JP3819298B2 - 廃棄物を処理する方法および装置 - Google Patents

廃棄物を処理する方法および装置 Download PDF

Info

Publication number
JP3819298B2
JP3819298B2 JP2001553897A JP2001553897A JP3819298B2 JP 3819298 B2 JP3819298 B2 JP 3819298B2 JP 2001553897 A JP2001553897 A JP 2001553897A JP 2001553897 A JP2001553897 A JP 2001553897A JP 3819298 B2 JP3819298 B2 JP 3819298B2
Authority
JP
Japan
Prior art keywords
arc
current
conversion unit
waste
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001553897A
Other languages
English (en)
Other versions
JP2003525517A (ja
Inventor
チャールズ エイチ. ティテュス,
ジェフリー イー. サーマ,
Original Assignee
インテグレイテッド エンバイロンメンタル テクノロジーズ, エルエルシー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグレイテッド エンバイロンメンタル テクノロジーズ, エルエルシー. filed Critical インテグレイテッド エンバイロンメンタル テクノロジーズ, エルエルシー.
Publication of JP2003525517A publication Critical patent/JP2003525517A/ja
Priority to JP2005173052A priority Critical patent/JP2006019259A/ja
Application granted granted Critical
Publication of JP3819298B2 publication Critical patent/JP3819298B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/18Continuous processes using electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/10Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/12Electrodes present in the gasifier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/302Treating pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/204Induction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Discharge Heating (AREA)
  • Control Of Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
(関連出願の相互参照)
本出願は、米国シリアルナンバー第08/693,425号(1996年8月7日出願)の一部継続出願であり、現在係属中であり、この出願は、米国シリアルナンバー第08/621,424号および第08/622,762号(両方とも1996年3月25日出願)の一部継続出願であり、これらの両方とも現在係属中であり、これらの出願の両方は米国シリアルナンバー第08/492,429号(1995年7月19日出願)の一部継続出願であり、現在係属中であり、この出願は、米国シリアルナンバー第08/382,730号(1995年2月2日出願)の一部継続出願であり、現在米国特許第5,666,891号である。これらのすべての出願は、参考のため本明細書中に援用される。
【0002】
(技術分野)
本発明は、概して、廃棄物を処理する方法および装置、より具体的には、アークプラズマ、すなわちジュール加熱溶融装置システム(joule heated melter systems)を用いて廃棄物を処理する方法および装置に関する。
【0003】
(発明の背景)
公共固形廃棄物(MSW)および他の廃棄物の処理は、埋立地用の空間に限りがあること、および新しい焼却炉を建設するための敷地と関連する諸問題のために、過去数十年に渡って重大な問題となっている。さらに、環境意識が高まった結果、固形廃棄物の処理が適切に行なわれることを保証することは複数の大都市圏および国全体にとって最大の関心ごととなっている。USAおよびEPA「The Solid Waste Dilemma」An Agenda for Action,EPA/530−SW−89−019、Washington、D.C.(1989)を参照されたい。
【0004】
焼却およびコジェネレーションによってMSWのボリュームを低減し、MSWのエネルギー含有量を回復する試みがなされた。標準的な廃棄物のエネルギー転化焼却炉は、廃棄物のストリームの固形燃性破片を処理し、蒸気を生成して蒸気タービンを駆動し、焼却処理の結果として廃灰物質(waste ash material)を生成する。通常、この灰は、公共の埋立地に埋められる。しかしながら、最新の傾向および最近の規則は、有害廃棄物が許可された埋立地にそのような物質を輸送することを要求し得る。これは、灰を処理するコストを実質的に上昇さ電池。さらに、埋立地からのガスの排気および地下水が汚染される可能性について世間の関心が高まっている。焼却炉システムと関連する別の不利な点は大量の排ガスが生成されることであり、その結果、排気を低減して監督官庁によって課せられた要求に応じようとし、高価な大気汚染制御システムが必要となる。
【0005】
焼却炉システムと関連する欠点を克服するために、有毒廃棄物を破壊するためのアークプラズマトーチを利用する試みが従来技術においてなされた。アークプラズマトーチの使用は、特定の運転条件のもとで、伝統的な焼却炉または燃焼処理よりも有利な点を提供する。なぜなら、プラズマアークトーチによって形成されたガス生成物のボリュームは、通常の焼却または燃焼の間に生成されるボリュームよりも著しく少なくなり得、より少ない有毒物質がガス生成物に存在し、一定の状況下で廃棄物質がガラス化され得るからである。
【0006】
例えば、Carterらによる米国特許第5,280,757号は、公共固形廃棄物をガス化するための、反応容器内でのプラズマアークトーチの使用が開示される。中等品ガスを有する生成物および低毒物質を有するスラグがこれによって生成される。
【0007】
Bartonらによる米国特許第4,644,877号は、プラズマアークトーチを用いるポリ塩化ビフェニール(PCB)の熱分解性破壊に関する。反応室において、廃棄物質はプラズマアークトーチによって微粒化およびイオン化され、その後、冷却され、ガスおよび微粒子物質に再結合される。Bellらによる米国特許第4,431,612号は、PCB等の有害廃棄物を処理する中空グラファイト電極移行式アークプラズマ炉について述べる。
【0008】
鉛で汚染された土および廃電池物質の改善プロセスがBitlerらによる米国特許第5,284,503号において開示される。ガラス化したスラグは土から形成される。燃性ガスおよび揮発鉛は廃電池のケーシングから形成され、好適には、従来の溶鉱炉用の燃料に転換および使用される。
【0009】
Bartonら、Bellら、CarterらおよびBitlerらによって提示されたシステムは極めて不利な点を有する。例えば、そのような不利な点は、広範囲の廃棄物原料に対して良質な非浸出性ガラス生成物を保証するためには加熱、混合および滞留時間が不十分であることを含む。さらに、炉の大きさおよび供給機の設計が著しく制限される。なぜなら、燃焼室の壁は、唯一の熱源であるアークプラズマに比較的近くなければならないからである。炉の大きさが制限される結果として、燃焼室の壁において高い熱応力が生じることがよくある。
【0010】
従来技術の金属電極を有するアークプラズマ炉は、比較的高いDC電流で用いられるときに電極の寿命が短くなることによって制限され得る。従って、より高い出力を獲得するためには、アークを長くすることによってアークポテンシャルが上昇されなければならない。これは、炉の側壁に放射熱損がもたらされ、金属電極(トーチ)を非効率にする。さらに、冷たい、非電気的な伝導性物質が処理されているとき、このようなアークプラズマシステムの始動時および再運転時に、従来の移行式アークプラズマと関連する問題がよく起こる。
【0011】
従来システムと関連する別の不利な点は、廃棄物質を転換する間に生成される燃性ガスが非効率的に使用されることである。例えば、ガスの燃焼は、高い燃焼速度をもたらさないことがよくあり、従って、非効率である。さらに、このようなガスが燃焼すると、環境上あまり魅力的でないプロセスを提供するような量の窒素酸化物(NO)等の汚染物質を放出する。
【0012】
従って、このような従来技術の試みは有用ではあるが、堅牢で、廃棄物転換システムを容易に操作できる必要が依然として残る。この廃棄物転換システムは、有害ガスの排気を最小限化し、幅広い固形廃棄物から有用なエネルギーへの転換を最大化し、商業用途のために安全で安定した形か、または処理するために特定の有害廃棄物の生成を考慮に入れることを必要としない製造ストリームを生成する。
【0013】
従って、有害ガスの排気を最小限化し、それによって従来技術と関連する欠点を克服する一方で、広範囲の廃棄物質を有用なエネルギーおよび安定した生成物へと処理および転換する、堅牢で、ユーザに友好的で、高い柔軟性を有する方法および装置を提供することが所望され得る。
【0014】
(発明の要旨)
本発明は、公共廃棄物および産業廃棄物等の固形廃棄物質の有用なエネルギーへの転換の改善を、大気汚染を著しく低減して行なう方法および装置を提供する。本発明は、さらに、幅広い廃棄物質を有用な商品、または処理するために適切な安全で安定した製品に転換する方法および装置を提供する。例えば、本発明のシステムは、公共固形廃棄物(MSW)、産業廃棄物または他の形態の廃棄物を処理して、商業用途のために適切か、または環境を危険にさらさずに処理され得る安定した非浸出性の生成物(例えば、結晶質および非結晶質の生成物)にすることができる。このシステムは、さらに、空気の排気を最小限化し、電気を生成するための有用なガス生成物の生成を最大化する。本発明は、さらに、単一の場所において有用なガスおよび生成物ストリームに廃棄物質を転換することを完了するかまたは実質的に完了する利点を有する小型の廃棄物のエネルギー転化処理システムを提供する。
【0015】
廃棄物質を転換するための本発明の方法および装置は、独立して制御可能なアークプラズマ(単数または複数)とジュール加熱溶融装置との組合せを一体型システムとして採用する。本発明の好適な実施形態において、廃棄物質を転換するために、完全に一体化されたジュール加熱溶融装置およびアークプラズマ(単数または複数)が利用される。ジュール加熱溶融装置およびアークプラズマ(単数または複数)は、電力供給の有害な相互作用を伴わず、通常の溶融池を用いて同時に作動するように構成され、システムのジュール加熱溶融装置部位およびシステムのアークプラズマ部位の各々に対して独立した電力制御を行なう。
【0016】
上述のように、本発明の転換プロセスから形成された生成物は、有用な商品であるか、または処理するために適切な安定した生成物である。さらに、本発明は、高速熱分解の使用を可能にし、これによって、燃焼プロセスおよび非燃焼プロセスにおいて使用するために適切な高純度のガスを提供する。例えば、本発明に従って生成されたガスは、小型、高効率のガスタービンまたは内燃機関を用いて電気を生成するために用いられ得る。いくつかの実施形態において、本発明の廃棄物転換ユニットは、自家動力式であり得るか、または外部利用のために所与のレベルの電気を提供し得る。これは、ガスタービンまたは内燃機関において、異なった量の天然ガス、ディーゼルまたは任意の他の燃料等の補助燃料を利用することによって達成され得る。
【0017】
本発明のさらなる実施形態において、効率および汚染の低減を著しく改善するために廃棄物処理ユニットの環境上魅力的な低排気内燃機関発電システム(またはガスタービンシステム)が提供される。これは、燃料と空気の超希薄比率でのスパーク点火機関が(例えば、水素を多く含むガス、天然ガス、ディーゼルオイル等の)複数燃料運転を利用することによって達成される。超希薄運転は、廃棄物処理ユニットによって生成された水素を多く含むガスにおける水素の高速火炎着火(fast flame front)の特性によって可能にされる。さらに、内燃機関において非常に高い圧縮比が用いられ得る。可変の燃料運転は、制御システムおよび燃料処理システムによって可能にされる。これらのシステムは、燃料の状態を連続的に変更することでなめらかな燃焼の着火、およびノッキングのない超希薄の高い圧縮比機関の要求を保証することを可能にする。
【0018】
高効率の低排気内燃機関発電システムは、気体燃料を電気に転換する効率を約40%まで(例えば、30〜42%)だけ向上させ得ることが予測される。超希薄な条件で運転することによって、このようなシステムは、標準内燃機関発電システムに対して10よりも多いファクターだけNOの排気を低減し得ることも予測される。このようなシステムを利用して、本発明のさらなる目的は、極めて堅牢および簡単な酸化触媒を用いることによって一酸化炭素および炭化水素の放出を10よりも多いファクターだけ低減するというオプションを提供することである。例えば、本発明は、(化学量論的比に関連して約0.4〜0.7の範囲における)空気に対する燃料の超希薄比率で、および例えば、約12〜15からの範囲におけるr等の非常に高い圧縮比でスパーク点火内燃機関を利用するように、または空気に対する燃料の超希薄比率でタービンを運転し、NO生成のレベルを著しく低減するために設計された環境上魅力的なシステムを提供する。
【0019】
本発明の別の実施形態において、廃棄物転換ユニットから出た排ガスは、非燃焼プロセスにおいて用いられ得る。これは、廃棄物転換ユニットにおいて処理された廃棄物から、電気エネルギーを効率的で環境上好ましく生成するための排気物転換ユニットを燃料電池システムと一体化することによって達成され得る。例えば、溶融炭酸塩燃料電池(MCFC)は、本発明の廃棄物転換ユニットと共に用いられ得、排ガスが燃料電池と共に用いるために十分にきれいであるという条件のもとで、非燃焼プロセスにおいて廃棄物転換ユニットの排ガスから電気を生成する。これは、例えば、廃棄物によって生成された炉の排ガスが燃料電池と適合し得るような廃棄物の組成であり、それによって燃料電池のDC出力が電力会社に売るためか、または廃棄物転換ユニットに電力供給するための三相AC電力に転換されるときに所望され得る。
【0020】
ガスタービン、内燃機関または燃料電池発電装置を有する一体型システムとしてのアークプラズマ炉とジュール加熱溶融装置との組合せは、廃棄物処理および発電設備を提供する。これらは、モジュラユニットに配置されることが可能であり、大量の公共固形廃棄物を取り扱うために容易にスケーリングされ得る。
【0021】
主要処理ユニットは、好適には、廃棄物質を加熱するためのDCまたはAC電極アークプラズマ(単数または複数)を含み、溶融池のジュール熱容量も有する。好適な実施形態において、電極アーク(単数または複数)は、グラファイトからできている電極を有するDC電極アーク(単数または複数)である。適切な電気回路と組み合わされたDCまたはACアーク電極(単数または複数)の使用は、アークプラズマ(単数または複数)とジュール加熱溶融装置システムと同時の独立した制御を可能にする。アークプラズマおよびジュール加熱溶融装置を運転する主要モードは熱分解(すなわち、低酸素運転)である。好適な実施形態において、システムは、高速熱分解が生じ、それによって他の熱分解の方法と比較して、より高純度を有するガスが生成されるように運転される。
【0022】
好適には、アークプラズマおよびジュール加熱溶融装置のコンポーネントは、システムがこれらのコンポーネントを同時に独立して制御し得る、すなわち調整し得る運転ができるように通常の溶融池と完全に一体化される。アークプラズマ(単数または複数)は、グラファイト電極(単数または複数)と溶融物質との間で生じる。しかしながら、グラファイトよりも、タングステン等の他の金属素子が電極材料として利用され得ることが分かる。
【0023】
本発明の調整可能な、完全な一体型システムは、柔軟性および効率性を最大化する電気的および機械的な設計上の特徴を用いる。このようにして、多種多様な材料を良質な、安定した非浸出性ガラスにガラス化するための高処理速度、および一体型システムであるために要求されるボリュームが低減されることが予測され得る。アークプラズマ(単数または複数)は、高効率で、他の技術よりも著しく高速で原材料を処理するために必要な放射面積の加熱を提供する。ジュール加熱溶融装置は、奥行きのあるボリュームの加熱(deep volume heating)を提供し、均一に混合する特性によって溶融池全体を一定の温度に保つことができ、それにより、高品質で均一なガラス生成物が得られる。
【0024】
同時に独立して制御できるアークプラズマ(単数または複数)およびジュール加熱溶融装置の運転は、所定のアーク溶融装置の構成および電気回路によって提供される。限定はされないが、アークプラズマは、好適には、DCアーク(単数または複数)によって運転され、ジュール加熱溶融装置はAC電力によって運転される。DCアーク(単数または複数)およびAC電力が供給されるジュール加熱溶融装置の構成は、各コンポーネントの独立した制御および運転を行なう能力を保証する。しかしながら、代替的な実施形態において、アーク(単数および複数)およびジュール加熱溶融装置部位の両方は、AC電力を用いて運転され得、一方で、各コンポーネントまたは部位を独立して制御および運転する。
【0025】
本発明は、アーク電圧および電流の独立した制御を可能にするDCおよびACアーク回路を提供する。これらの回路は、1つのアーク電極、または代替的に、複数のアーク電極によって動作するように設計され得る。これらの回路は、さらに、所望される電力に応じて、ACとDCとを切り換えるように設計され得る。本発明は、アークプラズマ(単数または複数)が同時におよび独立して運転され得るジュール加熱回路も提供する。
【0026】
溶融装置をアークプラズマ(単数または複数)と組合せて使用することは、従来技術よりも均一の加熱を提供する。さらに、ジュール加熱ガラス溶融装置によって提供される奥行きのあるボリュームの加熱を利用することは運転を容易にする。これはさらに、廃棄物質を通る導電経路を用いるか、または用い得るアークプラズマを高速で再運転するために、廃棄物において十分な導電性が維持されることが必要な一定温度(constant)の熱源も提供する。さらに、完全に一体化されたシステムは、炉壁がアークプラズマ(単数または複数)から遠くになることを可能にする。なぜなら、さらなる熱源が提供されるからである。アークプラズマからの壁の距離の増加は供給の選択を増加させ、炉の内張りにおける熱応力を低減する。従って、熱に敏感で、高耐久性であり長寿命の耐火性内張りが用いられ得る。本発明は、さらに、長寿命ならびに非常に広範囲のアークプラズマおよびジュール加熱室の電力レベルを有する電極の使用を可能にする。
【0027】
アークプラズマおよびジュール加熱溶融装置電力の独立した制御は、表面加熱および奥行きのあるボリュームの加熱を連続的に調整し得る混合を提供する。この制御は、運転の異なった段階に対して最適化され得る。例えば、さらなる加熱は、廃棄物の供給が開始される間、さらなる表面加熱が必要であり得る一方で、ガラスを注ぐか、またはガラスプールの温度を維持するためにさらなる表面加熱が所望または要求され得る。さらに、表面加熱およびボリューム加熱の異なった混合は、異なった廃棄物のストリームに適切である。奥行きのあるボリュームの加熱に対する表面の比は、例えば、大量の金属および高温の材料を含む産業廃棄物よりも公共廃棄物の方が小さくなり得る。アークプラズマ(単数または複数)およびジュール加熱溶融装置の部位の各々への電力供給の制御は、運転のこのような異なった段階に対応する処理および運転の間、(手動または自動で)調整され得る。
【0028】
本発明によって生成された良質のガラス化された生成物は、種々の用途において用いられ得る。例えば、ガラス化された生成物は、道路等において用いるために粉砕され得、アスファルトに組み込まれ得る。あるいは、ガラス化された生成物はシンダーブロックまたは建築用ブロックの中に用いられるシンダーの代わりに利用され得、これによってブロック内への水の吸収を最小限にする。さらに、ガラス化された生成物は、従来技術のガラス化生成物よりも実質的なボリュームの低減を示す最終的な成形物に凝固され得る。本発明により形成された生成物は、さらに、結晶構造、または結晶構造と非結晶構造との組合せであり得る。凝固された成形物は健康上のリスクまたは環境へのリスクをともなわず処理されるために適切である。
【0029】
前述の説明は、本発明のより適切な目的の1部の概要を説明した。これらの目的は、本発明のより重要な特徴および応用の1部を例示するにすぎないと解される。後述されるように、開示された発明を異なった方法で改変して適用することによって、他の多くの有益な結果が獲得され得る。従って、本発明の他の目的および完全な理解は、好適な実施形態の以下の詳細な説明を参照することによって得ることができる。
【0030】
本発明をより完璧に理解するために、添付の図面と共に下記の説明を参照する。
【0031】
(好適な実施形態の詳細な説明)
図1A〜図1Dを参照すると、本発明に使用されることに適しているいくつかのアークプラズマ−ジュール加熱の溶融装置(arc plasma−joule heated melter)が示される。本明細書中で説明するように、これらの実施形態は、単一のガラス溶融体内で完全に一体化され、かつ、同時に動作するが、特別な電力送達回路を使用することにより互いに電気的に隔離された、DCまたはACアーク(単数または複数)、ならびに、ACジュール加熱電気システムを利用する。アークプラズマ−溶融装置の組み合わせは、従って、熱的かつ電気的に一体化される。
【0032】
本発明による、完全に一体化されたプラズマ−溶融装置のシステムは、処理中に調整が行われ得るように、プラズマ加熱とガラス溶融装置による加熱との間に連続的に調整可能な割合の電力を有する利点を提供する。例えば、連続的に調整可能な単独の電気の供給(powering)は、システムの一部分(例えば、アークプラズマまたは溶融装置)を利用することが望ましい場合に有用である。連続的に調整可能な単独の電気供給の特性は、頑強さを提供し、条件が変化する中での動作の容易さを促進する。連続的に調整可能な単独の電気供給の特性は、さらに、固体廃棄生成物(例えば、ガラスおよび排ガス発生)に対してさらなる制御を提供することにより、効率を良くし、環境的魅力を最大化する。
【0033】
アークプラズマおよび溶融装置の連続的に調整可能な単独の動作は、ユーザが、種々のタイプの加熱を選択することを可能にする。例えば、アークプラズマ(またはプラズマ)は、放射面を加熱する。大量のプラズマパワーが、供給の開始と共に使用され得る。いくぶん低いが依然として実質的な量のプラズマパワーが、連続的な供給中に使用され得る。廃棄物の表面の高温加熱(high surface waste temperature heating)は、高スループット処理ならびに高速熱分解を促進して、高品質の可燃性ガスを生成する。表面の高温加熱もまた、材料が溶融しにくい、または、材料の導電性が高い場合の処理に必要であり、それにより、アークプラズマがない場合のガラスによるジュール加熱の効率が制限される。
【0034】
ガラス溶融装置の電極によるジュール加熱は、深い、容積測定の加熱(volumetric heating)を提供する。このタイプの加熱は、溶融プール全体における混合を促進することにより、高品質ガラスの生成を保証する。このタイプの加熱は、さらに、アークを移行するより安定した動作のために導電性材料を提供する。容積測定の加熱の単独の使用は、さらに、供給されない場合に、低電力要件で、廃棄物を溶融した状態に維持するために利用され得る。容積測定の加熱は、さらに、ガラスの流し込みに関して重要である。
【0035】
プラズマ加熱およびガラス溶融装置による加熱の連続的に調整可能な単独の電気供給は、プラズマ加熱のみの場合の悪影響(例えば、材料の過剰な揮発、および、炉壁の熱応力)を増加させることなく、ガラスを流し込むため、または、ガラス生成を改善するために、余分な容積測定の加熱の使用を促進する。1つの容器から失われる熱は、2つの容器から失われる熱より少ないかもしれない。
【0036】
所定のタイプの廃棄物ストリームの処理中の、連続的に調整可能な単独の電気供給に加えて、一体化されたプラズマ溶融装置ユニットの調整可能な機能を使用して、異なるタイプの廃棄物ストリームの処理が最適化され得る。例えば、公共廃棄物ストリームは、概して、高溶融温度の材料、ならびに、大部分が無機質からなる危険かつ産業的な廃棄物などの大量の金属を有するストリームより低い相対的な量のプラズマパワーを必要とし得る。
【0037】
容積測定の溶融装置による加熱の使用も、プラズマ電極構成のより大きな範囲の選択を促進する。容積測定の溶融装置による加熱が実質的に溶融され、かつ、導電性の状態に材料を維持するため、1つ以上のプラズマ電極が簡単に利用され得る。これは、溶融された材料が、電極間に導電性のパスを提供することが部分的に起因している。従って、1つ以上プラズマ電極を使用するための動作を連続的に調整することが簡単に可能である。増加した柔軟性は、可燃性ガスの生成を最適化し、粒子の放出を最小化し、および電極摩耗を削減するために使用され得る。
【0038】
プラズマおよび溶融装置による加熱システムの連続的に調整可能な単独の電気供給は、従って、より大きく拡大した規模の温度制御を提供する。以前は利用可能でなかった温度の空間的かつ熱的制御を使用して、一体型のアークプラズマおよび溶融装置ガラス化システムの実用性および環境的魅力が改善され得る。1つの容器から失われる熱は、2つの容器から失われる熱より少ないかもしれない(例えば、アークプラズマおよびジュール加熱技術が個別に使用された場合)。
【0039】
本明細書中で説明するように、本発明による、ジュール加熱の溶融装置とアークプラズマとの完全な一体化は、さらに、二つ以上のアークプラズマ電極を有する細長い溶融チャンバの使用を促進する。溶融された材料は、2つ以上のアークプラズマ電極間に導電性または電流のパスを提供することが可能である。この構成は、廃棄物供給およびスラグタッピングの柔軟性を著しく増加させ、アークプラズマ電極の寿命および頑強さを増加させる。2つのアークプラズマ電極の細長いチャンバ構成は、ジュール加熱の溶融装置によって促進される。なぜならば、ジュール加熱の溶融装置が、炉がアイドル状態である間に2つのアークプラズマ電極間に導電性パスを維持するために必要な熱を提供し、細長い溶融チャンバに均一な加熱を提供することが可能であるからである。
【0040】
本明細書中で示す本発明の実施形態は、部分的に浸水された電極を用いる溶融によって、ジュール加熱AC電力の通過を可能にし、上部の移動可能な電極間(所望であれば、これらの電極および/または浸水された対電極間)の溶融によって、DCアークプラズマ回路(単数または複数)の同時に起こる動作を可能にする回路構成を含む。廃棄物のタイプおよび溶融スラグの特性は、好適な動作モードを決定する。いくつかの別の実施形態において、本発明のシステムは、AC−AC構成によって動作するように構成され得る。すなわち、アーク(単数または複数)はAC電力供給(単数または複数)によって動作され、ジュール加熱の溶融装置はAC電力供給によって動作される。
【0041】
図1A〜図1Dに示す、一体化されたアークプラズマ−溶融装置システム20は、反応器21を示す。ジュール加熱の溶融装置が、プロセスに最小限のエネルギーを投入して、高品質の熱分解ガスの生成を促進することが理解されるべきである。この状況は、アークへのエネルギーの投入が、アークゾーン内の材料を熱分解し、かつ、溶融するために必要とされるエネルギーの投入より大きい必要がないために存在する。溶融されていない供給材料の下にある溶融浴は、アークプラズマ炉のみを用いるのではなく、ジュール加熱を用いて所望の温度に維持される。スラグを適切な温度に維持するためのエネルギー要件は、溶融装置の外面から失われる熱に等しい。これは、非常に低いことが想定され、すなわち、適切に設計された溶融装置のチャンバに関する約20〜30KW/mのスラグまたはガラス面領域である。空気/酸素、および/または、空気および蒸気の組み合わせは、溶融面から木炭を除去し、ガラスの酸化還元状態を調整するために加えられ得る。ジュール加熱の溶融装置は、ガス/蒸気の混合物が導入される浴の側面の近傍にエネルギー(すなわち、高温ガス)を提供する。ユニット21は、さらに、図1A〜図1Dに示すように接続された補助的な加熱器31を含み得る。
【0042】
反応器21は、上面21a、底面21b、および側面21cおよび21dを含む。底面21bは、図1A〜図1Dに示すように、概して、V字型の構成を有し得る。反応器21は、さらに、廃材29を反応器21内に導入するために、少なくとも1つのポートまたは開口部22aを含む。好適な実施形態において、反応器21は、図1A〜図1Dに示すように、複数のポートまたは開口部22aおよび22bを含む。ポート22aおよび22bは、廃材29の容器21へのフローを制御し、かつ、空気が容器21に入ることを防ぐためのフロー制御バルブなどを含み得る。このようなポート22aおよび22bが、互いに別々にまたは同時に、1つ以上が選択的に利用され得るように制御されることが可能なことも好適である。ポート22aおよび22bは、さらに、図1Kに示すような供給メカニズムと共に使用され得る。
【0043】
反応器21は、さらに、ガスポートまたは開口部23、ならびに、金属/スラグ流し込みポートまたは開口部25を含む。開口部またはガス排出ポート23は、可燃性ガスの制御された排出を可能にする任意の従来の材料から形成され得る。例えば、制限することを意図せず、炉21からのガス排出は、開口部23におけるフロー制御バルブなどによって制御され得る。図1Aに示すように、ガス排出ポート23は、炉21の上面21aにまたはその近傍に配置され得る。ポート23から出ていくガスは、ライン42に入り、さらなる処理のためにスクラバー、タービンなどに送られる。上記のように、廃棄物変換ユニットにおいて生成されたガスは、さらに、図18〜図19に示すような非燃焼プロセスにおいて利用され得る。さらに、ポート23が動作不可能になった場合(例えば、図1Eおよび図1Gを参照)、緊急時にオフになるガスポート(emergency off gas port)が、ユニット21(例えば、ユニットの上面の近く、または、ユニットの側面の十分に高い位置)に提供され得る。これは、ユニット内の圧力が高くなりすぎることを防ぐために望ましいかもしれない。空気除去デバイス(air relief device)がユニット内に提供されて、ユニット内の圧力が適切な範囲内にあることを保証する。
【0044】
ユニット21内の動作の初期モードは熱分解である。しかし、大量の可燃性または炭素質の材料の処理を援助するために、部分的酸化モードの動作が必要であり得る。
【0045】
アーク(単数または複数)からの熱、および、廃材内に存在する金属の比重は、炉21において、3つの相または層(金属層、スラグ層、およびガス状の層)が形成される要因となる。炉21は、約1200〜2000℃の温度範囲内で動作する。廃棄物供給の成分によって、炉21は、約1550〜1600℃の範囲内で動作し得る。アークプラズマは、概して、約3500℃より高い温度範囲内で動作する。
【0046】
金属層(図示せず)は、十分な量が集められるまで、炉辺21の底部における重量の分離によって堆積する。その後、金属は、排出ポート25を通って、個別の容器内に排出される。排出ポート25は、溶融された金属材料の炉21からの排出を制御することが可能な任意の方法で組み立てられる。例えば、フロー制御バルブまたは機器を使用して、排出ポート25を通って金属コレクターまたは容器26に流れるフローが制御され得る。あるいは、金属排出ポート25は、図1A〜図1Dに示すように、加熱コイル25aを含み得る。金属排出ポート25は、さらに、図1Lに示すように組み立てられ得、図1Mに示すような回路によって加熱され得る。
【0047】
詳細には、ポート25は、プロセス中の所定の期間において、金属および/またはスラグが取り除かれ、金属/スラグのコレクターまたは容器26内に導入され得るように、フロー制御バルブなどを有するように設計される。危険な廃棄物が処理される場合、空気および/またはガスが、システムに入るまたはシステムから出ることがないような方法で、ポート25にシール可能に接続されたコレクターまたは容器26を有することが望ましいかもしれない。
【0048】
廃材入口ポート22aおよび22bは、廃材29が、制御された方法で、廃棄物供給システムからポート22aおよび22bを通って炉21に供給されるように配置される。制限的であると解釈されることなく、ポート22aおよび22bは、廃材29の供給速度を監視するために、フロー制御バルブなどを含み得る。供給システムは、空気が供給システムを通って炉に入ることが可能でない限り、公共の固体廃棄物または他の廃棄物(例えば、危険な廃棄物、医療廃棄物、焼却炉からの灰など)を炉21に供給することが可能な任意の従来のタイプの供給システムであり得る。図1Lに示す供給メカニズムも、ユニット21に廃棄物を供給するために使用され得る。
【0049】
図1Aにさらに示すように、炉21は、空気またはガス入口ポート21eなどのさらなるポートを含み得る。空気またはガス入口ポート21eは、フロー制御バルブなどのフロー制御を含む。好適には、ポート21eは、図1Aに示すように、スラグ材料30に近接するレベルで炉壁を通って入るように配置される。この方法で、空気48b(所定の量の蒸気65を含み得る)が、変換プロセス中に、制御された速度および期間で炉21内に注入されて、炉から出てくるガスの成分が制御され得る。さらに、空気および/または蒸気は、供給材料内の任意の炭素が、CO、CO、H、CHなどの炭素含有ガスに変換されることを保証するように、開口部21eを通って導入され得る。これにより、プロセス中の木炭の量が減少される。これは、炭素が炭素含有ガスに完全に変換されない場合に引き起こされ得る。
【0050】
図1Aにさらに示すように、システム20は、さらに、タービン52、ジェネレータ55、および、アーク炉−溶融装置ユニットを結合させるために必要な機器を含む。例えば、システム20は、好適には、高温ガス浄化機器43、廃棄物の熱回収ユニット61、ならびに、空気47および水59注入システムを含む。図1Aには示さないが、供給システム内の廃材のための供給調節プロセスも、炉21に供給される前に利用され得る。図1Aに示すユニットに加えて、浄化ユニット43またはガスを燃料とするタービンから出てくるガスのために、オフガスのスクラビングプロセスを取り入れて、任意の酸性ガスを除去することが望ましいかもしれない。好適には、アーク炉21から出てくるガスに関して必要とされる唯一のガス調節は、タービン52に入る粒子の量を最小化するための、高温ガス浄化ユニット43におけるガス−固体の分離である。
【0051】
炉21において生成されるガスは、高速熱分解の結果として形成される可燃性ガスである。本明細書中で説明されるように、高速熱分解は、概して、燃焼のために、廃材を有用なガスに少なくとも65%変換させる。本発明によって利用されるアーク炉21は、従って、廃棄物供給の成分によって、約2%の二酸化炭素、約44%の一酸化炭素、約43%の水素、約2%のメタンを含み、バランスが小さい炭化水素であるガスを提供することが予測される。炉21内で生成されるガスは、ライン42を通って、高温ガス浄化ユニット43に転送される。ここで、灰44が除去され、従って、燃料ガス45から分離される。
【0052】
吸気47がコンプレッサ46に入り、コンプレッサ46に存在する空気48が、いくつかの送達ストリームに分けられ得る。例えば、空気フロー48aがコンバスタ49に供給され得、空気フロー48bが炉21に供給され得る。
【0053】
燃料ガス45がコンバスタ49に入り、空気48aと結合する。コンバスタ49内で生成された熱いガスおよび蒸気51が、54を介して発電機55に接続されたタービン52を駆動し、それにより、電気57が発生する。タービン52は、高効率蒸気噴射式ガスタービンであり得る。このようなタービンは市販されている。特に起動時の自家動力動作のために、可変量の天然ガスまたは他のタイプの燃料50が、コンバスタ49(または図1Bに示す内燃機関53)に供給され得る。動作中に、燃料ガス45および補助燃料50が、コンバスタ49内で結合し得る。
【0054】
水59が、ポンプ58を介してシステム20に入り、熱回収蒸気システム61、すなわち、熱交換器に達し、そこで、熱いタービン排出ガス56からの熱がフロー60と交換を行う。排気62が、熱回収蒸気システム61で、蒸気63から分離される。蒸気63は、それぞれ図1Aに示す、タービン52への蒸気64、および空気フロー48bへの蒸気65として再利用され得る。
【0055】
次に図1Bを参照して、コンプレッサ46、コンバスタ49、およびガスタービン52が内燃機関53に置き換えられていることを除いて、図1Aに示すプロセスと同様のプロセスが示される。内燃機関53は、使用が容易であり得、特に、小型のチューナブルプラズマ−メルター電子変換ユニット(tunable plasma−melter electroconversion units)に関して、コンプレッサ−ガスタービンよりもコスト効率性があり得る。空気および補助燃料50は、燃料ガス45の組成に基づいて、所定の方法で内燃機関53に供給され得る。好ましくは、内燃機関53の効率により、チューナブルプラズマ−メルター電子変換ユニットが必要とする電力の全てまたは実質的に全てに対して十分な電気を提供する。
【0056】
スパーク点火内燃機関が有利であり得るが、これは、このような内燃機関は、非常に小型のユニットに関してはタービンよりも安価であるためである。特に起動時に、所望のレベルの電力の生成を促進するために、濃厚水素ガス(hydrogen−rich gas)、プロパン、天然ガス、またはディーゼル燃料等の補助動力が、内燃機関に動力を供給するために用いられ得る。補助燃料の量は、廃棄物ストリームの組成、すなわち、入来する廃棄物材料の熱量、廃棄物材料内の可燃性材料の量、および廃棄物処理の動力要件に依存して変動し得る。
【0057】
チャンバ31は、補助ヒーター32aおよび32bを備える。チャンバ31はまた、プラズマトーチ34を備え得る。比重が異なるため、金属/スラグ層30内の金属は、ベッセル21の底部21bに向かって移動する。金属/スラグ層30内のスラグは、開口部またはポート35aを介して導管35に出る。導管35は、同時係属中の米国特許出願第08/492,429号の図2A〜2Eに示される導管98に関して上述された構成のいずれかと同様に位置し得ることが理解される。ベッセル21から補助ヒーターシステム31へのスラグの流れもまた、メルター21および補助ヒーターシステム31内の圧力を制御することにより制御され得る。特に、ヒーターシステム31へのスラグの流れを制御するために差圧が用いられ得る。
【0058】
スラグ38は、均質なスラグ生成物を提供するために十分な時間の間、補助ヒーター32aおよび32bによりさらに加熱される。ヒーター32aおよび32bの代わり、またはそれらに加えて、ある種の粘性タイプの廃棄物用のリセプタクルへの流れを促進するために、スラグ38の温度は、プラズマトーチ34により維持され得る。プラズマトーチ34は、導管35内の材料にさらなる熱を提供するように配置され得る。次いで、スラグ38はスラグポーリング導管(slag pouring conduit)33およびポート36を通過し、それによりチャンバ31を出て、スラグコレクタまたはコンテナ37に入る。有害廃棄物が処理されている場合、空気および/またはガスが通過してシステムに出入りしないような方法で、コレクタまたはコンテナ37をポート36に密閉可能に接続することが所望され得る。ポート36は、ヒートシステム31からのスラグ38の放出を制御するために、流量制御弁等を備え得る。メルター内のスラグレベルを維持するために、スラグの粘性を低減することが所望される場合に、補助ヒーターシステム31が利用される。補助ヒーターシステムはまた、スラグがスラグコンテナに落ちる前にスラグ放出の状態に近づくと、熱損失を補償する。
【0059】
図1Aにも示すように、DC電極27aおよび27bが、図1A〜1Dに示す反応ベッセル21内に設けられる。反応ベッセル21はまた、複数のACジュール加熱電極24aおよび24bを備える。図1Aにさらに示すように、電極24aおよび24bは、それぞれ、側部21cおよび21d上で相互に向かい合って配置され得る。また、電極24a〜24bは、処理が行われているときに、スラグ30に部分的に浸されるように配置される。1以上のさらなる電極28が、図1A〜1Dにしめすように設けられる。
【0060】
図1Bは、本発明による電極24aおよび24bの配置の代替的な構成を示す。図1Bに示す電極24aおよび24bの配置により、電極の取換えが容易になる。特に、このタイプの構成により、炉床の排水を必要とせずに電極を取り換えことができる。炉床の排水は、しばしば、炉のライニングを劣化させるために望ましくない。従って、電極24aおよび24bをそれぞれ、角度39aおよび39bで置き、同時にガスの流出または漏れを防ぐことにより、必要とされる電極の取換えを容易にする。限定として構成するものではないが、炉のそれぞれの内側部に対する電極24aおよび24bの角度39aおよび39bは、垂直軸に対して約30°〜45℃の間であり得る。ジュール加熱されたメルター用に金属電極または被覆グラファイト電極を利用することが所望され得る。電極24は、炉の空洞部の内面に位置する限り、(垂直を含む)任意の角度で配置され得る。アークプラズマ電極また複数のアークプラズマ電極は、好ましくはグラファイトで形成される。電極全体における電極のメルトラインのすぐ上の部分は、酸化および/または蒸気噴射により生じ得る浸食速度を低減するために被覆され得る。
【0061】
図1Bにさらに示すように、AC動力を供給されるジュール加熱された電極24aおよび24bは、それぞれ、炉の側部21cおよび21dを介して挿入され得る。各電極の上端は、好ましくは、金属の炉カバーの外部に延び、電気的に接地された炉シェルから電気的に絶縁される電気接続で覆われ得る。各電極下端は、溶融バスの下に所望の深さまで浸漬される。溶解物の表面下への電極の侵入点の適切な位置を選択することにより、DCアーク、またはこのアークの放射にさらされる電極の部分を最小化し得ることにより、この電極の寿命が延びる。
【0062】
電極24aおよび/または24bを取り換える必要がある場合、使用済みの電極は、溶融バスから取り出される。新たな電極が、その電極を予熱することなくバスに挿入される場合、その冷たい電極は、溶融バスの粘性を、電極が溶融バスと接するところで増加させ得、それによりこの新たな電極を溶融バスに挿入することが困難になる。従って、バスと電極との接合点に安全にさらなる熱を提供し、新たな電極をバスに十分に浸漬することを可能にする、特別な電気的に絶縁された電流制限電源を用いて、この電極を電気的に活性化することも所望され得る。好適な実施形態では、適切な電気的かつ熱的な絶縁もまた、各電極に提供され得、その結果、各電極は、通常動作中に、金属の炉カバーから熱的かつ電気的の両方において絶縁される。
【0063】
代替的な実施形態では、部分的に浸漬されたジュール過熱電極は、図1E〜1Gに示すように、電極を垂直にはずすことにより取り換えられ得る。例えば、ジュール加熱電極は、垂直に配置され、炉床を排水することなく取り換えられ得る。
【0064】
図1Cは、磁気コイル40aおよび40bがメルトプールをさらに加熱および/または混合するために、誘導的加熱および/または混合のために用いられ得る、本発明の別の実施形態を示す。結合したアークプラズマ−メルターに導入されている特定の廃棄物ストリームと釣り合った最適な速度の溶解を行うために、炉のメルター部分および炉のアーク部分により通常生成される以上のさらなる攪拌または混合が所望され得る。これは、コイル40aおよび40b等の戦略的に配置された磁気コイルの追加により、より大きなJ×B力を生成し、次いで、これにより溶融バス内にさらなる混合および/または加熱を生じることにより達成され得る。コイル40aおよび40bは、炉の金属シェル内であるが、メルトプールの耐火性ライニングの裏側に配置され得る。あるいは、炉シェルが非磁気ステンレススティールで製造される場合、コイルは、シェルの外部に配置され得る。コイル40aおよび40bは、AC電源ソースに接続される。このバス混合の促進は、炉電極の寿命および廃棄物のスループットを増加し得る、「チューニング」タイプの一例である。
【0065】
図1Dは、プラズマメルター処理の代替的構成が二次熱ブーストシステム41を組み込んだ、本発明の別の実施形態を示す。このシステムは、さらなる熱エネルギーを提供し、一次プラズマ−メルター処理を出る凝縮可能部分をさらにクラッキングするためのチャンバ内のアークプラズマであり得る。図1Dに示すように、例えば、二次熱ブーストシステム41は、ポート23の近くまたは内部に配置され得る。
【0066】
プラズマメルター処理のための電気エネルギーへの廃棄物の変換は、固体および液体廃棄物の気体生成物ガスへの最大変換に依存する。熱分解処理では、存在するガスの一部が、軽量から中量のオイルである凝縮物を含有し得る。一次プラズマ−メルターチャンバを出るガスの冷却が可能な場合、発生気体の一部の液化が、炉温度で存在する凝縮物により生じ得る。第2のプラズマ発生気体チャンバは、これらのオイルが、入来する廃棄物材料からのエネルギー値を助長回復させる非凝縮性可燃性ガスに変換される。
【0067】
二次プラズマチャンバ41が図1Dに示すように配置される場合、一次炉チャンバを出るガスの温度は、二次プラズマチャンバ41に入る前には下がらないが、これは、2つのシステムが直接結合されるためである。これにより、クラッキングおよびガス化処理のための全体的なエネルギー要件が最小化される。
【0068】
炉を出る凝縮可能種が二次プラズマチャンバ内で可燃性ガスに変換されるため、二次廃棄物生成が最小化される。プラズマ発生気体チャンバは、常に必要とはされ得ないが、処理中に個別に制御され得ることが理解される。
【0069】
電極もしくは複数の電極24aおよび24bは、好ましくは、供給材料29が熱放射から壁部を防護または保護できるように、壁部21a〜21dから十分に離れて位置する。これにより、幅広い種種の材料を耐火性炉ライニングとして用いることが容易となる。
【0070】
金属ではなく、グラファイトを電極材料として用いることが好ましいが、これは、グラファイト電極は、処理を簡略化し、金属トーチで用いられるよりもはるかに高い電流能力を有するためである。さらに、グラファイト電極は、金属トーチシステムが頻繁に先端部の取り換えを要するのに対して、メインテナンスの必要性が低い。水−ガス反応、600〜1000℃で、
C+HO→CO+H
を促進する部分的酸化環境および条件の両方を伴う炉プレナムでの予期される条件により、特別に処置されていないグラファイトの許容できない消費が起こり得る。それゆえ、グラファイト電極27は、好ましくは、グラファイトの消費を最小化し、有効寿命を延ばす、炭化シリコン、窒化ボロン、または別の保護コーティング等の適切な材料で被覆される。例えば、炭素質材料を含有する都市固体廃棄物が炉21に供給された場合、高い吸熱反応が起こり、炭素質材料を燃料ガスに、かつ非炭素質材料をスラグに変換するためのさらなるエネルギーを必要とし得る。
【0071】
本発明の廃棄物変換ユニット内の条件は、温度プロファイル、溶融バス内の電流、電圧およびその他を得ることができるように、廃棄物処理中に、継続して(手動により、または自動システムにより)監視され得る。これにより、溶融バス、およびユニットを出るガスの所望の処理特性が確実に満たされる。例えば、廃棄物変換ユニットを出るガスの組成は、共にWoskovらによる米国特許第5,479,254号(1995年12月26日発行)、および米国特許第5,671,045号(1997年9月23日発行)で開示されるようなデバイスを用いた処理中に監視され得る。米国特許第5,479,254号、および米国特許第5,671,045号の内容の全てを、本明細書中において参考のために援用する。さらに、熱電対、赤外線温度デバイス、Woskovらによる、「Active Radiometer for Self−Calibrated Furnace Temperature Measurements」と題された、米国特許第5,573,339号(1996年11月12日発行)に開示される、放射計、またはWO97/13128(1997年4月10日に発行され、「Active Pyrometer for Self−Calibrated Furnace Temperature Measurementsと題された、国際出願番号第PCT/US96/15997号)に開示された、高音計がチャンバ内に挿入され得る。米国特許第5,573,339号、およびWO97/13128の内容の全てを、本明細書中において参考のために援用する。また、Woskovらの「New Temperature and Metals Emissions Monitoring Technologies for Furnaces」、Proceedings of the International Symposium Environmental Technologies,Plasma Systems and Applications,Atlanta,Georgia(1995年10月8〜11日)も参照し、本明細書中において、この内容の全てを参考のために援用する。
【0072】
次に、図1E〜1Gを参照して、本発明の別の代替的な実施形態を示す。本実施形態では、ユニット21が、2つのアーク電極27aおよび27b、ならびに2つ以上のジュール加熱電極24aおよび24bを備える。好ましくは、アーク電極27aおよび27bは、DC電源70で作動する一方、部分的に浸漬された非アーク電極24aおよび24bは、AC電源77で作動する。ユニット21はまた、(熱損失を防ぐために絶縁され得る)排気ポートまたはベッセル23を備え、好ましくは、チャンバ内の適切な圧力を維持を確実にするために、緊急廃ガスベッセル(emergency OFFgas vessel vessel)82を備える。廃棄物供給は、供給機構および充填ポート22からユニット21へと供給され得る。供給機構は、重力式供給機構であり得、図1Kに示すように構成され得る。このユニットはまた、所定の位置でユニットの周囲で間隔を置いて配置され、チャンバの充填ポートと位置合わせされた複数の供給機構を備え得る。非グラファイト耐火性炉床69が、ユニット21をライニングするために用いられ得る。炉床21は種々の耐火性材料から形成され得る。
【0073】
アーク電極27aおよび27bは、それぞれ、アーク66aおよび66bを発生し、ユニット21に供給される廃棄物の少なくとも一部を分解するために用いられる。廃棄物はガス状の層および溶融バスを形成する。比重が異なるため、溶融バスは、スラグ層および金属層に分かれる。メルトライン30aのレベルは、スラグおよび/または金属の少なくとも一部をユニットから除くことにより制御され得る。例えば、スラグ等の溶融材料が、放出導管35によりスラグコンテナ37へと取り除かれ得る一方、金属は、放出導管開口部67によりバスから取り除かれ、次いで、放出導管68を介して、金属コンテナ26へと達し得る。放出導管68は、上述したような加熱コイルを利用して加熱され得る(図1Lおよび図1Mも参照)。
【0074】
溶融材料(例えば、スラグ)が放出導管35を介して補助加熱システム31へと流れる速度は、流量弁等により制御され得る。1つの実施形態では、ユニット21から補助ヒーターシステム31への溶融材料の流れは,ユニット21および補助ヒーターシステム31内の圧力を制御することにより制御され得る。次いで、差圧がヒーターシステム31への溶融材料の流れを制御するために用いられ得る。
【0075】
複数の補助ヒーターおよび/またはプラズマトーチ32が、先の実施形態に従って述べたように、補助ヒーターシステム31内で用いられ得る。溶融材料は、補助加熱システム31を出て、放出ポート36を介してスラグコンテナ37に達する。
【0076】
本実施形態のアーク電極は、77等のDC電源に接続される。電源77は、同時係属中の米国特許出願第08/382,730号、および第08/492,429号の図3に示されるものと同様であり、一次巻線71および二次巻線72を備える。サイリスタ73a〜73fは、それぞれ、位相74a〜74cを整流する。あるいは、同時係属中の米国特許出願第08/382,730号、および第08/492,429号の図3に示す、過飽和リアクタコントロールを有する三相ダイオードブリッジ整流器が、DC電源70の代わりに用いられ得る。本実施形態では、過飽和リアクタの機能は、変圧器と、ダイオード整流器へのAC入力との間のAC電流路のインピーダンスを変更することであり、それにより、アーク電圧がかなり速く変動し得る場合であっても、アーク内の所望の量のDC電流を維持する手段が提供される。
【0077】
インダクタ75aおよび75bは、図1Gに示すように接続される。インダクタ75aおよび75bは、ユニットの動作中に安定したアーク27aおよび27bを維持するために頻繁に必要とされる過渡電圧を供給する。「クランピング」ダイオード76は、ブリッジ整流器の(−)および(+)出力の間に接続される。「クランピング」ダイオード76の機能は、DCアーク27aおよび27bの電圧が整流器の開回路電圧を越えるときに、インダクタ75aおよび75bからの電流が流れるパスを提供することである。代替的なアーク電力構成も本実施形態で利用され得る(例えば、図8〜10参照)。
【0078】
部分的に浸漬された非アーク電極24aおよび24bは、好ましくは、AC電源77により動力供給される。図1Gに示すように、電源77は、(従来のAC電源に接続された)一次巻線78、および二次巻線79を備える。AC電源77はまた、過飽和リアクタ80およびキャパシタ81を備える。
【0079】
例えば、図2に関連して本明細書中において議論するように、変圧器の巻線を通るDC電流の流れを遮るものがなく、変圧器の端子に直接接続された、部分的に浸漬されたジュール加熱AC電極を有する、廃棄物材料およびスラグ/金属メルトプールをDC電流を通過する場合、変圧器のコアが飽和する。これにより、AC変圧器の一次巻線の電流が増加し、変圧器が非常に短時間で破損する。ベッセル内でアークプラズマおよびジュール加熱されたメルターを同時に作動させるためには、それゆえ、AC電流にジュール加熱のためのメルトプールを通過させ続ける必要がある一方、DC電流の流れを同時に遮らなければならない。キャパシタ81は、DC電流を遮り、AC電流を通過させるために用いられる。キャパシタ81は、好ましくは、広範な炉動作条件にわたる段階のそれぞれで電流のバランスをとるために、各変圧器二次巻線79と直列に接続される。
【0080】
図1H〜1Jは、3つのアーク電極および3つの部分的に浸漬された非アーク電極が用いられる、さらなる実施形態の平面図を示す。図1Hに示す炉21は、3つのアーク電極27a〜27c、および3つの部分的に浸漬された非アーク電極24a〜24cを備える。本実施形態では、アーク電極および非アーク電極はともに、AC電力で作動し得る。アーク電極への動力は、DC電力で作動させるために変更され得るが、部分的に浸漬された電極は、AC電力で動作される。
【0081】
図1H〜1Jに示す実施形態では、3つの充填チャンバ22a〜22cが炉21の周りに配置される。限定を意図するものではないが、チャンバは、好ましくは、炉の周りに実質的に等距離で配置される。
【0082】
次に図1Kを参照して、本発明のアークプラズマ−ジュール加熱されたメルター内で処理される廃棄物材料の導入のための使用に適した供給機構100を示す。供給機構100は、適切な方法で充填チャンバポート22に接続される。
【0083】
供給機構100は、図1Kに示すようなコンベヤー101などを含む。コンベヤー101は、廃棄物容器またはレセプタクル102を溶融装置まで移動させるために用いられる。好適な実施形態において、廃棄物容器102は、溶融室に送られる速度に基づいて、制御される。例えば、赤外線検出器103または他の感知デバイスは、コンベヤー101に沿って、廃棄物容器102の移動を制御するために採用され得る。
【0084】
廃棄物容器102は、コンベヤー101から、ドア104およびチャンバ入口105を通って、通路104aまで通過する。ドア104は、ドアが上げられたり、下げられたりできるように、垂直な動きに適合する。本明細書に記載されているように、膨脹式シール106は、供給機構のドア104を介して、炉21に入る空気および/または酸素の量を制御するために、用いられ得る。
【0085】
容器107およびプラグ107a構成は、ハウジングデバイス108内に設けられる。プラグ107aは、容器107内での垂直な動きに適合される。例えば、プラグ107aは、容器107内で、プラグ107aの上部が図1Kに示す位置aまで下げられるように、つり下げられ得る(その間、容器107の上部は、図1Kに示す位置bで維持される)。プラグは、その上部が容器107の上部(図1Kにおいて、位置bとして示される)に接するまで上げられ得、その後、缶(can)およびプラグが、装置として、ハウジング108内で位置cまで上げられる。
【0086】
図1Kに示すように、ハウジング108は、炉21および通路104aに接続される。ハウジング108は、好ましくは、例えば、処理されている廃棄物の量およびタイプに依存して、他の供給機構が炉と共に用いられるように、炉21に取り外し可能に接続される。通路104aは(チャンバ入口およびドア104と共に)、ハウジング108と一体型の部品または装置として形成され得る。また、ハウジング108は、開口部108aを含み、容器107およびプラグ107aが、通路107aと一直線に並んで位置cまで上げられるときに、廃棄物容器102がそこを通り、廃棄物容器102は、開口部108aを通って炉21まで流れ込む。
【0087】
廃棄物容器102が、コンベヤー101からドア104にアプローチする場合、廃棄物容器102は、ドア104に寄りかかり、ドアは、コンピュータ制御システムからの供給制御に基づいて、容器(単数または複数)102が通路104aに入り込むか、または送られるように、手動で上げられるか、または自動で上げられる。供給機構および/または廃棄物のタイプに関連する廃棄物容器のサイズに依存して、1つより多い廃棄物容器が同時に送られ得る。ドア104は、好ましくは、プラグ107が下の位置(図1Kにおける位置a)にない場合には上がらないように設計される。これは、所望されない空気が炉に入ることを防ぐ。
【0088】
赤外線検出器などが用いられて、容器(単数または複数)が、完全に通路104aにあるか感知される。その後、ドア104が閉じられ、シール106が膨脹される。このようにして、供給機構は、大気に対して密閉され、窒素でパージされて、供給機構内の少なくとも酸素の大部分が除去され得る。好ましくは、窒素パージは、供給機構内の酸素が約5%より低くなるまで継続される。
【0089】
その後、下の位置(図1Kにおける位置a)にあるプラグまたはホイスト107aは、容器107に接する位置bまで上げられる。容器107およびプラグ107aは、位置cまで上げられる。容器(単数または複数)102は、重力によって、炉21に供給され得る。いくつかの実施形態において、プラグ107aならびに/または容器およびプラグを下げて、炉21への供給プロセスの間、容器がつかえないことを確実にすることが望ましい。
【0090】
上述したように、複数の装填チャンバ、および供給機構は、本発明に従って、溶融室として用いられ得る。装填チャンバおよび供給機構は、炉への供給のタイミングが予め定められているように構成され得る。好ましくは、供給機構の数は、装填チャンバの数に対応する。例えば、装填チャンバおよび供給機構は、それぞれが、特定の時刻における過剰な供給に起因して、炉の中で圧力を上昇することを避けるように、他のものに対して開くタイミングを取るように配置され得る。
【0091】
図1Kに示す供給機構100は、例示に過ぎない。中を通って入る空気および/または酸素の量が制御され得る限り、本発明の溶融室への廃棄材の導入に適した他のデバイスが採用され得る。
【0092】
図1Lは、炉21の一部分の実施形態の断面図である。様々な実施形態に関して上述したように、金属排出入口67は、概して、炉床の一部のV字形構成の底部、またはその近傍に形成される。図1Lに示す実施形態は、誘導性熱によって容易に加熱され得る材料で形成されたフリーズプラグ構成である。図1Lに示すように、入口67を囲む部分67は、グラファイト110から形成される。さらに図1Lに示すように、炉床のV字型部分(ジュール加熱電極(単数または複数)24のほぼ下)近傍の炉21の他の部分は、高温れんが111および断熱材料112から形成され得る。
【0093】
加熱コイル113は、金属が排出ポート114aを所望の時間および速度で出ていくことができるようにフリーズプラグ構成のオペレーション用に設けられる。例えば、コイル113が、ある特定の温度の下まで冷却される(コイル113は、金属を炉から除去することが所望されないときには水冷され得る)場合、ポート114内のグラファイト116または金属は、プラグとして機能を果たして、金属が炉から除去されることを防ぐ。金属を炉から除去することが所望される場合、コイル113は、グラファイト116がポート114を介して炉を出るような金属の通過を可能にするように誘導的に加熱される。その後、窒素は、プラグをフリーズすることが所望される場合にグラファイトブロック116に吹き付けられる。
【0094】
本発明のアークプラズマジュール加熱された溶融装置の金属の排出は、処理の間、溶融バスをサンプリングすることによって制御され得る。さらに、または、代わりに、装置からの金属の排出は、装置内の電圧および電流をモニタすることによって、制御され得る。例えば、ジュール加熱電極とバスとの間の電圧に変化がない場合、装置の外に金属を排出する必要がなくなり得る。これは、特定の装置内の各ジュール加熱電極について、推定され得る。一方、電圧の変化が検出される場合、装置から金属を排出することが所望されるか、または必要となり得る。従って、計器が、バス内の熱、電圧および電流特性のような感知パラメータをモニタリング、ならびに手動または自動で制御するために設けられ得る。このような計器からのフィードバックは、金属出口から出す時を決定するために用いられ得る。さらに、金属容器および/またはスラグ容器(補助加熱システムからの排出に近接する)の下に位置するローンスケールが、口から出す条件、および炉の中のモニタリング条件を決定するために用いられ得る。
【0095】
また、装置からの金属の除去は、部分的には、炉のビューポートなどを通じる、装置内の溶融バスのレベルの視覚的な観察に基づく。例えば、溶融バスのレベルが上がり続け、上記の補助加熱システムを用いてスラグが除去される場合、装置内の金属のレベルは、スラグが出る、補助加熱システムへのコンジットに近いレベルまで上がる。これらの環境において、装置から金属を除去して、金属が補助加熱システムに入ることを防ぐことが所望され得る。
【0096】
上述したように、本発明によるアークプラズマジュール加熱溶融室は、好ましくは、耐火ライニングを含む。処理され、かつ/または変換される材料に依存して、耐火物は、約1400℃を超える温度で処理することができる任意の適切な材料から形成され得る。耐火物は、セラミックまたはグラファイトから形成され得る。また、耐火物は、高い信頼度で耐火性のある材料から形成され得る。本発明において用いられる耐火材料として、処理されている材料のタイプに依存して、様々な耐久性のある耐火材料が適切であることが理解されるべきである。また、これらの材料は、熱的なショックに対して感度が高くてもよい。
【0097】
図1Lに示す、誘導的に加熱されたフリーズプラグ構成は、利用可能な回路によって、炉から金属および/またはスラグを除去するために加熱され得る。例えば、Standard Handbook for Electrical Engineers、第9版、Knowlton編、McGraw−Hill Book Company,Inc.((C)1957)の762ページの図7〜124に示す回路が、本発明によるフリーズプラグ構成を加熱するために用いられ得る。この文献は、本明細書中で参考として援用される。
【0098】
本発明による、アークプラズマジュール加熱溶融室に供給される電力について、いくつかの構成が利用され得る。例えば、図2に、キャパシタ162の使用および電力の分配における特定の構成を含む集積されたシステムの構成の1つを示す。図2に示すように、アーク66について、単一の対の電極27および28を有する単一相ジュール加熱されたアークプラズマ溶融室21が図示されている。一実施形態において、溶融室のジュール加熱された部分21は、AC電源158を利用し、溶融室のアーク部分は、DC電源150を利用する。
【0099】
図2に示す実施形態は、それぞれ、廃棄物材料29が、ガラス化を含む変換プロセスによる処理を受ける単一容器または溶融室タンク21内の電極に電力を供給する、DC電力システム150とAC電力システム158との組合せを利用する。DCアーク電流27および28は、ジュール加熱AC電極24aおよび24bとインタラクトするので、このようなインタラクションを防ぐ特別な工程が取られない限り、特別な回路が必要である。本明細書中に記載するように、このようなインタラクションは、ジュール加熱電極に電力を提供する変圧器の故障(failure)の原因となり得る。この回路は、アークプラズマおよびシステムのジュール加熱された溶融室部分の完全に独立した制御を可能にする。
【0100】
DC電源150は、インダクター157、一次巻線153、二次巻線154a、154b、および154c、ならびに過飽和リアクトル155a、155bおよび155cを含む。一次巻線153は、好ましくは、デルタである。過飽和リアクトル154a、154bおよび154cは、二次巻線154a、154b、および154cに直列に接続されている。負(−)出力151および正(+)出力152は、DC電源150によって生成される。
【0101】
DC電流150が、変圧器159の端子に直接接続され、変圧器159の巻線を通じるDC電流150の流れを妨げる手段を有さない、部分的に浸漬しているジュール加熱AC電極24aおよび24bを有する廃棄物材料29およびスラグ/金属溶融物プール30を流れる場合、変圧器159のコアは、飽和する。従って、変圧器159の一次巻線160の電流が増大し、変圧器159が、非常に短い期間の間に故障する。アークプラズマと、容器21内のジュール加熱された溶融室とを同時に操作するために、ジュール加熱のため、溶融物プール30を通じて、AC電流158を流し続け、同時に、DC電流フロー150を妨害することが必要である。キャパシタ162は、DC電流150を妨害し、AC電流158を流すように利用される。キャパシタ162は、好ましくは、炉の動作条件の幅広い範囲にわたって、相のそれぞれにおいて、電流のバランスを取るために、各変圧器の二次巻線161と直列に接続される。図2にさらに示すように、キャパシタ162は、過飽和リアクトル163に接続された二次巻線161に接続される。
【0102】
図3Aおよび図3Bに、本発明において用いられるのに適した回路構成を示す。特に、三相AC電源158を図3Aに示し、DC電源150を図3Bに示す。回路は、AC電源システム158全体を通して反射する、容器または溶融室内の各AC電流経路のインダクタンス、溶解プールまたは溶融バスを流れる電流経路の非線形抵抗、電極インターフェース、電力供給ケーブル、変圧器159の二次巻線161a、161b、および161c、ならびにジュール加熱炉回路において直列の要素として接続されているキャパシタ162a、162b、および162cのキャパシタンスの大きさを含む。また、AC電源158は、一次巻線160、ならびに電極24a〜fに接続された飽和リアクトル163a、163b、および163cを含む。飽和リアクトル163a〜163cは、それぞれ、二次巻線161a〜161cに接続されている。
【0103】
AC電流が、非線形抵抗器を直列に有する回路、例えば、ジュール加熱炉回路内で、殆どの場合正弦曲線ではないので、公益企業によって供給される60ヘルツ正弦波に重畳される、60ヘルツ以外のいくつかの高調波振動数を励起することが可能である。この回路において、非線形抵抗を考慮に入れ、充分な減衰を達成し、そのことにより安定した動作を達成する電気部品を特定することが重要である。また、キャパシタの電圧、電流、およびキャパシタンス率の値は、炉をのぞきこむときに炉電極で見られる最も低い抵抗の値に有効な60ヘルツを加えたものが、(L/C)1/2の1.5倍以上、好ましくは2倍になるような炉電極におけるシステムインダクタンス全体の直列共振周波数になるような値である。ただし、Lは、電力システムの総インダクタンスであり、Cは、キャパシタ162a、162b、および162cのキャパシタンスである。総実効抵抗Rは、(L/C)1/2の2倍になるはずであるが、(L/C)1/2の1.5倍であるなら、電流における任意の共振の立ち上がりは無視できる。
【0104】
図3Bに示すように、DC電気システム150は、Y字状接続またはデルタ接続された二次巻線154a〜154cを有する電力変圧器を有し得る。一次巻線153は、好ましくは、デルタである。また、図3Bに示すように、電流整流器は、好ましくは、三相全波整流器である。整流器は、第3の電極2印加された信号によってアノード−カソード電流が制御される、電流制御サイリスタ整流器、すなわち、シリコン制御整流器であってもよい。あるいは、整流器は、所望のDC電流を維持するようにDC電流制御を有する三相全波ダイオード整流器であってもよい。サイリスタ整流器が利用される場合、完全定格電流浮動ダイオードが、サイリスタ整流器にわたって、リアクトル157aおよび157bの前方に配置されることが重要である。この実施形態において、飽和リアクトル155a〜155cは用いられない。三相ダイオード整流器を用いる場合に、整流器内のダイオードで十分なので、DC「浮動」または「クランピング」ダイオードを加える必要はない。
【0105】
DCアーク炉について、飽和リアクトル制御155a〜155cを有する三相全波ダイオード整流器を用いることが好ましい。いずれのタイプの電源が用いられているかに関わらず、インダクタが、接地されていないDC電源リードと直列に接続されることが重要である。このリアクトルは、DCアーク電圧が急激に増大するような炉の状態である場合、素早くエネルギーを供給するために必要である。アーク電極に電力を供給するさらなる実施形態は、本発明に従って利用され得る(図6〜10参照)。
【0106】
図3Bに示すように、アーク電極27aは、(−)出力で、インダクタ157aに接続され、アーク電極27bは、(+)出力で、インダクタ157bに接続されている。炉または溶融室の内部の底部がセラミックなどの適切な耐火物から形成され、熱いときに導電性が低い場合、カウンタ電極28は、炉の床のジュール加熱電極24a〜24fの間の部分をへこませ、その後、金属が排出された後でさえも、金属のプールが炉の床のこのへこみに維持されるように溶融金属排出管をわずかに上昇させることによって形成され得る。この金属は、ACジュール加熱回路について、カウンタ電極28として機能し得、同時に、DCアーク回路電極として用いられ得る。
【0107】
金属炉底部電極28は、図3Bの回路図に示すような各種の構成を用いて接続され得る。いずれの場合においても、炉の底部または溶融室を通じて、1つ以上の電極を有することが好ましい。電極は、グラファイトまたは金属であり得る。図3Bおよび図5に示す回路は、電極28への電気接続と直列のスイッチ164を含むことに留意されたい。これらのスイッチの機能は、カウンタ電極を、整流器の変圧器のニュートラルに接続または切断して、DCアーク電流をカウンタに転送したり、転送しないことを可能にすることである。例えば、スイッチが「開いている」場合、(+)電極からバスへのアークがあり、バスから(−)電極へのアークがある。スイッチが「閉じられている」場合、(+)電極からバスへのアークがあり、電流はカウンタ電極へと流れる。バスを流れるカウンタ電極からの電流もあり、(+)および(−)電極電流の均衡がとれていない場合、アークによって、(−)電極を流れる電流もある。
【0108】
スイッチ164は、閉位置、開位置、接地位置を有する三状態スイッチである。変圧器ニュートラル接地スイッチ164は、動作のいくつかのモードを可能にする。炉または溶融室が、2つのDCアークが電気的に直列に接続されているモードで動作する場合、スイッチ164は、「接地」位置にあり、単投スイッチ165は、開いている。炉または溶融室が、2つのDCアーク電極が独立して動作するモードで動作する場合、スイッチ164は、「閉」位置にあり、単一状態スイッチ165は、「接地」位置にある。スイッチ164の「開」は、システムメンテナンスの間(またはジュール加熱がアークプラズマ加熱なしに用いられる場合)、用いられ得る。
【0109】
炉または溶融室の上記の物理的構成が、2つの独立して配置された制御可能電極を用いることに適する場合、DCアーク電極およびACジュール加熱電極は、有害な電気的インタラクションなしに、同時に操作され得る。さらに、様々なタイプの廃棄物のガラス化について、有用なインタラクションが達成され得る。
【0110】
ユニット21において用いられるのに適した様々な電極構成(および電流フローの相対的な方向)の例示的な平面図を、図4A〜図4Dに示す。これらの構成は、取り付けの遠隔制御に適する。図4Aに、延長された炉の構成を示し、図4B〜図4Dに、円形炉構成を示す。
【0111】
これらのジュール熱電極(24a、24eもしくは24c)または(24d、24bもしくは24f)のうち任意のものまたはその全体を、DCアークシステムのためのカウンタ電極28として接続することができる。
【0112】
図4Bに示す電極構成では、三相のACジュール熱電源と、DC整流器電源とを1つずつ用いている。図4Cに示す別の実施形態において、6つのジュール熱電極24a〜24fを6つのアーク電極27a〜27fと共に用いている。図4Cに示すこの構成では、三相ACジュール熱電源を1つそしてDC整流器電源を3つ用いている。
【0113】
図4Dに示す別の実施形態において、4つのジュール熱電極24a〜24dを4つのアーク電極27a〜27dと共に用いている。この構成において、2つの二相スコットTAC電源および整流器供給源を用いている。
【0114】
ここで図5を参照して、AC電源システム158は、一次巻線160、二次巻線161a〜161cを備え、これらの巻線はそれぞれ、可飽和リアクトル163a〜163c(または図6および図7に示すようなサイリスタスイッチ)に接続されている。これらの可飽和リアクトル163a〜163cはそれぞれ、ジュール熱電極24e〜24fに接続されている。
【0115】
DC電源150は、一次巻線153と、インダクタ157a、157bと、可飽和リアクトル155a〜155cにそれぞれ接続された二次巻線154a〜154cとを備える。図5に示すように、ダイオード156a〜156fが設けられている。インダクタ157aは、(−)出力151においてアーク電極27aに接続され、インダクタ157bは、(+)出力152においてアーク電極27bに接続されている。
【0116】
DC電源150システムニュートラル166と、ACジュール熱電極24a、24bおよび24c(これらは、ACキャパシタ162a〜162cにそれぞれ接続された電極であり、変圧器(これも図5中に図示)の二次巻線161a〜161cを通るDC電流流れをブロックする目的に用いられる)との間の接続は、処理対象となる廃棄物材料の種類に応じて行うことが望ましい。図5中、DC電源150とAC電源158との接続をライン167として示す。この接続を用いる理由としては、燃焼炉をウォームアップさせている間に3つのさらなるDCカウンタ電極を溶解プール表面に近接させて、ニュートラルDCの移動(transfer)電流166を流して、正(+)のDCアークおよび負(−)のDCアークを安定させた後に、炉床上のカウンタ電極の直接上にある材料が十分に高温になって十分なDC電流が導電してDCアークが安定化するようにする工程を支援することである。
【0117】
上述したように、2つ以上のDCアークプラズマ電極を用いて、共通溶解(molten)プールにまたはその内部に1つ以上のアークを提供すると好ましい。1つの電極を1つのDCインダクタの(+)端子と電気接触させ、別の電極を別のDCインダクタの(−)端子と電気接触させる。整流変圧器の二次巻線の中間(mid)端子またはニュートラル端子は、カウンタ電極に電気的に接続してもしなくてもよく、カウンタ電極は、溶解プールの底部またはその近隣に設ければよい。
【0118】
これらの2つのDC電極のうち1つのDC電極のみがアーキングし、もう一方のDC電極が溶解槽中に沈降してアーキングしなかった場合、その沈降した電極を接地することができる。しかし、これは不要であり、そうしないほうが望ましい。
【0119】
あるシステムでは2つのグラファイト電極(すなわち、1つは(+)およびもう1つは(−))を用いるため、三相変圧器のY字接続された(wye connected)3つの巻線のニュートラル接合部166は、接地接続してもよいし、しなくてもよい。
【0120】
このユニットのグラファイト出湯噴出口(tapping spout)28および金属製燃焼炉シェルは、安全上の理由のため、設置しなければならない。このグラファイト出湯噴出口は燃焼炉底部にある溶解プールと電気的に接触しているため、Y字接続された二次巻線のニュートラル端子166がグラファイト出湯噴出口28に接続されていない場合、これらの2つのアークは電気的に直列関係にある。これらのアークのうち1つが消えた場合、それによってこれらのアークは両方とも消えるが、このようなことは望ましくない。中立点166をグラファイト出湯噴出口28に接続することにより、各アークを実質的に独立させ、(残りのアークが消えた場合にも)燃焼させ続けることが可能となる。燃焼し続けているアークから放熱が発生すると、消えた状態のアークも再ファイヤリングする場合がよくある。
【0121】
図3Aまたは図5に示すような絶縁された3つの二次巻線を接続し、相24b〜24eと相24a〜24dおよび相24c〜24fとを極性が逆になった状態で物理的かつ確実に接続することにより、溶解経路を通る電流経路を、槽の攪拌および混合が行なわれ、これにより、所与の燃焼炉中で1時間あたりに処理することの可能な廃棄物材料の量を多くするような電流経路にする。
【0122】
図3Bおよび/または図5に示す種類の2つまたは3つの独立したDC電源を用いて4つまたは6つのグラファイトアーク電極に給電を行なう場合、大量または物理的に大きな廃棄物材料を処理する必要のある場合に新たな燃焼炉の設計構成が得られる点にも留意されたい。図4B〜図4Dに示す丸型の燃焼炉設計は、この用件を満たす。
【0123】
本発明によるアーク電極のDC電力を提供する別の実施形態を図6および7A〜図7Bに示す。図6では複数の相電力制御器を用い、図7A〜図7Bでは、相制御されたサイリスタ整流器と、ダイオード整流器とを組み合わせて用いる。可飽和リアクトルはサイリスタよりも大型で高コストである場合が多いため、これらの回路の方が図5に示す回路よりも有利である場合がある。図6および図7A〜7Bに示す回路では、サイリスタスイッチと、ACインダクタ(例えば、負荷制限リアクタ(LLR))とを組み合わせて用いて、本明細書中にて上述した可飽和リアクトルと同じ所望の特性(例えば、DCアーク燃焼炉中のアーク安定性を向上させる特性)を得ている。
【0124】
図6に示す回路170は、一次巻線171および二次巻線173a〜173cを備える。図6に示すように、これらの二次巻線は、自身に接続された変圧器ニュートラル174とY字接続されている。三相の電力175a〜175cはそれぞれ、図6に示す回路ブレーカ172a〜172c(ただし、回路ブレーカ172a〜172cは、二次巻線と相電力制御器176a〜176cとの間で交互に配置することもできる)を備える。回路ブレーカ172a〜172e(これらは、空気(air)回路ブレーカであり得る)の設計を、異常条件下において回路を自動的に開かせるような設計にする。
【0125】
やはり図6に示すように、電流制限リアクタ(CLR)177a〜177cを、入来するAC電力から相電力制御器176a〜176cへと直列接続する。あるいは、電流制限リアクタ177a〜177cをサイリスタ178a〜178fの後ろでかつダイオード整流器182の前の位置において直列接続させてもよい。リアクタ177a〜177c(これらは、電流制限リアクタであり得る)は、整流器中のサイリスタおよびダイオードを保護して、ミスファイヤーが発生した場合に異常電流がこれらのサイリスタおよびダイオードにかからないようにしている。
【0126】
さらに図6に示すように、三相電力制御器176a、176bおよび176cを設ける。相電力制御器176a〜176cはそれぞれ、一対のサイリスタ178a〜178b、178c〜178dおよび178e〜178fを備える。相電力制御器176a〜176cもまた、金属酸化物バリスター(MOV)179a179eと、負荷制限リアクタ(LLR)180a〜180cと、電流変圧器(CT)181a〜181cとをそれぞれ備える。リアクタ180a〜180cは、空気ギャップリアクタであると好ましい。
【0127】
ACインダクタ180a〜180cを用いて、サイリスタ178a〜178fをそれぞれバイパスすることが可能である。ACインダクタ180a〜180cの機能は、アーク(単数または複数)を安定させることである。この機能は、サイリスタスイッチが非導電モードであるときに電流を提供するインダクタを用いることにより、達成することができる。図6に示すように、金属酸化物バリスター(MOV)179a〜179cは、インダクタおよびサイリスタと平行に接続されている。バリスター179a〜179cを用いて、いずれかの極性を有する任意の遷移電圧を、サイリスタに損傷を与えないレベルまで限定または範囲指定(clamp)する。
【0128】
電流変圧器(CT)181a〜181fは、標準的なAC電流変圧器である。電流変圧器181a〜181fを用いると、適切なレベルのDC電流を(+)アーク電極と(−)DCアーク電極との間に流した後にサイリスタ178a〜178fを「オン」にすることを確実にすることができる。電流変圧器181a〜181fを用いると、不注意によってサイリスタが「オン」になったときに、その結果発生した電流を事前設定されたレベルの電流まで敏速に低下させることも確実になる。これにより、DC電力アークが消滅した場合において、「全相オン(full phase on)」のサイリスタにより、このような「全相の」条件下においてアークが(+)電極および(−)電極を通じて発生した場合に、DC電流に望ましくない高いレベルの異常遷移サージが発生し得る事態を防ぐことができる。
【0129】
サイリスタ178a〜178fをパルスまたはゲートによって制御する場合、ACインダクタ180a〜180c(例えば、LLR)は、AC電流を比較的低レベルの電流に限定することができる。すなわち、三相全波ダイオード整流器によって供給されるDC電流は、アーク(単数または複数)の消滅を防ぐのに十分なレベルにある。(−)DCアーク電極27aおよび(+)DCアーク電極27bが導電面と接触すると、アーク(単数または複数)は、十分な大きさの電流で開始および持続して、サイリスタゲートがファイヤリングするまで、DCアーク(単数または複数)を維持する。サイリスタゲートがファイヤリングすると、アーク電流が、電気アーク(単数または複数)を通じて、事前設定された大きさ(これは、パルスゲートの相対的相角度および/または持続時間によって決定される)まで増加する。
【0130】
さらに、サイリスタがファイヤリングすると、ファイヤリングの間にサイリスタの各ACインダクタ(LLR)に短絡が発生するため、アーク電流が増加する。サイリスタ178a〜178fによる電流の短絡が発生する前には、電流はインダクタ180a〜180cを通過しているため、インダクタ180a〜180c中にエネルギーを格納することができる。各インダクタ中に格納されるエネルギーの量はE=1/2L であり、ここで、Eはエネルギー(単位:ワット秒)であり、Lはインダクタンス(単位:ヘンリー)であり、iは電流(単位:アンペア)である。
【0131】
インダクタ中にエネルギーが格納されると、サイリスタ178a〜178fがファイヤリングしたときに電流をインダクタ180a〜180cからサイリスタ178a〜178fを通じて流すことが可能となる。この電流の流れ方向は、通常電流が電力変圧器からダイオード整流器に流れる方向(これを、図6中のブローカーライン182によって示す)と反対方向である。従って、サイリスタ178a〜178fを通過する初期電流が、インダクタ180a〜180cから出て行く電流の大きさよりもずっと大きくなるようなタイミングまたは相角度でサイリスタ178a〜178fをファイヤリングさせると望ましい。サイリスタゲートがパルスを受ける前に、インダクタからの初期電流が、サイリスタのゲートの「オン」が完了する前にサイリスタを通過する順方向電流よりも大きい場合、そのサイリスタを瞬間的に「オフ」にすることができる。一方、ゲートパルスが十分に長い場合、サイリスタはすぐに再度「オン」状態となり、サイリスタの「電流ゼロ」(これは、サイリスタを「オフ」にしなければならずまた「オフ」にすると望ましい状態である)の状態が通常の電力周波数で得られるまで、「オン」状態のままとなる。
【0132】
ダイオード整流器182に入来したAC電流を整流してDC電流を提供する。詳細には、相175aをダイオード182aおよび182bによって整流する。同様に、相175cがダイオード182eおよび182fによって整流されている間、相175bをダイオード182cおよび182dによって整流する。
【0133】
やはり図6に示すように、キャパシタ183a〜183fおよび抵抗器184a〜184fを、それぞれダイオード182a〜182fと並列接続する。従って、キャパシタ183a〜183fおよび抵抗器184a〜184fは、ダイオード182a〜182fの周囲に複数のスナッバー回路を形成する。スナッバー回路は、電圧の急激変化による影響を限定するために用いられることが多い。図6に示すように、これらのスナッバー回路は、損傷を受けたダイオード182a〜182fから逆方向に余分な電圧が流れるのを防ぐように設計されている。そのため、キャパシタ183a〜183fにより、ダイオード182a〜182fにわたる遷移電圧が最小限になる。
【0134】
Y字接続された変圧器ニュートラル174は、接地185に接続され、燃焼炉の炉床中のカウンタ電極28にも接続されている。その結果、通常不安定なアークまたはアーク消滅の原因となり得るさまざま条件下におけるアーク安定性がさらに向上する。例えば、カウンタ電極28は、独立した2つの電気アークを電極27aおよび27bと共に提供する。(例えば、燃焼炉中で処理される廃棄物に起因する遷移エネルギーへの要求によって)アークのうち1つが消滅した場合、もう一方のアークを保持し、消滅したアークを再ファイヤリングする。
【0135】
インダクタ186aおよび186bはそれぞれ、アーク電極27aおよび27bならびにダイオード整流器の出力に接続されており、燃焼炉21が動作している間にアークを安定して維持するためにしばしば必要となるエネルギーおよび必要な遷移電圧を提供する。
【0136】
電流変圧器(CT)181a〜181fは標準的なAC電流変圧器であり、電流変圧器(CT)187a〜187cはDC型の電流変圧器である。
【0137】
電流変圧器181a〜181fは、フィードバック情報を好ましくは自動電流制御回路に提供して、変動するアーク電圧条件下において、実質的に一定の事前設定量の電流を維持する。電流変圧器187cは、(−)アーク電極27aと(+)アーク電極27bとの間の任意の不等な電流を感知し、修正信号を提供して、(例えば、サイリスタのファイヤリング角度を調節しかつ/または1つの電極のアーク長さを調節することにより)任意の望ましくない不均等な電流を修正する。
【0138】
ダイオード整流器182の出力にわたって接続されたクランピングダイオード188を用いて、整流器182からのDC電力が供給されていない間の短い間隔の間、インダクタ186aおよび186bに格納されたエネルギーを送達する電流経路を提供する。
【0139】
ここで図7Aを参照して、アーク電極と共に用いられる回路の別の実施形態が図示されている。図7Aに示す回路190は、図6に示す回路と同じ目的を達成するように設計されており、2つの異なる電力整流器回路191、192を備える。
【0140】
主要整流器回路192は、サイリスタ210a〜210fを有する主要電力サイリスタ整流器210を備える。図7Aに示すように、電流制限リアクタ212a〜212cは、サイリスタ整流器210の前にある相196a〜196cにそれぞれ接続されている。
【0141】
電流変圧器213は、サイリスタ整流器210の(+)出力に接続されている一方、電流変圧器214は、サイリスタ整流器210の(−)出力に接続されている。インダクタ215aおよび215bは、サイリスタ整流器210の(−)出力および(+)出力にそれぞれ接続されている。インダクタ215aおよび215bは、DCインダクタ(例えば、鉄芯空気ギャップインダクタ)であり得る。
【0142】
さらに図7Aに示すように、ダイオード整流器205の出力は、サイリスタ整流器210用のクランピングダイオードとして機能する。例えば、図示のように、ダイオード整流器205の(+)出力206を整流器210の(+)出力に接続し、ダイオード整流器205の(−)出力207を整流器210の(−)出力に接続する。
【0143】
回路190は、主要電力変圧器195を備える。変圧器205は、一次巻線193および二次巻線194を備える。図7Aに示すように、二次巻線194a〜194cは、Y字接続されており、ニュートラル返路197を備える。ニュートラル返路197は、図6に関連して説明したニュートラル返路174と同様に機能する。回路ブレーカ198a〜198cは、各相196a〜196c用の二次巻線194a〜194cにそれぞれ接続されている。
【0144】
さらに図7Aに示すように、主要二次巻線194a〜194cからの電力の一部をスタートアップ回路191において用い、一部を主要電力回路192において(例えば、主要電力整流器またはサイリスタ整流器210において)用いる。
【0145】
「スタートアップ」整流器回路191は、変圧器201を備え、この変圧器201は、一次巻線199および二次巻線200を備える。図7Aに示すように、二次巻線200a〜200cは、ニュートラル返路203(これは、接地185およびカウンタ電極24に接続されている)と共にY字接続されている。加えて、回路ブレーカ202a〜202cは、一次巻線199の前の相196a〜196cにそれぞれ接続されている。負荷制限リアクタ(LLR)(例えば、空気ギャップ鉄芯リアクタ)204a〜204cを、二次巻線200a〜200cと直列接続する。スタートアップ回路191は、三相ダイオード整流器205も備える。上述したように、ダイオード整流器205の出力206および207を、サイリスタ整流器210の出力に接続する。ダイオード整流器205は、ダイオード205a〜205fを備え、安定したアーク(単数または複数)を開始および維持するのに十分な出力電流を有する。
【0146】
(−)DC電極27aおよび(+)DC電極27bを、導電面(例えば、本明細書中にて上述した溶解プール)と接触した状態では位置することが可能である。回路ブレーカ198a〜198cおよび202a〜202cを、ダイオード整流器205からのDC電流流れによって電極27aおよび27b中のアークを開始するように、閉鎖する。回路ブレーカ198a〜198cおよび202a〜202cは、空気回路ブレーカ(例えば、低電圧用の空気回路ブレーカ)であり得る。このDC電流の大きさは、AC電力をダイオード整流器205のAC入力に送達するインダクタ204a〜204cによって限定される。
【0147】
上記のスタートアップ工程の間に各サイリスタ210a〜210fにファイヤリングパルスが送達されないように、サイリスタ整流器210を制御する。すなわち、スタートアップの間、サイリスタ整流器210は、(−)電極および(+)電極、27aおよび27bそれぞれにいかなるDC電圧または電流も供給しない。
【0148】
サイリスタ整流器210中のサイリスタ210a〜210fにファイヤリングパルスが送達されると、この電力整流器の電流は事前設定レベルまで増加し得、(+)電極と(−)電極との間の抵抗が比較的広い範囲にわたって変化しても、この事前設定レベルは一定のままとなる。
【0149】
間隔の間、これらのサイリスタのいずれも自身の各ゲートパルスによって「オン」または「ファイヤリング」しない場合、始動ダイオード整流器205は、低電流アークを維持し、これにより、安定したDCアーク(単数または複数)を生成および維持する。
【0150】
大きさの大きな遷移電流が(+)電極から(−)電極へまたは(+)電極からN(カウンタ電極28)電極あるいは(−)電極からN(カウンタ電極28)電極へ到達する事態が、これらの電極間に先行アークまたは他の電流経路が無く、また制御回路がこの開回路状態を認識しないことによって発生するのを確実にするために、DC電流変圧器208、209、213および214はこの状態を感知し、以下の事象を発生させる。
【0151】
DC電流変圧器208および209が電流予測レベルがDC電極27aと(+)DC電極27bとの間を適切に一定の様態で(−)流れていることを感知するまで、サイリスタのファイヤリングパルスを「オフ」にする。電流変圧器208および209が(−)DC電極27aおよび(+)DC電極27b中にDC電流が流れていることを示すと、整流器210上のサイリスタファイヤリングパルスを「オン」にし、DC電流をそれぞれの事前設定電流レベルまで自動的に増加させる。
【0152】
N(カウンタ電極28)電極に対する電圧(+)と、N(カウンタ電極28)電極に対する電圧(−)とが異常に不等であり、かつ、電極からの電流流れが高電圧を示す場合、電流および電圧がその通常の動作電流範囲に収まるまで、電流を示していない電極を自動的に低下させることができる。
【0153】
DCインダクタ215aおよび215bは、エネルギーを格納し、その格納エネルギーを高速で(すなわち、サイリスタが接続された回路によって行なうことが可能な相角度制御よりもずっと高速で)送達することができ、これにより、アーク(単数または複数)が消滅するのを防ぐ。電流変圧器211は、変圧器ニュートラル回路内にある。(+)電極および(−)電極に供給される電流が等しい場合、電流変圧器211の電流はゼロとなる。これらの電流が不等である場合、電流変圧器211は、これらの回路が等しくなるまで電極ギャップを調節する。
【0154】
図7Aの別の実施形態において、変圧器201を不要とすることができる。この変圧器201を不要とする工程は、図7Bに示す回路を用いて達成することが可能である。図7Bに示す実施形態を用いて、2つのアーク電極に給電することができる。
【0155】
この実施形態において、低いAC電圧をダイオード整流器に供給する際に用いられる変圧器は不要であるか、または、所望されない。その理由は、ダイオード205a〜205fおよびサイリスタ210a〜210fにより、ダイオード整流器からの最大開回路電圧がサイリスタ整流器210からの最大開回路電圧を超えず、また、ダイオード整流器205によって供給されるDCアーク電圧が、サイリスタ整流器210によって送達が可能な開回路DC電圧以下であるためである限り、電流を実質的に絶縁することが可能となるからである。
【0156】
図7Bにおける変圧器195は、三角形プライマリ(図示せず)およびニュートラル付きY形接続セカンダリを有し得る。あるいは、プライマリ巻線はニュートラル付きY形であり得、かつセカンダリはニュートラル付きY形で得る。別の実施形態において、プライマリはY形接続であり得(ニュートラルなし)、かつセカンダリはニュートラル付きかつ三角形のY形であり得る。
【0157】
すべての場合に4つのDCインダクタ217a〜217dを提供する必要はないが、そうすることが望ましくあり得る。たとえインダクタがインダクタ215a〜215bとして示されるアーク電極の各々に直接直列に接続される場合でさえもそうである(そうでなければ異常に大きいインダクタ215aおよび215bが必要となり得るから)。
【0158】
電流変圧器213、214、218および219は、ゼロより大きな任意の電流量を送電する。ここでDC電流変圧器208および/またはDC電流変圧器209中のDC電流がゼロ以上であるかどうかで差異はなく、かつ電流がDC電流変圧器208および/またはDC電流変圧器209中をどの方向へ流れるかは問題とならない。DC電流変圧器208、209、218および219は、サイリスタゲート回路がサイリスタ210a〜210fの発火角度をゼロよりも大きな任意の量に増加し得る前に、電流がダイオード整流器205からそして正および負アーク電極27a、27bの両方を通って流れていることを示さなければならない。一旦サイリスタ整流器210がDC電流を両方のアーク電極に通すと、このときダイオード整流器の機能は、各サイリスタが発火または「オンとなる」前に比較的低い大きさのDC電流を提供する。これにより、ずっとより安定なDCアークが生成される。これは、廃棄物がアークからより大きなエネルギーを急速に必要とする水分または他の構成要素をより多く含む場合に特に重要である。なぜなら、アークエネルギーを急速に必要とするとアークを消滅させ得るからである。AC電流制限ダイオード整流器がサイリスタ整流器からのDC出力と並列に接続されなかったならば、このときアーク消滅が生じるおそれはもっと大きい。
【0159】
アーク消滅が生じる場合、DCアーク電流は直ちにゼロに落ちる。これにより通常は発火回路をプリセット発火角度から「完全にオン」の180°位置に進め、この位置は、アークが再起した場合に非常に望ましくない大きさの電流を生成する。例えば、システムの最大負荷DCアーク電流定格が1500アンペアおよびアークが500アンペアでの動作にプリセットされ、かつアークが突然消滅し、そして電流がゼロに落ちた場合、このとき2つの作用が直ちに起きる:電極が自動的に溶融槽へ向かって下へ移動するように方向付けられ、そして発火回路は通常「完全にオン」の180導通角度へ進む。
【0160】
次に起きることは、アークが再発火し、そしてDCサイリスタ電流が前のプリセット値の500アンペアに制限される代わりに直ちに最大短絡回路電流となる。
【0161】
サイリスタ発火回路を直ちにその0発火角度に戻し、そして電流制限ダイオード整流器が電極からのDCアークを溶融槽へ再生成させるまで0°を保つことにより、このときおよびこのときに限り発火角度は、前の500アンペアアーク電流リミットに到達するまで制御された速度で増加する。これにより、電流の別の異常な上昇の再発を防止する。
【0162】
負荷制限リアクトル204a〜204c(鉄芯空隙リアクトル)は、ダイオード整流器DC電流を低いレベルに制限する。この低いレベルとは、安定なDCアークを維持すると同時に最後の廃棄物キャニスターが炉に投入された後にも破壊されなかったいずれの残留廃棄物も溶融するのに必要なアークパワー量を提供し、さらに同時に、ほとんど連続な廃棄物ストリームによって保護されない炉内張り壁に当たり得るアークエネルギーを制限するのに十分なレベルである。制限された量のアークエネルギーは、サイリスタ発火回路をオフにし、かつ整流された低い電流ダイオードのみを使用し、そして次いでアーク長を調節していずれの残留廃棄物も破壊し同時に内張り損耗をなくすことによって得られる。
【0163】
なお、クランピングダイオード221は、高い電圧上昇がサイリスタ210a〜210fを損傷するのを防止する。ダイオード205a〜205fはそれらに独自の上昇クランピング作用を提供するので、ダイオード整流器205のためのクランピングダイオードを含む必要はない。
【0164】
電流変圧器220は、図7Bに含まれるが図7Aに含まれない。なぜなら、図7Aに示す回路は絶縁変圧器201を有し、かつ図7Bに示す回路はこの変圧器を含まないからである。電流変圧器209および211はDC電流変圧器である。
【0165】
上記のアーク電極のための回路によって、ジュール加熱ACパワー供給はガラスタンク全体にほぼ一定の溶融温度を提供し得る。これにより、アークについてのサイズ拘束条件、すなわちアークパワー、電極直径などを最小限にする。DCアークは、供給速度を上げるために炉−溶融室に主に存在する。これにより、この新しく構成された溶融室技術が他の利用可能なガラス化システムより柔軟性を有するようになる。アークは投入供給物の未溶融過装入においてエネルギーを供給し、そして溶融室システムのジュール加熱部は熱いガラスプールを維持してガラス混合物の完全な溶解および混合ならびに廃棄物分解のためのより長い滞留時間を確保する。
【0166】
図8〜11に示す回路は、本発明にしたがってアークパワーおよびジュール加熱パワーをアークプラズマ−ジュール溶融室へ供給するための別の実施形態を例示する。
【0167】
本明細書中で使用されるようなシリコン制御整流器(SCR)またはサイリスタは、短い持続時間の非常に低いエネルギーゲートパルスを用いて「オン」にされ得る固体デバイスである。一旦SCRが発火または「オン」にされると、ゲート発火パルスがオフにされた後でもSCRは通電し続ける。この通電は、100マイクロ秒以上のオーダーのパワー回路の中断または電流ゼロとなるまで続く。サイリスタは、発火パルスが再印加されるまで開または「オフ」位置のままである。SCRまたはサイリスタは、たとえ発火パルスが印加されても電流フローの向きが逆転されると通電しない。
【0168】
また本明細書中で使用されるように、「SCRスイッチ」は複数(例えば、2)のアンチパラレルに接続されたサイリスタを含む。直列に接続された抵抗器およびキャパシタを含むスナバ回路はまた、本発明のSCRスイッチまたは静的スイッチに並列に接続され得る。スナバ回路は、固体デバイス(例えば、SCR)にかかる過渡システム電圧を制御する。別の実施形態において、いずれの回路上のSCRも可飽和リアクトルと置き換えられ得る。可飽和リアクトルが使用される場合、負荷制限リアクトルは可飽和リアクトルに並列に使用され得る。
【0169】
本明細書中で使用されるような負荷制限リアクトル(LLR)は、一定の誘導性リアクタンスを提供して、特定のシステムにおける利用可能な短絡電流量にかかわらずにその結果のインダクタンスが、回路がさらなるインピーダンスなしに直列に完成される場合に所定の比較的低い電流がインダクタンスおよび回路を流れるようなものとなるようにする。ここで流れるAC電流の大きさはインダクタの連続な電流定格に等しい。アーク回路において、静的またはSCRスイッチ(または、サイリスタスイッチ)に並列に接続されたLLRは、十分な電流量を提供してどのサイリスタも発火していない場合にもアークが存在するようにする。これは、発火角度が遅れるか、またはその位相が逆戻りされた場合に1/2サイクルごとに生じる。これにより、アーク安定性が向上する。
【0170】
本明細書中で使用されるような電流制限リアクトル(CLR)は、負荷制限リアクトルと設計が同様である。しかし、電流制限リアクトルのインピーダンスは、負荷制限リアクトルのインピーダンスよりも著しく低い。電流制限リアクトルはまた、負荷制限リアクトルよりも著しく大きな電流送電容量または定格を有する。これにより、電流制限リアクトルは、サイリスタが「完全にオン」の位置にある場合にすべての電流を送電する。その結果、静的スイッチおよび整流器(ここで使用されるもの)の固体デバイスは最も過酷な動作条件にもかかわらず保護される。このように、CLRは、電流を適切なレベル(すなわち、SCRスイッチまたは整流器の定格)に維持することによって固体構成要素(例えば、SCRスイッチおよびダイオード)への損傷を防止する。CLRがなければ、システムは、定格変圧器電流の20倍のオーダーを被り得る。例えば(制限を意図しない)、アーク電極を短絡してアーク電極とアーク電極またはアーク電極と対向電極との間のインピーダンスが実質的にゼロとなる場合、このとき静的スイッチなどの固体デバイスは過負荷されないし、損傷も受けない。
【0171】
さらに本明細書中で使用されるように、DCインダクタを使用して頻繁に必要となる過渡電圧を供給し、炉の動作中に安定なアークを維持する。空隙鉄芯DCインダクタの構築および設計は、サイズ拘束条件を除いてACインダクタと同様である。
【0172】
ここで図8A〜8Eを参照して、別のDCアーク回路構成を例示する。図8A〜8Eに示すDCアーク回路は、独立したアーク電圧および電流制御を考慮する。なぜなら、アーク電圧はアーク長によって大きく制御され、かつアーク電流が独立してSCR位相角発火によって制御されるからである。
【0173】
図8Aは、DC単一アーク電極システム230を記載する。DC単一アーク電極システム230は、3つの単一位相変圧器または1つの三位相変圧器のいずれかを使用するACパワー回路によってパワー供給される。変圧器235のプライマリ巻線231は、4つの配線入力パワー回路(3つの位相および1つのニュートラル配線)と三角形(図8Aに示すような)またはY形に接続される。
【0174】
ユーティリティ源(図示せず)からのパワーは、プライマリ巻線231a、231bおよび231cにそれぞれ接続された3つの位相233a、233bおよび233cに供給される。位相233a、233bおよび233cの各々に対する回路遮断器232a、232bおよび232cがまた含まれ得る。回路遮断器は、空気回路遮断器であり得る。
【0175】
変圧器235のセカンダリ巻線234a、234bおよび234cは、図示されるように「U」接続となるよう構成される。図8Aに示す回路は、パワーを単一位相負荷に供給し、同時にプライマリ231およびセカンダリ234変圧器巻線両方の位相の各々において等しい電流量を流す。変圧器の3つすべてのプライマリ巻線上の負荷電流のバランスをとることが望ましい。例えば、ユーティリティ会社は、負荷電流が3つすべてのプライマリ巻線上で実質的にバランスがとられていない場合、または単一位相負荷が非常に小さい容量なのでバランスをとられていない位相電流のユーティリティパワーシステムに対する影響が小さい場合、パワーの提供を断り得る。「U」変圧器が使用される場合は常に、三角形プライマリを使用して3つすべての位相上の負荷のバランスをとり、バランスのとれた負荷電流を提供する。これにより、同じ電流がプライマリ巻線上の3つの位相の各々上で流れるようになる。なぜなら、同じ相対電流が変圧器の各セカンダリ巻線中を流れるからである。
【0176】
また図8Aに示すように、シリコン制御整流器(SCR)スイッチ237は、セカンダリ巻線のうちの1つに接続される。スイッチ237は、サイリスタ239aおよび239bを含む。SCRデバイスを使用していずれの方向のACまたはDC電流のフローも防止する。短い持続時間、単一方向性パルスがゲートとカソードとの間に印加されるまでおよびまたアノードがパワー源の正端子に接続され、かつカソードがパワーの負源に接続され、これらの接続は電流フローがSCRデバイスの電流定格を超えないようなインピーダンスの介在負荷によってなされる。
【0177】
SCRまたはサイリスタの別の特徴は、一旦電流がアノードからカソードへSCRを通って流れ始めると、この電流は、ゲートパルス電流が停止し、かつ電圧がゲートに全く印加されなくなった後も流れ続ける。
【0178】
SCRを通る電流のフローは、SCRの外部の手段によって電流のフローを中断することによって停止され得る。AC電流がSCRを通って流れる場合、1サイクルあたり2度生じる自然の電流ゼロを待つか、または何か他の手段を使用して約0.000050秒の間この電流フローを停止することが必要なだけである。
【0179】
負荷制限リアクトル(LLR)238(図8Aにおいてサイリスタ239aおよび239bと並列に接続される)は、 SCRがオンにされるか、または「発火」される前の各半サイクルにおいてSCRスイッチが不活性化されるか、または「デッドインターバル」中にある場合に、低い電流を提供するように設計される。デッドインターバルの間アークを存在するように維持することによって、アーク安定性、およびSCRが「オン」されない場合に廃棄物破壊動作の最後で溶融物の表面に残り得るいずれの残留廃棄物微粒子も溶融させることを大きく向上させる。
【0180】
上記のように、直列に接続された抵抗器246およびキャパシタ245を含むスナバ回路はまた、SCRスイッチ237と並列に接続され得る。
【0181】
電流制限リアクトル236は、図8Aに示されるように別のセカンダリ巻線端子に接続される(例えば、端子C2)。電流制限リアクトル(CLR)236は、DC短絡電流がシリコン制御整流器(SCR)スイッチ237またはダイオードブリッジ整流器240の定格最大負荷電流以下に制限されるように設計される。これにより、これらのデバイスの寿命を増加させる。
【0182】
SCRスイッチ237からの入力241aおよびCLR236からの入力241bは、交流を直流に整流するダイオード整流器240に導入される。整流器ブリッジ240からの出力242aは、直流をアーク66のためのアーク電極27に提供し、他方ダイオード整流器240からの出力242bは、炉21中の対向電極28(接地244に接続される)。DCインダクタ243は、ダイオードブリッジ整流器240の出力242aとDCアーク電極27との間に接続される。
【0183】
上記のように、可飽和リアクトルは、本発明において実際的にすべてのDCまたはACアーク用途でLLRリアクトルおよびSCRスイッチの代わりに用いられ得る。なお、また、DCアークまたはACアーク電極の数が大きくなるほど、およびACジュール加熱電極の数が大きくなるほど、物理的な炉のサイズが大きくなり、かつ1時間当たりに破壊される廃棄物の量が大きくなる。
【0184】
図8Bは、独立したアーク電圧および電流制御を提供する別のDCアーク回路を示す。図8Bに示す回路247は2つのアーク電極を用いて動作する。回路247は、三位相パワーを二位相パワーに変換するスコット−T変圧器回路250を使用する。
【0185】
変圧器250は、位相233a、233bおよび233cにそれぞれ接続されたプライマリ巻線248a、248bおよび248cを含む。空気回路遮断器などの回路遮断器232a、232bおよび232cがまた、図8Bに示すように含まれる。
【0186】
セカンダリ巻線249aおよびセカンダリ巻線249bは、図8Aおいて上記された単一位相回路と同様に構成された2つの回路にパワーを供給する。1つより多くアーク電極があり、かつ図8B〜10Fに示す回路が使用される場合、好ましくはアーク電極の極性を同じ(例えば、負)にされ得る。多相ACパワーおよびACアーク電極が使用される場合(例えば、図9A〜9E参照)、このとき電極は反対極性を有し得る。DCパワーが使用される場合、電極はすべてが(+)または(−)である。あるいは、DC電極のいくつかが(+)であり、いくつかが(−)である。
【0187】
例えば図8Bに示すように、電極27aおよび27bの極性は、好ましくは両方とも(−)極性である。これにより、両方のアークを炉の内張りの寿命が増加するように互いに向かって引き合うようにできる。
【0188】
好ましくは、アーク電極は(−)であり、かつ対向電極は(+)である。対向電極が(−)であり、かつアーク電極が(+)である場合、より多くの電極が消耗消費される可能性がある。しかし、いずれの場合も、DCアークはなおも互いに向かって引き合う。
【0189】
また好適には、電極を炉において等距離に配置する。例えば、図8Cにおいて3つのアーク電極が利用され、ここで電極は、好ましくは正三角形を形成しすべてのアークは中心へ引かれる。これにより、炉の内張りの侵食が最小限にされ、電極の消耗が低減され、かつ炉壁への放射の制御が容易になる。
【0190】
図8Bに示すように、シリコン制御整流器(SCR)スイッチ237aおよび237bは、セカンダリ巻線249aおよび249bのそれぞれの一端に接続される。スイッチ237aおよび237bは、それぞれサイリスタ239a、239b、239cおよび239dを含む。
【0191】
負荷制限リアクトル(LLR)238aおよび238b(図8Bにおいて、それぞれスイッチ237aのサイリスタ239aおよび239bならびにスイッチ237bのサイリスタ239cおよび239dと並列に接続される)は、SCRがオンにされるか、または「発火」される前の各半サイクルにおいてSCRスイッチが不活性されるか、または「デッドインターバル」中である場合に低い電流を提供するように設計される。上記のように、デッドインターバルの間アークを存在するように維持することによって、アーク安定性、およびSCRが「オン」されない場合に廃棄物破壊動作の最後で溶融物の表面に残り得るいずれの残留廃棄物微粒子も溶融させることを大きく向上させる。
【0192】
上記のように、直列に接続された抵抗器246aおよび246bならびにおよびキャパシタ245aおよび245bを含むスナバ回路はまた、SCRスイッチ237aおよび237bと並列に接続され得る。図8Bに示されるように、電流制限リアクトル236aおよび236bは、それぞれセカンダリ巻線249aおよび249bの他端に接続される。
【0193】
電流制限リアクトル(CLR)236aおよび236bは、それぞれシリコン制御整流器(SCR)スイッチ237a、237bまたはダイオードブリッジ整流器240a、240bのDC短絡電流が定格最大負荷電流以下に制限されるように設計される、これによりこれらのデバイスの寿命が増加する。
【0194】
SCRスイッチ237aからの入力241aおよびCLR236aからの入力241bは、交流を直流へ整流するダイオード整流器240aへ導入される。同様に、SCRスイッチ237bからの入力241cおよびCLR236bからの入力241dは、交流を直流へ整流するダイオード整流器240bに導入される。整流器ブリッジ240aからの出力242aは、直流をアーク66aのためのアーク電極27aに提供し、他方ダイオード整流器240aからの出力242bは炉21中の対向電極28(接地244に接続される)に接続される。
【0195】
DCインダクタ243aは、ダイオードブリッジ整流器240aの出力242aとDCアーク電極27aとの間に接続される。
【0196】
整流器ブリッジ240bからの出力242cは、直流をアーク66bのためのアーク電極27bへ提供し、他方ダイオード整流器240bからの出力242dは、炉21中の対向電極28(接地244)に接続される。DCインダクタ243bは、ダイオードブリッジ整流器240bの出力242cとDCアーク電極27bとの間に接続される。
【0197】
図8C〜8Eはそれぞれ、DCアーク回路にパワー供給するための異なるタイプのセカンダリ変圧器接続を示す。図8C〜8Eはそれぞれ、3つのアーク電極に独立したアーク電圧および電流制御を提供するDCアーク回路を示す。
【0198】
図8Cに示す回路251は、一次配線がデルタ状に接続されている、3つの単相変圧器を含む。一次配線252a、252bおよび252cは、それぞれ、相233a、233bおよび233cに対して設けられている。各単相変圧器は、単一の二次配線253a、253bおよび253cを有し、これらは、図8Aおよび図8Bに関連して上述したように電気回路に接続されている。
【0199】
図8Cに示すように、シリコン制御整流器(SCR)スイッチ237a、237b、および237cは、それぞれ、二次配線253a、253bおよび253cの一端に接続される。スイッチ237a、237bおよび237cは、それぞれ、サイリスタ239a〜239fを含む。
【0200】
負荷限定リアクタ(LLR)238a、238bおよび238c(それぞれ、図8Cに示す、スイッチ237aのサイリスタ239aおよび239b、スイッチ237bのサイリスタ239cおよび239d、ならびにスイッチ239cのサイリスタ239eおよび239fに並列に接続されている)は、SCRスイッチが非活性化されたとき、またはSCRがオンされるか「活性化」される前の各半サイクル中の「デッドインターバル」状態にあるときに、低電流を供給するように設計されている。上述したように、「デッドインターバル」中にアークを活性状態に維持することは、アークの安定性を大幅に向上させると共に、廃物破壊キャンペーンの終了時に溶融物の表面に残存し得る廃物微粒子を溶融する。
【0201】
電流限定リアクタ236a、236bおよび236cはそれぞれ、図8Cに示すように、二次配線253a、253bおよび253cの他端に接続されている。電流限定リアクタ(CLR)236a、236bおよび236cは、DC短絡電流が、シリコン制御整流器(SCR)スイッチ237a、237bおよび237c、またはダイオードブリッジ整流器240a、240bおよび240cの定格最大負荷電流以下に限定され、それによってこれらのデバイスの寿命が延びるように設計されている。
【0202】
SCRスイッチ237aからの入力241aおよびCLR236aからの入力241bは、ダイオード整流器240aに導入される。ダイオード整流器240aは、交流電流を整流して直流電流にする。同様に、SCRスイッチ237bからの入力241cおよびCLR236bからの入力241dは、ダイオード整流器240bに導入される。ダイオード整流器240bは、交流電流を整流して直流電流にする。SCRスイッチ237cからの入力241eおよびCLR236cからの入力241fは、ダイオード整流器240cに導入される。ダイオード整流器240cは、交流電流を整流して直流電流にする。
【0203】
整流器ブリッジ240aからの出力242aは、アーク66a用のアーク電極27aに直流電流を供給する。他方、ダイオード整流器242aからの出力242bは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243aは、ダイオードブリッジ整流器240aの出力242aとDCアーク電極27aとの間に接続されている。
【0204】
整流器ブリッジ240bからの出力242cは、アーク66b用のアーク電極27bに直流電流を供給する。他方、ダイオード整流器240bからの出力242dは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243bは、ダイオードブリッジ整流器240bの出力242cとDCアーク電極27bとの間に接続されている。同様に、整流器ブリッジ240cからの出力242eは、アーク66c用のアーク電極27cに直流電流を供給する。他方、ダイオード整流器240cからの出力242fは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243cは、ダイオードブリッジ整流器240cの出力242eとDCアーク電極27cとの間に接続されている。図8Cに示すように、出力242b、242dおよび242fは共に、バス242に接続され得、バス242は対向電極28に接続されている。
【0205】
図8Cに示す回路は、各DCアークの完全に独立した制御を有することが望ましいときに用いられ得る。しかし、これらの単相変圧器は典型的には、より高価な、上記に匹敵する定格を有する単一の3相変圧器である。
【0206】
図8Dを参照すると、回路254は、一次配線255a、255bおよび255cを有する1つの3相変圧器を用いている。一次配線255a、255bおよび255cはデルタ状に接続され、それにより、それぞれ相233a、233bおよび233cに接続されている。図8Dに示すように、空気回路ブレーカなどの回路ブレーカ232a、232bおよび232cがさらに設けられ得る。
【0207】
二次配線257a、257bおよび257cは、ニュートラル258と共にY字状に接続されている。ニュートラル258は外に延び、サージキャパシタ259および抵抗器260を介してアース244に接続されている。サージキャパシタ259は、電気的ノイズの散乱を最小限に抑えるか減少させるため、および入力される高圧システムからの電気サージの大きさによって固体SCRスイッチおよび/またはダイオード整流器がダメージを受けることを抑えるために設けられている。
【0208】
負荷限定リアクタ(LLR)238a、238bおよび238c(それぞれ、図8Dに示すスイッチ237aのサイリスタ239aおよび239b、スイッチ237bのサイリスタ239cおよび239d、ならびにスイッチ237cのサイリスタ239eおよび239fに並列に接続されている)は、SCRスイッチが非活性化されたとき、またはSCRがオンされるか「活性化」される前の各半サイクル中の「デッドインターバル」状態にあるときに、低電流を供給するように設計されている。上述したように、「デッドインターバル」中にアークを活性状態に維持することは、アークの安定性を大幅に向上させると共に、SCRが「オフ」になる廃物破壊キャンペーンの終了時に溶融物の表面に残存し得る廃物微粒子を溶融する。
【0209】
電流限定リアクタ236a、236bおよび236cはそれぞれ、図8Dに示すように、二次配線257a、257bおよび257cの一端に接続されている。さらに図8Dに示すように、電流限定リアクタ236a、236bおよび236cは、それぞれ、SCRスイッチ237a、237bおよび237cに直列に接続されている。(電流限定リアクタは、AC回路の一部と直列に接続され、負荷限定リアクタはSCRスイッチと並列に接続されている。)
電流限定リアクタ(CLR)236a、236bおよび236cは、DC短絡電流が、シリコン制御整流器(SCR)スイッチ237a、237bおよび237c、またはダイオードブリッジ整流器240a、240bおよび240cの定格最大負荷電流以下に限定され、それによってこれらのデバイスの寿命が延びるように設計されている。
【0210】
SCRスイッチ237aからの入力261aは、ダイオード整流器240aに導入される。ダイオード整流器240aは、交流電流を整流して直流電流にする。同様に、SCRスイッチ237bからの入力261bは、ダイオード整流器240bに導入される。SCRスイッチ237cからの入力261cは、ダイオード整流器240cに導入される。
【0211】
整流器ブリッジ240aからの出力242aは、アーク66a用のアーク電極27aに直流電流を供給する。他方、ダイオード整流器240aからの出力242bは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243aは、ダイオードブリッジ整流器240aの出力242aとDCアーク電極27aとの間に接続されている。整流器ブリッジ240bからの出力242cは、アーク66b用のアーク電極27bに直流電流を供給する。他方、ダイオード整流器240bからの出力242dは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243bは、ダイオードブリッジ整流器240bの出力242cとDCアーク電極27bとの間に接続されている。整流器ブリッジ240cからの出力242eは、アーク66c用のアーク電極27cに直流電流を供給する。他方、ダイオード整流器240cからの出力242fは、炉21内の対向電極28(アース244に接続されている)に接続されている。DCインダクタ243cは、ダイオードブリッジ整流器240cの出力242eとDCアーク電極27cとの間に接続されている。図8Dに示すように、出力242b、242dおよび242fは共に、バス242に接続され得、バス242は対向電極28に接続されている。
【0212】
図8Dに示す、SCRスイッチの負荷側の回路は、電極27aと28との間、27bと28との間、および27cと28との間よりも約73%大きいDC電圧開回路電圧を、アーク電極27aと27bとの間、27bと27cとの間、および27cと27aとの間に供給し得る。このことは、図8Aおよび図8Bよりも安定性を向上させ得る。
【0213】
図8Eに示す回路262は、図8Dに示す回路254と同様である。しかし、図8Eに示す回路262は、Y字状ではなくデルタ状に接続された、変圧器256の二次配線257a、257bおよび257cを含む。さらに、図8Eに示すように、3つのサージキャパシタ259a、259bおよび259cがY字状に接続されており、これにより、静的スイッチおよび/またはダイオード用に、上記に匹敵するサージ保護を提供している。図8Dと同様に、電気的ノイズを抑制するために抵抗器260がさらに設けられている。
【0214】
3つの電極が処理できるよりも大きい炉が必要である場合は、図8Bの回路が必要に応じて組み合わされ、それにより、複数のアーク電極、たとえば4つのアーク電極用のDCアーク電力を供給する。場合によっては、6つのアーク電極を利用する、より大きい炉を設計することが望まれ得る。6つの電極用の電力は、図8Cのシステムに示すような2つのシステムを組み合わせること、図8Dに示すような2つのシステムを組み合わせること、または場合によっては、図8Cに示すようなシステムと図8Dに示すようなシステムとを1つずつ組み合わせることにより供給され得る。
【0215】
4つまたは6つの電極が用いられる状態では、2つの別々のシステムからの電極の間に、独立したアーク電流制御が点在するように設けられ得る。それでも各ユーティリティ相に対してバランスのとれた負荷が供給され、それによって、1つのシステムの電力が関連システムに対して減少することが可能になる。電極が点在するような構成は、概して、炉内のすべての電極からの熱をより均一な様式で分散させる。
【0216】
図9A〜図9Eは、本発明による、アーク電極にAC電力を供給する別の実施形態を示す。図9A〜図9Eに示す実施形態は、上述したような直流電流(DC)ではなく、交流電流(AC)を利用する。AC電力は、アーク電極およびジュール加熱電極の両方に利用され得、互いに有害な相互作用を引き起こすことはない。なぜなら、アーク電極およびジュール加熱電極は、効率的にその相互依存を減少し得、いずれの変圧器にもダメージを与えないからである。
【0217】
図9Aは、独立したアーク電圧およびアーク電流制御を提供するACアーク回路263を示す。回路263は、アーク66用の1つのアーク電極27を含む。
【0218】
ACアーク用の電力源は、図8AのDCアーク回路に関して上述したように、変圧器235の「U字状」二次配線234a、234bおよび234cからの電力を用いる。変圧器235の一次配線231a、231bおよび231cは、それぞれ、相233a、233bおよび233cに対して設けられている。空気回路ブレーカなどの回路ブレーカ232a、232bおよび232cがさらに設けられ得る。
【0219】
SCRスイッチ237は、二次配線のうちの1つに接続され、サイリスタ239aおよび239bを含む。負荷限定リアクタ(LLR)238は、スイッチ237のサイリスタ239aおよび239bに並列に接続されている。図示し、上述したように、スナッバー回路がさらに設けられ得る。電極27はスイッチ237に接続され、スイッチ237からの電力出力264は電極27に交流電流を供給する。
【0220】
電流限定リアクタ(CLR)236は二次配線の別の端子(たとえば、図9AのC)に直列に接続されており、それにより、電流限定リアクタ236、およびCLR236からの電流265が、炉21内の対向電極28(アース244に接続されている)に接続されている。スイッチ237、リアクタ238およびリアクタ236は、図8Aに示すものと同様に設計されているが、スイッチ237、リアクタ238およびリアクタ236の定格は異なり得る。図9Aに示す実施形態は、ダイオード整流器も直流電流インダクタ(DCI)も利用しない。なぜなら、アークが交流電流によって電力供給されているからである。CLR236が端子BとSCRスイッチ237との間に接続されている場合、この回路は同一の様式で作用する。この場合、端子Cは、対向電極およびアースに接続される。
【0221】
図9Bは、独立したアーク電圧およびアーク電流制御を提供するACアーク回路266を示す。回路266は、2つのアーク電極27aおよび27bを含む。
【0222】
ACアーク用の電力源は、変圧器235の「U字状」二次配線234a、234bおよび234cからの電力を用いる。変圧器235の一次配線231a、231bおよび231cは、それぞれ、相233a、233bおよび233cに対して、設けられている。空気回路ブレーカなどの回路ブレーカ232a、232bおおび232cがさらに設けられ得る。
【0223】
図9Bに示すように、二次配線234aは、ニュートラル268が対向電極28に接続されるように、センタータップされている。このことは、両方のアーク内のAC安定性を向上し得、同時に、各アークの独立した電流制御を可能にし得る。
【0224】
電流限定リアクタ(CLR)236aおよび236bは、図示するように二次配線のうちの2つに接続されている。SCRスイッチ237aおよび237bは、それぞれ、電流限定リアクタ236aおよび236b、ならびに電極27aおよび27bに直列に接続されている。スイッチ237aおよび237bはそれぞれ、サイリスタ239aおよび239b、ならびにサイリスタ239cおよび239dを含む。上述したように、スナッバー回路がさらに含まれ得る。負荷限定リアクタ(LLR)238aおよび238bはそれぞれ、スイッチ237aのサイリスタ239aおよび239bに並列に接続され、スイッチ237bのサイリスタ239cおよび239dに並列に接続されている。電極27aおよび27bは、それぞれ、スイッチ237aおよび237bに直列に接続されている。スイッチ237aからの電力出力267aは、アーク66a用の電極27aに交流電流を供給し、スイッチ237bからの電力出力267bは、アーク66b用の電極27bに交流電流を供給する。
【0225】
スイッチ237aおよび237b、リアクタ238aおよび238b、ならびにリアクタ236aおよび236bは、図8Aに示すものと同様に設計されているが、各々の定格は異なり得る。図9Bに示す実施形態は、ダイオード整流器も直流電流インダクタ(DCI)も利用しない。なぜなら、電極が交流電流(AC)によって電力供給されているからである。
【0226】
2つのアーク電極内の電流が同一である場合、対向電極28およびライン268には電流が流れない。対向電極28およびライン268は、2つの電極間の電流差のみを伝導する。このことは、独立した電流制御を可能にする。なぜなら、サイリスタ239aおよび239bは、電極27aにAC電力を供給するのみであり、電極27bには電流は流れないからである。この場合、電極27aからの全電流は、対向電極を通過しなければならない。電極27aおよび27bを流れる電流が同等であれば、電流は電極27aと27bとの間のバスを流れ、対向電極28には流れない。
【0227】
図9Cに示す回路もまた、2つのアーク電極にACアーク電力を供給するように設計されている。回路269は、独立したアーク電圧制御およびアーク電流制御を可能にする。この場合、電力源は、スコット−T変圧器250(図8Bに示す変圧器に類似)から得られる。変圧器250は、それぞれ相233a、233bおよび233cに接続された一次配線248a、248bおよび248cを含む。空気回路ブレーカなどの回路ブレーカ232a、232bおよび232cがさらに設けられ得る。変圧器250はさらに、二次配線249aおよび249bを含む。
【0228】
図示するように、SCRスイッチ237aは、二次配線249aの一端に接続され、電流限定リアクタ236aは、二次配線249aの他端に接続されている。SCRスイッチ237bは、二次配線249bに接続され、電流限定リアクタ236bは、二次配線249bの他端に接続されている。SCRスイッチ237aは、サイリスタ239aおよび239bを含む。負荷限定リアクタ238aは、サイリスタ239aおよび239bに並列に接続されている。同様に、SCRスイッチ237bは、サイリスタ239cおよび239dを含む。負荷限定リアクタ238bは、サイリスタ239cおよび239dに並列に接続されている。SCRスイッチ237aはさらに、アーク電極27aに接続され、それにより、AC電力274aがアーク電極27aに供給される。SCRスイッチ237bは、アーク電極27bに接続され、それにより、AC電力274bがアーク電極27bに供給される。図示し、上述したように、スナッバー回路がさらに含まれ得る。
【0229】
図9Cにさらに示すように、炉対向電極N28への共通接続は、2つの電流限定リアクタ(CLR)236aおよび236bが接続される点270から始まる。共通接続は、スイッチ271が閉状態になりSCRスイッチ−ニュートラル272が活性状態であるとき、炉21内の対向電極N28(アース244に接続されている)にのみ接続され得る。SCRスイッチ−ニュートラル272は、サイリスタ273aおよび273bを含む。抵抗器246cおよびキャパシタ245cを含むスナッバー回路がさらに含まれ得る。
【0230】
スイッチ271が正常に閉状態である間、破壊されつつある廃物流が比較的少量のACアーク不安定性または遷移摂動を提供した場合にスイッチ271を開状態にすることが望ましい。スイッチ271が閉状態である状態で炉21が動作すると、各アーク電極27aおよび27bから対向電極N28に流れる電流の量を制御するために、SCRスイッチ−ニュートラル272が用いられ得る。このことは、炉をタッピングする際に特に重要である。スイッチシステム272がなく、スイッチ271が閉状態であると、電極27aと27bとの間の電流差は、対向電極に流れ、それにより対向電極近傍のバスを加熱する。このことは、タッピングの際に溶融物の粘度を変更し得る。
【0231】
本発明の別の実施形態は、3つのアーク電極と共に用いられる独立したアーク電圧およびアーク電流を供給するACアーク回路を含む。このような回路は図8Dに示している。
【0232】
図9Dに示す回路275は、3つのアーク電極27a〜27cにACアーク電力を供給するように設計されている。電力源は、一次配線277および二次配線278を有する変圧器276を含む。一次配線277a、277bおよび277cは、ユーティリティ源からAC電力を受け取り、相233a、233bおよび233cにそれぞれ接続されている。空気回路ブレーカなどの回路ブレーカ232a、232bおよび232cがさらに含まれ得る。
【0233】
Y字状に接続されたセカンダリ278は、ニュートラルN279に加えて、二次配線275a、275bおよび275cを含む。3つのACアーク電極27a〜27cから炉21内の対向電極N28(アース244に接続されている)に流れるAC電流の量を制御するために、スイッチ271およびSCRスイッチ−ニュートラル272(サイリスタ273aおよび273bを含む)がさらに用いられ得る。抵抗器246dおよびキャパシタ245dを含むスナッバー回路がさらに含まれ得る。3相に対する電流のバランスがとれている場合、対向電極に流れる電流はない。電流のバランスがとれておらずSCRスイッチ272が「完全にオン」となっている場合、バランスのとれていない電流(高調波電流となる可能性のあるものに加えて)が対向電極に流れる。スイッチ272が相制御されている場合、この対向電極電流は、図12Cに関して上述したように減少し得る。
【0234】
図9Dにさらに示すように、電流限定リアクタ236aは、二次配線278aに直列に接続されている。SCRスイッチ237aはさらに、電流限定リアクタ236aに直列に接続されている。SCRスイッチ237aは、サイリスタ239aおよび239bを含む。さらに、負荷限定リアクタ238aは、サイリスタ239aおよび239bに並列に接続されている。電流限定リアクタ236bは、二次配線278bに直列に接続されている。SCRスイッチ237bはさらに、電流限定リアクタ236bに直列に接続されている。SCRスイッチ237bは、サイリスタ239cおよび239dを含む。さらに、負荷限定リアクタ238bは、サイリスタ239cおよび239dに並列に接続されている。同様に、電流限定リアクタ236cは、二次配線278cに直列に接続されている。SCRスイッチ239cはさらに、電流限定リアクタ236cに直列に接続されている。SCRスイッチ239cは、サイリスタ239eおよび239fを含む。さらに、負荷限定リアクタ238cは、サイリスタ239eおよび239hに並列に接続されている。スナッバー回路がさらに含まれ得る。
SCRスイッチ237aもまたアーク電極27aに接続される。これにより、AC電力274bをアーク66bに供給するようにSCRスイッチ237bをアーク電極27bに接続した状態で、AC電力274aがアーク66aに供給される。同様に、SCRスイッチ237cがアーク電極27cに接続されて、AC電力274cがアーク66cに供給される。
【0235】
アーク電極にAC電力を供給する本発明のさらに別の実施形態を図9Eに示す。図9Eに示される回路280は、アーク電圧およびアーク電流を独立に制御した状態で、ACアーク電力を4つのアーク電極に供給するように設計されている。
【0236】
電源は、二次巻線249aおよび249bを介して3相電力を2相電力に変換するスコットT変圧器250を含む。変圧器250は、相233a、233bおよび233cにそれぞれ接続された一次巻線248a、248bおよび248cを含む。また、空気遮断器等の回路ブレーカ232a、232bおよび232cを設けてもよい。
【0237】
2つのSCRスイッチ237aおよび237bは、二次巻線249aの端子に並列に接続されている。スイッチ237aおよび237bは、それぞれ、サイリスタ239a、239bおよび239c、239dを含む。負荷限定リアクトル238aおよび238bは、それぞれ、サイリスタ239a〜239dに並列に接続されている。スイッチ237aおよび237bからの電力を用いて、アーク電極27aおよび27bそれぞれにAC電力を供給する。さらに、2つのSCRスイッチ237cおよび237dは、二次巻線249bの端子に並列に接続されている。スイッチ237cおよび237dは、それぞれ、サイリスタ239e、239fおよび239g、239hを含む。負荷限定リアクトル238cおよび238dは、それぞれ、サイリスタ239e〜239hに並列に接続されている。スイッチ237cおよび237dからの電力を用いて、アーク電極27cおよび27dそれぞれにAC電力を供給する。
【0238】
図9Eに示される回路は、図9Bに示される回路のうちの2つと同様であり、スイッチ271、282およびSCRスイッチニュートラル272を介して、二次巻線249aおよび249bの中点から対向電極ニュートラルN28へのリターン電流経路を有していてもよいし、有していなくてもよい。特に、二次巻線249aの中点281aおよび二次巻線249bの中点281bは、スイッチ271、282および(サイリスタ273aおよび273bを含む)SCRスイッチニュートラル272を用いて、炉21内の対向電極ニュートラルN28に接続され得る。対向電極28はまた接地244にも接続される。スイッチ282が開き、スイッチ271が開いている場合、電極27aおよび27bの電流は、電極27cおよび27dの電流と等しくなる。スイッチ282が閉じ(ただし、スイッチ271は開いている)ている場合、電極27aおよび27bの電流は、電極27cおよび27dの電流と同様に、独立に制御される。このような状況下において、4つの電極のそれぞれの間には何らかの相互作用が存在し得る。スイッチ282および271が閉じ、SCRスイッチ272が「全開」である場合、4つの電極のそれぞれが、対向電極282に対して、かつ、4つの電極間で独立に制御され得る。電流が4つの電極すべての間で平衡になると、対向電極を流れる電流はゼロになる。
【0239】
6ACアーク電極システムは、本発明において使用するために、図9Dに示される同一の3電極回路を2つ用いることによって生成され得る。これによって、3電極ACアークシステムを2つ用い、かつ、2つの3電極システムの電極を挿入することによって、各電極の独立した制御が可能になる。
【0240】
本発明のシステムはまた、AC電源またはDC電源とともに用いる際にはアーク電極電源が、変更され得るか、または、交換され得るように構成され得る。図10A〜10Fは、スイッチの配置を含む回路を示す。このような配置によって、本明細書中で説明されているように、種々のスイッチを開閉することによって、アーク炉がAC電力またはDC電力のいずれかによって動作し得るように、回路のそれぞれを変換することができる。
【0241】
次に、図10Aを参照して、回路283は、AC電力またはDC電力を1つのアーク電極に供給する。この回路はまた、アーク電圧およびアーク電流を独立に制御する。図10Aに示される回路は、図8Aに示されるDCアーク回路と同様であるが、AC電力とDC電力との間の切り換え用に5つのスイッチをさらに有する点が異なる。
【0242】
表1に提供されているように、スイッチを閉位置または開位置のいずれかの状態にすることによって、炉アーク回路は、AC電力またはDC電力のいずれかによって、または、このような電力間の所望の切り換えによって動作され得るように構成され得る。
【0243】
【表1】
Figure 0003819298
【0244】
例えば、DC電力によって炉のアーク部を動作させるためには、スイッチ284および288を開き、スイッチ285、286および287を閉じる必要がある。AC電力によって炉を動作させるためには、スイッチ285、286および287を開き、スイッチ284および288を閉じる必要がある。従って、上述のようにスイッチを開くおよび/または閉じることによって、AC電力またはDC電力のいずれかをアーク電極に供給することができる。
【0245】
図10Bは、図8BのDCアーク回路と同様であるが、AC電力またはDC電力を2つのアーク電極に供給するためにスイッチをさらに設けている点が異なる。本実施形態では、10個のスイッチを用いて、2つのACアークまたは2つのDCアークを用いて炉を動作させる。図10Bに示される回路289はまた、ACアークまたはDCアークの場合に、アーク電圧およびアーク電流を独立に制御する。
【0246】
表2に提供されているように、スイッチを閉位置または開位置のいずれかの状態にすることによって、炉アーク回路は、AC電力またはDC電力のいずれかによって、または、このような電力間の所望の切り換えによって動作され得るように構成され得る。
【0247】
【表2】
Figure 0003819298
【0248】
例えば、DC電力によって炉のアーク部を動作させるためには、スイッチ290、292、293および295を開き、スイッチ291、294、296、297、298および299を閉じる必要がある。AC電力によって炉を動作させるためには、スイッチ291、294、296、297、298および299を開き、スイッチ290、292、293および295を閉じる必要がある。従って、上述のようにスイッチを開くおよび/または閉じることによって、AC電力またはDC電力のいずれかをアーク電極に供給することができる。
【0249】
図10Cに示される回路300は、図9Bに示される2アーク電極ACアーク回路266と同様であるが、図10Cは、2つのダイオードブリッジ整流器240aおよび240bと、2つのDCインダクタ243aおよび243bとを含む。回路300はまた、炉のアーク部が2つのDCアークまたは2つのACアークを用いて動作され得るように、10個のスイッチを含む。図10Cに示される回路300はまた、アーク電圧およびアーク電流を独立に制御する。
【0250】
また、図10Cに示されるように、二次巻線234aは中心でタップされている(311)。スイッチ301が閉じ(スイッチ303および304が開い)ている場合、中心タップ311aは対向電極ニュートラル28に接続される。さらに、スイッチ303および304が閉じ、スイッチ301が開いている場合、中心タップ311bは、その入力としてダイオード整流器240aおよび240bに接続される。
【0251】
さらに図10Cに示されるように、スイッチ302が閉じ、スイッチ308が開いている場合、スイッチ237aからの電力は、(DC動作時には)入力312aからダイオード整流器240aへと供給される。スイッチ305が閉じ、スイッチ309が開いている場合、スイッチ237bからの電力は、(DC動作時には)入力312bからダイオード整流器240bへと供給される。
【0252】
DC動作時において、スイッチ306が閉じている場合、出力313aは、DCインダクタ243aおよびアーク電極27aに接続される。スイッチ307が閉じている場合には、出力313cは、DCインダクタ243bおよびアーク電極27bに接続される。スイッチ310が閉じている場合には、ダイオード整流器240aおよび240bそれぞれからの出力313bおよび出力313dは、(接地244に接続されている)対向電極28に接続される。
【0253】
表3に提供されているように、スイッチを閉位置または開位置のいずれかの状態にすることによって、炉アーク回路は、AC電力またはDC電力のいずれかによって、または、このような電力間の所望の切り換えによって動作され得るように構成され得る。
【0254】
【表3】
Figure 0003819298
【0255】
例えば、DC電力によって炉のアーク部を動作させるためには、スイッチ301、308および309を開き、スイッチ302、303、304、305、306、307および310を閉じる必要がある。AC電力によって炉を動作させるためには、スイッチ302、303、304、305、306、307および310を開き、スイッチ301、308および309を閉じる必要がある。従って、上述のようにスイッチを開くおよび/または閉じることによって、AC電力またはDC電力のいずれかをアーク電極に供給することができる。
【0256】
図10Dに示される回路314は、図8Cに示される3電極DCアーク回路と同様であるが、図10Dは、3つのDCアークまたは3つのACアークを用いて、炉のアーク部が動作され得るように12個のスイッチを含む。図10Dに示される回路314はまた、アーク電圧およびアーク電流を独立に制御する。
【0257】
図10Dに示されるように、炉をDCによって動作させる場合、スイッチ324、325および326を開いて、SCRスイッチ237a、237bおよび237cからの各出力が、各入力241a、241cおよび241eからダイオード整流器240a、240bおよび240cへと供給される。ダイオード整流器240a、240bおよび240cの出力242a、242cおよび242eは、DCインダクタ243a、243bおよび243cに接続される。これらDCインダクタ243a、243bおよび243cは、それぞれ、アーク電極27a、27bおよび27cに接続される(このような動作中、スイッチ316、318および320は閉じている)。さらに、ダイオード整流器240a、240bおよび240cの出力242b、242dおよび242fは、バス242によって対向電極28に接続される。
【0258】
炉がACによって動作される場合、スイッチ324、325および326は閉じ、SCRスイッチ237a、237bおよび237cからの各出力は、バス328によって対向電極28に接続される。
【0259】
炉がDC電力によって動作される場合、電流限定リアクトル236a、236bおよび236cからの出力は、各入力241b、241dおよび241fからダイオード整流器240a、240bおよび240cへと供給されるように、スイッチ321、322よび323は閉じ、スイッチ315、317および319は開く。炉がAC電力によって動作される場合、電流限定リアクトル236a、236bおよび236cからの出力は、それぞれ、327a、327bおよび327cを介して、アーク電極27a、27bおよび27cに接続されるように、スイッチ321、322および323が開き、スイッチ315、317および319は閉じられる。
【0260】
表4に提供されているように、スイッチを閉位置または開位置のいずれかの状態にすることによって、炉アーク回路は、AC電力またはDC電力のいずれかによって、または、このような電力間の所望の切り換えによって動作され得るように構成され得る。
【0261】
【表4】
Figure 0003819298
【0262】
例えば、DC電力によって炉のアーク部を動作させるためには、スイッチ315、317、319、324、325および326を開き、スイッチ316、318、320、321、322および323を閉じる必要がある。AC電力によって炉を動作させるためには、スイッチ316、318、320、321、322および323を開き、スイッチ315、317、319、324、325および326を閉じる必要がある。従って、上述のようにスイッチを開くおよび/または閉じることによって、AC電力またはDC電力のいずれかをアーク電極に供給することができる。
【0263】
図10Eは、ACからDCへ、または、DCからACへ切り換えられ得る別の3電極回路329を示す。この回路は、図8Dに示されるDCアーク回路と同様であるが、図10Eに示される回路は、AC−DCアーク変換するための13個のスイッチを含む。図10Eに示される回路329もまた、アーク電圧およびアーク電流を独立に制御する。
【0264】
表5に提供されているように、スイッチを閉位置または開位置のいずれかの状態にすることによって、炉アーク回路は、AC電力またはDC電力のいずれかによって、または、このような電力間の所望の切り換えによって動作され得るように構成され得る。
【0265】
【表5】
Figure 0003819298
【0266】
例えば、DC電源で炉のアーク部分を作動させるために、スイッチ330、332、334および342を開にする必要があり、スイッチ331、333、335、336、337、338、339、340、341および342を閉にする必要がある。AC電源で炉を作動させるために、スイッチ331、333、335、336、337、338、339、340および341を開にする必要があり、スイッチ330、332、334および342を閉にする必要がある。このように、示したように、スイッチを開および/または閉にすることで、アーク電極にAC電源またはDC電源のいずれかを提供することができる。
【0267】
図10Fは、3つのアーク電極に電力を提供する別の代替の実施形態を示す。図10Fに示される回路がDC電源で作動されると、各電極の3相整流器が用いられ、回路がAC電源で作動されると、整流器は単相スタティックスイッチに変換される。図10Fに示される回路343は、先に記載した回路よりも作製によりコストが掛かり得る。
【0268】
回路343は、各電極に3相SCR整流器を含む。AC電源を使用することが望ましい場合、各3相整流器は単相スタティックスイッチに変換される。
【0269】
回路343は、Y字に接続された2次巻線344a、344b、344c(それぞれ、相232a、232b、232cに接続される)と、2次巻線の中点から炉21中の(接地244に接続された)対電極28へ接続されたニュートラル345とを含む。
【0270】
DCで作動中、2次巻線の出力は、図10Fに示されるように、限流リアクトル(CLR)346a〜346iに接続される。限流リアクトル346a〜346cはサイリスタ相制御化整流器347aに接続される。サイリスタ相制御化整流器347aはサイリスタ348a〜348fを含む。限流リアクトル346d〜346fはサイリスタ相制御化整流器347bに接続される。サイリスタ相制御化整流器347bはサイリスタ348g〜348lを含む。限流リアクトル346g〜346iはサイリスタ相制御化整流器347cに接続される。サイリスタ相制御化整流器347cはサイリスタ348m〜348rを含む。炉がAC電源で作動される場合、コンポーネント347a〜347cは相制御化ACスタティックスイッチである。
【0271】
図10Fにも示されるように、コンポーネント347a〜347cの各出力の一方のサイドがDCで作動中に(この場合、スイッチ368、369および362は閉であり、スイッチ363は開である)、345を介して対電極28に接続される。コンポーネント347a〜347cの各出力の他方のサイドは、図示されるように、DCインダクタ371a、371bおよび371cに接続される。DCインダクタ371a、371bおよび371cはアーク電極27a、27bおよび27cに接続される。ACで作動中、スイッチ364、365および366は閉であり、その結果DCインダクタ371a〜371cは短絡回路になる。
【0272】
表6に提供されるように、スイッチを開の位置または閉の位置のいずれかにすることにより、炉アーク回路はAC電源またはDC電源のいずれかで作動し、所望の電源間で切り換わるように構築され得る。
【0273】
【表6】
Figure 0003819298
【0274】
例えば、DC電源で炉のアーク部分を作動させるために、スイッチ349、351、354、355、357、359、361、363、364、365、366、367および370を開にする必要があり、スイッチ350、352、353、356、358、360、362、368および369を閉にする必要がある。AC電源で炉を作動させるために、スイッチ350、352、353、356、358、360、362、368および369を開にする必要があり、スイッチ349、351、354、355、357、359、361、363、364、365、366、367および370を閉にする必要がある。このように、示したように、スイッチを開および/または閉にすることで、アーク電極にAC電源またはDC電源のいずれかを提供することができる。
【0275】
ジュール熱電極の動作に関するいくつかの代替の実施形態が図11A〜11Iに示される。ジュール熱電極は、DC電源よりもむしろAC電源で電力を与えられる。DCは所望でない分極を引き起こすので、ジュール熱電極はDCで電力が与えられない。負荷制限リアクトルは図11A〜11Hにおいて必須ではない。なぜなら、波形とは無関係に、ジュール熱電極で消滅するアークは存在しないからである。
【0276】
ここで、図11Aを参照すると、ジュール熱を2つの電極に提供するAC回路372が示される。図11Aに示されるように、電極24aおよび24bは、炉21のスラグレベル30aの下に部分的に浸される。対電極28は接地384に接続され、上記のアーク電極回路とともに使用され得る。
【0277】
回路372は、相375a、375bおよび375cにそれぞれ接続された1次巻線373a、373bおよび373cを含む。回路ブレーカ374a、374bおよび374c(例えば、空気遮断機)が、図示されるようにさらに提供され得る。図11Aに示されるように、1次巻線373は三角形状に接続される。
【0278】
回路372はまた、2次巻線376a、376bおよび376cを有する「U」型2次回路376を含む。この構成は小さな炉での動作に望ましくあり得る。なぜなら、小さな炉は2つのジュール熱電極を使用するだけだからである。一方の端子377が電極24bに直接接続される。端子(C2)377が電極24bに直接接続されるので、この電極は「U」型2次巻線376を適切に接地し得る。
【0279】
図11Aにも示されるように、2次巻線376bの一方の端子は限流リアクトル378に接続される。限流リアクトル(CLR)は、キャパシタ379およびSCRスイッチ380(これは、サイリスタ381aおよび381bを含む)と直列に接続される。スイッチ380は電極24aに接続され、電極24bは図示されるように端子(C2)377に接続される。上記のように、サイリスタ381aおよび381bと並列で接続された(キャパシタ383と直列で接続されたレジスタ382を含む)スナッバー回路もまた含まれ得る。
【0280】
図11Aに示される回路と図9Aに示される回路との違いの一つは、DC遮断キャパシタ(C)379が電極24aと直列で接続されることである。キャパシタ379は、ジュール熱回路との干渉から(このような回路がACまたはDCで作動される場合はアーク電極回路から)DCを遮断する。ジュール熱回路に供給する変圧器のコアの飽和を引き起こすには微小なDC電流がかかり、それゆえ、ジュール熱電力システムに入る少量のDC電流は顕著な損傷を引き起こし得ることに留意のこと。ACと相互作用するAC(すなわち、ACアーク電極およびACジュール熱電極)を用いると、(DC−AC構成と比較した場合)アーク電極からのAC電流とのより大きな相互作用が必要とされ、その後、相互作用はさらに顕著になり、さらに多くのAC電流が変圧器を(損傷するポイントまで)かなり加熱することが必要である。変圧器を加熱または損傷する電流の相対的な大きさは、多くの変圧器の設計パラメータに依存する。
【0281】
図11Bは、2つのジュール熱電極にジュール熱を提供する別の回路を示す。図11Bに示される回路385は、両方の電極24aおよび24bが電極24aおよび電極24bの電流を独立して制御するためのSCRスタティックスイッチ380aおよび380bを有するように設計される。加えて、SCRスイッチ−ニュートラル387(これはサイリスタ388aおよび388bを含む)は電極24aと対電極N28との間、ならびに対電極N28と電極24bとの間で流れ得るAC電流の量を制御するために使用され得る。加えて、2次変圧器巻線376aはニュートラル386に対して中心にタップ(tap)されるので、ジュール熱回路との干渉からACまたはDCアーク電流の相互作用を防止するために、それぞれ電極24aおよび電極24bと直列にあるキャパシタ379aおよび379bを有する必要がある。スナッバ回路はまた、SCRスイッチと並列状態で含まれてもよい。
【0282】
図11Cは、3個のキャパシタ(1つは各ジュール熱電極回路と直列である)を追加した図9Dに示されるACアーク回路に類似している。さらに、キャパシタ394(C)およびレジスタ395は、電気的ノイズを最小化するために、Y字型2次変圧器巻線393a〜393cのニュートラルポイントN392と対電極28との間に、(図9Dのスイッチ272の代わりに)接続される。
【0283】
図11Cに示されるように、回路391は1次巻線373a、373bおよび373c、ならびに2次巻線393a、393bおよび393cを含む。2次巻線393a、393bおよび393cは、キャパシタ394、レジスタ395および対電極ニュートラル28に接続されたニュートラルポイント392でY字に接続される。これは、ニュートラルを接地するためになされるが、対電極はまたニュートラルに接続されるので、ニュートラルおよび対電極は両方とも接地される。
【0284】
図11Dに示される回路396は、図11Cのサージ接地キャパシタ394がSCRスイッチ−ニュートラル387(これはサイリスタ388aおよび388bを含む)で置換されることを除いて、図11Cに示される回路391と類似している。SCRスイッチ−ニュートラル387は、3個の電極24a、24bおよび24cから対電極N28までのSCRの相制御によるAC電流の制御を可能にする。SCRスイッチは、3個の電極の電流が平衡でない場合、ニュートラルへ流れ得る電流の量を制御する。
【0285】
ここで、図11Eを参照すると、4個の電極構成にジュール熱を提供する別の回路397が示される。この実施形態では、スコットT変圧器398は(それぞれ相375a、375bおよび375cに接続された)1次巻線399a、399bおよび399cと、2個の別個の変圧器2次巻線400aおよび400bとを含み、これにより、図11Aに示される回路に類似した2次巻線400aおよび2次巻線400bに接続された各回路をなす。これは、ジュール熱が4個のジュール熱電極24a、24b、24cおよび24dに提供されることを可能にする。回路ブレーカ374a、374bおよび374c(例えば、空気遮断機)がまた提供されてもよい。
【0286】
図11Fは、本発明に従うジュール熱を提供する別の4個の電極スコットT変圧器回路を示す。図11Fに示される回路401は、それぞれ402aおよび402bに中央にタップされた2次巻線400aおよび2次巻線400bを示す。中央タップ402aおよび402bは、SCRスイッチ−ニュートラル387(これは示されるように、サイリスタ388aおよび388bを含み、並列に接続されたスナッバー回路もまた含み得る)によって、対電極N28に電気的に接続される。キャパシタ379a〜379dによってDCから分離された4個のジュール熱電極24a、24b、24cおよび24dを用いると、この回路はまた、スイッチ380a〜380dからの4つの電流が均等でない場合に5個のSCRスイッチ380a、380b、380c、380dおよび387によって提供される相制御のために、対電極電流の優れた制御を提供する。電流は、いくつかの電極またはすべての電極を流れる電流が均等でない場合の2次ニュートラルと対電極との間で流れ得るに過ぎない。ニュートラルにおけるスタティックスイッチは、このスタティックスイッチを流れ得る平衡でないAC電流の大きさを制御するために使用され得る。6個のジュール熱電極にジュール熱を提供する別の実施形態が図11Gに示される。回路403は、図11Eの4個の電極回路と類似した6個の電極ACジュール熱回路であるが、異なる変圧器構成を有している。
【0287】
変圧器は、(相375a、375bおよび375c用の)1次巻線404a、404bおよび404cを含む。回路ブレーカ374a〜374c(例えば、空気遮断機)がまた含まれてもよい。2次巻線405a、405bおよび405cは、それぞれ限流リアクトル378a、378bおよび378cに接続され、これらの限流リアクトルはそれぞれジュール熱電極24b、24dおよび24fに接続される。2次巻線405a、405bおよび405cはまた、それぞれキャパシタ379a、379bおよび379cに接続され、これらのキャパシタはそれぞれSCRスイッチ380a、380bおよび380cに直列に接続される。
【0288】
スイッチ380a、380b、380cは、それぞれ、ジュール熱電極24a、24c、24eに接続される。図11Gに示された実施形態における二次巻線は図11Eと同様に中央タップされたものではない。回路毎に1つのCLRのみが必要とされ、図11Gに示された回路では巻線中央タップまたはニュートラルがないので、位相毎に1つのAC静的スイッチのみを使用するか、または、二次変圧器巻線あたりに必要とされる。
【0289】
図11Gに示されるように、限流リアクトル378a−378cは電極24b、24d、24fに接続される。あるいは、限流リアクトルは、(電極24a、24b、24eに接続される)SCRスイッチ380a、380b、380cと直列に接続され得る。キャパシタ379a−379cは、SCRスイッチおよび/または限流リアクトルの位置にかかわらず、いずれの電極にも接続され得る。これらの代替物は、上記の他のジュール熱電極回路に適用する。
【0290】
回路がニュートラルまたは中央タップを有している場合(または2または3の二次巻線がお互いに接続されている場合、または、2つの電極が同じ巻線から供給される場合)、各電極への電流を制御する手段を提供することが好ましいことに留意すべきである。これは、限流リアクトル、SCRスイッチ(または過飽和リアクトルが静的スイッチと同じ機能を実行するのでSCRスイッチの代わりに使用される場合の過飽和リアクトル)およびキャパシタによって図11Fおよび図11Hにおいて為される。
【0291】
図11Hは、ジュール熱を6つの電極に提供するための別の実施形態を図示する。図11Hに示されるこの6つの電極回路406は、図11Fに示される4つの電極回路に類似しているが、図11Hの回路では、スコット−T変圧器を含まない。図11Hにおいて、6つの電極のすべては、自身の電流を独立して制御し得る。図11Hにおいて、電極24aおよび電極24bは同じ電流を有し、電極24cおよび電極24dは同じ電流を有し、電極24eおよび電極24fは同じ電流を有する(但し、電極24aおよび電極24bにおける電流は、電極24cおよび電極24dにおける電流とは異なり得、電極24eおよび電極24fにおける電流とは異なり得る)。
【0292】
二次巻線405a、405bおよび405cはそれぞれ、407a、407bおよび407cに中央タップされ、(サイリスタ388aおよび388bを含む)SCRスイッチニュートラル387によって対向電極ニュートラル28と接続される。
【0293】
図11Iは、本発明にしたがって、ジュール熱を提供するための別の実施形態を図示する。図11Iに示されるように、ジュール熱回路500は、一次巻線501と二次巻線504a−504cとを含む。回路500は、また、限流リアクトル503a−503fと、キャパシタ505a−505cと、静的スイッチ506a−506cと、静的スイッチ507a−507cと、対向電極508とを含む。二次巻線における位相の各々は、直列(示されるような)または並列に接続され得る。例えば、B位相二次巻線はそれぞれ120ボルトであり得、全体で240ボルトの場合には図示されるように直列で、または、120ボルトの場合には並列に接続される。(リアクトル503cは常にB−1(504c)に直列に接続され、リアクトル503dは常にB−2(504d)に直列に接続されている。位相Aおよび位相Cは同様に接続され得る。
【0294】
回路500は、外部電気回路接続を対向電極に提供することなく、独立して制御されたデルタ回路電流(すなわち、静的スイッチ506a−506cが電流を伝導する場合に3つのジュール熱電極502a−502cを通過する電流)を電極のそれぞれに提供することが予期される。これは、電極電流の一部をジュール熱電極が浸漬された溶融されたスラグの他の部分よりも低い抵抗を有する導電経路に分流するのに利用可能な他の経路がない場合、制御されたデルタ電流がジュール熱電極のそれぞれの間を流れることを意味する。
【0295】
このデルタ電流は、静的スイッチ506a、506b、506cによって制御される。このデルタ静的スイッチは、開回路または非導電状態である場合、静的スイッチ507a、507b、507cが導電状態である場合、これらのソリッドステートスイッチ(スイッチ507a、507bおよび507c)により、同じ二次巻線がY字構成であると仮定することを可能にする。さらに、デルタ静的スイッチおよびY字静的スイッチの両方が、両方とも電流を同じ全時間フレームにおいてバスに配送している場合、スラグ熱の全体の容量がより効率的に制御されるだけでなく、J×B電磁場は、手動または自動制御回路のいずれかによって制御され得る攪拌動作を提供する。結果として、改良された利益のあるバス混合が得られ得る。
【0296】
上述した実施形態では、お互いに有害な相互作用も無く、アーク電極およびジュール熱電極の同時の動作が可能である。ジュール熱回路内のキャパシタは、DC動作が使用中である場合、アーク電極回路からの直流の流れを妨げる。さらに、炉がACアーク電極およびACジュール熱電極で動作する場合、有害な相互作用はない。上述したように、ジュール熱回路に供給する変圧器のコアの飽和を生じさせるのに必要なのは、極めてわずかなDC電流であり、したがって、ジュール熱電源システムに入るわずかな量のDCは有意なダメージを生じさせ得る。ACとACとの相互作用(すなわち、ACアーク電極およびACジュール熱電極)では、相互作用が目立つ前に、(DC−AC構成と比較して)アーク電極からのAC電流とさらなる相互作用が必要とされ、変圧器をかなり加熱するために、さらに多くのAC電流が必要とされる。
【0297】
アーク技術を単独で使用する場合、電極ハース直径比は、ハースの中身がハースの中心だけでなく、ハースの壁においても充分に溶融することを確実にするように大きい必要がある。したがって、ハースのサイズは、電極直径の実用的な限界に起因して制限される。しかし、ハースまたはガラスタンクをジュール加熱する場合、この限界はもはや存在せず、そのタンクは、滞在時間がすべてのガラス構成要素の完全な混合および溶解に対して充分であることを確実にするような大きさにされ得る。
【0298】
アークなしに溶融室技術を使用した場合、この供給量は、溶融プールから溶融されたガラスの上に溶融されない供給までの熱伝達の制限に起因してかなり低い。大きなスループット要件に適応させるために、標準的なアプローチは、溶融表面領域を増加させることである。したがって、ジュール熱溶融室は、本発明の組み合わされたアーク−溶融室システムより所与の処理速度に対してかなり大きいことが必要である。本発明は、アークとACジュール熱溶融室技術との両方の利点を使用し、単一の最適化されたシステムにおいて使用される。
【0299】
ジュール熱は、単独で、長いアイドリング期間の間、溶融されたバスを保持するために使用され得、それにより、電力要件を減らす。さらに、溶融されたバスは電気的に伝導しているので、アークプラズマは、伝達アークモードにおいて容易に再始動され得る。
【0300】
本発明によるアークプラズマ炉とジュール熱溶融室との組み合わせにより、所与の大きさの炉システムに対してより早い処理速度で、供給廃棄材料をすばやく加熱する方法を提供する。制御された加熱速度によって、より高品質な熱分解ガスを生成することもできる。さらなるエネルギーが回収され、ガス放射の汚染が減る。さらに、本発明のジュール熱溶融室は、極めて高い安定性で均一なガラス生成物を生成するために、実証された混合を行うより大きなリザーバを提供する。ガラス化されたガラス生成物は地質年代フレームに対して安定であるので、これは利点がある。例えば、Buelt et al., In Situ Vitrification of Transuranic Wastes:Systems Evaluation and Applications Assessment, PNL−4800 Supplement 1、Pacific Northwest Laboratory, Richland、WA(1987)を参照されたい。さらに、本発明は、灰化のみから生成される灰と比較して灰のガラス化を介してさらなる体積減少を提供する。Chapman, C., Evaluation of Vitrifying Municipal Incinerator Ash, Ceramic Nuclear Waste Management IV, Ceramic Transactions, G.G. Wicks, Ed., Vol.23, pp223−231, American Ceramic Society(1991)を参照されたい。
【0301】
本発明によって生成された生成物は、ガラス質、ガラス状の材料であり得る。あるいは、その材料の構造は、本質的に失透性および結晶性であり得る。さらに、その生成物は、純粋な結晶性材料からアモルファスのガラス質生成物またはそれらの任意の組み合わせの範囲の特性を有するセラミック材料であり得る。生成物の結晶性または非結晶性は、供給材料(ユニットにおける処理の間の添加物の添加を含むがそれに限定されない)の成分および/またはスラグが廃棄物変換ユニットから注がれるか、または、取り除かれた後、スラグの変質によって変わり得る。結晶性は形成される最終生成物の安定性および/または非浸出に好影響または悪影響を及ぼし得るので、廃棄物変換ユニットから除去された後のスラグの処理は、最終生成物の所望な特性にしたがって、改変され得る。
【0302】
上述したように、本発明は、高速熱分解を容易にする方法および装置を提供する。高速熱分解は、熱分解の他の手段よりも高い純度を有する熱分解ガスを生じる。この高い純度のガスは、高効率小ガスタービン技術での使用を容易にし、それにより、従来の蒸気タービンと比較して効率を上げ、必要とされるタービンのユニットサイズを減少させる。DCまたはACアーク(単数または複数)は、速い熱分解を高効率で得るために高温熱源を提供する。Greaf, et al.、 Product Distribution in the Rapid Pyrolysis of Biomass/Lignin for Production of Acetylene, Biomsass as a Nonfossil Fuel Source, American Chemical Society(1981)は、プラズマ炉内で見出されるような条件下で、地方自治体の固体廃棄物が表7に示されるようなガス状の生成物に熱分解されることを示している。
【0303】
【表7】
Figure 0003819298
【0304】
通常の熱分解と高速熱分解とを比較すると、入来の廃棄物のより大きな割合がガスに変換されることに留意することは重要である。熱または通常の熱分解は、45−50%のみの変換で熱分解ガスを生じる液化を促進するが、高速熱分解は65%よりも高いガス収率を有する。地方自治体の廃棄物の高速熱分解は、冷却された水、金属プラズマトーチを用いて実証されている。Carter, et al., Municipal Solid Waste Feasibility of Gasification with Plasma Arc, Industrical and Environmental Applications of Plasma, Proceedings of the First International EPRI Plasma Symposium(1990年5月)を参照されたい。動作の部分酸化モードにおいて、両方の技術からの残さは、熱分解エネルギー要件を相殺するように酸化される。
【0305】
本発明によって生成される熱分解ガスは、技術水準、すなわち、高効率ガスタービン生成器における燃焼によく適していると予期されている。50%に達する新たなガスタービン混合サイクルシステムの効率性を備えて、廃棄物−エネルギー変換の本発明の方法は、標準的な廃棄物灰化に対する効果的な代替物を提供する。都合のよい条件下で、灰化蒸気生成器システムは、廃棄物に含まれる潜在的なエネルギーの使用可能な電気エネルギーへの変換において、15−20%の効率を達成する。
【0306】
本発明によって生成される高品質なガラス生成物は様々なアプリケーションにおいて用いられ得る。例えば、ガラス生成物は粉砕され、道路に用いられるアスファルトなどに混ぜられ得る。あるいは、ガラス生成物は、軽量コンクリートブロックまたは建築用ブロック内の灰の代わりに利用され得、ブロック内への水の吸収を最小限にする。さらに、従来のガラス生成物を超えるかなりの体積低減を示すガラス生成物は、最終生成物に凝固され得る。凝固物は、健康へのリスクまたは環境へのリスクなしに処分するのに適切である。
【0307】
本発明の他の実施形態によれば、溶融酸化物池を用いるチューナブルアークプラズマ−溶解装置システムが用いられる。溶融酸化物池の組成は、中間BTUガスが少ないように生成することが可能な態様で、金属、無ガラス生成廃棄物および低灰生成廃棄物を処理可能な電気的、熱的および物理的な特性を有するように調整され得る。溶融池の伝導性は、融解調整材料を付加することにより制御され、システムのジュール加熱部分は、100パーセントのジュール加熱動作の条件下であっても融解の温度を効果的に保つことができる。溶融池の電気抵抗は特定の範囲内に保たれることが望ましい。例えば、チューナブルアークプラズマ溶解装置のいくつかの構成において、溶融池組成は、溶融酸化物池の効果的なジュール加熱のために1オーム−cm以上の電気抵抗を保つ組成であることが望ましい。廃棄物の処理および浴温度に依存して、電気抵抗は、好適には1−200オーム−cmの範囲、さらに好適には5−15オーム−cmの範囲である。
【0308】
この本発明の実施の形態は、これまでは処理が特に困難であった多種多様の廃棄物ストリームに対して高度の制御性および効率性を示すチューナブルアークプラズマ溶解装置システムを提供する。例示的な無ガラス生成廃棄物は、タイヤおよび鉄等の金属を含む。具体例としての低灰生成有機物は、プラスチック、オイル、溶剤等を含む。有害な有機液体、低灰生成有機物および金属の混合物、または限られた量の灰分およびかなりの量の金属を含む有機物のような廃棄物ストリームの全ては、チューナブルアークプラズマ溶解装置システムの制御された種々の組成の溶融酸化物池を用いて処理され得る。一次還元金属を含む汚泥のような廃棄物は、結果として生じる溶融物の高い電気伝導性のために、ジュール加熱ガラスタンクの処理にあまりむいていない。しかしながら、制御された組成の酸化物プールの動作モードを用いることにより、チューナブルアークプラズマプロセスは、溶融金属浴中でスラグから重量的(gravimetrically)に分離されて得られる溶融物でさえ処理することが出来る。
【0309】
金属、無ガラス生成廃棄物および低灰生成無機物の処理に適切な本発明のシステムを図12に示す。システム408は、炉409と、清浄ユニット410と、ガスタービンまたは内燃機関411と、ジェネレータ412とを含む。システム408はまた、熱交換器417およびコンプレッサー420を含み得る。
【0310】
本明細書中ですでに非常に詳しく述べたように、金属、無ガラス生成廃棄物および低灰生成無機物を含む汚泥のような廃棄物ストリームは、炉409へ導入される。廃棄物ストリームは、所望の電気的、熱的および物理的特性を有する組成を有する溶融酸化物池413と組み合わされる。炉の状態に依存して、溶融池または廃棄物供給は、DCまたはACアーク(単数または複数)415と接触し、溶融池413を生成する。DCまたはACアーク(単数または複数)415は、上述したジュール加熱電極416aおよび416bと組み合わされたDCまたはACアーク電極(単数または複数)414を用いて実施され得る。様々な炉の構成が図12に示すシステムの使用に適切であり得ることが当業者には明らかである。例えば、上述したように、ジュール加熱電極の数は2つより多くの電極を含んでもよいし、さらなるDCまたはACアーク電極を用いてもよい。
【0311】
いくつかの廃棄物ストリームの処理の間、溶融酸化物池413の表面413aは所定量の蒸気418と接触することが望ましい。例えば蒸気418は、以下の水性ガス反応の使用を円滑にするために用いられ得る。
【0312】
C+HO→CO+H (1)
ストリーム418は、炉409の溶融池413の表面413aの直上または表面413aに導入される。この態様では、炭素廃棄物材料は、水素リッチガス421を形成するように処理され変換される。システムにより生成された水素リッチガス421は、ポート412aを通って出て行き、清浄ユニット410内で清浄される。例えば、清浄ユニット410内で硫化水素(HS)、硫黄酸化物(SO)および塩化水素(HCl)が水素リッチガス421から除去され得る。清浄ユニット410は、洗浄機(単数または複数)等を含み得る。水素リッチガスは、次に、内燃機関411内で燃焼される。内燃機関411は、ジェネレータ412と接続され、電気422を生成する。別の実施形態において、内燃機関411は、高効率ガスタービンまたは(ガスが十分にきれいで燃料電池にダメージを与えない場合)燃料電池に置き換えられ得る。
【0313】
電気429は、結果的に電力会社等の外部ソースから供給され得、炉409のアークおよびジュール加熱機能に電力が供給される。そのような電気は監視430等を受ける。さらに、電気422の一部422aは、ジュール加熱電極(この場合、変圧器426を設けてもよい)の電力をアシストするために用いられ得、かつ、アーク電極(単数または複数)414の電力をアシストするために用いられ得る。電気422cの一部はまた、第2プラズマ反応チャンバー(図14Aおよび14Bに示す)に利用され得る。さらなる電気422は、商業形態で売却または利用され得る。そのような電気はジェネレータ412を出て、回路ブレーカ(単数または複数)423、変圧器425および回路ブレーカ424により制御され得る。
【0314】
ガスタービンまたは内燃機関411からの排出ガス427内の排気熱は、図12に示す熱交換器417を用いることにより、水性ガスおよび水シフト反応のための蒸気418を生成するために用いられ得る。熱交換器417は水源428または他の熱交換媒体に接続される。
【0315】
(特定の状態における)制御された量のエアー419は、コンプレッサ420を用いてシステム408内に導入され得る。そのような状態は、エネルギーの回収が所望でないまたは実用的でない場合(例えば、廃棄物生成酸化還元状態が安定した廃棄物生成を高く保障する必要があるか否かを判定する場合)に生じ得る。このような状態下では、炉システムは、酸化条件下で動作する能力を有する。炉409は、システム内に入るエアーおよびガスの量が制御可能なように構成される。例えば、図13〜14に関連して本明細書中で説明される431a、432aおよび433aのようなポートは、炉409への様々なストリームの導入および/または除去の制御を可能にするように設計される。溶解池の組成は、それを通るエアーの望ましくない出入りを可能にすることなく所与の廃棄物ストリームに最適となるように選択される。
【0316】
本発明は、処理されている第1廃棄物材料とはまた別の材料の溶融酸化物池を使用することによって、システムのチューナブルアークプラズマ溶解部分を効果的に用いるための所望の媒体を提供することができる。図13Aを参照して、金属、無ガラス生成廃棄物および低灰生成無機物の処理に適した炉を説明する。
【0317】
図12に関して上記で説明したように、炉409は、DCまたはACアーク(単数または複数)415を生成可能な1つ以上のDCまたはACアーク電極414を含む。炉409はまた、ジュール加熱電極416aおよび416bを含むジュール加熱機能を含む。
【0318】
処理される第1廃棄物ストリーム431は、ポート431aを通って炉409へ導入される。(1種類以上の)融解調整剤432がポート432aを通って炉409へ導入される。あるいは、または、融解調整剤432に追加して、所望のガラス生成特性を有する第2廃棄物ストリーム433がポート433aを通って炉409へ導入される。
【0319】
溶解池の組成は、所与の廃棄物ストリームに最適なように選択される。これに限定されないが、融解調整剤432は、例えば、ドロマイト(CaCo・MgCO)、ライムストーン(例えば、炭酸カルシウム(CaCO))、砂(例えばガラスでつくられた砂(glass maker’s sand))、ガラスフリット、無水炭酸ナトリウム(ソーダ灰)、他のガラス生成組成物および/または金属を混合した砂を含む。他のガラス融解調整剤が本発明において用いられることは当業者には明らかである。溶解酸化物池はまた、第2廃棄物と処理される第1廃棄物以外の材料(単数または複数)とを混合した融解調整剤を用いて形成され得る。例えば、特定のガラス形成組成の第2廃棄物は、第1廃棄物および/または他の融解調整剤(単数または複数)と共に同時に炉に送り込まれ、特定の組成範囲内に溶解酸化物池を保ち得る。溶解池の組成は、所与の廃棄物ストリームに基づいて選択される。この動作モードは、チューナブルアークプラズマジュール加熱溶解装置システムの動作に高度の柔軟性を提供し、それにより、システムが処理できる廃棄物の種類が広がる。
【0320】
溶解酸化物池が、融解調整剤の追加に対してジュール加熱溶解装置または標準的なプラズマアーク処理の柔軟性を超える柔軟性を与えることは当業者には明らかである。高伝導酸化物混合物の場合、ジュール加熱システムは、アークにより提供される追加のエネルギー無しに溶融浴温度を保つことは非効率的であるかまたは不可能であり得る。逆に、高抵抗酸化物混合物の場合、ジュール加熱電極にわたる電位は受け入れられないほど高くなることが可能であり、適合する電流をジュール熱を提供するように保つことが出来ない。追加のエネルギーはアークにより提供することが可能である。しかしながら、アークエネルギーは、上記条件のいずれの場合でも、入ってくる廃棄物を処理するのに十分なエネルギーおよび溶融浴温度を保つための追加のジュール熱エネルギーのみを提供するように制御され得る。本発明の実施形態の溶解酸化物池は、ジュール加熱溶解装置システムまたは標準的なアークプラズマ処理の柔軟性よりも、融解調整剤を用いた融解調整の非常に高度の柔軟性を提供する。
【0321】
融解調整剤432および/または第2廃棄物ストリーム433は、所望の電気的、熱的および物理的特性を有する溶解池が提供されるように選択される。融解調整剤のタイプおよび量は、特定のガラス化ユニット構成および廃棄物ストリームに応じて決定される。例えば、廃棄物ストリーム431内のタイヤを処理する場合の溶解池は、動作のより最適なモードでのジュール加熱溶解装置サブシステムを使用するための十分な伝導性を提供する。上述したように、所望の量のストリームが、溶解池直上または溶解池に追加され、水性ガス反応の使用を促進しまたは余分な炭素材料を除去する。
【0322】
図13Bは、本発明により溶融酸化物池を利用するいくつかの金属を再生する最適な炉を示す。金属が処理される場合、溶融池の制御された構成は、溶融金属酸化層が炉底の高密度層の上方に配置されるように、変化される。好適には、ジュール熱(joule heating)電極の位置および数が、処理される廃棄物のタイプおよび容積により変更され得る。廃棄物が、例えば高密度の金属含有物(high metals content)を有する場合、ジュール熱電極は、電極間の効率のいい抵抗パスを調整するかまたは「チューニングする(tune)」ように、高温化されるか、または低温化され得る。金属層は、ジュール熱電極間の電気的パスを、高い導電性の溶融室層と接触することにより、または、ほぼ接触することにより、効率よく「ショートする」点まで増やすことが可能になる場合、これは必要とされ得る。さらに、炉の中のジュール熱電極の数は、処理される廃棄物材料のタイプおよび量に依存して、設計され得る。
【0323】
図13Bにさらに示されるように、溶融金属酸化層434は、炉409の高密度金属層435の上方に配置される。ジュール加熱(joule heated)溶融池434/435は、融解された条件剤材料432および/または第2の廃棄物ストリーム材料433を加えることにより制御され、その結果、システムのジュール加熱された部分は、100%のジュール加熱動作等の条件下の場合でさえ、効率よく融解物の温度を維持し得る。
【0324】
一定の範囲の溶融池の電気抵抗性を維持することが望まれる。例えば、チューナブルアークプラズマ溶融室のいくつかの構造の場合、溶融池の構成は、溶融酸化池の効率のよいジュール加熱に対する1オームを超える電気的抵抗性により維持されることが望まれる。いくつかの実施形態において、電気的抵抗性は、好適には、1〜200オーム−cm内であり、さらに好適には、5〜15オーム−cmである。しかし、廃棄物ストリーム、融解物、炉のサイズおよび構成は、これらの範囲において重要な効果を有する。
【0325】
図14Aおよび14Bは、本発明により例示的な第1および第2の炉の構成を示す。自動者およびトラックのタイヤまたは他の非ガラス形成廃棄物ストリームの場合、チューナブル溶融酸化池プラズマアーク溶融室処理は、タイヤ全体を低濃度の媒体BTUガスに効率よく変換させる。この様態において、タイヤは、解体することなく自動者から取り外され得、チューナブルアークプラズマ溶融室システムの処理に従順である。スチールベルトおよびリム材料は、溶融金属段階から再生する。
【0326】
タイヤラバーから主に合成ゴム(例えば、水素および一酸化炭素を含む)への変換を達成するために、蒸気および可能であれば制御された空気量は、制御された態様にて融解チャンバに加えられ、以下に示すように一連の反応を容易にし得る。蒸気および空気混合物は、蒸気/空気混合物が融解表面での炉に導入されるように、羽口(tuyer)または同様に配置された部材(the like positioned)を用いて、ポートを介して加えられ得る。これにより、炭素質材料がガス生成物に変換され、ガラス/スラグマトリクスにトラップされないことが確認される。
【0327】
化学反応式(1)〜(5)は、酸素および/または蒸気を炉409の融解チャンバへの導入に基づいて生じる反応を生成する。
【0328】
C+HO→CO+H (1)
C+CO→2CO (2)
CO+HO→CO+H (3)
C+O→CO (4)
C+2H→CH (5)
反応(1)および(2)は、高い吸熱反応であり、それぞれ131.4kJ/moleおよび172.6kJ/moleを必要とする。大気圧近傍で蒸気を主に導入すると、反応(1)、すなわち、水−ガス反応が優勢となり、水素が豊富なガスを生成するには、(すなわち、131.4kJ/mole)を必要とする。上述したように、このガスは、微粒子除去技術およびスクライブ溶液を用いて消去され、これにより、ガスタービンまたは内燃エンジンの電気的ジェネレータシステムのどちらかで燃焼する前に、あるいは本明細書中で議論されるように燃料電池での使用のために、大部分の微粒子、ならびに、硫黄、および、HS、SOおよびHClの形態をとる塩素等の他の含有物を除去する。不要な熱は、炉チャンバの蒸気を生成して、蒸気を供給するように利用され得る。高温の空気は、さらなる熱エネルギーが必要とされる場合、ガスタービンの中間ステージから抽出され得る。
【0329】
水素に対して高比率の炭素を含む材料の処理は、主な熱排気(furnace exhaust)に剰余の炭素(すなわち、未反応の炭(char))を生成することになる。例えば、タイヤは、通常、水素に対して高比率の炭素を含む。この剰余の炭素または未反応の炭は、図14Aおよび図14Bに示されるように、有用なガス燃料436に変換され得るか、または、第2のプラズマ反応チャンバ437にて加熱するように変換され得る。このチャンバは、移動されたプラズマアークおよび/またはプラズマトーチ438からの熱エネルギーを提供し、所望の反応を駆動する、すなわち、上述の反応(1)を開始させる。電気(electricity)422cおよび/または429は、図14Aおよび図14Bに示されるように第2の反応チャンバ437に供給される。第1の炉チャンバ内にあるように、蒸気および可能であるならば空気または酸素(図14Aおよび図14Bに図示せず)がスラグ439の上方または直接に加えられ、炭素および炭素を含む化合物を一酸化炭素および水素ガスに完全または実質的に完全に変換する。
【0330】
高炭素を含む廃棄物(例えばタイヤ)から生成された炭はまた、融解された酸素の表面に蓄積する。さらなる完全な炭素変換を確実にするために、蒸気および制御された空気量の両方は、上述したように融解線(melt line)に、または融解線の上方に導入され得る。上述されたような反応(4)は、空気が存在する場合、優勢であり、これにより、反応された炭素の約393.8kJ/moleの正味の熱エネルギー生成を生じる。この熱エネルギーは、蒸気および空気の同時の導入によるこの表面ゾーン(surface zone)にて反応(1)を駆動させる。空気−蒸気混合物は、炉システムからの所望のガス生成物を提供するように、正確に制御され得る。例えば、水性ガス反応は、炉床内の炉コーク堆積物(coke deposit)または蓄積物を一酸化炭素および水素が豊富なガスに変換するように用いられ得る。いくつかの状況において、コークの一部を炉床に残しておき、電極の侵食を減らし得ることが望まれる。
【0331】
システムにより生成された水素が豊富なガスが消去され得、次いで、ガスタービンまたは内燃エンジンにて燃焼され、次にジェネレータ内にて電気を生成するように用いられる(または燃料電池内で利用される)。好適な実施形態において、ガスタービンまたは内燃エンジンからの排気熱は、融解装置(melter unit)内の水ガス反応に対する蒸気を生成するように用いられ得る。内燃エンジンまたはガスタービンが使用されない環境において、蒸気はまた、炉オフガス(off−gas)421を部分的に冷却し、排気シフト反応のこの蒸気を用いることによって、取得され得る。
【0332】
タイヤ等の炭素材料が蒸気および制御された量の空気による熱分解モードで処理される場合、処理された材料は、高い効率のよい(例えば、35〜50%)ガスタービンまたは内燃エンジン内の燃焼に(または燃料電池に)適した低濃度の媒体BTUガスを生成し得る。チューナブルプラズマアーク溶融室はまた、上述した熱分解モードで炭素材料を処理する場合に、剰余の電気的パワーを生成し得る。ガスタービンまたは内燃エンジンジェネレータからの電気的パワーは、炉電源を助けるように供給され得る。このシステムはまた、溶融室のジュール加熱部および/またはユーティリティカンパニーにさらなるACパワーを提供し得、これにより、動作費用の減少および/またはさらなる収益の増加の機会を提供し得る。
【0333】
上述したように、本発明はまた、廃棄物変換装置で生成されたガスが燃焼される場合に、酸化窒素(NO)の放出を減らす環境的に魅力のある方法および装置を提供する。これは、水素が豊富なガスを燃焼し、内燃エンジンまたはタービンを非常に希薄なモードにて動作させることにより達成され得、その結果、電気が水素が豊富なガスから生成され得る。ここで、非常な希薄なモードとは、すなわち、燃料としての廃棄物変換装置からの水素−一酸化炭素ガスを含む燃料に対して空気が高比率であることをいう。
【0334】
本明細書中で用いられる「超希薄(Ultra lean)」は、化学量論操作に対する0.4〜0.7の等価比率(equivalence ratio)、Φを示す。Φは、空気量が完全に燃料ガスを燃焼する必要とされる量に正確に等しい化学量論的な条件の空気に対する燃料の比率に関する空気に対する燃料の比率である。通常のスパーク点火エンジンは、Φ=1である化学量論的な条件で動作する。参照すべきであるMacDonald,Evaluation of Hydrogen−Supplemental Fuel Concept With An Experimantal MultiCylinder Engine,Soc.of Automotive Engineers,Paper 930737,p.574(1976)は、本明細書中では参考として援用される。スパーク点火エンジン内での水素が豊富なガスの使用は、空気に対して超希薄な比率の燃料での動作を可能にする。空気に対する燃料の比率がΦが0.4以下である場合に動作することが可能である。Φのこれらの値が他の燃料に可能である値より実質的に低い。Φがより低い場合には、水素がより早く燃焼することになる。水素が豊富なガスおよび超希薄である場合の動作の使用はまた、非常に高い圧縮率の使用を可能にする。超希薄な場合の動作の組み合せおよび高い圧縮率の使用は、汚染および内燃エンジン効率を非常に減少させ得る。非常に希薄なモード、すなわち、約0.4〜0.7の範囲内の低い等価比率の動作により、NOxの生成物が非常に、すなわち、化学量論的な動作に対する10より大きいファクターだけ減少され得る。炭化水素および一酸化炭素の放出がまた非常に低い。
【0335】
廃棄物変換装置により生成された燃焼ガスから電気を生成する間にNO放出量を減少させるシステムは、図15および16に示される。システム440は、廃棄物変換装置441、ガスクリーンアップ装置443、スパーク点火エンジン449またはガスタービン(図15または16に図示せず)およびジェネレータ459(または本明細書に議論される燃料電池)を含む。プラズマ燃料変換器457(図16参照)および/またはエンジン誘導システム/ターボチャージャ445(図15参照)はまた、システム440に利用され得る。燃料源(図16に示される燃料源458)からの補助燃料448および酸化触媒451はまた、本発明により用いられ得る。
【0336】
上述したように、燃料ガスは廃棄物変換装置441から生成され得る。本発明にて使用される廃棄物変換装置はこれまでに示され、説明されたものを含む。本発明により使用されるさらなる廃棄物変換装置は、共に1996年3月25日に出願され、本明細書中で援用される同時係属米国出願第08/621,424号および08/622,762号で示されるものを含む。これらの廃棄物処理装置は、主に水素を含む水素が豊富なガスおよび一酸化炭素を生成し得、これらは、電気を生成するように燃焼され得る。電気は、排気処理システムに幾分または全て必要な電気量を満たすように利用され得る。燃料ガスを生成し得る他の排気変換装置がシステム440との関連で用いられ得ることを当業者により理解される。例えば、Carterらに付与された米国特許第5,280,757号;Chapman,Evaluation of Vitrifying Municipal Incinerator Ash,Ceramic Nuclear Waste Management IV,Ceramic Transactions,American Chemical Society.Vol.23,pp.223−231(1991);共にNagelに付与された米国特許第5,177,304号および第5,298,233号を参照すべきである。これらは、本明細書中で援用される。
【0337】
ガス442は、廃棄物変換装置441から出て、ガスクリーンアップ装置443に導入され、気体−液体分離する(例えば、ガス442に入り込み得る水素が豊富な燃料ガス444aから灰または他の粒子444bを除去し、分離する)。いくつかの状況において、ガス排出クリーンアップ装置443または内燃エンジン449(またはガス点火タービン)にオフガススクライブ(off gas scrubbing)処理を組み入れ、任意の酸性ガスをそこから除去することが望まれる。
【0338】
次に、水素リッチガス404aは、エンジン吸気系統/ターボチャージャ445中に導入され、空気446aの所定量と混合され、超希薄混合気ができる。ターボチャージャ445は、シリンダーの燃料の量を増加するために使用して、超希薄操作において減少した出力密度を補い得る。ターボチャージャ445は、ガラス固化ユニットまたは蒸気からの排気ガスで駆動され得る。このガラス固化ユニットまたは蒸気は、このシステムにおいて多様な点で熱交換器によって生成される。エンジン吸気系統/ターボチャージャ445により、水素リッチガス404aは、内燃機関449中に導入される以前に冷やされることができる。冷却は、爆発ごとに使用され得る燃料447の量を増加し得る。エンジン吸気系統/ターボチャージャ445の動作がつねに必要または望まれ得ないことには注意されるべきである。これらの状況下で、超希薄混合気中の水素リッチガス444aおよび空気446bは、図15または16に示されるようにスパーク点火エンジン449中に直接導入され得る。
【0339】
水素リッチガス447は、エンジン449で消費され、これにより排気450および機械出力453を生成する。機械出力453は、ジェネレータ454を駆動するために使用され、電気456および/または電気455を生成する。図15にさらに示されるように、電気456は、廃棄変換ユニット441に対していくつかまたは全ての電気所要量を供給するために使用され得る。電気456は、このシステムにおける他の電気所要量のために使用され得る(例えば、図16に示されるようにプラズマ燃料変換器457に電気456bを供給する)。電気455は、売り物として使用される。
【0340】
スパーク点火エンジン449の操作は、好適には、空気に対する燃料の希薄比Φであり、高混合比である。例えば、Φの例示的な値は、0.4〜0.7であり、好適には、約0.5である。混合比rの例示的な値は、12〜15である。対比において、ガソリンで操作される典型的なスパーク点火エンジンは、Φ=1およびr=10である。さらに、ガスタービンは、Φが0.4以下の比率で操作され得る。
【0341】
スパーク点火エンジンの効率は、超希薄操作を使用することによっておよそ20%の相対量によって増加され得ることが期待される(すなわち、効率は、例えばおよそ30%から36%まで増加され得る)が、これに限定するように構成されるべきではない。さらに、約15の混合比を利用することは、約15%の効率でさらに相対的に増加させることを期待する。従って、混合比を標準スパーク点火値10から約15の値まで増加することによって、温度効率は、さらに36%から42%まで増加され得る。Ganesan,Internal Combustion Engines,McGraw−Hill,Inc.(1995)を参照し、これを本明細書中で参考のために援用する。42%の温度効率は、1MW未満の出力の現在のガスタービン技術の効率よりも実質的に高い(例えば、100kWレベルのガスタービンは約30%の効率を有する)。さらに、このスパーク点火エンジンは、一般的に高価ではなく、一般的にストップおよびスタートがより簡単である。しかし、希薄操作を使用するガスタービンは本発明において適用され得ることには注意されるべきである(例えば、図1Aのタービン52を参照)。
【0342】
超希薄操作は、NO放出を劇的に減少し得る。NOレベルは、標準化学量論的操作を使用して生成されるNOの10倍以上少なくなり得ることが期待される。等価比が超希薄モード操作における上端(Φ=0.7)未満に減少されるように、NO放出は減少する等価比と共に減少する。さらに、水素リッチガスは、典型的に、炭化水素の小さい比のみを含み得、小さいレベルの炭化水素のまさに完全燃焼になることが期待されるので、炭化水素の放出は、とても小さくなり得る。さらに、一酸化炭素(CO)の放出は、COの高い燃焼量のために低くなることが期待される。さらなるCOの減少は、単純な酸化触媒の使用によって得られ得る。例えば、再び図15を参照すると、排気450は、酸化触媒451と組み合わされ、低汚染排気452を生成し得る。本発明の使用に適する酸化触媒は、プラチナおよびイリジウムを含むが、これに限定されない。エンジン449からの排熱の使用は、排熱発電において加熱および/または他のアプリケーションのための蒸気を提供し得る。
【0343】
本発明によって生成されるNO、CO炭化水素、炭化水素および微粒子のレベルは、小さいディーゼルジェネレータ出力ステーションからの放出レベルよりも著しく低くなることが期待される。本発明による放出レベルはまた、比較的大出力容量を有するプラントを生成する天然ガス燃焼タービンの電気よりも大きくならないことが期待される。この天然ガス燃焼タービンは、大規模な汚染制御装置を有する。
【0344】
廃棄処理ユニット441からの水素リッチガス442の生成が内部燃焼エンジン449のパワーとして十分でない場合、図15および図16に示されるように超希薄のスパーク点火エンジン操作を続けるためにエンジン449へ正確な量の補給燃料448(例えば、天然ガス)を直接加えることが望まれる。図16は、本発明の使用に適したスパーク点火エンジンと追加の燃料システムの統合を示す。
【0345】
図16に示されるシステム440は、図15に示されるシステム440に類似するが、プラズマ燃料変換器457(これの使用は図17の例に示されるように自動的に制御され得る)を含む。図16に示されないが、システム440がエンジン吸気系統/ターボチャージャ445(図15に示されるように)およびプラズマ燃料変換器457を使用することを用い得ることは明らかである。
【0346】
図16にさらに示されるように、プラズマ燃料変換器457は、追加の水素リッチガス460をスパーク点火エンジン449に供給され得る。このことは、水素リッチガス444(および/または補給燃料448)の量が所望の希薄操作モードおよび高混合比の使用においてエンジン449のパワーとして不十分である場合に、望ましいまたは必要である。
【0347】
プラズマ燃料変換器457は、補給燃料源458からの補給燃料459を受け取り、この燃料459を水素リッチガス460中に再編成する。本発明の使用に適するプラズマ燃料変換器は、Rabinovichらによる米国特許第5,425,332号および5,437,250号に開示されるプラズマ燃料変換器を含むがこれに限定されず、米国特許第5,425,332号および第5,437,250号の両方は、参考のために本明細書中で援用する。従って、水素リッチガス444および446は、希薄モードのエンジン449の操作を保証するために使用され得る。
【0348】
従って、本発明によりエンジン449に燃料を供給する多様な組み合わせは、希薄モードおよび/または高混合比の使用の操作を保証することを可能にし、これにより、コスト効果および環境的に魅力的なシステムを高効率に提供する。例えば、廃棄変換ユニット441からの水素リッチガス444は、単体で使用され得、燃料をエンジン449に供給する。あるいは、水素リッチガス444は、比例してエンジン449の補給燃料448(例えば、天然ガス)と組み合わされ得、エンジン449の希薄操作は保持される。プラズマ燃料変換器457はまた、補給の水素リッチガス460を水素リッチガス444と共に、または、水素リッチガス444および補給燃料448と共にエンジン449に供給するために利用され得る。
【0349】
プラズマ燃料変換器の補給燃料および/または操作が所望または必要であるときを判別するための例示の自動制御システムが図17に示される。補給燃料が工程461において必要であると決定されると、次に、補給燃料は直接エンジン449中に加えられるべきかどうか、または、補給燃料は、水素リッチガス760の生成のためにプラズマ燃料変換器457に加えられるかどうかを工程462で決定される。
【0350】
補給燃料がエンジン449に直接加えられる(工程463)と、補給燃料は、混合された燃料操作の希薄限界状態が満たす前まで加えられる。次に、追加の水素リッチガス444および/または水素リッチガス460は、適切になるように加えられ得る。
【0351】
エンジン449中への水素リッチガスの追加は、工程493によって制御され得る。例えば、補給燃料は自動的に制御され、所定の状況に基づいたエンジン449および/またはプラズマ燃料変換器457に直接導入され得る。
【0352】
上述されたように、ジェネレータ454で生成される電気は、廃棄変換ユニット441のいくつかまたは全ての電気要求456aを供給するために使用され得る。電気はまた、このシステムにおける他の電気要求のために使用され得る(例えば、図16に示されるようなプラズマ燃料変換器457への電気456bの供給を参照)。電気458は、売り物として使用される。
【0353】
本発明の代わりの実施形態において、廃棄変換ユニットからの発生気体は、不燃焼プロセスで使用され得る。このことは、不燃焼システム(図18および図19を参照)において統合型の制御されたプラズマガラス化燃料電池(CPG−FC)によって成し遂げられる。制御されたプラズマガラス化(CPG)システムは、制御されたプラズマガラス化システムにおいて処理される廃棄物からの電気エネルギーの効率的および環境的に有利な生成である燃料電池システムと統合され得る。
【0354】
本明細書中に使用されるように、「制御されたプラズマガラス化ユニット」は、本発明の廃棄変換ユニットを含む。さらに、「制御されたプラズマガラス化」および/または「プラズマ増幅溶解装置」(PEM)は、本発明の廃棄変換ユニットの廃棄物を処理するプロセスを援用する。
【0355】
例えば、モルテンカーボネート燃料電池(MCFC)は、本発明の廃棄変換ユニットと共に使用され、不燃焼プロセスにおいて廃棄物燃焼ユニットの発生気体から電気を生成し得る。制御されたプラズマガラス化は、炭質を処理するときに炭化水素、一酸化炭素、メタン、二酸化炭素および微量の他のガスの最初に構成される生成ガスまたはオフガスを生成する。制御されたプラズマガラス化システムから生成されるガスは、モルテンカーボネート燃料電池の燃料(除去される廃棄した蒸気からの不純物と共に)に理想的に適し得る。
【0356】
制御されたプラズマガラス化燃料電池(CPG−FC)システムは、役立つ電気エネルギー中に廃棄物の変換に対して不完全燃焼プロセスを提供する。燃焼システム(例えば、蒸気タービンジェネレータシステムに組み合わされた焼却炉)または他の燃焼技術(例えば、ガスタービンまたは内部燃焼ジェネレータセット)に反して、本発明による制御されたプラズマガラス化システム−燃料電池システムは、燃料ガスの化学エネルギーを、電気化学反応を介して電気エネルギーに変換する。
【0357】
モルテンカーボネート燃料電池は、電気化学電池の電解質として作用する基質でサポートされるアルカリカーボネートの混合物の使用を含む。限定するように構成されるべきでないので、リチウムアルミネート(lithiated aluminate)基質は、本発明において利用され得る。電池のカソードにおいて、酸素は次に示すように、カーボネートイオンを形成するようにリチウムニッケル酸化物電極表面上の二酸化酸素および電子と反応する。
【0358】
1/2O+CO+2e→CO 2− (6)
電池のアノードにおいて、次に示すように水素がカーボネートと反応し、蒸気および二酸化炭素を形成するとき、初めに水素の酸化が生じる。
【0359】
+CO 2−→HO+CO+2e (7)
電池のアノードのコンパートメントにおいて生成されるCOは、単一ガス(simple gas)の分離技術(例えば、圧力旋回吸着(PSA))を使用するカソードに実際に再循環される。反応(6)および(7)から理解できるように、電子は電池のカソードにおける回路から得られ、そして電子はアノードにおける回路中に到達される。これらの初期反応を使用すると、水素燃料の電気エネルギーへの不燃焼変換が成し遂げられる。
【0360】
図18を参照すると、本発明による制御されたプラズマガラス化燃料電池システムを利用するためのフロー図が示される。システム464は、廃棄変換ユニットから除去するガス468のオフガス清浄ユニット465を含む。燃料電池466(例えばMCFC)は、清浄ユニット465に接続され、清浄ユニット465からのガス469は、燃料電池466で使用され得る。ガス469は、主に水素、一酸化炭素およびメタンを含むことが期待される。しかし、追加のガスがまた含まれ得る。
【0361】
モルテンカーボネート燃料電池は、電気化学電池466の電解質477として作用する基質(例えば、リチウムアルミネート基質)にサポートされるアルカリカーボネートの混合物の使用を含む。空気476からの酸素は、上記の反応(6)に示されるように燃料電池466のカソード471で酸化リチウムニッケル電極表面の二酸化炭素および電子と反応する。従って、カーボネートイオンが形成され、電子はカソード407で消費される。最初の水素の酸化は、酸素がカソード471で形成されたカーボネートと反応するときに燃料電池466のアノード470で生じる。従って、水蒸気および二酸化炭素が形成され、電子は、前述の反応(7)によって回路中に到達される
燃料電池466のアノード470の区画に生成されるCOは、実際にカソード471に再循環される。このことは、単一ガスの分別技術(例えば、圧力旋回吸着(PSA))を使用して成し遂げられ得る。従って、二酸化炭素および他のガス472は、圧力旋回吸着によってユニット467で分別され得る。次に、二酸化炭素475は、カソード471に再循環され得る。二酸化炭素475はまた、カソード471への導入前および/または導入中に空気476の所定量と混合され得る。
【0362】
燃料電池466のカソード471から除去されたガス474は、主にOおよびCOを含み得る。OおよびCOを含む、ユニット467からのガスは、プロセス排気としてガス474と組み合わされ得る。これらのガスは適切に処理され得る。
【0363】
本発明による制御されたプラズマガラス化燃料電池システムから周囲へのガス放出が極端に低いと予測される。制御されたプラズマガラス化は、重金属、有害有機化学種(例えば、ダイオキシン、フラン、および微粒子)の非常に低い放出を有すると予測される。例えば、水素および一酸化炭素で動作する溶融炭酸塩型燃料電池(MCFC)のような燃料電池からの有害な放出はない。制御されたプラズマガラス化プロセスからの排気ガスは極端に低い有害な放出を有し、このガスが燃料電池を通過する場合、実際にこのガスはさらに清浄化され、それにより極端に低い放出システムを生じることが期待される。
【0364】
溶融炭酸塩型燃料電池(MCFC)は、蒸気改質反応によってアノード領域内の有機化合物をさらに処理する能力を有することが示されてきた。従って、制御されたプラズマガラス化からの任意の軽量炭化水素放出が溶融炭酸塩型燃料電池内の燃料として利用されることが期待される。いくつかの状況では、制御されたプラズマガラス化からの一酸化炭素の放出が約10〜50%の範囲にあり得ることが理解される。
【0365】
一酸化炭素の制御されていない放出は望ましくない。しかし、本発明は、溶融炭酸塩型燃料電池を使用し、以下の反応(8)または(9)に示されるように、直接または間接的に、燃料としてCOの大部分を利用する。
【0366】
CO+CO 2−→2CO+2e (8)または
CO+HO→H+CO (9)
反応(8)は、COの直接的な電気化学的酸化を含むが、反応(9)は、Hを生成する水−ガスシフト反応を含む。従って、反応(9)は、上述の反応(7)で説明したように溶融炭酸塩型燃料電池内の燃料として効率的に使用される。
【0367】
本発明の制御されたプラズマガラス化システム(すなわち、本発明の廃棄物変換ユニット)は、アークプラズマの制御された動作により、揮発性金属の非常に低い放出を有することが予測される。制御されたプラズマガラス化プロセスのアークプラズマは、入来供給材料を有用なガス(すなわち、H、CO、CH)に変換し、ガラス溶融物に溶解させるための無機物質を予熱するために必要な電力レベルでのみ動作される。他のプラズマシステムおよび部分酸化熱分解プロセスは、揮発性金属の高い微粒子放出を与える。揮発性重金属は、溶融炭酸塩型燃料電池の動作に大いに関係する。鉛、水銀、ヒ素、セレン等の金属は、溶融炭酸塩型燃料電池の性能を著しく劣化させる原因として全て公知である。他の重金属もまた性能劣化を引き起こすが、これらの金属よりも劣化の程度が低い。従って、本発明による制御されたプラズマガラス化等の熱分解プロセス(すなわち、本発明の廃棄物変換ユニット)と、溶融炭酸塩型燃料電池との結合は、他の廃棄物処理技術との結合に対して大きな利点を有する。
【0368】
溶融炭酸塩型燃料電池および固体酸化物型燃料電池は、燃料および酸化剤ガスストリーム内の低レベルの汚染物質を許容し得る最適の燃料電池である。従って、制御されたプラズマガラス化は、非常に低レベルの放出を有するように期待されていても、アルカリ燃料電池(AFC)、リン酸塩型燃料電池(PAFC)、またはプロトン移動膜(PEM)型燃料電池等の燃料電池を動作不能にし得る現存する汚染物質のレベルがなお存在し得る(しかし、このような汚染物質は、このような燃料電池を使用するために、燃料電池に導入される前に除去され得る)。水−ガスシフト反応(すなわち、CO+HO→H+CO)および圧力変動の吸収を用いて、水素および一酸化炭素の混合物を精製された水素のストリームに変換し、精製された水素ストリームを精製することが可能である。これにより、AFC、PAFC、およびPEMシステム等の他のタイプの燃料電池を制御されたプラズマガラス化技術と統合することを可能にする。
【0369】
高温ガス清浄システムは、制御されたプラズマガラス化プロセスとともに使用されて比較的清浄な燃料ガスを燃料電池に供給する。例えば、工業的に利用可能な乾燥Ca(OH)洗浄技術が本発明によって使用され得る。本発明の実施形態における主要な利点は、大部分のウエット洗浄装置システムの場合におけるような予熱を必要としないかもしれないことである。制御されたプラズマガラス化プロセスが低い揮発性金属放出を有するように期待されたため、熱乾燥洗浄技術が可能になる。他のプラズマシステムは、他の不揮発性金属が燃料電池に到達せず、かつ、燃料電池を汚染しないことを確実にするように追加のガス洗浄を要する。
【0370】
溶融炭酸塩型燃料電池の効率は、50〜60%(すなわち、化学エネルギー対AC出力)の範囲で示されてきた。これにより、効率45%に近づく現在の技術のガスタービン発生器の効率とボトミングサイクルの効率とを有利に比較する。例示の予言的な例では、制御されたプラズマガラス化システムは、効率40%のガスタービン発生器システムを用いる場合と比較した場合、正味の電気エネルギーの少なくとも2倍のエネルギーを生成し得る。表8は、予測された効率改善の要約を提供し、本発明の実施形態による制御されたプラズマガラス化燃料電池システムを使用することが理解され得る。
【0371】
【表8】
Figure 0003819298
【0372】
制御されたプラズマガラス化燃料電池(CPG−FC)システムは、電解質の管理に関して相乗的に作用する。溶融炭酸塩型燃料電池は、他のタイプの燃料電池よりも汚染物質排出の影響を受けにくいが、硫黄および塩素で汚染された場合に性能の劣化を示し得る。溶融炭酸塩型燃料電池の標準動作の代替的なアプローチは、電解質の連続的な補充を可能にし、消費した電解質の制御されたプラズマガラス化チャンバ内への取り込みを可能にする。
【0373】
制御されたプラズマガラス化燃料電池(CPG−FC)システムの他の独特の局面は、制御されたプラズマガラス化チャンバからの廃熱の可能な利用を含み、溶融炭酸塩型燃料電池を休止状態にして、その型燃料電池の熱サイクルを除去または最小化することを含む。熱サイクルは、漏れおよびセラミック構成要素のクラックの形態で溶融炭酸塩型燃料電池内に欠陥が導入されることが知られている。たいていの場合、制御されたプラズマガラス化は休止状態にされ、制御されたプラズマガラス化チャンバからの廃熱は、制御されたプラズマガラス化冷却ガス(空気)ストリームの形態で、そしてアノードガスディストリビュータおよびカソードガスディストリビュータを通る燃料電池への経路決定を容易にし得る。熱いガスは、熱サイクルを回避するのに十分なエネルギーを燃料電池に伝達する。
【0374】
制御されたプラズマガラス化と溶融炭酸塩型燃料電池との統合を図19に示す。制御されたプラズマガラス化システムが、全システムが互いに独立して動作することに対する主要な利点を有するような相乗効果的な方式で溶融炭酸塩型燃料電池にどのようにして統合され得るかを図19から理解し得る。
【0375】
システム478は、本発明による、廃棄物変換ユニット480、排気ガス洗浄ユニット465、燃料電池466、および分離ユニット467(例えば、圧力変動吸収ユニット)を含む。
【0376】
冷却空気481は、水とともにまたは水なしで使用され、炉または廃棄物変換ユニット480(本明細書では、制御されたプラズマガラス化ユニットとも呼ばれる)を冷却し得る。またいくつかの例では、ユニット480は水のみを用いて冷却され得る。上述したように、ユニット480内で形成されるガラス化またはガラス化可能な生成物483が、ユニットから除去され得る。ガス482は、ユニット480から燃料電池466に直接導入され得る。ガス482は主に空気を含み、冷却ジャケット内で予熱され、カソードへの熱衝撃を除去して燃料電池の休止状態温度を維持する。好ましくは、ガス482は、燃料電池466のカソード471に導入される。またガス482は、燃料電池のカソードへの導入の前または燃料電池のカソードへの導入の間、二酸化炭素リサイクル475と混合され得る。
【0377】
主に水素、一酸化炭素、およびメタンを含むガス468は、ユニット480を出て、ユニット465内で洗浄される。洗浄装置またはユニット465からの固体および/または微粒子がさらに処理され得る。例えば、ユニット内で処理するために、固体486(燃料電池466からの消費された電解質489を含み得る)が、ユニット480によってリサイクルされ得るが、洗浄固体485がリサイクルされて洗浄ユニット465内で再処理され得る。
【0378】
ガス469は、アノードで燃料電池466に導入される。本明細書中で説明されるように、アイドル加熱空気479は、ユニット480からの加熱によって加熱され得る。空気487は、熱交換器479から燃料電池466に直接導入され得る。
【0379】
上述のように、ガスが燃料電池466内で処理される。必要な場合または所望される場合に、新しい電解質488が燃料電池466に与えられる。ガス474は、スタックに伝達されるかまたはユニット467によってリサイクルされる。ガス472はユニット467(例えば、圧力変動吸収ユニット)に伝達される。二酸化炭素475は、カソード471にリサイクルされ、ガス473はスタックに伝達されるかまたはこれらのガスはユニット480によってリサイクルされる。
【0380】
ユニット480への供給速度に応じて、ガス474の一部はパージガス484としてユニット480でリサイクルされ得る。
【0381】
燃料を溶融炭酸塩型燃料電池に供給する通常のアプローチは、リフォーミング供給およびリフォーマに熱エネルギーを供給する炎両方において、燃料としてメタンを用いる部分酸化リフォーミングの使用またはスチームリフォーミングによるものである。制御されたプラズマガラス化燃料電池システムは、エネルギー変換に対して改良された非燃焼廃棄物を供給することが期待される。制御されたプラズマガラス化燃料電池システムからの超低放出は、燃料燃焼電気エネルギー発生システムである焼却システムまたは熱分解システム等の燃料プロセスのシステム放置に対してこれらのシステムの設置を可能にすることが期待される。廃棄材料の有用な化学エネルギーを電気エネルギーに変換するための溶融炭酸塩型燃料電池の高い効率は、廃棄物からの資源の回収を最大化する際に制御されたプラズマガラス化燃料電池システムを改良されたプロセスにする。これにより多くの観点から社会に利益を与える。ほとんどの廃棄物におけるほとんどの有用なリサイクル可能な回収はエネルギーである。エネルギーの回収を最大化することは主要な利益となり得る。エネルギー回収を最大化することに加えて、制御されたプラズマガラス化は、廃棄物の一部を安定した浸出不可能なガラスに変換し得、有害な流出物の放出を最小化する。溶融炭酸塩型燃料電池と本発明の廃棄物変換ユニットとの結合は、廃棄物のエネルギーへの清浄な変換のための最適化プロセスおよびリサイクル可能な生成物を供給することによって、流出物を超低レベルまでさらに最小化するように作用する。
【0382】
上記で開示された特定の実施形態が本発明の同じ目的を実行するために他の構造を改変または設計するための基礎として容易に利用されることが当業者によって理解される。またこのような等価な構成は、添付の請求の範囲に記載されたように本発明の精神および範囲から逸脱しないことが当業者によって理解されるべきである。
【図面の簡単な説明】
【図1A】 図1Aは、本発明によるアークプラズマ炉およびジュール加熱の溶融装置の実施形態を示し、ここで、炉および溶融装置は、共通の溶融浴を有する完全に一体化されたシステムとして形成される。
【図1B】 図1Bは、完全に一体化されたアークプラズマ炉および溶融装置を示し、ここで、溶融装置部分の電極は、アークプラズマ−溶融装置ユニットの垂直部分に対して一定の角度をなして配置される。
【図1C】 図1Cは、本発明による誘導性の加熱および混合のための磁気コイルと共に、図1Bの完全に一体化されたシステムを示す。
【図1D】 図1Dは、本発明の別の実施形態による二次熱ブーストを有する図1Cの完全に一体化されたシステムを示す。
【図1E】 図1Eは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関する別の構成を示す。
【図1F】 図1Fは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関する別の構成を示す。
【図1G】 図1Gは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関する別の構成を示す。
【図1H】 図1Hは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関するさらに別の構成の平面図を示す。
【図1I】 図1Iは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関するさらに別の構成の平面図を示す。
【図1J】 図1Jは、完全に一体化されたアークプラズマ−ジュール加熱の溶融装置に関するさらに別の構成の平面図を示す。
【図1K】 図1Kは、本発明に使用される例示的な供給システムを示す。
【図1L】 図1Lは、本発明のユニットに使用されることに適している例示的な出口の導管を示す。
【図2】 図2は、単独で制御可能な電力送出システムを有する完全に一体化されたアークプラズマ炉およびジュール加熱の溶融装置のシステムを示す。
【図3A】 図3Aは、本発明の完全に一体化されたシステムに使用されるAC電力システムおよびDC電力システムを示す。
【図3B】 図3Bは、本発明の完全に一体化されたシステムに使用されるAC電力システムおよびDC電力システムを示す。
【図4A】 図4Aは、本発明によって使用される電極の構成およびジオメトリの平面図を示す。
【図4B】 図4Bは、本発明によって使用される電極の構成およびジオメトリの平面図を示す。
【図4C】 図4Cは、本発明によって使用される電極の構成およびジオメトリの平面図を示す。
【図4D】 図4Dは、本発明によって使用される電極の構成およびジオメトリの平面図を示す。
【図5】 図5は、共通の溶融浴に望ましくない電気相互作用を引き起こすことなく、ジュール加熱電極にAC電力を供給し、アーク電極にDC電力を供給するために共通の変圧器の二次巻線を使用する能力を有する回路図を示す。
【図6】 図6は、本発明に使用されることに適している別のDCアーク回路図を示す。
【図7A】 図7Aは、本発明に使用されることに適しているさらに別のDCアーク回路図を示す。
【図7B】 図7Bは、本発明に使用されることに適しているさらに別のDCアーク回路図を示す。
【図8A】 図8Aは、1つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するDCアーク回路を示す。
【図8B】 図8Bは、2つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するDCアーク回路を示す。
【図8C】 図8Cは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するDCアーク回路を示す。
【図8D】 図8Dは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するDCアーク回路を示す。
【図8E】 図8Eは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するDCアーク回路を示す。
【図9A】 図9Aは、1つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACアーク回路を示す。
【図9B】 図9Bは、2つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACアーク回路を示す。
【図9C】 図9Cは、2つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACアーク回路を示す。
【図9D】 図9Dは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACアーク回路を示す。
【図9E】 図9Eは、4つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACアーク回路を示す。
【図10A】 図10Aは、1つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACまたはDCアーク回路を示す。
【図10B】 図10Bは、2つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACまたはDCアーク回路を示す。
【図10C】 図10Cは、2つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACまたはDCアーク回路を示す。
【図10D】 図10Dは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACまたはDCアーク回路を示す。
【図10E】 図10Eは、3つのアーク電極を有する本発明のシステムに使用される単独のアーク電圧およびアーク電流制御を有するACまたはDCアーク回路を示す。
【図10F】 図10Fは、3つのアーク電極を有する本発明のシステムに使用されるACまたはDCアーク回路を示す。
【図11A】 図11Aは、2つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11B】 図11Bは、2つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11C】 図11Cは、3つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11D】 図11Dは、3つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11E】 図11Eは、4つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11F】 図11Fは、4つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11G】 図11Gは、6つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11H】 図11Hは、6つのジュール加熱電極を有する本発明のシステムに使用されるACジュール加熱電気システムを示す。
【図11I】 図11Iは、本発明によってジュール加熱を提供する別の実施形態を示す。
【図12】 図12は、金属、非ガラス形成廃棄物、および、低灰生成有機体を処理することに適している本発明の別の実施形態を示す。
【図13A】 図13Aは、本発明によって、金属、非ガラス形成廃棄物、および、低灰生成有機体を処理するための炉および溶融された酸化物プールを示す。
【図13B】 図13Bは、本発明によって金属を処理するための炉および溶融された酸化物プールを示す。
【図14A】 図14Aは、本発明によって、非ガラス形成廃棄物、および、低灰生成有機体を処理するための炉および溶融された酸化物プールを示す。
【図14B】 図14Bは、本発明によって、非ガラス形成廃棄物、および、低灰生成有機体を処理するための炉および溶融された酸化物プールを示す。
【図15】 図15は、本発明によって、廃棄物変換ユニットから電気を生成する間のNOの放出を低減させるエネルギー変換システムを示す。
【図16】 図16は、本発明の別の実施形態によって、廃棄物変換ユニットから電気を生成する間のNOの放出を低減させるエネルギー変換システムを示す。
【図17】 図17は、本発明によって、廃棄物変換ユニットから電気を生成する間の低NO放出の生成と共に使用される自動制御ロジックを示す。
【図18】 図18は、本発明の廃棄物変換ユニットと共に、燃料電池を使用するシステムを示す。
【図19】 図19は、本発明の廃棄物変換ユニットと共に、燃料電池を使用するシステムを示す。

Claims (54)

  1. 廃棄物変換ユニットであって、
    第1、第2、および第3のアークプラズマ電極と、
    該第1、第2、および第3のアークプラズマ電極に接続された第1の電源であって、該アークプラズマ電極の各々と該ユニット内の溶融池との間に生成されるアークプラズマが、該溶融池の先端上または該溶融池内にあることを特徴とする、第1の電源と、
    第1、第2、および第3のジュール加熱電極と、
    該第1、第2、および第3のジュール加熱電極に接続された第2の電源であって、該溶融池内に容量ジュール加熱を提供するように構成され、該第2の電源は、第1、第2および第3の一次巻線と第1、第2および第3の二次巻線とを含み、該第1、第2および第3の二次巻線は、Y字状および三角形状に接続されている、第2の電源と、
    該溶融池をグランドに接続する対向電極と
    を含み、
    検知された処理パラメータに応答して、該第1の電源からの電流が該第2の電源の動作に干渉しないように、該第1および第2の電源の各々が別個に、かつ、独立に制御されるように、該第1および第2の電源は、該第1、第2および第3のジュール加熱電極の各々に直列であるキャパシタを有するように構成される、廃棄物変換ユニット。
  2. 前記第1の電源が、前記第1、第2、および第3のアークプラズマ電極に直流電流を供給する、請求項1に記載の廃棄物変換ユニット。
  3. 前記第2の電源が、前記第1、第2、および第3のジュール加熱電極に交流電流を供給する、請求項2に記載の廃棄物変換ユニット。
  4. 前記第1の電源が、前記第1、第2、および第3のアークプラズマ電極に交流電流を供給する、請求項1に記載の廃棄物変換ユニット。
  5. 前記第2の電源が、前記第1、第2、および第3のジュール加熱電極に交流電流を供給する、請求項4に記載の廃棄物変換ユニット。
  6. 前記ユニット内に形成されたガスをそこから排出するためにポートをさらに含む、請求項1に記載の廃棄物変換ユニット。
  7. 前記ポートは、前記ユニットの先端に近接して配置される、請求項6に記載の廃棄物変換ユニット。
  8. 前記ユニット内に形成されたガスをそこから排出するために第2のポートをさらに含む、請求項7に記載の廃棄物変換ユニット。
  9. 前記第2のポートは、前記ユニットの側面上に、且つ、該ユニットの先端に近接して配置される、請求項8に記載の廃棄物変換ユニット。
  10. 前記第2のポートは、前記ユニットの先端に近接して配置される、請求項8に記載の廃棄物変換ユニット。
  11. 前記第1の電源が、前記第1、第2、および第3のアークプラズマ電極に直流電流を供給し、該第1の電源が、
    第1、第2、および第3の一次巻線ならびに第1、第2、および第3の二次巻線を有する変圧器であって、該第1、第2、および第3の一次巻線が、AC電流およびAC電圧を提供するAC電源に接続された、変圧器と、
    該第1、第2、および第3の二次巻線にそれぞれ接続された、第1、第2、および第3の電流制限リアクタと、
    該第1、第2、および第3の電流制限リアクタとそれぞれ直列に接続された第1、第2、および第3のスイッチと、
    該AC電力をDC電流およびDC電圧を有するDC電力に変換する第1、第2、および第3の整流器であって、該整流器の各々が第1および第2の出力を有する、第1、第2、
    および第3の整流器と、
    第1、第2、および第3のDCインダクタであって、各インダクタが第1および第2の端部を有し、該第1、第2、および第3のインダクタの該第1の端部は、該第1、第2、および第3の整流器の該第1の出力にそれぞれ接続され、該第1、第2、および第3のインダクタの該第2の端部は、該第1、第2、および第3のアークプラズマ電極にそれぞれ接続された、第1、第2、および第3のDCインダクタと、
    を含む、請求項1に記載の廃棄物変換ユニット。
  12. 前記第1、第2、および第3の整流器の前記第2の出力は、前記ユニット内の対向電極に接続された、請求項11に記載の廃棄物変換ユニット。
  13. 前記第1、第2、および第3の整流器がダイオードブリッジ整流器である、請求項11に記載の廃棄物変換ユニット。
  14. 前記第1、第2、および第3のスイッチが、シリコン制御型整流器スイッチである、請求項11に記載の廃棄物変換ユニット。
  15. 前記シリコン制御型整流器スイッチの各々が、第1および第2のサイリスタを含む、請求項14に記載の廃棄物変換ユニット。
  16. 前記シリコン制御型整流器スイッチの各々が、各スイッチの前記第1および第2のサイリスタに並列に接続された負荷制限リアクタをさらに含む、請求項15に記載の廃棄物変換ユニット。
  17. 各スイッチの前記第1および第2のサイリスタに並列に接続されたスナッバー回路をさらに含む、請求項16に記載の廃棄物変換ユニット。
  18. 前記スナッバー回路が、抵抗器に直列に接続されたキャパシタを含む、請求項17に記載の廃棄物変換ユニット。
  19. 前記第1、第2、および第3の一次巻線が、三角形状に接続された、請求項11に記載の廃棄物変換ユニット。
  20. 前記Y字状に接続された二次巻線のニュートラルが、前記対向電極に接続された、請求項11に記載の廃棄物変換ユニット。
  21. 第1および第2の端子を有する少なくとも1つのキャパシタをさらに含み、該第1の端子が前記ニュートラルに接続され、該第2の端子が前記対向電極およびグランドに接続された、請求項20に記載の廃棄物変換ユニット。
  22. 第1および第2の端子を有するキャパシタと、第1および第2の端子を有する抵抗器とをさらに含み、該キャパシタの該第1の端子が前記ニュートラルに接続され、該キャパシタの該第2の端子が該抵抗器の該第1の端子に接続され、該抵抗器の該第2の端子が前記対向電極およびグランドに接続された、請求項20に記載の廃棄物変換ユニット。
  23. 前記第2の電源が前記第1、第2、および第3のジュール加熱電極に交流電流を供給し、該第2の電源が、
    第1、第2、および第3の一次巻線ならびに第1、第2、および第3の二次巻線を有する変圧器であって、該第1、第2、および第3の一次巻線がAC電流およびAC電圧を提供するAC電源に接続された、変圧器と、
    それぞれが第1および第2の端部を有する第1、第2、および第3の電流制限リアクタであって、該第1、第2、および第3の電流制限リアクタの該第1の端部が、前記第1、第2、および第3の二次巻線にそれぞれ接続された、第1、第2、および第3の電流制限リアクタと、
    該第1、第2、および第3の電流制限リアクタの該第2の端部にそれぞれ接続された第1、第2、および第3のキャパシタリアクタと、
    該第1、第2、および第3のキャパシタに直列にそれぞれ接続され、且つ、該第1、第2、および第3のジュール加熱電極にそれぞれ接続された第1、第2、および第3のスイッチとを含む、請求項1に記載の廃棄物変換ユニット。
  24. 前記第1、第2、および第3のスイッチが、シリコン制御型整流器スイッチである、請求項23に記載の廃棄物変換ユニット。
  25. 前記シリコン制御型整流器スイッチの各々が、第1および第2のサイリスタを含む、請求項24に記載の廃棄物変換ユニット。
  26. 各スイッチの前記第1および第2のサイリスタに並列に接続されたスナッバー回路をさらに含む、請求項25に記載の廃棄物変換ユニット。
  27. 前記スナッバー回路が、抵抗器に直列に接続されたキャパシタを含む、請求項26に記載の廃棄物変換ユニット。
  28. 前記第1、第2、および第3の一次巻線が、三角形状に接続された、請求項23に記載の廃棄物変換ユニット。
  29. 廃棄物を処理するシステムであって、該システムは、
    ガスを生成する廃棄物変換ユニットと、
    該廃棄物変換ユニットに接続された燃料電池であって、該廃棄物変換ユニットからのガスを該燃料電池内に取り込んで電気エネルギーを生成する、燃料電池と
    を含み、
    該廃棄物変換ユニットは、
    第1、第2、および第3のアークプラズマ電極と、
    該第1、第2、および第3のアークプラズマ電極に接続された第1の電源であって、該アークプラズマ電極の各々と該ユニット内の溶融池との間に生成されるアークプラズマが、該溶融池の先端上または該溶融池内にあることを特徴とする、第1の電源と、
    第1、第2、および第3のジュール加熱電極と、
    該第1、第2、および第3のジュール加熱電極に接続された第2の電源であって、該溶融池内に容量ジュール加熱を提供するように構成され、該第2の電源は、第1、第2および第3の一次巻線と第1、第2および第3の二次巻線とを含み、該第1、第2および第3の二次巻線は、Y字状および三角形状に接続されている、第2の電源と、
    該溶融池をグランドに接続する対向電極と
    を含み、
    検知された処理パラメータに応答して、該第1の電源からの電流が該第2の電源の動作に干渉しないように、該第1および第2の電源の各々が、別個に、かつ、独立に制御されるように、該第1および第2の電源は、該第1、第2および第3のジュール加熱電極の各々に直列であるキャパシタを有するように構成される、システム。
  30. 前記燃料電池が溶融炭酸型燃料電池である、請求項29に記載のシステム。
  31. 前記燃料電池が電解質を含む、請求項30に記載のシステム。
  32. 前記電解質が、リチウム塩/アルミン酸塩マトリクス内でサポートされたアルカリ炭酸塩の混合物を含む、請求項31に記載のシステム。
  33. 前記燃料電池に接続されたガス分離ユニットをさらに含む、請求項30に記載のシステム。
  34. 前記ガス分離ユニットは、圧力変動吸着ユニットである、請求項33に記載のシステム。
  35. 前記廃棄物変換ユニットおよび前記燃料電池に接続されたガスクリーンアップユニットをさらに含み、該廃棄物変換ユニットから排出されるガスは、該燃料電池に取り込まれる前に、該ガスクリーンアップユニット内で清浄化される、請求項30に記載のシステム。
  36. 前記燃料電池がアルカリ型燃料電池である、請求項29に記載のシステム。
  37. 前記燃料電池がリン酸型燃料電池である、請求項29に記載のシステム。
  38. 前記燃料電池がプロトン移動膜である、請求項29に記載のシステム。
  39. 前記燃料電池が電解質を含む、請求項29に記載のシステム。
  40. 前記電解質が、リチウム塩/アルミン酸塩マトリクス内でサポートされたアルカリ炭酸塩の混合物を含む、請求項39に記載のシステム。
  41. 前記燃料電池に接続されたガス分離ユニットをさらに含む、請求項29に記載のシステム。
  42. 前記ガス分離ユニットは、圧力変動吸着ユニットである、請求項 に記載のシステム。
  43. 前記廃棄物変換ユニットおよび前記燃料電池に接続されたガスクリーンアップユニットをさらに含み、該廃棄物変換ユニットから排出されるガスは、該燃料電池に取り込まれる前に、該ガスクリーンアップユニット内で清浄化される、請求項29に記載のシステム。
  44. 廃棄物を処理するシステムであって、該システムは、
    ガスを生成する廃棄物変換ユニットと、
    該廃棄物変換ユニットに接続されたガスクリーンアップユニットであって、該廃棄物変換ユニットからのガスを清浄化する、ガスクリーンアップユニットと、
    廃棄物変換ユニットに接続された燃料電池であって、該ガスクリーンアップユニットからのガスを該燃料電池内に取り込んで電気エネルギーを生成する、燃料電池と
    を含み、
    該廃棄物変換ユニットは、
    第1、第2、および第3のアークプラズマ電極と、
    該第1、第2、および第3のアークプラズマ電極に接続された第1の電源であって、該アークプラズマ電極の各々と該ユニット内の溶融池との間に生成されるアークプラズマが、該溶融池の先端上または該溶融池内にあることを特徴とする、第1の電源と、
    第1、第2、および第3のジュール加熱電極と、
    該第1、第2、および第3のジュール加熱電極に接続された第2の電源であって、該溶融池内に容量ジュール加熱を提供するように構成され、該第2の電源は、第1、第2および第3の一次巻線と第1、第2および第3の二次巻線とを含み、該第1、第2および第3の二次巻線は、Y字状および三角形状に接続されている、第2の電源と、
    該溶融池をグランドに接続する対向電極と
    を含み、
    検知された処理パラメータに応答して、該第1の電源からの電流が該第2の電源の動作に干渉しないように、該第1および第2の電源の各々が、別個に、かつ、独立に制御されるように、該第1および第2の電源は、該第1、第2および第3のジュール加熱電極の各々に直列であるキャパシタを有するように構成される、システム。
  45. 前記燃料電池が溶融炭酸型燃料電池である、請求項44に記載のシステム。
  46. 前記燃料電池が電解質を含む、請求項45に記載のシステム。
  47. 前記電解質が、リチウム塩/アルミン酸塩マトリクス内でサポートされたアルカリ炭酸塩の混合物を含む、請求項46に記載のシステム。
  48. 前記燃料電池に接続されたガス分離ユニットをさらに含む、請求項45に記載のシステム。
  49. 前記ガス分離ユニットは、圧力変動吸着ユニットである、請求項48に記載のシステム。
  50. 前記燃料電池が電解質を含む、請求項44に記載のシステム。
  51. 前記電解質が、リチウム塩/アルミン酸塩マトリクス内でサポートされたアルカリ炭酸塩の混合物を含む、請求項50に記載のシステム。
  52. 前記燃料電池に接続されたガス分離ユニットをさらに含む、請求項44に記載のシステム。
  53. 前記ガス分離ユニットは、圧力変動吸着ユニットである、請求項52に記載のシステム。
  54. 前記対向電極は、前記溶融池の一部を含む、請求項1に記載の廃棄物変換ユニット。
JP2001553897A 2000-01-21 2000-01-21 廃棄物を処理する方法および装置 Expired - Fee Related JP3819298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173052A JP2006019259A (ja) 2000-01-21 2005-06-13 廃棄物を処理する方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/001605 WO2001053434A1 (en) 2000-01-21 2000-01-21 Methods and apparatus for treating waste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005173052A Division JP2006019259A (ja) 2000-01-21 2005-06-13 廃棄物を処理する方法および装置

Publications (2)

Publication Number Publication Date
JP2003525517A JP2003525517A (ja) 2003-08-26
JP3819298B2 true JP3819298B2 (ja) 2006-09-06

Family

ID=21740989

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001553897A Expired - Fee Related JP3819298B2 (ja) 2000-01-21 2000-01-21 廃棄物を処理する方法および装置
JP2005173052A Pending JP2006019259A (ja) 2000-01-21 2005-06-13 廃棄物を処理する方法および装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2005173052A Pending JP2006019259A (ja) 2000-01-21 2005-06-13 廃棄物を処理する方法および装置

Country Status (4)

Country Link
EP (1) EP1248827A1 (ja)
JP (2) JP3819298B2 (ja)
AU (1) AU2000233489A1 (ja)
WO (1) WO2001053434A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327942A (ja) * 2000-05-22 2001-11-27 Kentaro Nakamura 資源分別回収方法
IT1319608B1 (it) * 2000-12-21 2003-10-20 Abb Ricerca Spa Impianto per il trattamento dei rifiuti energeticamente ottimizzato
US6570906B2 (en) * 2001-09-05 2003-05-27 Charles H. Titus ARC furnace with DC arc and AC joule heating
AU2003277500A1 (en) * 2003-10-10 2005-04-27 Anzai, Setsu Small electric furnace for medical waste treatment
US6971323B2 (en) 2004-03-19 2005-12-06 Peat International, Inc. Method and apparatus for treating waste
US7832344B2 (en) 2006-02-28 2010-11-16 Peat International, Inc. Method and apparatus of treating waste
JP4961156B2 (ja) * 2006-03-28 2012-06-27 メタウォーター株式会社 廃棄物の焼却廃熱の有効利用方法
US9206364B2 (en) 2006-05-12 2015-12-08 Inentec Inc. Gasification system
US7854775B2 (en) * 2006-05-12 2010-12-21 InEn Tec, LLC Combined gasification and vitrification system
US9222039B2 (en) 2008-01-14 2015-12-29 Inentec Inc. Grate for high temperature gasification systems
EP2247347A4 (en) 2008-02-08 2013-08-14 Peat International Inc METHOD AND APPARATUS FOR PROCESSING WASTE
WO2011005618A1 (en) 2009-07-06 2011-01-13 Peat International, Inc. Apparatus for treating waste
GB2490175A (en) * 2011-04-21 2012-10-24 Tetronics Ltd Treatment of waste
HU230278B1 (hu) 2012-11-05 2015-12-28 Int-Energia Kft Szerkezeti elrendezés és eljárás hulladék- és biomassza környezetbiztonságos feldolgozására, villamos- és hőenergia, termelés hatékonyságának növelésére
GB2522041A (en) 2014-01-10 2015-07-15 Manik Ventures Ltd Disposal of refuse
JP6498701B2 (ja) * 2014-01-31 2019-04-10 クリーンカーボンコンバージョン、パテンツ、アクチエンゲゼルシャフトCleancarbonconversion Patents Ag 放射性物質からの汚染水を浄化する装置及び方法
CA3025378A1 (en) * 2016-05-30 2017-12-07 Beijing Zhongkaihongde Technology Co., Ltd Circular electric furnace, and electrode arrangement structure thereof
GB201900993D0 (en) * 2019-01-24 2019-03-13 Solv Smart Solutions Water purification
EP3758446A1 (en) 2019-06-27 2020-12-30 ABB Schweiz AG Arc furnace power supply with converter circuit
EP3758211A1 (en) 2019-06-27 2020-12-30 ABB Schweiz AG Arc furnace power supply with resonant circuit
BR112023018247A2 (pt) 2021-03-08 2024-01-16 Extiel Ap Llc Dispositivo para pirólise de materiais carbonáceos e método

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431612A (en) 1982-06-03 1984-02-14 Electro-Petroleum, Inc. Apparatus for the decomposition of hazardous materials and the like
CA1225441A (en) 1984-01-23 1987-08-11 Edward S. Fox Plasma pyrolysis waste destruction
US5177304A (en) 1990-07-24 1993-01-05 Molten Metal Technology, Inc. Method and system for forming carbon dioxide from carbon-containing materials in a molten bath of immiscible metals
US5280757A (en) 1992-04-13 1994-01-25 Carter George W Municipal solid waste disposal process
US5284503A (en) 1992-11-10 1994-02-08 Exide Corporation Process for remediation of lead-contaminated soil and waste battery
ATE205358T1 (de) * 1993-05-19 2001-09-15 Johns Manville Int Inc Verfahren zum schmelzen, verbrennen oder einäscheren von materialien und vorrichtung dazu
US5425332A (en) 1993-08-20 1995-06-20 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
US5437250A (en) 1993-08-20 1995-08-01 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
US5671045A (en) 1993-10-22 1997-09-23 Masachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
US5479254A (en) 1993-10-22 1995-12-26 Woskov; Paul P. Continuous, real time microwave plasma element sensor
US5573339A (en) 1994-01-14 1996-11-12 Electro-Pyrolysis, Inc. Active radiometer for self-calibrated furnace temperature measurements
US5785426A (en) 1994-01-14 1998-07-28 Massachusetts Institute Of Technology Self-calibrated active pyrometer for furnace temperature measurements
US5847353A (en) * 1995-02-02 1998-12-08 Integrated Environmental Technologies, Llc Methods and apparatus for low NOx emissions during the production of electricity from waste treatment systems
US6018471A (en) * 1995-02-02 2000-01-25 Integrated Environmental Technologies Methods and apparatus for treating waste

Also Published As

Publication number Publication date
EP1248827A1 (en) 2002-10-16
WO2001053434A1 (en) 2001-07-26
AU2000233489A1 (en) 2001-07-31
JP2006019259A (ja) 2006-01-19
JP2003525517A (ja) 2003-08-26

Similar Documents

Publication Publication Date Title
US6018471A (en) Methods and apparatus for treating waste
JP3819298B2 (ja) 廃棄物を処理する方法および装置
US6037560A (en) Enhanced tunable plasma-melter vitrification systems
US5847353A (en) Methods and apparatus for low NOx emissions during the production of electricity from waste treatment systems
US5666891A (en) ARC plasma-melter electro conversion system for waste treatment and resource recovery
US20230031504A1 (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
JP2014512265A (ja) 廃棄物の処理
EP1375628A2 (en) Methods and apparatus for treating waste
US6570906B2 (en) ARC furnace with DC arc and AC joule heating
KR200231985Y1 (ko) 브라운 가스를 이용한 용융처리 장치
US20240240093A1 (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
MXPA97005905A (en) System of vitrification plasma of electric arc-boiler of fusion, integrated, self-maintained, adjustable for the treatment of disposal and recovery of recur
JP3857089B2 (ja) 灰溶融処理方法及び灰溶融処理装置
JP3744668B2 (ja) 灰溶融炉
KR0150066B1 (ko) 교류 고온 플라즈마 소각로
JP2004239596A (ja) 廃棄物溶融処理炉
Eddy et al. Plasma arc melters for conversion of waste to value-added products
JP2000249318A (ja) 排ガスの二次燃焼方法及びその装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3819298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees