JP3824044B2 - Silicon nitride circuit board manufacturing method - Google Patents

Silicon nitride circuit board manufacturing method Download PDF

Info

Publication number
JP3824044B2
JP3824044B2 JP25071299A JP25071299A JP3824044B2 JP 3824044 B2 JP3824044 B2 JP 3824044B2 JP 25071299 A JP25071299 A JP 25071299A JP 25071299 A JP25071299 A JP 25071299A JP 3824044 B2 JP3824044 B2 JP 3824044B2
Authority
JP
Japan
Prior art keywords
silicon nitride
circuit board
brazing material
copper
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25071299A
Other languages
Japanese (ja)
Other versions
JP2001077245A (en
Inventor
暁山 寧
正美 木村
正美 桜庭
茂文 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP25071299A priority Critical patent/JP3824044B2/en
Publication of JP2001077245A publication Critical patent/JP2001077245A/en
Application granted granted Critical
Publication of JP3824044B2 publication Critical patent/JP3824044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化ケイ素回路基板、特に高熱伝導率及び高信頼性が要求される自動車、電車、新幹線などの交通手段に使用するパワーモジュール及びペルチェ素子の実装に最適な窒化ケイ素回路基板製造方法に関するものである。
【0002】
【従来の技術】
従来、パワーモジュール及びペルチェ素子の実装には銅張り窒化アルミニウム回路基板が広く使用されている。
【0003】
銅と窒化アルミニウムとはその熱膨張係数が互いに異なるため、高温で接合し室温で冷却した場合、基板の内部で大きな熱応力が発生する。この熱応力の影響で、使用中に窒化アルミニウム基板の内部にクラックが発生し、基板の表裏に貫通するクラックによる絶縁破壊が発生する。
【0004】
クラックの発生を防止する為に窒化ケイ素回路基板が開発されるようになった。窒化ケイ素は窒化アルミニウムに比べてクラック発生に対する抵抗力が大きい。材料のクラックの進展に対する抵抗力を通常破壊靱性値で評価するが、窒化ケイ素の破壊靱性値は窒化アルミニウムの2倍以上もあるため、窒化ケイ素回路基板の使用により、クラックの発生は押さえられ、基板の信頼性は大きく改善された。
【0005】
特開平4−212441号公報、特開平7−48174号公報に窒化ケイ素回路基板が開示されている。この例では、窒化ケイ素回路基板にAl、Y、Yb、Mg、Zr、Ti、 Hf、 V、Nb、Ta、 Cr、 Mo、Wなどの酸化物、炭化物、窒化物、けい化物、硼化物からなる群より選択された少なくとも1種を添加し、焼結している。
【0006】
また、特開平9−69590号公報、特開平9−69672号公報にも窒化ケイ素回路基板及びその製造方法が開示されている。
【0007】
【発明が解決しようとする課題】
近年環境保護の機運が高まり、電子機器作動時のロスの低減に対する要望は日増しに強くなっている。そのため基板の絶縁抵抗改善に対する要望も高まってきている。
【0008】
また、パワーモジュールの使用時には基板の温度が最高125℃に達する場合があり、高温での絶縁抵抗も重要視されるようになったが、従来のものは高温での絶縁抵抗が低く、所期の目的を達成できない欠点があった。
【0009】
本発明者はかかる問題を解決するために鋭意研究した結果、窒化ケイ素基板の上に活性金属ろう材を介して銅回路を形成したのち、窒素雰囲気に於いて加熱することによって、窒化ケイ素回路基板の絶縁抵抗が向上することを見出した。
【0010】
本発明はかかる知見を基に成されたものである。
【0011】
【課題を解決するための手段】
本発明者が検討したところ絶縁抵抗が低いと基板の使用時に頻繁にリーク電流が発生し、作動時の誤動作を起こす恐れがある。絶縁抵抗は2000MΩ以上であることが必要で好ましくは10000MΩ以上が良いことがわかった。2000MΩ以上で作動時のロスが1/20以下に低減できる。
【0012】
本発明の窒化ケイ素回路基板製造方法は、窒化ケイ素基板に活性金属を含むろう材を介して銅対接する工程と、ろう材の融点以上、銅の融点以下に加熱して上記窒化ケイ素基板に上記銅板を接合する工程と、上記銅板にエッチングにより銅回路を形成する工程と、更に窒素雰囲気中330℃以上で加熱する工程とより成ることを特徴とする。
【0013】
上記ろう材の活性金属は、Ti、Zr、またはHfを含むことを特徴とする。
【0014】
上記窒化ケイ素基板は、窒化ケイ素にAl、Y、Yb、Mg、Zr、Ti、 Hf、V、Nb、Ta、 Cr、 Mo、Wなどの酸化物、炭化物、窒化物、けい化物、硼化物からなる群より選択された少なくとも1種を添加し、焼結して形成したものであることを特徴とする。
【0015】
上記窒化ケイ素基板と銅板は、窒素雰囲気中で380℃以上の温度で加熱処理されることを特徴とする。
【0016】
上記ろう材はAg−Cu−Tiペースト状ろう材であることを特徴とする。
【0017】
上記銅回路を形成する工程のエッチング液として、塩化鉄の溶液で不要部分の銅を溶かし、次いでフッ化アンモニアを含む硝酸溶液で不要なろう材を除去することを特徴とする。
【0018】
上記ろう材は、有機バインダー及び溶剤を含み、銅板を接合する工程の前に、低温で加熱しろう材中の有機バインダー及び溶剤を蒸発せしめる工程を有することを特徴とする。
【0019】
【発明の実施の形態】
以下本発明の実施例を説明する。
【0020】
本発明においては、窒化ケイ素基板の両面にAg−Cu−Tiペースト状ろう材をスクリーン印刷法で全面或いはパターン形状に印刷した後、この窒化ケイ素基板をその両面に銅板を対接した状態で真空中において低温で加熱し、ペースト状ろう材中の有機バインダー及び溶剤を蒸発させてから、更にろう材の融点以上、銅の融点以下の高温度に加熱し、銅板と窒化ケイ素基板をろう接する。
【0021】
次いで、銅板の表面にエッチングレジストを所望のパターン形状に印刷し、塩化鉄の溶液でエッチングして不要部分の銅を溶かし、銅回路を形成する。
【0022】
次いで、フッ化アンモニウムと硝酸の混液に銅回路の形成された回路基板を浸漬し、基板上に付着している余分のろう材を除去する。
【0023】
最後に、上述の方法で作製した銅張り窒化ケイ素回路基板を窒素雰囲気に於いて加熱し、高温での回路基板の絶縁抵抗を高める。
【0024】
なお、窒素中で加熱すると銅板の表面は黒く変色する。この変色層を除去するためには、硫酸と硝酸との混液でエッチング処理すれば良い。
【0025】
更に作製した銅張り窒化ケイ素回路基板の一部又は全面に対して、無電解メッキ法でニッケルめっき層を形成しても良い。
【0026】
本発明によれば窒素雰囲気中での加熱は絶縁抵抗の向上に有効であることを示しているが、其の理由についてはまだ解明されていない。なお、比較例に示すように水素を含む窒素雰囲気で同じ温度に加熱する場合絶縁抵抗はむしろ悪くなったことと、空気中に於いては水の蒸発温度以上の125 ℃で長時間加熱しても絶縁抵抗の改善は見られなかったことから、エッチングの時に基板の表面に付着している水の影響ではないと考えられる。
【0027】
また、ろう接時に窒化ケイ素の分解が起こり、基板の表面にわずかなケイ素層が形成された可能性があり、これが何等かの働きをしていると思われる。
【0028】
(実施例1)
【0029】
銀粉72重量部、銅粉28重量部、合計100重量部に対して、Ti粉末2重量部及びバインダー7重量部、溶剤8重量部を添加し、ペースト状のろう材を作成した。
【0030】
このろう材を厚さ0.3mm の窒化ケイ素基板の一面上に所定のパターン形状に厚さ20μm印刷し、80℃に加熱して溶剤分を蒸発し、ろう材を乾燥させた。ついでに反対面も同じようにろう材を印刷した。
【0031】
このろう材の印刷された基板の両面に厚さ0.25mmの銅板を積層し、 10 -5torrの真空中に於いて600℃で3時間保温し、ろう材中のバインダーを十分に除去してから830℃に加熱し、30分間保温して銅板と窒化ケイ素基板をろう接し、次いで、銅板の表面にエッチングレジストを所定のパターン状に印刷し、塩化鉄の溶液でエッチングして不要部分の銅を溶かし、所定の回路パターンを形成した。
【0032】
次いで、この回路基板を10%のフッ化アンモニアを含む硝酸溶液に浸漬し、窒化ケイ素回路基板の表面に付着している不要なろう材を除去した。
【0033】
次いで、この基板を窒素雰囲気連続炉で30分かけて330℃に加熱し、10分間保温してから、20分かけて室温に冷却した。
【0034】
次いで、窒素雰囲気中で加熱された基板を硫酸20%と硝酸10%の水溶液に浸漬し、銅表面の変色層を除去し、本発明の銅張り窒化ケイ素回路基板を作製した。この回路基板の125℃での絶縁抵抗を測定したところ、2000MΩ以上有ることが分かった。
【0035】
(実施例2)
【0036】
実施例1の工程中窒素雰囲気炉での処理温度を380℃にした以外は実施例1と同一にした。この銅張窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ、10000MΩ以上あることがわかった。
【0037】
(実施例3)
【0038】
実施例1と同じ工程を施した後、通常の無電解めっき法で銅板の上に厚み3μmのニッケルめっき層を形成した。この銅張り窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ、10000MΩ以上あることが分かった。
【0039】
(比較例1)
【0040】
実施例1の工程中、基板を窒素雰囲気中で加熱処理することを除いて実施例1と同一に処理した。この銅張り窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ、100MΩ未満であることが分かった。
【0041】
(比較例2)
【0042】
実施例1の工程中基板を窒素雰囲気中で加熱温度が320℃であることを除いて実施例1と同一に処理した。この銅張り窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ100MΩ未満であることがわかった。
【0043】
(比較例3)
【0044】
実施例1の工程中、基板を窒素雰囲気連続炉で加熱処理する代りに空気中において125℃で4時間加熱したことを除いて実施例1と同一に処理した。この銅張り窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ、100MΩ未満であることが分かった。
【0045】
(比較例4)
【0046】
実施例1の工程中、上記加熱処理を水素20%、窒素80%の雰囲気中で行ったことを除いて実施例1と同一に処理した。この銅張り窒化ケイ素回路基板の125℃の絶縁抵抗を測定したところ、1MΩ未満であることが分かった。
【0047】
表1は、上記実施例及び比較例におけるサンプル1〜5を比較した表である。
【0048】
【表1】

Figure 0003824044
【0049】
【発明の効果】
上記のように本発明によれば、窒素中での加熱処理によって125℃においても高絶縁抵抗を有する銅張り窒化ケイ素回路基板を作製でき、この回路基板を使って組み立てたパワーモジュールの作動時のロスを大幅に低下させる大きな効果が得られる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a silicon nitride circuit board, and more particularly to a power module used for transportation such as automobiles, trains, and bullet trains that require high thermal conductivity and high reliability, and a silicon nitride circuit board manufacturing method optimal for mounting a Peltier device. It is.
[0002]
[Prior art]
Conventionally, copper-clad aluminum nitride circuit boards have been widely used for mounting power modules and Peltier elements.
[0003]
Since copper and aluminum nitride have different thermal expansion coefficients, large thermal stresses are generated inside the substrate when they are bonded at a high temperature and cooled at room temperature. Under the influence of this thermal stress, cracks are generated inside the aluminum nitride substrate during use, and dielectric breakdown occurs due to cracks penetrating the front and back of the substrate.
[0004]
Silicon nitride circuit boards have been developed to prevent the occurrence of cracks. Silicon nitride has a greater resistance to cracking than aluminum nitride. The resistance against the development of cracks in the material is usually evaluated by the fracture toughness value. Since the fracture toughness value of silicon nitride is more than twice that of aluminum nitride, the use of a silicon nitride circuit board suppresses the occurrence of cracks. Substrate reliability has been greatly improved.
[0005]
Japanese Patent Laid-Open Nos. 4-212441 and 7-48174 disclose silicon nitride circuit boards. In this example, the silicon nitride circuit board is made of oxides, carbides, nitrides, silicides, borides such as Al, Y, Yb, Mg, Zr, Ti, Hf, V, Nb, Ta, Cr, Mo, and W. At least one selected from the group is added and sintered.
[0006]
Japanese Patent Laid-Open Nos. 9-69590 and 9-69672 also disclose a silicon nitride circuit board and a method for manufacturing the same.
[0007]
[Problems to be solved by the invention]
In recent years, the demand for environmental protection has increased, and the demand for reducing the loss during the operation of electronic devices has been increasing day by day. Therefore, there is an increasing demand for improving the insulation resistance of the substrate.
[0008]
In addition, when the power module is used, the substrate temperature may reach up to 125 ° C, and insulation resistance at high temperatures has become important. Conventional products have low insulation resistance at high temperatures, and are expected There was a drawback that could not achieve the purpose.
[0009]
As a result of diligent research to solve such problems, the present inventor formed a copper circuit on a silicon nitride substrate through an active metal brazing material, and then heated in a nitrogen atmosphere to thereby form a silicon nitride circuit substrate. It has been found that the insulation resistance is improved.
[0010]
The present invention has been made based on such knowledge.
[0011]
[Means for Solving the Problems]
As a result of studies by the present inventor, if the insulation resistance is low, a leak current frequently occurs when the substrate is used, which may cause malfunction during operation. It has been found that the insulation resistance needs to be 2000 MΩ or more, and preferably 10,000 MΩ or more. Loss during operation can be reduced to 1/20 or less at 2000 MΩ or more.
[0012]
Silicon nitride circuit board manufacturing method of the present invention includes the steps of contacting pair copper plate via a brazing material containing an active metal on a silicon nitride substrate, above the melting point of the brazing material, the silicon nitride substrate is heated to below the melting point of copper to the step of bonding the copper plate, and forming a copper circuit by etching the copper plate, wherein more adult Rukoto the process of heating further above 330 ° C. in a nitrogen atmosphere.
[0013]
The active metal of the brazing material contains Ti, Zr, or Hf .
[0014]
The silicon nitride substrate is made of silicon nitride such as Al, Y, Yb, Mg, Zr, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and other oxides, carbides, nitrides, silicides, and borides. It is characterized in that it is formed by adding at least one selected from the group consisting of and sintering.
[0015]
The silicon nitride substrate and the copper plate are heat-treated at a temperature of 380 ° C. or higher in a nitrogen atmosphere .
[0016]
The brazing material is an Ag-Cu-Ti paste brazing material.
[0017]
As an etching solution for forming the copper circuit, an unnecessary portion of copper is dissolved with an iron chloride solution, and then an unnecessary brazing material is removed with a nitric acid solution containing ammonia fluoride .
[0018]
The brazing material contains an organic binder and a solvent, and has a step of evaporating the organic binder and the solvent in the brazing material by heating at a low temperature before the step of joining the copper plates .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0020]
In the present invention, an Ag-Cu-Ti paste brazing material is printed on both surfaces of a silicon nitride substrate by screen printing on a whole surface or a pattern shape, and then the silicon nitride substrate is vacuum-bonded with a copper plate in contact with both surfaces. After heating at a low temperature to evaporate the organic binder and solvent in the paste-like brazing material, it is further heated to a high temperature not lower than the melting point of the brazing material and not higher than the melting point of copper to braze the copper plate and the silicon nitride substrate.
[0021]
Next, an etching resist is printed in a desired pattern shape on the surface of the copper plate, and an unnecessary portion of copper is dissolved by etching with an iron chloride solution to form a copper circuit.
[0022]
Next, the circuit board on which the copper circuit is formed is immersed in a mixed solution of ammonium fluoride and nitric acid to remove excess brazing material adhering to the board.
[0023]
Finally, the copper-clad silicon nitride circuit board produced by the above method is heated in a nitrogen atmosphere to increase the insulation resistance of the circuit board at a high temperature.
[0024]
When heated in nitrogen, the surface of the copper plate turns black. In order to remove the discolored layer, an etching process may be performed with a mixed solution of sulfuric acid and nitric acid.
[0025]
Furthermore, a nickel plating layer may be formed by an electroless plating method on part or the entire surface of the produced copper-clad silicon nitride circuit board.
[0026]
According to the present invention, it has been shown that heating in a nitrogen atmosphere is effective in improving the insulation resistance, but the reason has not yet been elucidated. In addition, as shown in the comparative example, when heating to the same temperature in a nitrogen atmosphere containing hydrogen, the insulation resistance rather deteriorated, and in the air, it was heated for a long time at 125 ° C, which is higher than the evaporation temperature of water. However, since the insulation resistance was not improved, it is considered that it is not an influence of water adhering to the surface of the substrate at the time of etching.
[0027]
In addition, silicon nitride may be decomposed during brazing, and a slight silicon layer may be formed on the surface of the substrate, which seems to have some function.
[0028]
Example 1
[0029]
2 parts by weight of Ti powder, 7 parts by weight of binder and 8 parts by weight of solvent were added to 72 parts by weight of silver powder and 28 parts by weight of copper powder, to prepare a paste-like brazing material.
[0030]
This brazing material was printed on one surface of a 0.3 mm thick silicon nitride substrate in a predetermined pattern shape with a thickness of 20 μm, heated to 80 ° C. to evaporate the solvent, and the brazing material was dried. The other side was printed with the same brazing material.
[0031]
A copper plate with a thickness of 0.25 mm was laminated on both sides of the printed board of the brazing material and kept at 600 ° C. for 3 hours in a vacuum of 10 −5 torr to sufficiently remove the binder in the brazing material. Then, the copper plate and the silicon nitride substrate are brazed with each other by heating to 830 ° C., and then an etching resist is printed in a predetermined pattern on the surface of the copper plate and etched with an iron chloride solution to remove unnecessary portions of copper. Was melted to form a predetermined circuit pattern.
[0032]
Next, this circuit board was immersed in a nitric acid solution containing 10% ammonia fluoride to remove unnecessary brazing material adhering to the surface of the silicon nitride circuit board.
[0033]
Next, the substrate was heated to 330 ° C. in a nitrogen atmosphere continuous furnace over 30 minutes, kept at temperature for 10 minutes, and then cooled to room temperature over 20 minutes.
[0034]
Next, the substrate heated in a nitrogen atmosphere was immersed in an aqueous solution of 20% sulfuric acid and 10% nitric acid to remove the discolored layer on the copper surface, thereby producing a copper-clad silicon nitride circuit substrate of the present invention. When the insulation resistance of this circuit board at 125 ° C. was measured, it was found to be 2000 MΩ or more.
[0035]
(Example 2)
[0036]
It was the same as Example 1 except that the treatment temperature in the nitrogen atmosphere furnace was changed to 380 ° C. during the process of Example 1. When the insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured, it was found to be 10000 MΩ or more.
[0037]
Example 3
[0038]
After the same steps as in Example 1, a nickel plating layer having a thickness of 3 μm was formed on the copper plate by a normal electroless plating method. The insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured and found to be 10000 MΩ or more.
[0039]
(Comparative Example 1)
[0040]
During the process of Example 1, the substrate was processed in the same manner as in Example 1 except that the substrate was heat-treated in a nitrogen atmosphere. When the insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured, it was found to be less than 100 MΩ.
[0041]
(Comparative Example 2)
[0042]
During the process of Example 1, the substrate was treated in the same manner as in Example 1 except that the heating temperature was 320 ° C. in a nitrogen atmosphere. The insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured and found to be less than 100 MΩ.
[0043]
(Comparative Example 3)
[0044]
During the process of Example 1, the substrate was processed in the same manner as in Example 1 except that the substrate was heated in air at 125 ° C. for 4 hours instead of being heated in a nitrogen atmosphere continuous furnace. When the insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured, it was found to be less than 100 MΩ.
[0045]
(Comparative Example 4)
[0046]
During the process of Example 1, the same heat treatment as in Example 1 was performed except that the heat treatment was performed in an atmosphere of 20% hydrogen and 80% nitrogen. When the insulation resistance at 125 ° C. of this copper-clad silicon nitride circuit board was measured, it was found to be less than 1 MΩ.
[0047]
Table 1 is a table comparing Samples 1 to 5 in the above Examples and Comparative Examples.
[0048]
[Table 1]
Figure 0003824044
[0049]
【The invention's effect】
As described above, according to the present invention, a copper-clad silicon nitride circuit board having a high insulation resistance can be produced even at 125 ° C. by heat treatment in nitrogen, and a power module assembled using this circuit board can be operated. A great effect of greatly reducing the loss can be obtained.

Claims (6)

窒化ケイ素基板に活性金属を含むろう材を介して銅板を対接する工程と、ろう材の融点以上、銅の融点以下に加熱して上記窒化ケイ素基板に上記銅板を接合する工程と、上記銅板にエッチングにより銅回路を形成する工程と、更に窒素雰囲気中330℃以上で加熱する工程とより成ることを特徴とする窒化ケイ素回路基板製造方法。  A step of contacting a copper plate via a brazing material containing an active metal to a silicon nitride substrate, a step of heating the melting point of the brazing material to not less than the melting point of copper and bonding the copper plate to the silicon nitride substrate, and the copper plate A method of manufacturing a silicon nitride circuit board, comprising: a step of forming a copper circuit by etching; and a step of heating at 330 ° C. or higher in a nitrogen atmosphere. 上記ろう材の活性金属がTi、Zr、またはHfを含むことを特徴とする請求項1記載の窒化ケイ素回路基板製造方法。  2. The method for producing a silicon nitride circuit board according to claim 1, wherein the active metal of the brazing material contains Ti, Zr, or Hf. 上記窒化ケイ素基板が、窒化ケイ素にAl、Y、Yb、Mg、Zr、Ti、 Hf、V、Nb、Ta、 Cr、 Mo、Wなどの酸化物、炭化物、窒化物、けい化物、硼化物からなる群より選択された少なくとも1種を添加し、焼結して形成したものであることを特徴とする請求項1または2記載の窒化ケイ素回路基板製造方法。  The silicon nitride substrate is made of silicon nitride such as Al, Y, Yb, Mg, Zr, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and other oxides, carbides, nitrides, silicides, and borides. 3. The method of manufacturing a silicon nitride circuit board according to claim 1, wherein the silicon nitride circuit board is formed by adding and sintering at least one selected from the group consisting of: 上記ろう材がAg−Cu−Tiペースト状ろう材であることを特徴とする請求項1、2または3記載の窒化ケイ素回路基板製造方法。  4. The method of manufacturing a silicon nitride circuit board according to claim 1, wherein the brazing material is an Ag-Cu-Ti paste brazing material. 上記銅回路を形成する工程のエッチング液として、塩化鉄の溶液で不要部分の銅を溶かし、次いでフッ化アンモニアを含む硝酸溶液で不要なろう材を除去することを特徴とする請求項1、2、3または4記載の窒化ケイ素回路基板製造方法。  An unnecessary part of copper is dissolved with an iron chloride solution as an etching solution in the step of forming the copper circuit, and then unnecessary brazing material is removed with a nitric acid solution containing ammonia fluoride. 3. A method for producing a silicon nitride circuit board according to 3 or 4. 上記ろう材が有機バインダー及び溶剤を含み、銅板を接合する工程の前に、低温で加熱しろう材中の有機バインダー及び溶剤を蒸発せしめる工程を有することを特徴とする請求項1、2、3、4または5記載の窒化ケイ素回路基板製造方法。  The said brazing material contains an organic binder and a solvent, and has the process of evaporating the organic binder and solvent in a brazing material by heating at low temperature before the process of joining a copper plate. 4. The method for producing a silicon nitride circuit board according to 4 or 5.
JP25071299A 1999-09-03 1999-09-03 Silicon nitride circuit board manufacturing method Expired - Lifetime JP3824044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25071299A JP3824044B2 (en) 1999-09-03 1999-09-03 Silicon nitride circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25071299A JP3824044B2 (en) 1999-09-03 1999-09-03 Silicon nitride circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2001077245A JP2001077245A (en) 2001-03-23
JP3824044B2 true JP3824044B2 (en) 2006-09-20

Family

ID=17211939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25071299A Expired - Lifetime JP3824044B2 (en) 1999-09-03 1999-09-03 Silicon nitride circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP3824044B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692708B2 (en) 2002-03-15 2011-06-01 Dowaメタルテック株式会社 Ceramic circuit board and power module
JP2015178424A (en) * 2014-03-19 2015-10-08 日立金属株式会社 Method of producing ceramic circuit board
TWI746807B (en) * 2017-02-28 2021-11-21 日商三菱綜合材料股份有限公司 Copper/ceramic bonded body, insulating circuit substrate, method of manufacturing copper/ceramic bonded body and method of manufacturing insulating circuit substrate
JP6965768B2 (en) 2017-02-28 2021-11-10 三菱マテリアル株式会社 Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method

Also Published As

Publication number Publication date
JP2001077245A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US9872380B2 (en) Ceramic circuit board and method for producing same
JP3930671B2 (en) Method for manufacturing silicon nitride circuit board
RU2196683C2 (en) Substrate, method for its production (versions) and metallic compound of articles
JP3824044B2 (en) Silicon nitride circuit board manufacturing method
JP4765110B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
US20020112882A1 (en) Ceramic circuit board
JPH09162325A (en) Nitride silicon circuit board and its manufacturing method
JPH04343287A (en) Circuit board
KR101740453B1 (en) Method of manufacturing ceramic circuit board
JP3526710B2 (en) Circuit board manufacturing method
JP3933287B2 (en) Circuit board with heat sink
JP4557398B2 (en) Electronic element
JPH05198917A (en) Manufacture of ceramic circuit board
JP3190282B2 (en) Circuit board manufacturing method
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
JP2002344094A (en) Circuit board for power module
JP2001024296A (en) Ceramic circuit board
JP2000277662A (en) Ceramic circuit board
JPH0714015B2 (en) Manufacturing method of aluminum nitride substrate having copper circuit
JP3729637B2 (en) Electronic components
JP3260213B2 (en) Circuit board
JP3260224B2 (en) Circuit board manufacturing method
JPH07142858A (en) Manufacture of ceramic wiring board
JPH10145039A (en) Printed circuit board and evaluation and manufacture thereof
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Ref document number: 3824044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term