape 34. At this time, positioning is performed so that the connection lead 24 is disposed on the electrode 42 of the semiconductor chip 40. Then, the plurality of electrodes 42 and the plurality of connection leads 24 are bonded together or one by one. For bonding, a bump is preferably formed on either the electrode 42 or the connection lead 24.
[0037]
In addition, when the semiconductor chip 40 is arrange | positioned at the film carrier tape 34, the formation position of the wiring pattern 30 in this reference example is provided in the surface on the opposite side to the surface where the semiconductor chip of a film opposes. Therefore, it is preferable to insulate and protect the surface of the wiring pattern 30 by applying a resin such as a solder resist. In addition, it is also possible to make it cover previously with the said resin except the part which wants to electroplate. Here, the portion to be electroplated specifically refers to a connection lead, a land or the like. In this way, plating is not applied to unnecessary portions, so that waste of the plating material used for the plating process can be eliminated. Alternatively, if the film carrier tape 34 is disposed with the wiring pattern 30 facing the semiconductor chip 40, the application of solder resist or the like can be omitted.
[0038]
Next, as shown in FIG. 7, the semiconductor chip 40 is sealed with a molding material. Reference numeral 36 denotes a region where the molding material is located. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
[0039]
Specifically, the molding material 36 is injected from the lead hole 14 into the gap between the semiconductor chip 40 and the film carrier tape 34. The molding material 36 covers the electrodes 42 of the semiconductor chip 40.
[0040]
Further, the molding material 36 is filled so as to cover the end surface 29 a of the connection portion 29 (that is, the end portion of the connection lead) whose end is exposed at the hole 32 of the film carrier tape 34. By doing so, the end surface 29a (the end portion of the connection lead) of the connection portion 29 connected to the electrode 42 of the semiconductor chip 40 is covered with the resin so as not to be exposed. Accordingly, corrosion from the connection portion 29 side to the connection lead 24 and further to the electrode 42 of the semiconductor chip 40 is prevented and insulation is achieved, so that the reliability of the semiconductor device is improved.
[0041]
Thus, when sealing with the molding material 36 is completed, the film carrier tape 34 is separated from the base film outside the region where the molding material 36 is located. In the case of separation, die cutting is performed collectively, and the film carrier tape 34 portion (that is, the flexible substrate portion) used for the package is punched out from the base of the film carrier tape 34. Regarding the punching position, for example, if the cutting position is within the hole 32 region and outside the region sealed with resin, the wiring pattern routing direction (longitudinal direction of the film) has already been processed, There is no external addition during the punching process.
[0042]
On the other hand, it is also possible to punch out at a position outside the hole 32 and not in the hole. Thus, by punching out the holes 32 so as not to be cut out, the final shape of the semiconductor device has linearity. In this case, there is an advantage that the outer shape of the semiconductor device can be easily recognized in the subsequent steps.
[0043]
Next, FIG.9 and FIG.10 is a figure which shows embodiment (modification of the said reference example) of this invention, and respond | corresponds to the elements on larger scale of FIG.
[0044]
In the film carrier tape 50 shown in FIG. 9, each connection portion 52 is punched out by a circular hole 54 and cut from the plating lead 56. That is, the circular hole has a diameter wider than the width of the connecting portion 52. The process of punching out the connection portion 52 is performed after the plating process and before the bonding process for the electrodes of the semiconductor chip. The reason for selecting the circular shape is that the flowability and adhesion of the resin are taken into consideration.
[0045]
Then, resin sealing is performed up to the position of the alternate long and short dash line 58 so that the end surface of the connection portion 52 exposed from the circular hole 54 is covered with resin. Thereafter, final punching is performed at the position of the two-dot chain line 59 to obtain a semiconductor device. The ends of the connection leads connected to the electrodes of the semiconductor chip are completely covered with the resin, and the semiconductor device thus obtained also has the same effect as the reference example.
[0046]
Further, in the film carrier tape 60 shown in FIG. 10, each connection portion 62 is punched out by a long hole 64 and cut from the plating lead 66. It has a long hole, that is, an elliptical shape. Then, the resin is sealed up to the position of the alternate long and short dash line 68 so as to cover the end face of the connecting portion 62 exposed from the long hole 64. Thereafter, the final punching position is a position of a two-dot chain line 69 inside the elongated hole 64. That is, when the final punching is performed, the shape of the long hole 64 is cut out. Thus, a semiconductor device can be obtained. Note that the final punching positions 59 and 69 in FIGS. 9 and 10 are not limited to this. This point will be described later.
[0047]
In FIG. 10, the direction of the long diameter of the long hole is provided in a direction substantially orthogonal to the side forming the outer periphery of the package as shown in FIG. 10, and in this way, the interface of the connecting portion is compared with the example of FIG. Furthermore, it is located where it was drawn from the outer periphery of the package. Therefore, the corrosion prevention effect of the lead can be further enhanced by increasing the distance to contact with the outside air. Further, if the hole is made long, the contact area with the resin can be widened, and the adhesive strength between the resin and the substrate can be further increased. At this time, since the direction of the long diameter of the long hole is provided in a direction substantially orthogonal to the side forming the outer periphery of the package, the pitch interval between the adjacent connection leads can correspond to a narrow pitch. However, if the pitch restriction is somewhat loose, there is no need to worry about the direction of the long diameter of the long hole, and it may be provided in a direction substantially orthogonal to the side forming the outer periphery of the package in the same manner as described above. It may be provided in a direction (that is, a direction substantially parallel to a side forming the outer periphery of the package).
[0048]
In FIGS. 9 and 10, the resin sealing positions 58 and 68 are shifted from the final die-cutting (cutting) positions 59 and 69. More specifically, the resin sealing position when viewed as a package is shown. By providing the cutting (punching) position further outside the stop position, the final shape of the semiconductor device has linearity. In subsequent steps, the outer shape of the semiconductor device can be easily recognized. Moreover, it is because there is no worry of damaging a resin sealing part in a cutting process.
[0049]
On the other hand, the resin sealing position and the cutting (punching) position do not necessarily have to be shifted and may be the same. Moreover, you may cut | disconnect in the position which is outside the position of the resin in a hole, and is settled in a hole. Note that even if the punching position and the resin sealing position are the same, it is not necessary to punch out again into the shape in which the resin is drawn in the hole, and it is sufficient to punch out into the outermost straight shape of the resin sealing portion. In any case, the end of each connection part connected to each connection lead is provided with a hole (circular hole, long hole, etc.) that is drawn from the end of the substrate (film carrier tape). Therefore, the end of the connection part is kept covered with the resin.
[0050]
In the above embodiment, when performing the plating process, a known electroless plating method may be used in addition to the electrolytic plating. Further, the film carrier tape itself is not limited to a tape composed of three layers of a conductive pattern, an adhesive, and a film as in this example. For example, a two-layer tape from which the adhesive is removed from the above-described configuration may be used. Good.
[0051]
In each of the above embodiments, a chip having electrodes formed on two sides is used. Needless to say, the present invention can also be applied to a case where electrodes are provided on four sides. At that time, rectangular holes are provided in four directions of the tape.
[0052]
In the present example, the so-called fan-in type in which the external electrode is drawn inwardly of the semiconductor chip region has been described. However, the fan-in type and the reverse fan-out type can be applied. In this case, the fan-in type can be performed by using this example, and the fan-out type can be performed by using a conventional technique.
[0053]
FIG. 11 shows a circuit board 100 on which the semiconductor device 110 manufactured by applying the above embodiment is mounted. Although not shown in detail, the pad portion 22 of the semiconductor device 110 and a connection portion (for example, a land) formed on the circuit board 100 are electrically connected. As the connection member, for example, a well-known solder is used, and the connection is made by interposing between them (the pad portion of the semiconductor device 110 and the connection portion of the circuit board 100). As the connection member, in addition to solder, various connection means such as an anisotropic conductive adhesive can be used.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to a reference example.
FIG. 2 is a diagram illustrating a method for manufacturing a semiconductor device according to a reference example.
FIG. 3 is a diagram for explaining a method for manufacturing a semiconductor device according to a reference example;
FIG. 4 is a diagram for explaining a method for manufacturing a semiconductor device according to a reference example;
FIG. 5 is a diagram for explaining a method for manufacturing a semiconductor device according to a reference example;
FIG. 6 is a diagram for explaining a method for manufacturing a semiconductor device according to a reference example;
FIG. 7 is a diagram for explaining a method for manufacturing a semiconductor device according to a reference example;
FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
FIG. 9 is a diagram illustrating this embodiment.
FIG. 10 is a diagram illustrating this embodiment.
FIG. 11 is a diagram illustrating a circuit board on which a semiconductor device manufactured by applying the present embodiment is mounted.
[Explanation of symbols]
20 Conductive Pattern 24 Connection Lead 26 Plating Lead 28 Plating Electrode 29 Connection Part 30 Wiring Pattern 36 Mold Material 42 Electrode

Claims (6)

フィルムキャリアテープの製造方法において、
フィルムにリード孔を形成する工程と、
前記フィルムの前記リード孔を含む領域上に金属箔を設ける工程と、
前記金属箔から、パッド部、メッキリード、メッキ電極及び前記パッド部と前記メッキリードとを接続する複数の接続リードを含む導電パターンを形成する工程と、
前記メッキ電極を通じて、前記導電パターンにメッキ処理を施す工程と、
前記各接続リード毎に、前記接続リードを打ち抜く工程と、
を含んでなるフィルムキャリアテープの製造方法。
In the method for manufacturing a film carrier tape,
Forming a lead hole in the film;
Providing a metal foil on a region including the lead hole of the film;
Forming a conductive pattern including a plurality of connection leads connecting the pad portion, the plating lead, the plating electrode, and the pad portion and the plating lead from the metal foil;
A step of plating the conductive pattern through the plating electrode;
For each of the connection leads, a step of punching the connection lead;
A method for producing a film carrier tape comprising:
請求項1記載のフィルムキャリアテープの製造方法において、
各接続リードは、円形穴によって打ち抜かれるフィルムキャリアテープの製造方法。
In the manufacturing method of the film carrier tape of Claim 1,
Each connection lead is a method of manufacturing a film carrier tape that is punched by a circular hole.
請求項2記載のフィルムキャリアテープの製造方法において、
前記円形穴は楕円形状をなし、前記楕円形状の長径の方向は半導体装置の外周を形成する辺と略直交する方向に向けられるフィルムキャリアテープの製造方法。
In the manufacturing method of the film carrier tape of Claim 2,
The method of manufacturing a film carrier tape, wherein the circular hole has an elliptical shape, and the direction of the major axis of the elliptical shape is oriented in a direction substantially orthogonal to a side forming the outer periphery of the semiconductor device.
請求項1乃至請求項3のいずれかに記載のフィルムキャリアテープの製造方法において、
前記メッキ処理を施す工程の前に、前記導電パターンにおける前記メッキ処理の行われる領域を除く領域に保護膜が設けられるフィルムキャリアテープの製造方法。
In the manufacturing method of the film carrier tape in any one of Claims 1 thru | or 3,
A method for producing a film carrier tape, wherein a protective film is provided in a region excluding a region where the plating process is performed in the conductive pattern before the step of performing the plating process.
請求項4記載のフィルムキャリアテープの製造方法において、
前記保護膜として樹脂が用いられるフィルムキャリアテープの製造方法。
In the manufacturing method of the film carrier tape of Claim 4,
A method for producing a film carrier tape, wherein a resin is used as the protective film.
請求項5記載のフィルムキャリアテープの製造方法において、
前記樹脂としてソルダレジストが用いられるフィルムキャリアテープの製造方法。
In the manufacturing method of the film carrier tape of Claim 5,
A method for producing a film carrier tape, wherein a solder resist is used as the resin.
JP2002089092A 1996-10-17 2002-03-27 Film carrier tape manufacturing method Expired - Fee Related JP3824076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089092A JP3824076B2 (en) 1996-10-17 2002-03-27 Film carrier tape manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-297531 1996-10-17
JP29753196 1996-10-17
JP2002089092A JP3824076B2 (en) 1996-10-17 2002-03-27 Film carrier tape manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51551298A Division JP3608205B2 (en) 1996-10-17 1997-09-29 Semiconductor device, manufacturing method thereof, and circuit board

Publications (2)

Publication Number Publication Date
JP2002329756A JP2002329756A (en) 2002-11-15
JP3824076B2 true JP3824076B2 (en) 2006-09-20

Family

ID=26561161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089092A Expired - Fee Related JP3824076B2 (en) 1996-10-17 2002-03-27 Film carrier tape manufacturing method

Country Status (1)

Country Link
JP (1) JP3824076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413224B1 (en) * 2015-10-01 2022-06-24 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device, manufacturing method for light emittin device, and lighting module

Also Published As

Publication number Publication date
JP2002329756A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP3608205B2 (en) Semiconductor device, manufacturing method thereof, and circuit board
US5652461A (en) Semiconductor device with a convex heat sink
US5874784A (en) Semiconductor device having external connection terminals provided on an interconnection plate and fabrication process therefor
US5382546A (en) Semiconductor device and method of fabricating same, as well as lead frame used therein and method of fabricating same
US5704593A (en) Film carrier tape for semiconductor package and semiconductor device employing the same
KR20010051976A (en) Semiconductor device manufactured by package group molding and dicing method
JP3633364B2 (en) Manufacturing method of BGA type semiconductor device
JP2569400B2 (en) Method for manufacturing resin-encapsulated semiconductor device
JP3824076B2 (en) Film carrier tape manufacturing method
JPH0936155A (en) Manufacture of semiconductor device
JP2001094026A (en) Lead frame and method for menufacturing it
JPH11297740A (en) Carrier tape having semiconductor chip mounted thereon, and semiconductor device
JPH0547836A (en) Mounting structure of semiconductor device
JP3051114B1 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP4062445B2 (en) Manufacturing method of semiconductor device
JPH09246416A (en) Semiconductor device
JP2748620B2 (en) Semiconductor device
JP3912496B2 (en) Tape carrier for semiconductor device and manufacturing method thereof
JP2836597B2 (en) Film carrier tape and semiconductor device using the same
JP3646663B2 (en) Manufacturing method of semiconductor device
JPS62224033A (en) Tape carrier device
JPH11238843A (en) Lead frame and semiconductor device
JPH08316272A (en) Semiconductor device, manufacture thereof and flexible board for semiconductor device
JP2000031321A (en) Structure and manufacture of semiconductor device
JPH06236942A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees