JP3817438B2 - Optical member and optical device using the same - Google Patents

Optical member and optical device using the same Download PDF

Info

Publication number
JP3817438B2
JP3817438B2 JP2001119654A JP2001119654A JP3817438B2 JP 3817438 B2 JP3817438 B2 JP 3817438B2 JP 2001119654 A JP2001119654 A JP 2001119654A JP 2001119654 A JP2001119654 A JP 2001119654A JP 3817438 B2 JP3817438 B2 JP 3817438B2
Authority
JP
Japan
Prior art keywords
wavelength
light
optical member
grating
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119654A
Other languages
Japanese (ja)
Other versions
JP2002311220A (en
Inventor
昇一 京谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001119654A priority Critical patent/JP3817438B2/en
Priority to TW091104405A priority patent/TWI227471B/en
Priority to KR10-2002-0020864A priority patent/KR100466668B1/en
Priority to CNB021180024A priority patent/CN1206643C/en
Publication of JP2002311220A publication Critical patent/JP2002311220A/en
Application granted granted Critical
Publication of JP3817438B2 publication Critical patent/JP3817438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs

Description

【0001】
【発明の属する技術分野】
本発明は、2つの異なる波長のレーザ光が入射する光学部材に係り、特に互いに光軸のずれたレーザ光を受光部で受光する光学部材及びこれを用いた光学装置に関する。
【0002】
【従来の技術】
CDとDVDの双方が使用可能なディスク装置に搭載される光ピックアップには、構造の簡略化を図るために、2つの異なる波長のレーザ光の光源が一体に設けられた発光部が搭載されている。前記発光部では、前記光源が微小間隔を置いて配置されているので、レーザ光の光軸がずれた状態で光路が形成される。光軸がずれた状態では、受光部での受光位置にずれが生じるので、受光部で双方のレーザ光の受光位置を一致させる必要がある。
【0003】
図7は、前記ずれを解消するために設けられた従来の光学部材30を示す平面図である。前記光学部材30は、板状の透明部材の一面側に凹凸形状の回折格子30aが形成され、受光部31に対向する位置に設けられている。
【0004】
前記光学部材30は、CDとDVD兼用のディスク装置に搭載され、このディスク装置にはCD用として785nmの波長(λ1)のレーザ光が、DVD用として658nmの波長(λ2)のレーザ光が発光する発光部が設けられている。図7に示すように、ディスクに反射した戻り光の光軸がずれた状態で光学部材30まで戻り、前記光学部材30の回折格子30aで双方のレーザ光が回折させられて、受光部31に到達する位置で受光位置が互いに一致するようになっている。また波長の長さに応じて回折角度が異なり、図7に示す場合ではλ1の回折角度(θ1)はλ2の回折角度(θ2)より大きくなる。
【0005】
【発明が解決しようとする課題】
しかし、前記レーザ光を発する発光部では温度変化によって波長が変動する特性があるため、前記従来の光学部材30では、温度変化により回折角度が変動して、その結果レーザ光の受光部での受光位置が互いに一致しなくなり、オフセットの問題が生じる。例えば、受光部での受光位置が大きくずれると、1次回折光より高次の回折光が受光部に漏れ込み、オフセットが生じることがある。
【0006】
本発明は上記課題を解決するものであり、互いにずれたレーザ光の光軸を受光部で一致させることができ、しかも温度変化による波長変動の影響を低減できる光学部材及びそれを用いた光学装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、第1の波長λ1のレーザ光を回折させ、第2の波長λ2のレーザ光を回折させずに透過させる回折格子が設けられた光学部材であって、
前記回折格子は、凹凸状に形成された第1の格子部と、前記第1の格子部の傾斜面に所定のステップ数からなる階段状の段差として形成された第2の格子部と、前記第2の格子部の表面に形成された微小な凹凸からなる第3の格子部とを有するものであり、
前記第2の格子部は前記第1の波長λ1のレーザ光に対しては1次回折光に対して選択性を有し且つ前記第2の波長λ2のレーザ光に対しては0次回折光に対する選択性を有する所定の格子深さ寸法(d)で形成され、前記第2の格子部の1段あたりの深さ寸法(h)は前記第2の波長λ2のレーザ光に対して(n−1)h=mλ2(ただし、nは屈折率、mは正の整数)で形成され、前記第3の格子部の周期が前記レーザ光の波長(λ1及びλ2)以下で形成されていることを特徴とするものである。
【0010】
また、前記第2の格子部の各段差部が、幅方向と深さ方向がいずれも等ピッチで形成されていることが好ましい。
【0011】
上記本発明では、一方の波長のレーザ光を回折させることがないので、他方のレーザ光の回折角度を小さくでき、温度変化による波長変動の影響を低減でき、受光部での受光位置のずれを小さくできる。
【0012】
また、前記第1の波長λ1が785nmで、前記第2の波長λ2が658nmとすることで、CDとDVDを兼用した光ピックアップに適用できる。
【0013】
また前記の場合に、前記第2の格子部の階段状のステップ数が6段となるように設計することで、双方のレーザ光に対して受光位置での効率を高く維持した設計が可能となる。
【0015】
また、前記第1の格子部と前記第2の格子部はともに樹脂で一体に形成されることで、製造コストを安くできる。
【0016】
また本発明の光学装置は、第1の波長λ1のレーザ光を発する発光点と第2の波長λ2のレーザ光を発する発光点とが、光軸と直交する方向へずれて位置している発光部と、前記発光部からの光が透過する請求項1ないしのいずれかに記載の光学部材とが設けられ、前記第1の波長λ1のレーザ光の光軸と、第2の波長λ2の光軸とが受光部が設けられた位置で交わることを特徴とするものである。
【0017】
前記本発明では、2波長のレーザ光の光源が一体に設けられた発光部と、2波長のレーザ光を独立して回折させることができる単一の光学部材とが設けられるので、部品点数を減らして構造を簡略化でき、コストダウンが可能となる。
【0018】
【発明の実施の形態】
図1は本発明の光学部材が搭載された光学装置の一例を示す概略図、図2は光学部材とその光軸を示す模式図、図3は光学部材を示す一部省略平面図、図4は6ステップでの格子深さに対する光の効率を示す線図、図5は5ステップでの格子深さに対する光の効率を示す線図である。
【0019】
図1に示す光学装置としての光ピックアップ10は、半導体レーザーダイオードが内蔵された発光部12と、この発光部12から発射されたレーザ光を平行光にするコリメータレンズ13と、入射するレーザ光を反射させるとともに前記反射方向から入射する光を透過するビームスプリッタ14と、対物レンズ15と、受光部16と、前記受光部16とビームスプリッタ14との間に配置された本発明の光学部材11を備えている。
【0020】
前記発光部12は、CD用として波長785nm(λ1)のレーザ光の発光点を形成する発光素子12aと、DVD用として波長658nm(λ2)のレーザ光の発光点を形成する発光素子12bとが単一の筐体内で微小間隔(S)離間した状態で配置されている。
【0021】
前記発光部12から発射した各波長λ1,λ2のレーザ光は、ビームスプリッタ14に入射すると、ビームスプリッタ14でディスクD1方向へ反射され、コリメータレンズ13により平行光とされた後に対物レンズ15に入射する。対物レンズ15により集光されたレーザ光はディスクD1にスポット光を形成し、ディスクD1に反射した戻り光は互いの光軸がずれた状態で対物レンズ15とコリメータレンズ13を通り、ビームスプリッタ14を透過することで前記光学部材11に至る。
【0022】
図2に示すように、前記光学部材11は、光透過性の樹脂部材、ガラス部材または樹脂とガラスの複合材で板状に形成されたものである。この光学部材11では、DVD用の波長λ2のレーザ光を回折させずに透過させて受光部16へ導き、CD用の波長λ1のレーザ光を回折させて受光部16へ導く。また図1に示すように、光学部材11と受光部16との間には凹レンズ17が配置されて、受光部16に形成されるレーザ光のビーム形状を拡大するようになっていてもよい。
【0023】
前記受光部16はフォトダイオードで形成されており、4分割のセンサA,B,C,Dが組み合わされた受光素子と、前記受光素子の両側部に設けられたセンサEとFからなる側部受光素子を有している。例えば、CDとDVDでのトラッキングサーボ機構として、それぞれ3ビーム法、位相差法が適用され、フォーカシングサーボ機構として非点収差法が適用される。CDとDVDのフォーカシングサーボ機構では、前記受光素子が共通の素子として使用される。
【0024】
前記受光部16では、温度変化によって波長が変化することで、センサEとセンサFとで結ばれるEF方向に直交する方向にレーザ光のスポットがずれる結果、より高次の回折光が受光素子に漏れ込むことでオフセットの問題が生じることになる。そこで、前記ずれを改善した光学部材11を以下に示す。
【0025】
前記光学部材11のレーザ光の射出面側には、複数の凸部11aが連続して形成された第1の格子部が形成され、各凸部11aの傾斜面に階段状の段差部11b(第2の格子部)が形成されている。前記凸部11aと段差部11bとで回折格子11Aが構成されている。
【0026】
前記第1の格子部は、ほぼ鋸刃形状に形成されたもので、各凸部11aは、いずれも同一形状であり、垂直面と傾斜面とで形成された直角三角形状である。また前記段差部11bは、平坦面S1〜S6が段々と高さを変えてステップ数が6段となるように形成したものであり、各段のx方向の幅寸法wとy方向の深さ寸法hがいずれも等ピッチ(h=d/5,w=p/6)で形成されている。ただし、pは周期であり、この周期は凸部11aの幅寸法である。
【0027】
図3に示す光学部材11に形成された回折格子11Aでは、各段の深さ寸法をhとし、樹脂の屈折率をnとし、レーザ光の波長をλとすると、(n−1)h=mλという関係式が成り立つ。ただし、mは正の整数とする。前記関係式より、(n−1)hが波長の正の整数倍となるようにhを決めることで、前記波長λのレーザ光に対しては、回折せずに透過させることができる。
【0028】
上記式より、λ2(658nm)のレーザ光に対して(n−1)hがλ2の正の整数倍となるようにhを設定することで、回折格子11Aにλ2のレーザ光が入射したときに回折させずに0次回折光のまま透過させることができる。
【0029】
前記により、凸部11aの格子深さ寸法d(=5h)が決定され、周期pも例えば30から50μmの範囲内で予め設定されるので、残るステップ数の段数を決定することで光学部材11の形状が決まることになる。そこで、ステップ数を1段づつ変えたところ、図3に示すステップ数が6段である形状が最適であることが確認された。その理由について、図4を参照して説明する。
【0030】
図4は、波長λ1と波長λ2の各回折光に対する格子深さと効率の関係を示す線図である。ただし、周期(p)が20μmで、屈折率が1.54である。また図4の縦軸の効率とは、回折格子11Aをレーザ光が通過したときの通過前のレーザ光の光量を1としたときの通過後の0次回折光(0T)、±1次回折光(±1T)および±2次回折光(±2T)の光量の割合を示している。
【0031】
図4の(a)に示すように、回折格子の格子深さ寸法dを6μm付近に設定することで、658nm(λ2)の0次回折光と785nm(λ1)の1次回折光を高い効率で得ることができる。
【0032】
上記のように光学部材11を形成することで、λ1のレーザ光に対しては1次回折光を選択する選択性を有し、λ2のレーザ光に対しては0次回折光を選択する選択性を有するようになる。しかもλ1の1次回折光とλ2の0次回折光とをいずれも高い効率で得ることができる。
【0033】
なお、図4の(b)と(c)に示す格子深さ寸法では、785nm(λ1)の1次回折光と658nm(λ2)の0次回折光を高い効率で得ることができない。また深さ寸法dを大きくすると、波長のばらつきに対する変動が大きくなるので好ましくない。なお、(b)の深さでは785nmの2次回折光は得られるものの、効率が悪くなるので好ましくない。
【0034】
したがって、格子深さ寸法dを6μm付近(より正確には6.1μm付近)とし、段差部11bの各段の幅寸法と深さ寸法とをいずれも等ピッチで形成することで、効率を高く維持した回折格子11Aを得ることができる。
【0035】
また図5に示す線図は、図3に示す回折格子11Aのステップ数を6段から5段に変更したものである。ただし、この場合も前記のように各段の幅寸法と深さ寸法がいずれも等しいピッチで形成されている。
【0036】
図5に示すものでは、回折格子の格子深さ寸法dを5.8μm付近(e)に設定することで、658nmの−1次回折光と785nmの0次回折光を共に効率よく得ることできる。この場合は、λ1とλ2とが逆になり、658nmをλ1、785nmをλ2とすればよい。
【0037】
上記のように、回折格子の格子深さdが、図4の(a)または図5の(e)で決定される形状とすることで、658nmのレーザ光の0次回折光のみを透過させ且つ785nmのレーザ光の1次回折光のみを回折させ、または658nmの−1次回折光のみを回折させ、785nmの0次回折光のみを透過させることができるようになり、785nmの光軸と658nmの光軸とを受光部16で一致させることができるようになる。
【0038】
したがって、一方のレーザ光は回折しないので波長変動の影響を受けることがなく、他方のレーザ光は回折させられるものの回折角度が従来よりも小さくなるので、全体として波長変動による影響を低減できる。なお、上記した光学部材11において、ステップ数が6段と5段とでは、6段とした形状とすることが光の効率の点でより好ましい。
【0039】
なお、本実施の形態では、波長が658nmと785nmの組み合わせについて説明したが、その他の波長の組合わせであってもよい。波長の組み合わせが異なることで、最適な段差部のステップ数や深さ寸法が異なってくる。
【0040】
また、前記第1の格子部を構成する凸部11aと第2の格子部を構成する段差部11bとが樹脂で一体に形成されることで、製造コストを低くできる。
【0041】
図6に示す回折格子11Bは、前記回折格子11Aの変形例の一部分を示す平面図である。
【0042】
この回折格子11Bは、前記回折格子11Aの段差部11bの各平坦面S1〜S6にぎざぎざ形状の凹凸からなる微少回折格子(第3の格子部)11cが重ねて形成されている。この微小回折格子11cでは、凸部から隣接する凸部までを1周期としたときに、この1周期が前記レーザ光の波長λ1やλ2より短く形成されていることが好ましい。これにより、高価な反射防止膜を形成したときと同等な反射防止効果を発揮できる。
【0043】
【発明の効果】
以上のように本発明は、ずれた光軸を所定の位置で一致させることができ、しかも一方の波長のレーザ光のみを回折させ、他方のレーザ光の回折角度を従来よりも小さくできるので、双方のレーザ光を回折させる場合よりも温度変化による波長変動の影響を低減できる。
【0044】
また本発明の光学装置は、2波長のレーザ光を発光する発光部と、各レーザ光の光軸を一致させる単一の光学部材とで構成されているので、部品点数を減らして構造を簡略化できるのでコストダウンが可能となる。
【図面の簡単な説明】
【図1】本発明の光学部材が搭載された光学装置の一例を示す概略図、
【図2】光学部材とその光軸を示す模式図、
【図3】光学部材の一部分を示す平面図、
【図4】ステップ数が6段での格子深さに対する光の効率を示す線図、
【図5】ステップ数が5段での格子深さに対する光の効率を示す線図、
【図6】本発明の光学部材の変形例の一部分を示す平面図、
【図7】従来の光学部材とその光軸を示す模式図、
【符号の説明】
10 光ピックアップ
11 光学部材
11a 凸部(第1の格子部)
11b 段差部(第2の格子部)
11c 微小回折格子(第3の格子部)
12 発光部
12a,12b 発光素子
13 コリメータレンズ
14 ビームスプリッタ
15 対物レンズ
16 受光部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical member on which laser beams having two different wavelengths are incident, and more particularly to an optical member that receives laser beams whose optical axes are shifted from each other with a light receiving unit and an optical apparatus using the optical member.
[0002]
[Prior art]
In order to simplify the structure, an optical pickup mounted on a disk device that can use both CD and DVD has a light emitting unit on which two light sources of laser beams having different wavelengths are integrally provided. Yes. In the light emitting unit, since the light sources are arranged at a minute interval, an optical path is formed with the optical axis of the laser beam shifted. In a state where the optical axis is deviated, the light receiving position at the light receiving unit is shifted, so it is necessary to match the light receiving positions of both laser beams at the light receiving unit.
[0003]
FIG. 7 is a plan view showing a conventional optical member 30 provided to eliminate the deviation. The optical member 30 is provided with a concave and convex diffraction grating 30 a on one surface side of a plate-like transparent member, and at a position facing the light receiving portion 31.
[0004]
The optical member 30 is mounted on a disc device for both CD and DVD. The disc device emits a laser beam having a wavelength of 785 nm (λ1) for CD and a laser beam having a wavelength of 658 nm (λ2) for DVD. A light emitting unit is provided. As shown in FIG. 7, the optical axis of the return light reflected by the disk returns to the optical member 30 with the optical axis shifted, and both laser beams are diffracted by the diffraction grating 30 a of the optical member 30 to be received by the light receiving unit 31. The light receiving positions coincide with each other at the arrival position. The diffraction angle varies depending on the length of the wavelength. In the case shown in FIG. 7, the diffraction angle (θ1) of λ1 is larger than the diffraction angle (θ2) of λ2.
[0005]
[Problems to be solved by the invention]
However, since the light emitting section that emits the laser light has a characteristic that the wavelength varies depending on the temperature change, in the conventional optical member 30, the diffraction angle varies due to the temperature change, and as a result, the light receiving section receives the laser light. The positions do not coincide with each other, causing an offset problem. For example, when the light receiving position at the light receiving unit is greatly shifted, diffracted light of higher order than the first order diffracted light may leak into the light receiving unit, resulting in an offset.
[0006]
SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an optical member that can match the optical axes of laser beams that are shifted from each other at a light receiving unit, and that can reduce the influence of wavelength fluctuation due to a temperature change, and an optical device using the same. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The present invention is an optical member provided with a diffraction grating that diffracts laser light having a first wavelength λ1 and transmits laser light having a second wavelength λ2 without being diffracted.
The diffraction grating includes a first grating part formed in an uneven shape, a second grating part formed as a stepped step having a predetermined number of steps on the inclined surface of the first grating part, And a third lattice portion formed of minute irregularities formed on the surface of the second lattice portion,
The second grating portion has selectivity with respect to the first-order diffracted light with respect to the laser light with the first wavelength λ1 and selection with respect to the zero-order diffracted light with respect to the laser light with the second wavelength λ2. And a depth dimension (h) per step of the second grating portion is (n−1) with respect to the laser light having the second wavelength λ2. ) H = mλ2 (where n is a refractive index and m is a positive integer), and the period of the third grating portion is less than or equal to the wavelength of the laser light (λ1 and λ2). It is what.
[0010]
Moreover, it is preferable that each step part of the said 2nd grating | lattice part is formed in the width direction and the depth direction at equal pitch.
[0011]
In the present invention, since the laser beam of one wavelength is not diffracted, the diffraction angle of the other laser beam can be reduced, the influence of wavelength fluctuation due to temperature change can be reduced, and the shift of the light receiving position in the light receiving unit can be reduced. Can be small.
[0012]
Further, by setting the first wavelength λ1 to 785 nm and the second wavelength λ2 to 658 nm, the present invention can be applied to an optical pickup that uses both CD and DVD.
[0013]
Further, in the above case, by designing the number of stepped steps of the second grating part to be 6, it is possible to design while maintaining high efficiency at the light receiving position for both laser beams. Become.
[0015]
In addition, since the first lattice part and the second lattice part are integrally formed of resin, the manufacturing cost can be reduced.
[0016]
In the optical device of the present invention, the light emitting point that emits the laser light having the first wavelength λ1 and the light emitting point that emits the laser light having the second wavelength λ2 are shifted in a direction perpendicular to the optical axis. And an optical member according to any one of claims 1 to 5 through which light from the light emitting unit is transmitted, an optical axis of the laser light having the first wavelength λ1, and a second wavelength λ2 The optical axis intersects at a position where the light receiving unit is provided .
[0017]
In the present invention, since the light emitting unit integrally provided with the light source of the two-wavelength laser light and the single optical member capable of independently diffracting the two-wavelength laser light are provided, the number of parts is reduced. The structure can be simplified by reducing the cost, and the cost can be reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 is a schematic view showing an example of an optical device on which the optical member of the present invention is mounted, FIG. 2 is a schematic view showing an optical member and its optical axis, FIG. 3 is a partially omitted plan view showing the optical member, and FIG. Is a diagram showing the efficiency of light with respect to the grating depth in 6 steps, and FIG. 5 is a diagram showing the efficiency of light with respect to the grating depth in 5 steps.
[0019]
An optical pickup 10 as an optical device shown in FIG. 1 includes a light emitting unit 12 incorporating a semiconductor laser diode, a collimator lens 13 that collimates laser light emitted from the light emitting unit 12, and incident laser light. A beam splitter 14 that reflects and transmits light incident from the reflection direction, an objective lens 15, a light receiving unit 16, and the optical member 11 of the present invention disposed between the light receiving unit 16 and the beam splitter 14 are provided. I have.
[0020]
The light emitting unit 12 includes a light emitting element 12a that forms a light emitting point of a laser beam having a wavelength of 785 nm (λ1) for a CD and a light emitting element 12b that forms a light emitting point of a laser beam having a wavelength of 658 nm (λ2) for a DVD. They are arranged in a single casing with a minute spacing (S).
[0021]
When the laser beams having the wavelengths λ 1 and λ 2 emitted from the light emitting unit 12 enter the beam splitter 14, the laser beams are reflected in the direction of the disk D 1 by the beam splitter 14 and converted into parallel light by the collimator lens 13 and then incident on the objective lens 15. To do. The laser light condensed by the objective lens 15 forms a spot light on the disk D1, and the return light reflected by the disk D1 passes through the objective lens 15 and the collimator lens 13 with the optical axes being shifted from each other, and passes through the beam splitter 14. Is transmitted to the optical member 11.
[0022]
As shown in FIG. 2, the optical member 11 is formed in a plate shape with a light transmissive resin member, a glass member, or a composite material of resin and glass. In this optical member 11, the laser beam of wavelength λ 2 for DVD is transmitted without being diffracted and guided to the light receiving unit 16, and the laser beam of wavelength λ 1 for CD is diffracted and guided to the light receiving unit 16. As shown in FIG. 1, a concave lens 17 may be disposed between the optical member 11 and the light receiving unit 16 so as to expand the beam shape of the laser light formed on the light receiving unit 16.
[0023]
The light receiving portion 16 is formed of a photodiode, and includes a light receiving element in which four divided sensors A, B, C, and D are combined, and a side portion including sensors E and F provided on both sides of the light receiving element. It has a light receiving element. For example, a three-beam method and a phase difference method are applied as tracking servo mechanisms for CD and DVD, respectively, and an astigmatism method is applied as a focusing servo mechanism. In the CD and DVD focusing servo mechanism, the light receiving element is used as a common element.
[0024]
In the light receiving unit 16, as the wavelength changes due to the temperature change, the spot of the laser beam is shifted in the direction orthogonal to the EF direction connected by the sensor E and the sensor F. As a result, higher-order diffracted light enters the light receiving element. Leakage will cause an offset problem. Therefore, the optical member 11 in which the deviation is improved is shown below.
[0025]
On the laser beam emission surface side of the optical member 11, a first lattice portion in which a plurality of convex portions 11a are continuously formed is formed, and a stepped step portion 11b (on the inclined surface of each convex portion 11a). (Second lattice portion) is formed. The convex portion 11a and the step portion 11b constitute a diffraction grating 11A.
[0026]
The first lattice portion is formed in a substantially saw blade shape, and each of the convex portions 11a has the same shape, and is a right triangle formed by a vertical surface and an inclined surface. Further, the step portion 11b is formed so that the flat surfaces S1 to S6 gradually change in height and the number of steps becomes six, and the width dimension w in the x direction and the depth in the y direction of each step. Each dimension h is formed at an equal pitch (h = d / 5, w = p / 6). However, p is a period and this period is the width dimension of the convex part 11a.
[0027]
In the diffraction grating 11A formed on the optical member 11 shown in FIG. 3, assuming that the depth dimension of each step is h, the refractive index of the resin is n, and the wavelength of the laser light is λ, (n−1) h = The relational expression mλ holds. Here, m is a positive integer. By determining h so that (n−1) h is a positive integer multiple of the wavelength, the laser beam having the wavelength λ can be transmitted without being diffracted.
[0028]
From the above formula, when λ2 (658 nm) laser light is incident on the diffraction grating 11A by setting h so that (n−1) h is a positive integer multiple of λ2. Without being diffracted to 0, it can be transmitted as the 0th-order diffracted light.
[0029]
As described above, the grating depth dimension d (= 5h) of the convex portion 11a is determined, and the period p is also set in advance within a range of, for example, 30 to 50 μm. Therefore, the optical member 11 is determined by determining the number of remaining steps. The shape will be determined. Therefore, when the number of steps was changed step by step, it was confirmed that the shape having six steps as shown in FIG. 3 was optimal. The reason will be described with reference to FIG.
[0030]
FIG. 4 is a diagram showing the relationship between the grating depth and the efficiency for each diffracted light of wavelength λ1 and wavelength λ2. However, the period (p) is 20 μm and the refractive index is 1.54. Also, the efficiency of the vertical axis in FIG. 4 is the zero-order diffracted light (0T) and ± 1st-order diffracted light (0) after passing when the amount of laser light before passing through the diffraction grating 11A is 1. The ratio of the amount of light of ± 1T) and ± 2nd order diffracted light (± 2T) is shown.
[0031]
As shown in FIG. 4A, the grating depth dimension d of the diffraction grating is set to around 6 μm, so that 658 nm (λ2) zero-order diffracted light and 785 nm (λ1) first-order diffracted light are obtained with high efficiency. be able to.
[0032]
By forming the optical member 11 as described above, it has the selectivity to select the first-order diffracted light for the λ1 laser light, and the selectivity to select the 0th-order diffracted light for the λ2 laser light. To have. In addition, both the first-order diffracted light of λ1 and the 0th-order diffracted light of λ2 can be obtained with high efficiency.
[0033]
4B and 4C, the first-order diffracted light of 785 nm (λ1) and the zero-order diffracted light of 658 nm (λ2) cannot be obtained with high efficiency. Also, it is not preferable to increase the depth dimension d because the variation with respect to wavelength variation increases. In addition, although the 785 nm secondary diffracted light is obtained at the depth of (b), it is not preferable because the efficiency is deteriorated.
[0034]
Accordingly, the lattice depth dimension d is set to around 6 μm (more precisely, around 6.1 μm), and the width dimension and the depth dimension of each step of the stepped portion 11b are both formed at an equal pitch, thereby increasing efficiency. The maintained diffraction grating 11A can be obtained.
[0035]
The diagram shown in FIG. 5 is obtained by changing the number of steps of the diffraction grating 11A shown in FIG. 3 from six to five. However, also in this case, as described above, the width dimension and the depth dimension of each step are formed at the same pitch.
[0036]
In the case shown in FIG. 5, by setting the grating depth dimension d of the diffraction grating in the vicinity of 5.8 μm (e), it is possible to efficiently obtain both the 658 nm minus 1st order diffracted light and the 785 nm zeroth order diffracted light. In this case, λ1 and λ2 are reversed, and 658 nm may be λ1 and 785 nm may be λ2.
[0037]
As described above, by setting the grating depth d of the diffraction grating to the shape determined by (a) of FIG. 4 or (e) of FIG. 5, only the 0th-order diffracted light of the 658 nm laser light is transmitted and Only the first-order diffracted light of the 785 nm laser beam is diffracted, or only the 658-nm first-order diffracted light is diffracted, and only the 785-nm zero-order diffracted light can be transmitted, and the optical axis of 785 nm and the optical axis of 658 nm Can be matched by the light receiving unit 16.
[0038]
Therefore, since one laser beam is not diffracted, the laser beam is not affected by the wavelength variation, and although the other laser beam is diffracted, the diffraction angle is smaller than that of the conventional one, so that the influence of the wavelength variation as a whole can be reduced. In the optical member 11 described above, it is more preferable in terms of light efficiency that the number of steps is 6 steps and 5 steps, so that the shape is 6 steps.
[0039]
In the present embodiment, the combination of wavelengths 658 nm and 785 nm has been described, but other combinations of wavelengths may be used. The optimal number of steps and the depth dimension of the stepped portion differ depending on the combination of wavelengths.
[0040]
Moreover, the manufacturing cost can be reduced because the convex portion 11a constituting the first lattice portion and the step portion 11b constituting the second lattice portion are integrally formed of resin.
[0041]
A diffraction grating 11B shown in FIG. 6 is a plan view showing a part of a modification of the diffraction grating 11A.
[0042]
The diffraction grating 11B is formed by overlapping a minute diffraction grating (third grating part) 11c made of jagged irregularities on the flat surfaces S1 to S6 of the step part 11b of the diffraction grating 11A. In the minute diffraction grating 11c, it is preferable that one period is shorter than the wavelengths λ1 and λ2 of the laser beam, where one period is from the convex part to the adjacent convex part. Thereby, the same antireflection effect as when an expensive antireflection film is formed can be exhibited.
[0043]
【The invention's effect】
As described above, the present invention can match the shifted optical axes at a predetermined position, diffract only the laser beam of one wavelength, and can make the diffraction angle of the other laser beam smaller than the conventional one. The influence of wavelength fluctuation due to temperature change can be reduced as compared with the case where both laser beams are diffracted.
[0044]
In addition, the optical device of the present invention is composed of a light emitting unit that emits laser light of two wavelengths and a single optical member that matches the optical axes of the laser beams, so the number of parts is reduced and the structure is simplified. Cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an optical device on which an optical member of the present invention is mounted;
FIG. 2 is a schematic diagram showing an optical member and its optical axis;
FIG. 3 is a plan view showing a part of an optical member;
FIG. 4 is a diagram showing the light efficiency with respect to the grating depth when the number of steps is six;
FIG. 5 is a diagram showing the light efficiency with respect to the grating depth when the number of steps is 5;
FIG. 6 is a plan view showing a part of a modification of the optical member of the present invention,
FIG. 7 is a schematic diagram showing a conventional optical member and its optical axis;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Optical pick-up 11 Optical member 11a Convex part (1st grating | lattice part)
11b Step part (second lattice part)
11c Micro diffraction grating (third grating part)
Reference Signs List 12 light emitting parts 12a, 12b light emitting element 13 collimator lens 14 beam splitter 15 objective lens 16 light receiving part

Claims (6)

第1の波長λ1のレーザ光を回折させ、第2の波長λ2のレーザ光を回折させずに透過させる回折格子が設けられた光学部材であって、An optical member provided with a diffraction grating that diffracts laser light having a first wavelength λ1 and transmits laser light having a second wavelength λ2 without diffracting the laser light,
前記回折格子は、凹凸状に形成された第1の格子部と、前記第1の格子部の傾斜面に所定のステップ数からなる階段状の段差として形成された第2の格子部と、前記第2の格子部の表面に形成された微小な凹凸からなる第3の格子部とを有するものであり、The diffraction grating includes a first grating part formed in an uneven shape, a second grating part formed as a stepped step having a predetermined number of steps on the inclined surface of the first grating part, And a third lattice portion formed of minute irregularities formed on the surface of the second lattice portion,
前記第2の格子部は前記第1の波長λ1のレーザ光に対しては1次回折光に対して選択性を有し且つ前記第2の波長λ2のレーザ光に対しては0次回折光に対する選択性を有する所定の格子深さ寸法(d)で形成され、前記第2の格子部の1段あたりの深さ寸法(h)は前記第2の波長λ2のレーザ光に対して(n−1)h=mλ2(ただし、nは屈折率、mは正の整数)で形成され、前記第3の格子部の周期が前記レーザ光の波長(λ1及びλ2)以下で形成されていることを特徴とする光学部材。The second grating portion has selectivity with respect to the first-order diffracted light with respect to the laser light with the first wavelength λ1 and selection with respect to the zero-order diffracted light with respect to the laser light with the second wavelength λ2. And a depth dimension (h) per step of the second grating portion is (n−1) with respect to the laser light having the second wavelength λ2. ) H = mλ2 (where n is a refractive index and m is a positive integer), and the period of the third grating portion is less than or equal to the wavelength of the laser light (λ1 and λ2). An optical member.
前記第2の格子部の各段が、幅方向と深さ方向に対していずれも等ピッチで形成されている請求項記載の光学部材。The second of each stage of the grating portion, the optical member according to claim 1, characterized in that formed at an equal pitch both the width direction and depth direction. 前記第1の波長λ1が785nmで、前記第2の波長λ2が658nmである請求項1または2に記載の光学部材。The optical member according to claim 1 or 2 , wherein the first wavelength λ1 is 785 nm and the second wavelength λ2 is 658 nm. 前記第2の格子部の階段状のステップ数が6段である請求項1ないし3のいずれか一項に記載の光学部材。The optical member according to any one of claims 1 to 3, wherein the number of stepped steps of the second lattice portion is six. 前記第1の格子部と前記第2の格子部はともに樹脂で一体に形成されている請求項1ないし4のいずれか一項に記載の光学部材。The optical member according to any one of claims 1 to 4, wherein both the first lattice portion and the second lattice portion are integrally formed of resin. 第1の波長λ1のレーザ光を発する発光点と第2の波長λ2のレーザ光を発する発光点とが、光軸と直交する方向へずれて位置している発光部と、前記発光部からの光が透過する請求項1ないしのいずれかに記載の光学部材とが設けられ、前記第1の波長λ1のレーザ光の光軸と、第2の波長λ2の光軸とが受光部が設けられた位置で交わることを特徴とする光学装置。A light emitting point that emits a laser beam having a first wavelength λ1 and a light emitting point that emits a laser beam having a second wavelength λ2 are shifted in a direction perpendicular to the optical axis; An optical member according to any one of claims 1 to 5 through which light is transmitted is provided, and an optical axis of the laser beam with the first wavelength λ1 and an optical axis with the second wavelength λ2 are provided with a light receiving unit. An optical device characterized by intersecting at a predetermined position .
JP2001119654A 2001-04-18 2001-04-18 Optical member and optical device using the same Expired - Fee Related JP3817438B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001119654A JP3817438B2 (en) 2001-04-18 2001-04-18 Optical member and optical device using the same
TW091104405A TWI227471B (en) 2001-04-18 2002-03-08 Optical member and optical device which uses the same
KR10-2002-0020864A KR100466668B1 (en) 2001-04-18 2002-04-17 Optical member and optical device using the same
CNB021180024A CN1206643C (en) 2001-04-18 2002-04-18 Optical structure and optical device using the optical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119654A JP3817438B2 (en) 2001-04-18 2001-04-18 Optical member and optical device using the same

Publications (2)

Publication Number Publication Date
JP2002311220A JP2002311220A (en) 2002-10-23
JP3817438B2 true JP3817438B2 (en) 2006-09-06

Family

ID=18969838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119654A Expired - Fee Related JP3817438B2 (en) 2001-04-18 2001-04-18 Optical member and optical device using the same

Country Status (4)

Country Link
JP (1) JP3817438B2 (en)
KR (1) KR100466668B1 (en)
CN (1) CN1206643C (en)
TW (1) TWI227471B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223738A (en) * 2001-11-22 2003-08-08 Sony Corp Optical pickup device and optical disk device, and optical device and composite optical element
WO2004090598A1 (en) * 2003-04-03 2004-10-21 Nalux Co., Ltd. Imaging optical element and method of designing it
JP2006039506A (en) * 2004-06-21 2006-02-09 Konica Minolta Holdings Inc Optical device and optical communication module
JPWO2006134794A1 (en) * 2005-06-15 2009-01-08 コニカミノルタホールディングス株式会社 Optical bidirectional module
KR100793363B1 (en) * 2006-05-29 2008-01-11 삼성에스디아이 주식회사 Laser irradiation device and fabrication method of organic light emitting display device using the same
CN102789017B (en) * 2012-07-23 2014-11-19 中国科学院长春光学精密机械与物理研究所 Method for manufacturing multistage micro-mirror through inversely adjusting thick film
CN104237983B (en) * 2014-09-30 2016-09-28 中国空空导弹研究院 The method efficiently making high accuracy multi-step microlens array
CN109196391B (en) * 2016-06-06 2021-05-07 株式会社岛津制作所 Diffraction grating and spectroscopic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020106A (en) * 1996-07-09 1998-01-23 Canon Inc Diffraction optical grating, projection optical system illumination optical system, optical aperture, exposure device and production of device
KR100346398B1 (en) * 1998-10-23 2002-10-25 삼성전자 주식회사 Oprical recording/pickup head compatible with CD-RW and DVD using a plane plate having a diffraction grating pattern
KR100604788B1 (en) * 1998-10-23 2006-07-26 삼성전자주식회사 Compatible optical pickup
JP2000182272A (en) * 1998-12-16 2000-06-30 Sanyo Electric Co Ltd Optical pickup device
EP1174865B1 (en) * 2000-07-22 2009-09-30 Samsung Electronics Co., Ltd. Compatible optical pickup
JP4399969B2 (en) * 2000-08-18 2010-01-20 旭硝子株式会社 Optical head device
JP2002116314A (en) * 2000-10-06 2002-04-19 Sankyo Seiki Mfg Co Ltd Diffracting element and optical pickup device
JP2002237081A (en) * 2001-02-14 2002-08-23 Sankyo Seiki Mfg Co Ltd Optical head device

Also Published As

Publication number Publication date
KR20020081138A (en) 2002-10-26
CN1206643C (en) 2005-06-15
JP2002311220A (en) 2002-10-23
TWI227471B (en) 2005-02-01
KR100466668B1 (en) 2005-01-15
CN1381843A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
KR100519636B1 (en) Diffraction optical element and optical head using the same
US20030107979A1 (en) Compatible optical pickup
US5373519A (en) Semiconductor laser device, an optical device and a method of producing the same
US6775065B2 (en) Diffraction element and optical pickup device
WO2010016559A1 (en) Diffraction grating, aberration correction element and optical head device
JP3817438B2 (en) Optical member and optical device using the same
KR100346398B1 (en) Oprical recording/pickup head compatible with CD-RW and DVD using a plane plate having a diffraction grating pattern
JP4016395B2 (en) Multiple wavelength diffraction grating, optical pickup device using multiple wavelength diffraction grating, and optical disk device
JP2004327005A (en) Optical head, diffraction element and its manufacturing method
KR20010088348A (en) Light pick up arraratus and light receiving method thereof
JP4210471B2 (en) Diffraction grating member and optical transceiver
KR100466667B1 (en) Optical material and optical pickup using this
US7420894B2 (en) Optical pickup device
KR100470242B1 (en) Optical member and optical device using the same
JP2010244588A (en) Diffraction element for two wavelength, and optical pickup using the same
JP2010020855A (en) Reflection type diffraction grating for a plurality of wavelengths and optical pickup device including the same
JP2002196123A (en) Dual-wavelength diffraction optical element, dual wavelength light source device and optical head device
JP4324523B2 (en) Optical element
JP4396413B2 (en) Optical pickup device, optical disc device
JP4501583B2 (en) Optical pickup device
JP2009076165A (en) Optical head device
JP2003302512A (en) Optical element for diffraction and optical pickup unit
KR20030040018A (en) Compatible optical pickup
JP2005346885A (en) Optical pickup device
JP2006073046A (en) Optical pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees