JP2010244588A - Diffraction element for two wavelength, and optical pickup using the same - Google Patents

Diffraction element for two wavelength, and optical pickup using the same Download PDF

Info

Publication number
JP2010244588A
JP2010244588A JP2009089179A JP2009089179A JP2010244588A JP 2010244588 A JP2010244588 A JP 2010244588A JP 2009089179 A JP2009089179 A JP 2009089179A JP 2009089179 A JP2009089179 A JP 2009089179A JP 2010244588 A JP2010244588 A JP 2010244588A
Authority
JP
Japan
Prior art keywords
wavelength
light
diffraction grating
periodic structure
dimensional diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089179A
Other languages
Japanese (ja)
Inventor
Noriaki Okada
訓明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009089179A priority Critical patent/JP2010244588A/en
Publication of JP2010244588A publication Critical patent/JP2010244588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively arrange the optical axis of a laser for two wavelengths with a simple configuration. <P>SOLUTION: The diffraction element 1 for two wavelengths on which light having a wavelength λ1 and light having a wavelength λ2 are made incident has a two-dimensional diffraction grating 3 provided on one surface of a transparent substrate 2. The two-dimensional diffraction grating 3 has a step periodic structure formed in a three step shape along a first direction parallel to the transparent substrate 2. The diffraction element 1 further has a one-dimensional diffraction grating 4 provided on the other surface of the transparent substrate 2. The two-dimensional diffraction grating 3 further has a projecting and recessed periodic structure formed in a projecting and recessed shape having a projecting and recessed depth equal to the height of each step of the step periodic structure 5 along a second direction parallel to the transparent substrate 2 and orthogonal to the first direction and the one-dimensional diffraction grating 4 has a one-dimensional projecting and recessed periodic structure formed in a projecting and recessed shape having a recessed depth different from the recessed depth of the projecting and recessed periodic structure along the second direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、少なくとも2つの波長の光を光源とする光ディスクなどの光記録媒体用の記録装置や再生装置などに用いる光ピックアップ用の2波長用回折素子およびその光ピックアップに関する。   The present invention relates to a two-wavelength diffractive element for an optical pickup used in an optical recording medium such as an optical disk using at least two wavelengths of light as a light source, a reproducing apparatus, and the like, and the optical pickup.

CDとDVDとの双方が使用可能な光ディスク記録再生装置に搭載される光ピックアップには、構造の簡略化を図るために、2つの異なる波長のレーザ光の発光素子が一体に設けられた発光部が搭載されている。前記発光部では、前記発光素子が微小間隔を空けて配置されているので、レーザ光の光軸がずれた状態で光路が形成される。   In order to simplify the structure, an optical pickup mounted on an optical disc recording / reproducing apparatus that can use both a CD and a DVD has a light emitting unit in which two light emitting elements of laser beams having different wavelengths are integrally provided. Is installed. In the light emitting section, the light emitting elements are arranged at a minute interval, so that an optical path is formed with the optical axis of the laser light being shifted.

図10は、従来の光ピックアップ90の構成を示す概略図である。この光ピックアップ90に設けられた発光部91には、互いに異なる波長のレーザ光を発する発光素子91a、91bが内蔵されている。光ピックアップ90には、発光部91から発せられたレーザ光を平行光にするコリメートレンズ93と、入射するレーザ光を透過させるとともに前記透過方向から入射する光を反射する偏光ビームスプリッタ92と、1/4波長板94と、対物レンズ95と、円筒レンズ97と、受光部98とを備えた光学系が設けられている。   FIG. 10 is a schematic diagram showing the configuration of a conventional optical pickup 90. As shown in FIG. The light emitting unit 91 provided in the optical pickup 90 includes light emitting elements 91a and 91b that emit laser beams having different wavelengths. The optical pickup 90 includes a collimating lens 93 that collimates laser light emitted from the light emitting unit 91, a polarization beam splitter 92 that transmits incident laser light and reflects light incident from the transmission direction, and 1 A quarter-wave plate 94, an objective lens 95, a cylindrical lens 97, and a light receiving unit 98 are provided.

前記光ピックアップ90では、一方の波長λの発光素子91aが光学系の中心を通るように設計すると、波長λの光は図の実線で示す光路を形成する。また他方の波長λの発光素子1bからの光は破線で示す光路を形成する。図10に示すように、波長λの光軸は斜行して形成され、光ディスク96に反射して戻った戻り光も光軸がずれた状態で受光部98で受光されるので、受光部98での戻り光の検出精度が低下する。 In the optical pickup 90, one wavelength lambda 1 of the light emitting element 91a is to design so as to pass through the center of the optical system, light of the wavelength lambda 1 to form an optical path shown by the solid line in FIG. The light from the other wavelength lambda 2 of the light-emitting element 1b to form an optical path shown by a broken line. As shown in FIG. 10, the optical axis of the wavelength λ 2 is formed obliquely, and the return light reflected and returned to the optical disk 96 is also received by the light receiving unit 98 with the optical axis shifted. The detection accuracy of return light at 98 decreases.

そこで、このずれを解消するために図11に示す回折素子72を受光部98の受光面の前方に配置することで、光軸の位置ずれを補正することができる。図11に示す回折素子72は、レーザ光の射出面側に鋸刃状の回折格子が形成されたものであり、双方のレーザ光を回折させることで、互いの光軸が受光部98の受光面で一致するようになっている。このとき、波長λ(780nm)の回折角度をθとし、波長λ(660nm)の回折角度をθとすると、θ>θの関係が成立する。また同様に光軸の位置ずれを補正する素子として、特許文献1に開示された回折素子がある。 Therefore, in order to eliminate this shift, the diffractive element 72 shown in FIG. 11 is disposed in front of the light receiving surface of the light receiving unit 98, whereby the positional shift of the optical axis can be corrected. The diffraction element 72 shown in FIG. 11 has a sawtooth diffraction grating formed on the laser beam exit surface side, and diffracts both laser beams so that their optical axes are received by the light receiving unit 98. It comes to agree on the surface. At this time, the diffraction angle of the wavelength lambda 1 (780 nm) and theta 1, when the diffraction angle of the wavelength lambda 2 (660 nm) and θ 2, θ 1> θ 2 relationship is established. Similarly, there is a diffractive element disclosed in Patent Document 1 as an element for correcting the positional deviation of the optical axis.

また通常光ピックアップでは、レーザ光を光ディスクの情報記録面のトラック上に集光させた状態で、光ディスクの回転に追随させながらトラック上をトレースさせていくために、各種のトラッキング方法が開発されている。   In ordinary optical pickups, various tracking methods have been developed in order to trace the track while following the rotation of the optical disc while the laser beam is focused on the track on the information recording surface of the optical disc. Yes.

これらのトラッキング方法として、例えば3ビーム法が知られている。この3ビーム法では、光源の半導体レーザから出射される1本のビームを回折格子によって回折し、この回折光の中から0次および±1次の3本の回折光を各ビームとして用いている。このうち、0次光はメインビームとしてトラック上に記録されたピットの信号再生に使用するが、残りの±1次光はトラッキング用の2つのサブビームとして使用するために、例えばトラック線方向に対してピットの前後にトラックピッチの約1/4だけずらして照射するように配置する。これにより、3本のビームの情報記録面での反射光は、それぞれ適宜位置に配置した受光素子に入射し、受光した光強度に応じた電気信号に変換される。   As these tracking methods, for example, a three-beam method is known. In this three-beam method, one beam emitted from a semiconductor laser as a light source is diffracted by a diffraction grating, and three diffracted lights of 0th order and ± 1st order are used as each beam from the diffracted light. . Of these, the 0th-order light is used as a main beam for signal reproduction of pits recorded on the track, but the remaining ± 1st-order light is used as two sub-beams for tracking. Then, it is arranged so as to irradiate with a shift of about 1/4 of the track pitch before and after the pit. As a result, the reflected light from the information recording surface of the three beams is incident on the light receiving elements disposed at appropriate positions, and is converted into electrical signals corresponding to the received light intensity.

このような3ビーム法では、サブビーム側の電気信号の平均値レベルの差をとることで、トラック追跡サーボ用のトラッキング誤差信号が得られ、このトラッキング誤差信号を
利用してメインビームがトラック上から逸脱せぬようにサーボ制御を行う。すなわち、メインビームがトラック中心を走査しているときには、サブビームの平均レベルはどちらも同じレベルであるが、メインビームがトラック中心を外れると、サブビームの平均レベルに相違が生じ、トラッキング誤差信号として検知される。
In such a three-beam method, a tracking error signal for track tracking servo is obtained by taking the difference in the average value level of the electrical signals on the sub-beam side, and the main beam is moved from above the track using this tracking error signal. Servo control is performed so as not to deviate. That is, when the main beam is scanning the track center, the average level of the sub beams is the same level, but if the main beam deviates from the track center, a difference occurs in the average level of the sub beam, which is detected as a tracking error signal. Is done.

また、これとは別の信号検出方法としては、情報記録面で反射したビームをトラックと平行に2分割させた受光素子で受け、このときの出力差からトラッキング誤差信号を検出するようにしたプッシュプル法も知られている。このプッシュプル法においては、1本のビームだけでは信号にオフセットが生じ、トラッキング精度が劣化するので、そのオフセットをキャンセルするために差動プッシュプル法が用いられる。   Another signal detection method is a push in which a beam reflected on the information recording surface is received by a light receiving element divided into two parallel to the track, and a tracking error signal is detected from the output difference at this time. The pull method is also known. In this push-pull method, an offset occurs in the signal with only one beam and the tracking accuracy deteriorates, so the differential push-pull method is used to cancel the offset.

すなわち、この差動プッシュプル法でも、前述の3ビーム法と同様に半導体レーザから出射した1本のビームを回折格子で回折させて生成した0次光および±1次光の3本のビームを用いる。メインビームの0次光はトラック上に配置し、±1次光は2本のサブビームとしてトラック線方向に対して斜めの方向に配置し、メインビームが配置されたピットの前後にトラックピッチの約1/2だけトラックに垂直方向にずらして照射するように配置する。そして、それぞれのビームに対して配置された2分割の受光素子で情報記録面からの反射光を受け、2つの受光部における受光光量のプッシュプルを行う。この差動プッシュプル法では、メインビームのプッシュプル値とサブビームのプッシュプル値を減算することでオフセットをキャンセルする。   That is, even in this differential push-pull method, three beams of zero-order light and ± first-order light generated by diffracting one beam emitted from a semiconductor laser by a diffraction grating in the same manner as the above-described three-beam method are obtained. Use. The 0th-order light of the main beam is arranged on the track, the ± 1st-order light is arranged as two sub-beams in an oblique direction with respect to the track line direction, and the track pitch is reduced before and after the pit where the main beam is arranged. The tracks are arranged so as to be irradiated while being shifted in the vertical direction by 1/2. Then, reflected light from the information recording surface is received by the two-divided light receiving elements arranged for the respective beams, and the received light amount is pushed and pulled in the two light receiving portions. In this differential push-pull method, the offset is canceled by subtracting the push-pull value of the main beam and the push-pull value of the sub beam.

以上説明したように、3ビーム法あるいは差動プッシュプル法では、回折格子を必要とし、図10においても発光部1の後方に回折格子81を設けている。さらにCDとDVDとで、用いる光の波長やトラックピッチが異なっているため、この回折格子の格子ピッチと格子の傾斜方向も、それぞれの光ディスクに合わせて異なるよう設定する必要があり、2波長用レーザ用の回折格子として、たとえば特許文献2に開示されているものがある。   As described above, the three-beam method or the differential push-pull method requires a diffraction grating, and the diffraction grating 81 is provided behind the light emitting unit 1 in FIG. Further, since the wavelength and track pitch of light used for CD and DVD are different, it is necessary to set the grating pitch of the diffraction grating and the inclination direction of the grating to be different for each optical disc. As a laser diffraction grating, there is one disclosed in Patent Document 2, for example.

特開2002−311221号公報(2002年10月23日公開)JP 2002-311221 A (published on October 23, 2002) 特開2001−290017号公報(2001年10月19日公開)JP 2001-290017 A (published on October 19, 2001)

しかしながら、従来の光ピックアップ装置では、2波長用レーザを用いた場合、2波長用レーザの光軸を揃えるための素子と、それぞれの波長のレーザ光に対して回折方向を最適化した回折格子が必要となるため、部品点数が増えるという問題がある。これらの機能を集積化した光学素子も特許文献2に開示されているが、複屈折材料が必要であるという問題があるし、多層構造であるため、安価なコストでの製造が難しいという問題がある。   However, when a two-wavelength laser is used in the conventional optical pickup device, an element for aligning the optical axis of the two-wavelength laser and a diffraction grating whose diffraction direction is optimized for the laser light of each wavelength are provided. Since this is necessary, there is a problem that the number of parts increases. An optical element in which these functions are integrated is also disclosed in Patent Document 2. However, there is a problem that a birefringent material is necessary, and a multilayer structure makes it difficult to manufacture at a low cost. is there.

本発明は、上記課題を解決するためになされたものであり、その目的は、簡単な構成で安価に2波長用レーザの光軸を揃えることができる二波長用回折素子およびこれを用いた光ピックアップを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a two-wavelength diffractive element capable of aligning the optical axes of two-wavelength lasers at low cost with a simple configuration, and light using the same. To provide a pickup.

上記の課題を解決するために、本発明に係る二波長用回折素子は、波長λ1の光と波長λ2の光とが入射する二波長用回折素子であって、透明平板の一方の面に設けられた二次元回折格子を備え、前記二次元回折格子は、前記透明平板に平行な第1方向に沿って3段以上の階段状に形成された階段周期構造を有することを特徴とする。   In order to solve the above-described problems, a two-wavelength diffractive element according to the present invention is a two-wavelength diffractive element on which light having a wavelength λ1 and light having a wavelength λ2 are incident. The two-dimensional diffraction grating has a step periodic structure formed in a step shape of three or more steps along a first direction parallel to the transparent flat plate.

この特徴により、3段以上の階段状に形成された二次元回折格子の階段周期構造は、波長λ1の光を回折させずにそのまま透過させ、波長λ2の光のみを回折させる。このため、簡単な構成で安価に、波長λ1の光と波長λ2の光との光軸を揃えることができる。   Due to this feature, the stepped periodic structure of the two-dimensional diffraction grating formed in a stepped shape of three or more steps allows light of wavelength λ1 to pass through without being diffracted and diffracts only light of wavelength λ2. For this reason, it is possible to align the optical axes of the light of wavelength λ1 and the light of wavelength λ2 at a low cost with a simple configuration.

本発明に係る二波長用回折素子では、前記透明平板の他方の面に設けられた一次元回折格子をさらに備え、前記二次元回折格子は、前記透明平板に平行な方向であって前記第1方向に直交する第2方向に沿って、前記階段周期構造の各段の高さと等しい凹凸深さを有して凹凸状に形成された凹凸周期構造をさらに有しており、前記一次元回折格子は、前記凹凸周期構造の凹凸深さとは異なる凹凸深さを有して前記第2方向に沿って凹凸状に形成された一次元凹凸周期構造を有していることが好ましい。   The two-wavelength diffraction element according to the present invention further includes a one-dimensional diffraction grating provided on the other surface of the transparent flat plate, the two-dimensional diffraction grating being in a direction parallel to the transparent flat plate and the first The one-dimensional diffraction grating further includes a concavo-convex periodic structure formed in a concavo-convex shape having a concavo-convex depth equal to the height of each step of the staircase periodic structure along a second direction orthogonal to the direction. It is preferable to have a one-dimensional uneven periodic structure having an uneven depth different from the uneven depth of the uneven periodic structure and formed in an uneven shape along the second direction.

上記構成によれば、二次元回折格子の凹凸周期構造は、波長λ2の光に対して回折光を発生させ、波長λ1の光に対して回折光を発生させないように構成することができ、一次元回折格子の一次元凹凸周期構造は、波長λ2の光に対して回折光を発生させず、波長λ1の光に対して回折光を発生させるように構成することができる。このため、回折方向を最適化した二波長用回折素子を実現することができる。   According to the above configuration, the concavo-convex periodic structure of the two-dimensional diffraction grating can be configured to generate diffracted light with respect to light of wavelength λ2 and not generate diffracted light with respect to light of wavelength λ1. The one-dimensional concavo-convex periodic structure of the original diffraction grating can be configured not to generate diffracted light with respect to light with wavelength λ2, but to generate diffracted light with respect to light with wavelength λ1. For this reason, the diffraction element for two wavelengths which optimized the diffraction direction is realizable.

本発明に係る二波長用回折素子では、前記二次元回折格子において、前記階段周期構造の各段の高さ:h、前記二次元回折格子の屈折率:n、としたとき、(n−1)×hが波長λ1の整数倍となるように前記階段周期構造を形成し、前記一次元回折格子の前記一次元凹凸周期構造の凹凸深さ:d、前記一次元回折格子の屈折率:n、としたとき、(n−1)×dが波長λ2の整数倍となるように前記一次元凹凸周期構造を形成することが好ましい。 In the two-wavelength diffraction element according to the present invention, when the height of each step of the step periodic structure is h and the refractive index of the two-dimensional diffraction grating is n in the two-dimensional diffraction grating, (n−1) ) × h is an integer multiple of the wavelength λ1, and the staircase periodic structure is formed. The unevenness depth of the one-dimensional uneven periodic structure of the one-dimensional diffraction grating: d 2 , and the refractive index of the one-dimensional diffraction grating: n 2, and the time, it is preferable to form the one-dimensional convex-concave periodic structure so as to be an integral multiple of (n 2 -1) × d 2 is the wavelength .lambda.2.

上記構成によれば、簡単な構成で回折方向を最適化した二波長用回折素子を実現することができる。   According to the above configuration, it is possible to realize a two-wavelength diffraction element with a simple configuration and optimized diffraction direction.

本発明に係る二波長用回折素子では、前記二次元回折格子の階段周期構造は、互いに発光点が異なる波長λ1の光と波長λ2の光とのうちの波長λ2の光を回折させて前記波長λ1の光と波長λ2の光との光軸を揃え、前記二次元回折格子の凹凸周期構造は、前記波長λ2の光を前記第2方向に沿って回折させたサブビームを生成し、前記一次元回折格子の前記一次元凹凸周期構造は、前記波長λ1の光を前記第2方向に沿って回折させたサブビームを生成することが好ましい。   In the two-wavelength diffractive element according to the present invention, the stepped periodic structure of the two-dimensional diffraction grating diffracts the light having the wavelength λ2 among the light having the wavelength λ1 and the light having the wavelength λ2 having different emission points from each other. The optical axes of the light of λ1 and the light of wavelength λ2 are aligned, and the concave-convex periodic structure of the two-dimensional diffraction grating generates a sub-beam that diffracts the light of wavelength λ2 along the second direction. It is preferable that the one-dimensional uneven periodic structure of the diffraction grating generates a sub beam obtained by diffracting the light having the wavelength λ1 along the second direction.

上記構成によれば、簡単な構成で波長λ1の光と波長λ2の光との光軸を揃え、回折方向を最適化した二波長用回折素子を実現することができる。   According to the above configuration, a two-wavelength diffractive element in which the optical axes of the light of wavelength λ1 and the light of wavelength λ2 are aligned and the diffraction direction is optimized can be realized with a simple configuration.

本発明に係る二波長用回折素子では、前記波長λ1の光と波長λ2の光とは、前記二次元回折格子に入射し、前記一次元回折格子から出射することが好ましい。   In the two-wavelength diffraction element according to the present invention, it is preferable that the light of wavelength λ1 and the light of wavelength λ2 enter the two-dimensional diffraction grating and exit from the one-dimensional diffraction grating.

二次元回折格子は特定の波長でかつ特定の角度で入射する光束に対して最適に設計されるため、それ以外の角度で入射する光束では迷光が多く発生する。従って、一次元回折格子で3本のビームを生成した後に二次元回折格子に導く構成では迷光が多く発生する。よって、波長λ1の光と波長λ2の光を二次元回折格子に入射し、一次元回折格子から出射するように構成すると、迷光を抑制することができる。   Since the two-dimensional diffraction grating is optimally designed for a light beam incident at a specific wavelength and at a specific angle, a large amount of stray light is generated in a light beam incident at other angles. Therefore, in the configuration in which three beams are generated by the one-dimensional diffraction grating and then guided to the two-dimensional diffraction grating, a lot of stray light is generated. Therefore, stray light can be suppressed by configuring the light of wavelength λ1 and the light of wavelength λ2 to be incident on the two-dimensional diffraction grating and emitted from the one-dimensional diffraction grating.

本発明に係る二波長用回折素子は、波長λ1の光と波長λ2の光とが入射する二波長用回折素子であって、透明平板の一方の面に設けられた第1の二次元回折格子と、前記透明平板の他方の面に設けられた第2の二次元回折格子とを備え、前記第1の二次元回折格子は、前記透明平板に平行な第1方向に沿って3段以上の階段状に形成された第1の階段周
期構造を有しており、前記第2の二次元回折格子は、前記第1方向と反対の第2方向に沿って3段以上の階段状に形成された第2の階段周期構造を有しており、前記第1の階段周期構造の階段状の傾斜方向と、前記第2の階段周期構造の階段状の傾斜方向とが、互いに平行であることを特徴とする。
The two-wavelength diffractive element according to the present invention is a two-wavelength diffractive element on which light of wavelength λ1 and light of wavelength λ2 are incident, and is a first two-dimensional diffraction grating provided on one surface of a transparent flat plate And a second two-dimensional diffraction grating provided on the other surface of the transparent flat plate, wherein the first two-dimensional diffraction grating has three or more steps along a first direction parallel to the transparent flat plate. The first two-dimensional diffraction grating has a stepped structure of three or more steps along a second direction opposite to the first direction. The stepwise inclination direction of the first stepwise periodic structure and the stepwise inclination direction of the second stepwise periodic structure are parallel to each other. Features.

この特徴によれば、波長λ2の光を第1の階段周期構造で回折させ、第2の階段周期構造でさらに回折させることによって、波長λ2の光の光軸を波長λ1の光の光軸と揃えることができる。   According to this feature, the light of wavelength λ2 is diffracted by the first step periodic structure and further diffracted by the second step periodic structure, so that the optical axis of the light of wavelength λ2 becomes the optical axis of the light of wavelength λ1. Can be aligned.

本発明に係る二波長用回折素子では、前記第1の二次元回折格子は、前記透明平板に平行な方向であって前記第1方向に直交する第3方向に沿って凹凸状に形成された第1の凹凸周期構造をさらに有しており、前記第2の二次元回折格子は、前記第3方向に沿って凹凸状に形成された第2の凹凸周期構造をさらに有しており、前記第1の階段周期構造の各段の高さと、前記第2の階段周期構造の各段の高さとは、等しく、前記第1の凹凸周期構造の凹凸深さと、前記第2の凹凸周期構造の凹凸深さとは、異なることが好ましい。   In the two-wavelength diffraction element according to the present invention, the first two-dimensional diffraction grating is formed in a concavo-convex shape along a third direction that is parallel to the transparent flat plate and perpendicular to the first direction. The second two-dimensional diffraction grating further includes a second concave-convex periodic structure formed in a concave-convex shape along the third direction; The height of each step of the first staircase periodic structure is equal to the height of each step of the second staircase periodic structure, the unevenness depth of the first uneven periodic structure, and the height of the second uneven periodic structure. It is preferable that the depth of the unevenness is different.

上記構成によれば、回折方向を最適化した二波長用回折素子を実現することができる。   According to the above configuration, a two-wavelength diffraction element with an optimized diffraction direction can be realized.

本発明に係る二波長用回折素子では、前記第1および第2の二次元回折格子において、前記第1および第2の階段周期構造の各段の高さ:h、前記第1および第2の二次元回折格子の屈折率:n、としたとき、(n−1)×hが波長λ1の整数倍となるように前記第1および第2の階段周期構造を形成し、前記第2の凹凸周期構造の凹凸深さ:d、前記第2の二次元回折格子の屈折率:n、としたとき、(n−1)×dが波長λ2の整数倍となるように前記第2の凹凸周期構造を形成することが好ましい。 In the two-wavelength diffraction element according to the present invention, in the first and second two-dimensional diffraction gratings, the height of each step of the first and second step periodic structures: h, the first and second When the refractive index of the two-dimensional diffraction grating is n, the first and second step periodic structures are formed so that (n−1) × h is an integral multiple of the wavelength λ1, and the second unevenness When the concave-convex depth of the periodic structure is d 2 and the refractive index of the second two-dimensional diffraction grating is n 2 , the (n 2 −1) × d 2 is an integral multiple of the wavelength λ 2 . It is preferable to form 2 irregular periodic structures.

本発明に係る二波長用回折素子では、前記第1および第2の階段周期構造は、互いに発光点が異なる波長λ1の光と波長λ2の光とのうちの波長λ2の光を回折させて前記波長λ1の光と波長λ2の光との光軸を揃え、前記第1の凹凸周期構造は、前記波長λ1の光を前記第3方向に沿って回折させたサブビームを生成し、前記第2の凹凸周期構造は、前記波長λ2の光を前記第3方向に沿って回折させたサブビームを生成することが好ましい。   In the two-wavelength diffractive element according to the present invention, the first and second step periodic structures diffract light having a wavelength λ2 out of light having a wavelength λ1 and light having a wavelength λ2 that have different emission points. The optical axes of the light of wavelength λ1 and the light of wavelength λ2 are aligned, and the first concave-convex periodic structure generates a sub-beam that diffracts the light of wavelength λ1 along the third direction. The concave-convex periodic structure preferably generates a sub beam in which the light with the wavelength λ2 is diffracted along the third direction.

本発明に係る二波長用回折素子では、前記波長λ1の光と波長λ2の光とは、前記第1の二次元回折格子に入射し、前記第2の二次元回折格子から出射することが好ましい。   In the two-wavelength diffraction element according to the present invention, it is preferable that the light of wavelength λ1 and the light of wavelength λ2 are incident on the first two-dimensional diffraction grating and emitted from the second two-dimensional diffraction grating. .

本発明に係る光ピックアップは、本発明に係る二波長用回折素子を備えたことを特徴とする。   An optical pickup according to the present invention includes the two-wavelength diffraction element according to the present invention.

本発明に係る二波長用回折素子は、前記透明平板に平行な第1方向に沿って3段以上の階段状に形成された階段周期構造を有するので、簡単な構成で安価に、波長λ1の光と波長λ2の光との光軸を揃えることができるという効果を奏する。   The two-wavelength diffractive element according to the present invention has a step periodic structure formed in three or more steps along the first direction parallel to the transparent flat plate. There is an effect that the optical axes of the light and the light of wavelength λ2 can be aligned.

実施の形態1に係る光ピックアップの構成を示す図である。1 is a diagram illustrating a configuration of an optical pickup according to Embodiment 1. FIG. 上記光ピックアップに設けられた二波長用回折素子の構成を示す斜視図である。It is a perspective view which shows the structure of the diffraction element for two wavelengths provided in the said optical pick-up. (a)は上記二波長用回折素子に形成された階段周期構造の構成を示す断面図であり、(b)は上記二波長用回折素子の動作を説明するための断面図である。(A) is sectional drawing which shows the structure of the staircase periodic structure formed in the said diffraction element for two wavelengths, (b) is sectional drawing for demonstrating operation | movement of the said diffraction element for two wavelengths. (a)は上記二波長用回折素子に形成された凹凸周期構造の構成を示す断面図であり、(b)は上記二波長用回折素子の他の動作を説明するための断面図である。(A) is sectional drawing which shows the structure of the uneven | corrugated periodic structure formed in the said diffraction element for two wavelengths, (b) is sectional drawing for demonstrating other operation | movement of the said diffraction element for two wavelengths. (a)は波長λ1の光の階段深さHと回折効率との間の関係を示すグラフであり、(b)は波長λ2の光の階段深さHと回折効率との間の関係を示すグラフである。(A) is a graph showing the relationship between the staircase depth H of the light of wavelength λ1 and the diffraction efficiency, and (b) shows the relationship between the staircase depth H of the light of wavelength λ2 and the diffraction efficiency. It is a graph. 実施の形態2に係る光ピックアップの構成を示す図である。6 is a diagram illustrating a configuration of an optical pickup according to Embodiment 2. FIG. 上記光ピックアップに設けられた二波長用回折素子の構成を示す斜視図である。It is a perspective view which shows the structure of the diffraction element for two wavelengths provided in the said optical pick-up. (a)は上記二波長用回折素子に形成された第1階段周期構造の構成を示す断面図であり、(b)は上記二波長用回折素子の動作を説明するための断面図である。(A) is sectional drawing which shows the structure of the 1st step periodic structure formed in the said diffraction element for two wavelengths, (b) is sectional drawing for demonstrating operation | movement of the said diffraction element for two wavelengths. (a)は上記二波長用回折素子に形成された第1および第2凹凸周期構造の構成を示す断面図であり、(b)は上記二波長用回折素子の他の動作を説明するための断面図である。(A) is sectional drawing which shows the structure of the 1st and 2nd uneven | corrugated periodic structure formed in the said 2 wavelength diffraction element, (b) is for demonstrating other operation | movement of the said 2 wavelength diffraction element. It is sectional drawing. 従来の光ピックアップの構成を示す図である。It is a figure which shows the structure of the conventional optical pick-up. 従来の光ピックアップに搭載された回折素子の機能を説明するための図である。It is a figure for demonstrating the function of the diffraction element mounted in the conventional optical pick-up.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施の形態1)
図1は、実施の形態1に係る光ピックアップ14の構成を示す図である。図1に示す光ピックアップ14は、半導体レーザダイオードが内蔵された発光部15と、この発光部15から発せられたレーザ光を平行光にするコリメートレンズ16と、1/4波長板17と、光ディスク18に光を集光する対物レンズ19と、光ディスク18からの戻り光を検出する受光部20と、受光部20に戻り光を集光する円筒レンズ21と、発光部15から出射されたレーザ光を透過させるとともに、前記光ディスク18からの戻り光を反射して受光部20に導く偏光ビームスプリッタ22と、前記発光部15と偏光ビームスプリッタ22との間に配置された本実施の形態の二波長用回折素子1とを備えている。
(Embodiment 1)
FIG. 1 is a diagram illustrating a configuration of the optical pickup 14 according to the first embodiment. An optical pickup 14 shown in FIG. 1 includes a light emitting unit 15 incorporating a semiconductor laser diode, a collimating lens 16 that collimates laser light emitted from the light emitting unit 15, a quarter-wave plate 17, and an optical disc. The objective lens 19 that condenses the light 18, the light receiving unit 20 that detects the return light from the optical disk 18, the cylindrical lens 21 that collects the return light to the light receiving unit 20, and the laser light emitted from the light emitting unit 15. A polarizing beam splitter 22 that reflects the return light from the optical disk 18 and guides it to the light receiving unit 20, and the two wavelengths of the present embodiment disposed between the light emitting unit 15 and the polarizing beam splitter 22. The diffraction element 1 is provided.

前記発光部15内において、DVD用として波長660nm(λ1)のレーザ光の発光点を形成する発光素子23aと、CD用として波長780nm(λ2)のレーザ光の発光点を形成する発光素子23bとが、微小間隔離間した状態で配置されている。このため発光点がずれるので、発光部15から発せられた異なる波長のレーザ光は、互いに光軸がずれている。本実施の形態の回折素子1は、発光部15の直後に設けられ、レーザ光の光軸を揃えるとともに、それぞれの波長の光に対して最適な角度で3ビームを発生させる。   In the light emitting section 15, a light emitting element 23a for forming a light emitting point for laser light with a wavelength of 660 nm (λ1) for DVD, and a light emitting element 23b for forming a light emitting point for laser light with a wavelength of 780 nm (λ2) for CD. However, they are arranged in a state of being spaced apart by a minute distance. For this reason, since the emission points are shifted, the optical axes of laser beams of different wavelengths emitted from the light emitting unit 15 are shifted from each other. The diffractive element 1 of the present embodiment is provided immediately after the light emitting unit 15, aligns the optical axes of the laser light, and generates three beams at an optimum angle with respect to light of each wavelength.

発光部15から発射した波長λ1、λ2のレーザ光は、二波長用回折素子1を透過して光軸を揃えられ、さらに2本のサブビームを生成した後に、偏光ビームスプリッタ22を透過する。そして、コリメートレンズ16により平行光とされた後に、1/4波長板17を透過して、対物レンズ19に入射する。対物レンズ19により集光されたレーザ光は光ディスク18にスポット光を形成する。光ディスク18により反射された戻り光は、対物レンズ19、1/4波長板17、コリメートレンズ16を経て、偏光ビームスプリッタ22に導かれる。発光部15から出射したレーザ光は往路と復路で1/4波長板17を透過することにより、偏光の向きが90度回転し、戻り光は偏光ビームスプリッタ22により反射され、円筒レンズ21を経て受光部20に導かれる。   The laser beams having the wavelengths λ1 and λ2 emitted from the light emitting unit 15 are transmitted through the two-wavelength diffraction element 1 so that their optical axes are aligned, and after further generating two sub beams, are transmitted through the polarization beam splitter 22. Then, after being collimated by the collimator lens 16, it is transmitted through the quarter-wave plate 17 and enters the objective lens 19. The laser light condensed by the objective lens 19 forms spot light on the optical disk 18. The return light reflected by the optical disk 18 is guided to the polarization beam splitter 22 through the objective lens 19, the quarter wavelength plate 17, and the collimator lens 16. The laser light emitted from the light emitting unit 15 is transmitted through the quarter-wave plate 17 in the forward path and the return path, whereby the direction of polarization is rotated by 90 degrees, and the return light is reflected by the polarization beam splitter 22 and passes through the cylindrical lens 21. Guided to the light receiving unit 20.

図2は、二波長用回折素子1の構成を示す斜視図である。図2に示すように、二波長用回折素子1は、透明基板(透明平板)2を備えている。透明基板2のレーザ光の入射面側に二次元回折格子3が形成され、射出面側に一次元回折格子4が形成されており、二次元回折格子3はX方向とY方向の二方向に沿って周期的な構造をもち、一次元回折格子4はY方向に沿って周期的な構造をもつ。   FIG. 2 is a perspective view showing the configuration of the two-wavelength diffraction element 1. As shown in FIG. 2, the two-wavelength diffraction element 1 includes a transparent substrate (transparent flat plate) 2. A two-dimensional diffraction grating 3 is formed on the laser beam incident surface side of the transparent substrate 2, and a one-dimensional diffraction grating 4 is formed on the emission surface side. The two-dimensional diffraction grating 3 is in two directions, the X direction and the Y direction. The one-dimensional diffraction grating 4 has a periodic structure along the Y direction.

図3(a)は二波長用回折素子1に形成された階段周期構造5の構成を示す断面図であり、(b)は二波長用回折素子1の動作を説明するための断面図である。X−Z断面については、図3(a)に示すように、二次元回折格子3の階段周期構造5は、複数の凸部24aが周期的に連続して鋸刃状に形成されている。各凸部24aは、巨視的に見ると、垂直面と傾斜面とで直角三角形状に形成され、微視的に見ると各傾斜面に階段状に段差部S1、S2、S3が形成されている。
段差部は平坦面が段々と高さを変えて段数を3以上とした形状であり、最下段の平坦面から最上段の平坦面までの距離である階段深さをH、1段あたりの1段深さをh、凸部の周期をP、各段のX方向の幅寸法Wとする。Wとhは等ピッチで形成されている(即ち、h=H/2、Wx=Px/3)。
波長λの入射光がこの階段周期構造5を通過するときに発生する位相差(空気との屈折率差により形成される)は、二次元回折格子3の屈折率をn(λ)とすると、式1で表される。
3A is a cross-sectional view showing the configuration of the staircase periodic structure 5 formed in the two-wavelength diffraction element 1, and FIG. 3B is a cross-sectional view for explaining the operation of the two-wavelength diffraction element 1. FIG. . With respect to the XZ cross section, as shown in FIG. 3A, the step periodic structure 5 of the two-dimensional diffraction grating 3 has a plurality of convex portions 24a periodically formed in a saw-tooth shape. When viewed macroscopically, each convex portion 24a is formed in a right triangle shape with a vertical surface and an inclined surface, and when viewed microscopically, step portions S1, S2, and S3 are formed stepwise on each inclined surface. Yes.
The stepped portion has a shape in which the flat surface gradually changes in height and the number of steps is 3 or more, and the step depth, which is the distance from the lowermost flat surface to the uppermost flat surface, is H, 1 per step. The step depth is h, the period of the convex portion is P x , and the width dimension W x in the X direction of each step. W x and h are formed at an equal pitch (that is, h = H / 2, Wx = Px / 3).
A phase difference (formed by a difference in refractive index from air) generated when incident light having a wavelength λ passes through the staircase periodic structure 5 is expressed as follows. If the refractive index of the two-dimensional diffraction grating 3 is n (λ), It is represented by Formula 1.

φ(λ)=2π・(n(λ)−1)h/λ …式1
この位相差φ(λ)が、レーザ光の一方の波長λに対して式2を満たすようにし、もう一方の波長λに対して式3を満たすようにする。ただし、N、Nは正の整数とする。
φ (λ) = 2π · (n (λ) −1) h / λ Formula 1
This phase difference φ (λ) is set so as to satisfy Equation 2 for one wavelength λ 1 of the laser beam and satisfy Equation 3 for the other wavelength λ 2 . However, N 1 and N 2 are positive integers.

φ(λ)=2Nπ(Nは整数) …式2
φ(λ)≠2Nπ(Nは整数) …式3
式2に示すように、(n(λ)−1)・hが波長λの整数倍となるように深さ寸法hを設定することで、前記波長λのレーザ光が二次元回折素子3内を通過したときに、波長λのレーザ光が回折しなくなる。波長λのレーザ光に対しては式2を満たすように、波長λのレーザ光に対しては式3を満たすように1段深さhを設定することによって、波長λのレーザ光が二次元回折素子3に入射したときにレーザ光を回折させずに0次回折光のままの状態で透過させることができ、波長λのレーザ光のみを回折させることができる。
φ (λ 1 ) = 2N 1 π (N 1 is an integer) Equation 2
φ (λ 2 ) ≠ 2N 2 π (N 2 is an integer) Equation 3
As shown in Equation 2, by setting the depth dimension h so that (n (λ) −1) · h is an integral multiple of the wavelength λ, the laser light with the wavelength λ is reflected in the two-dimensional diffraction element 3. When the laser beam passes through the laser beam, the laser beam having the wavelength λ is not diffracted. So as to satisfy the equation 2 with respect to laser light having a wavelength of lambda 1, by setting the 1-stage depth h so as to satisfy the equation 3 with respect to laser light having a wavelength lambda 2, the wavelength lambda 1 of the laser beam There can be transmitted without diffracting the laser light having entered into the two-dimensional diffractive element 3 0 in the state of the diffracted light, it can be diffracted only the laser beam having a wavelength lambda 2.

図3(b)に示すように、波長λのレーザ光を二次元回折素子3に入射したとき、式4に示す回折角度(0次光光軸と1次回折光の発生方向軸とがなす角度)θxの方向に回折光が発生する。 As shown in FIG. 3B, when a laser beam having a wavelength λ 2 is incident on the two-dimensional diffractive element 3, the diffraction angle shown in Expression 4 (the zero-order optical axis and the generation direction axis of the first-order diffracted light form). Diffracted light is generated in the direction of (angle) θx.

2π/λ・sin(θ)=2π/P …式4
発光点から二次元回折格子3までの距離をL、両発光点の間の間隔をDとしたとき、式5の関係を満たすよう各発光素子を配置すれば、図3(b)に示すように、波長λの光と波長λの光の光軸をそろえることができる。
2π / λ 2 · sin (θ x ) = 2π / P x Equation 4
If each light emitting element is arranged so as to satisfy the relationship of Equation 5, where L is the distance from the light emitting point to the two-dimensional diffraction grating 3 and D is the distance between the two light emitting points, as shown in FIG. In addition, the optical axes of the light of wavelength λ 1 and the light of wavelength λ 2 can be aligned.

L・tan(θ)=D …式5
この階段周期構造5の階段深さHを変化させたときの回折効率の計算結果を図5に示す。回折格子層(2次元回折格子3)の屈折率nを1.55、波長λ1を660nm、波長λ2を780nmとした。波長λ1の結果を図5(a)に、波長λ2の結果を図5(b)に示す。階段深さH=4.7μm付近で、波長660nmの光の0次回折光を最大にすることができ、波長780nmの光に対しては、−1次回折光を最大にすることができることがわかる。
L · tan (θ x ) = D Equation 5
FIG. 5 shows the calculation results of the diffraction efficiency when the step depth H of the step periodic structure 5 is changed. The refractive index n of the diffraction grating layer (two-dimensional diffraction grating 3) was 1.55, the wavelength λ1 was 660 nm, and the wavelength λ2 was 780 nm. FIG. 5A shows the result of the wavelength λ1, and FIG. 5B shows the result of the wavelength λ2. It can be seen that near the staircase depth H = 4.7 μm, the 0th-order diffracted light with a wavelength of 660 nm can be maximized, and for the light with a wavelength of 780 nm, the −1st-order diffracted light can be maximized.

図4(a)は二波長用回折素子1に形成された凹凸周期構造の構成を示す断面図であり、(b)は二波長用回折素子1の他の動作を説明するための断面図である。Y−Z断面については図4(a)に示すように、二次元回折格子3には矩形状の凹凸周期構造6が形成
されており、また同様に一次元回折格子4にも矩形状の一次元凹凸周期構造7が形成されている。図4(b)に示すように、この二次元回折格子3は、波長λの光に対してY−Z面内の方向に回折光を発生させ、波長λの光に対しては回折光を発生させないよう構成され、一次元回折格子4は、逆に波長λの光に対してY−Z面内の方向に回折光を発生させ、波長λの光に対して回折光を発生させないよう構成される。
FIG. 4A is a cross-sectional view showing a configuration of an uneven periodic structure formed in the two-wavelength diffraction element 1, and FIG. 4B is a cross-sectional view for explaining another operation of the two-wavelength diffraction element 1. FIG. is there. As for the YZ cross section, as shown in FIG. 4A, the two-dimensional diffraction grating 3 has a rectangular uneven periodic structure 6 formed thereon. Similarly, the one-dimensional diffraction grating 4 has a rectangular primary shape. An original uneven periodic structure 7 is formed. As shown in FIG. 4B, the two-dimensional diffraction grating 3 generates diffracted light in the direction in the YZ plane with respect to light having the wavelength λ 2 and diffracts light with wavelength λ 1. is configured so as not to generate light, one-dimensional diffraction grating 4, conversely to generate diffracted light in the direction of the Y-Z plane with respect to the wavelength lambda 1 of light, the diffracted light with respect to the wavelength lambda 2 of light It is configured not to generate.

この二次元回折格子3および一次元回折格子4のY−Z断面における凹凸周期構造6および一次元凹凸周期構造7の形状については、凹凸部の凹凸深さd、凸部屈折率n、周期Py、凸部幅Wyは、それぞれ凹凸周期構造6および一次元凹凸周期構造7ごとに個別に設定される。この回折格子の凹凸部の凹凸深さdおよび凸部の屈折率n(λ)を用いて、波長λの入射光が空気との屈折率差により形成される位相差は式6で表される。   Regarding the shapes of the uneven periodic structure 6 and the one-dimensional uneven periodic structure 7 in the YZ section of the two-dimensional diffraction grating 3 and the one-dimensional diffraction grating 4, the uneven depth d of the uneven part, the convex refractive index n, and the period Py. The convex portion width Wy is individually set for each of the uneven periodic structure 6 and the one-dimensional uneven periodic structure 7. Using the unevenness depth d of the uneven portion of this diffraction grating and the refractive index n (λ) of the protruded portion, the phase difference formed by the difference in refractive index between the incident light of wavelength λ and air is expressed by Equation 6. .

二次元回折格子3の凹凸周期構造6の形状を、波長λの入射光に対して式7を満たすように、波長λの入射光に対して式8を満たすように形成すると、二次元回折格子3はY−Z面内の方向に波長λの光のみを回折させる。
φ(λ)=2π・(n(λ)−1)d/λ …式6
φ(λ)=2Nπ(Nは整数) …式7
φ(λ)≠2Nπ(Nは整数) …式8
また第二の回折格子の凹凸構造の形状を、波長λの入射光に対して式9を、波長λの入射光に対して式10を満たすように形成すると、第二の回折格子はY−Z面内の方向に波長λの光のみを回折させる。
When the shape of the concavo-convex periodic structure 6 of the two-dimensional diffraction grating 3 is formed so as to satisfy the equation 7 for the incident light of the wavelength λ 1 and the equation 8 for the incident light of the wavelength λ 2 , the two-dimensional The diffraction grating 3 diffracts only the light with the wavelength λ 2 in the direction in the YZ plane.
φ (λ) = 2π · (n (λ) −1) d / λ Equation 6
φ (λ 1 ) = 2N 3 π (N 3 is an integer) Equation 7
φ (λ 2 ) ≠ 2N 4 π (N 4 is an integer)
Further, when the shape of the concavo-convex structure of the second diffraction grating is formed so as to satisfy Equation 9 for incident light of wavelength λ 1 and Equation 10 for incident light of wavelength λ 2 , the second diffraction grating is in the direction of the Y-Z plane diffracts only light of the wavelength lambda 1.

φ(λ)≠2Nπ(Nは整数) …式9
φ(λ)=2Nπ(Nは整数) …式10
このように形成された二波長用回折格子1によって回折される光の効率は、スカラ理論に基づいて求められ、波長λの入射光に対する0次光回折効率η(λ)、および±1次回折効率η±1(λ)は、それぞれ式11、式12で表される。
φ (λ 1 ) ≠ 2N 5 π (N 5 is an integer) Equation 9
φ (λ 2 ) = 2N 6 π (N 6 is an integer)
The efficiency of the light diffracted by the two-wavelength diffraction grating 1 formed in this way is obtained based on the scalar theory, and the zero-order light diffraction efficiency η 0 (λ) with respect to the incident light having the wavelength λ and ± 1 next time The folding efficiency η ± 1 (λ) is expressed by Expression 11 and Expression 12, respectively.

η(λ)=4(W/P−1/2)sin(φ(λ)/2)
+cos(φ(λ)/2) …式11
η±1(λ)=4/π・sin(πW/P)・sin(φ(λ)/2) …式12
式7、式10を満たす場合は、デューティ比(W/P)によらず0次光回折効率は100%、1次光回折効率は0%である。
η 0 (λ) = 4 (W / P−1 / 2) 2 sin 2 (φ (λ) / 2)
+ Cos 2 (φ (λ) / 2) Equation 11
η ± 1 (λ) = 4 / π 2 · sin 2 (πW / P) · sin 2 (φ (λ) / 2) Equation 12
When Expressions 7 and 10 are satisfied, the 0th-order light diffraction efficiency is 100% and the first-order light diffraction efficiency is 0% regardless of the duty ratio (W / P).

二次元回折格子3による回折角度(0次光光軸と1次回折光の発生方向軸とがなす角度)θは式13を満たす。 Diffraction angle by the two-dimensional diffraction grating 3 (angle formed by the 0th-order optical axis and the generation direction axis of the 1st-order diffracted light) θ 1 satisfies Expression 13.

2π/λ・sin(θ)=2π/P …式13
同様に一次元回折格子4においては、
2π/λ・sin(θ)=2π/P …式14
を満たす角度方向θに回折光が発生する。
2π / λ 2 · sin (θ 1 ) = 2π / P 1 Formula 13
Similarly, in the one-dimensional diffraction grating 4,
2π / λ 1 · sin (θ 2 ) = 2π / P 2 Formula 14
Diffracted light is generated in the angle direction θ 2 that satisfies the above.

CD系とDVD系光ディスクとではトラックピッチが異なるため、回折光の発生方向はそれぞれの光ディスクに対して最適化する必要がある。本実施の形態に係る二波長回折素子1では二次元回折格子3と一次元回折格子4との形状を独立して設計することが可能であるため、上記条件を満たすように二次元回折格子3と一次元回折格子4との特性(回折効率、回折角度)を最適化することができる。また2波長レーザの光軸補正を行うための素子と3ビームを生成するための回折格子を一体化することができるため部品点数を削減することができる。   Since the track pitch is different between the CD system and the DVD system optical disk, the direction of generation of the diffracted light needs to be optimized for each optical disk. In the two-wavelength diffraction element 1 according to the present embodiment, the shapes of the two-dimensional diffraction grating 3 and the one-dimensional diffraction grating 4 can be designed independently, so that the two-dimensional diffraction grating 3 satisfies the above conditions. And the characteristics (diffraction efficiency, diffraction angle) of the one-dimensional diffraction grating 4 can be optimized. Further, since the element for correcting the optical axis of the two-wavelength laser and the diffraction grating for generating three beams can be integrated, the number of components can be reduced.

本実施の形態に係る二波長用回折素子1の構成は、透明基板2の両面に二次元回折格子3と一次元回折格子4とを設けたものであるが、二次元回折格子3と一次元回折格子4との材料としては熱硬化性樹脂や熱可塑性樹脂、光硬化性樹脂などが使用でき、これらの回折格子の周期は数μm〜十数μmでよく、また深さも数μmであるため、金型による転写が容易であるため安価に製造することができる。二波長用回折素子1の作製方法としては、透明基板2の両面に二次元回折格子3と一次元回折格子4とを成型してもよいし、透明基板2、二次元回折格子3、および一次元回折格子4を同一部材として、金型を用いて一体成型してもよい。上記した二波長用回折素子1では、二次元回折格子3の階段周期構造5の段差数を3段としているが、本発明はこれに限定されない。さらに段差数を増やしてもよい。   The configuration of the two-wavelength diffraction element 1 according to the present embodiment is such that a two-dimensional diffraction grating 3 and a one-dimensional diffraction grating 4 are provided on both surfaces of a transparent substrate 2. As a material for the diffraction grating 4, a thermosetting resin, a thermoplastic resin, a photocurable resin, or the like can be used, and the period of these diffraction gratings may be several μm to several tens of μm and the depth is several μm. Since it is easy to transfer with a mold, it can be manufactured at low cost. As a method for producing the two-wavelength diffraction element 1, the two-dimensional diffraction grating 3 and the one-dimensional diffraction grating 4 may be molded on both surfaces of the transparent substrate 2, or the transparent substrate 2, the two-dimensional diffraction grating 3, and the primary The original diffraction grating 4 may be the same member and may be integrally molded using a mold. In the two-wavelength diffraction element 1 described above, the number of steps of the step periodic structure 5 of the two-dimensional diffraction grating 3 is three, but the present invention is not limited to this. Further, the number of steps may be increased.

(実施の形態2)
図6は、実施の形態2に係る光ピックアップ14aの構成を示す図である。実施の形態1において前述した構成要素と同一の構成要素には同一の参照符号を付している。これらの構成要素の詳細な説明は繰り返さない。光ピックアップ14aは、二波長用回折素子1aを備えている。
(Embodiment 2)
FIG. 6 is a diagram showing a configuration of the optical pickup 14a according to the second embodiment. The same reference numerals are given to the same components as those described in the first embodiment. Detailed description of these components will not be repeated. The optical pickup 14a includes a two-wavelength diffraction element 1a.

図7は、二波長用回折素子1aの構成を示す斜視図である。図7に示すように、二波長用回折素子1aは、透明基板2を備えている。透明基板2の入射面側に二次元回折格子9が形成され、射出面側に二次元回折格子8が形成されており、二次元回折格子9と二次元回折格子8とはともにX方向とY方向の二方向に沿って周期的な構造をもつ。   FIG. 7 is a perspective view showing the configuration of the two-wavelength diffraction element 1a. As shown in FIG. 7, the two-wavelength diffraction element 1 a includes a transparent substrate 2. A two-dimensional diffraction grating 9 is formed on the incident surface side of the transparent substrate 2 and a two-dimensional diffraction grating 8 is formed on the exit surface side. The two-dimensional diffraction grating 9 and the two-dimensional diffraction grating 8 are both in the X direction and the Y direction. It has a periodic structure along two directions.

図8(a)は二波長用回折素子1aの二次元回折格子9に形成された階段周期構造12の構成を示す断面図であり、図8(b)は二波長用回折素子1aの動作を説明するための断面図である。X−Z断面については図8(a)に示すように、階段周期構造12は複数の凸部24bが連続して鋸刃状に形成され、第一の実施の形態と同様に各凸部24bは、巨視的に見ると垂直面と傾斜面とで直角三角形状に形成され、微視的に見ると各傾斜面に階段状に段差部S1・S2・S3が形成されている。射出面側の二次元回折格子8にも二次元回折格子9と同様の階段周期構造10が用いられる点が実施の形態1と異なっている。階段周期構造12と階段周期構造10との互いの傾斜面は平行となるよう形成されている。このように、階段周期構造12の階段状の傾斜方向と、階段周期構造10の階段状の傾斜方向とは、互いに平行である。   FIG. 8A is a cross-sectional view showing the configuration of the staircase periodic structure 12 formed in the two-dimensional diffraction grating 9 of the two-wavelength diffraction element 1a, and FIG. 8B shows the operation of the two-wavelength diffraction element 1a. It is sectional drawing for demonstrating. Regarding the XZ cross section, as shown in FIG. 8A, the staircase periodic structure 12 has a plurality of convex portions 24b continuously formed in a saw-tooth shape, and each convex portion 24b as in the first embodiment. When viewed macroscopically, a vertical plane and an inclined surface are formed in a right triangle shape, and when viewed microscopically, stepped portions S1, S2, and S3 are formed on each inclined surface in a stepped manner. The second embodiment is different from the first embodiment in that the stepped periodic structure 10 similar to the two-dimensional diffraction grating 9 is used for the two-dimensional diffraction grating 8 on the exit surface side. The inclined surfaces of the staircase periodic structure 12 and the staircase periodic structure 10 are formed to be parallel to each other. Thus, the staircase-like inclination direction of the staircase periodic structure 12 and the staircase-like inclination direction of the staircase periodic structure 10 are parallel to each other.

図8(b)に示すように、二次元回折格子8・9ともに、波長λのレーザ光に対して回折光を発生せず、波長λのレーザ光に対して回折光を発生させるよう構造を設定する。図8(b)に示す形状とすることにより、二次元回折格子9の階段周期構造12におけるλのレーザ光の1次回折光を、λのレーザ光の光軸側に回折させ、さらに二次元回折格子9と反対側に設けられた二次元回折格子8において波長λのレーザ光を前記とは逆側に回折させると、波長λのレーザ光の光軸と波長λのレーザ光の光軸とを一致させることができるようになる。 As shown in FIG. 8B, both the two-dimensional diffraction gratings 8 and 9 do not generate diffracted light with respect to the laser light with the wavelength λ 1 but generate diffracted light with respect to the laser light with the wavelength λ 2. Set the structure. With the shape shown in FIG. 8B, the first-order diffracted light of the λ 2 laser light in the staircase periodic structure 12 of the two-dimensional diffraction grating 9 is diffracted to the optical axis side of the λ 1 laser light, When the two-dimensional diffraction grating 8 provided on the opposite side of the two-dimensional diffraction grating 9 diffracts the laser beam having the wavelength λ 2 to the opposite side, the optical axis of the laser beam having the wavelength λ 2 and the laser beam having the wavelength λ 1 are used. The optical axis can be made coincident with each other.

透明基板2の屈折率はnとすると、このとき回折光は、式15の関係を満たす回折角度θxの方向に発生する。 Assuming that the refractive index of the transparent substrate 2 is n p , diffracted light is generated in the direction of the diffraction angle θx that satisfies the relationship of Expression 15.

2π/λ・n・sin(θ)=2π/P …式15
透明基板2の厚みをT、両発光点の間の間隔をDとしたとき、式16の関係を満たせば波長λと波長λの光軸をそろえることができる。
2π / λ 2 · n p · sin (θ x ) = 2π / P x Equation 15
Assuming that the thickness of the transparent substrate 2 is T and the distance between both light emitting points is D, the optical axes of the wavelengths λ 1 and λ 2 can be aligned if the relationship of Expression 16 is satisfied.

T・tan(θ)=D …式16
CD用レーザ素子とDVD用レーザ素子とをモノリシック集積化した2波長レーザでは、発光点間隔のバラツキが±1μm以下の精度で管理されている。このため、透明基板2の厚みTと、回折角度θを適切に管理することにより、二次元回折素子1aの位置あわせを不要とすることができる。
T · tan (θ x ) = D Equation 16
In a two-wavelength laser in which a CD laser element and a DVD laser element are monolithically integrated, variation in the emission point interval is managed with an accuracy of ± 1 μm or less. Therefore, the thickness T of the transparent substrate 2, by appropriately managing the diffraction angle theta x, can be made unnecessary alignment of the two dimensional diffraction element 1a.

Y−Z面については、実施の形態1と同様に、図9(a)(b)に示すように、一方の波長の光のみに対して回折光を発生させるよう二次元回折格子9を設定し、もう一方の波長の光のみに対して回折光を発生させるよう二次元回折格子8を設定する。二次元回折格子9は、凹凸周期構造13を有する。二次元回折格子8は、凹凸周期構造11を有する。   For the YZ plane, as in the first embodiment, as shown in FIGS. 9A and 9B, the two-dimensional diffraction grating 9 is set so as to generate diffracted light only for light of one wavelength. Then, the two-dimensional diffraction grating 8 is set so that diffracted light is generated only for light of the other wavelength. The two-dimensional diffraction grating 9 has an uneven periodic structure 13. The two-dimensional diffraction grating 8 has an uneven periodic structure 11.

本二次元回折素子1aは波長λの光の光軸を平行移動させて、波長λの光の光軸と一致させることができる。このため、発光点と二次元回折素子1aとの間の距離の調整を不要とすることができる。さらに2波長レーザの光軸補正を行うための素子と3ビームを生成するための回折格子とを一体化することができるため部品点数を削減することができる。 This two dimensional diffraction element 1a can be moved parallel to the optical axis of the wavelength lambda 2 of the light to match the optical axis of the wavelength lambda 1 of light. For this reason, adjustment of the distance between the light emitting point and the two-dimensional diffraction element 1a can be made unnecessary. Furthermore, since the element for correcting the optical axis of the two-wavelength laser and the diffraction grating for generating three beams can be integrated, the number of parts can be reduced.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、少なくとも2つの波長の光を光源とする光ディスクなどの光記録媒体用の記録装置や再生装置などに用いる光ピックアップ用の2波長用回折素子およびその光ピックアップに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a two-wavelength diffractive element for an optical pickup used for a recording device or a reproducing device for an optical recording medium such as an optical disk using light of at least two wavelengths as a light source and the optical pickup.

1 二波長用回折素子
2 透明基板(透明平板)
3 二次元回折格子
4 一次元回折格子
5 階段周期構造
6 凹凸周期構造
7 一次元凹凸周期構造
8 二次元回折格子
9 二次元回折格子
10 階段周期構造
11 凹凸周期構造
12 階段周期構造
13 凹凸周期構造
14 光ピックアップ
1 Two-wavelength diffraction element 2 Transparent substrate (transparent flat plate)
3 Two-dimensional diffraction grating 4 One-dimensional diffraction grating 5 Staircase periodic structure 6 Concavity and convexity structure 7 One-dimensional concavity and convexity structure 8 Two-dimensional diffraction grating 9 Two-dimensional diffraction grating 10 Staircase periodic structure 11 Concavity and convexity structure 12 Staircase periodic structure 13 Concavity and convexity structure 14 Optical pickup

Claims (11)

波長λ1の光と波長λ2の光とが入射する二波長用回折素子であって、
透明平板の一方の面に設けられた二次元回折格子を備え、
前記二次元回折格子は、前記透明平板に平行な第1方向に沿って3段以上の階段状に形成された階段周期構造を有することを特徴とする二波長用回折素子。
A two-wavelength diffractive element in which light of wavelength λ1 and light of wavelength λ2 are incident,
A two-dimensional diffraction grating provided on one surface of the transparent flat plate,
2. The two-wavelength diffraction element according to claim 2, wherein the two-dimensional diffraction grating has a stepped periodic structure formed in a stepped shape of three or more steps along a first direction parallel to the transparent flat plate.
前記透明平板の他方の面に設けられた一次元回折格子をさらに備え、
前記二次元回折格子は、前記透明平板に平行な方向であって前記第1方向に直交する第2方向に沿って、前記階段周期構造の各段の高さと等しい凹凸深さを有して凹凸状に形成された凹凸周期構造をさらに有しており、
前記一次元回折格子は、前記凹凸周期構造の凹凸深さとは異なる凹凸深さを有して前記第2方向に沿って凹凸状に形成された一次元凹凸周期構造を有している請求項1記載の二波長用回折素子。
A one-dimensional diffraction grating provided on the other surface of the transparent flat plate;
The two-dimensional diffraction grating has a concavo-convex depth equal to a height of each step of the step periodic structure along a second direction that is parallel to the transparent flat plate and perpendicular to the first direction. It further has an uneven periodic structure formed in a shape,
The one-dimensional diffraction grating has a one-dimensional uneven periodic structure having an uneven depth different from the uneven depth of the uneven periodic structure and formed in an uneven shape along the second direction. The diffraction element for two wavelengths of description.
前記二次元回折格子において、
前記階段周期構造の各段の高さ:h、
前記二次元回折格子の屈折率:n、
としたとき、(n−1)×hが波長λ1の整数倍となるように前記階段周期構造を形成し、
前記一次元回折格子の前記一次元凹凸周期構造の凹凸深さ:d
前記一次元回折格子の屈折率:n
としたとき、(n−1)×dが波長λ2の整数倍となるように前記一次元凹凸周期構造を形成する請求項2記載の二波長用回折素子。
In the two-dimensional diffraction grating,
Height of each step of the staircase periodic structure: h,
Refractive index of the two-dimensional diffraction grating: n,
Then, the step periodic structure is formed so that (n−1) × h is an integral multiple of the wavelength λ1,
Concave and convex depth of the one-dimensional concave and convex periodic structure of the one-dimensional diffraction grating: d 2
Refractive index of the one-dimensional diffraction grating: n 2
3. The two-wavelength diffraction element according to claim 2, wherein the one-dimensional concavo-convex periodic structure is formed such that (n 2 −1) × d 2 is an integral multiple of the wavelength λ2.
前記二次元回折格子の階段周期構造は、互いに発光点が異なる波長λ1の光と波長λ2の光とのうちの波長λ2の光を回折させて前記波長λ1の光と波長λ2の光との光軸を揃え、
前記二次元回折格子の凹凸周期構造は、前記波長λ2の光を前記第2方向に沿って回折させたサブビームを生成し、
前記一次元回折格子の前記一次元凹凸周期構造は、前記波長λ1の光を前記第2方向に沿って回折させたサブビームを生成する請求項2記載の二波長用回折素子。
The staircase periodic structure of the two-dimensional diffraction grating diffracts light of wavelength λ2 out of light of wavelength λ1 and light of wavelength λ2 having different light emission points to produce light of light of wavelength λ1 and light of wavelength λ2. Align axes,
The concave-convex periodic structure of the two-dimensional diffraction grating generates a sub-beam obtained by diffracting the light of the wavelength λ2 along the second direction,
3. The two-wavelength diffraction element according to claim 2, wherein the one-dimensional uneven periodic structure of the one-dimensional diffraction grating generates a sub beam obtained by diffracting the light of the wavelength λ <b> 1 along the second direction.
前記波長λ1の光と波長λ2の光とは、前記二次元回折格子に入射し、前記一次元回折格子から出射する請求項2記載の二波長用回折素子。   3. The two-wavelength diffraction element according to claim 2, wherein the light of wavelength λ <b> 1 and the light of wavelength λ <b> 2 enter the two-dimensional diffraction grating and exit from the one-dimensional diffraction grating. 波長λ1の光と波長λ2の光とが入射する二波長用回折素子であって、
透明平板の一方の面に設けられた第1の二次元回折格子と、前記透明平板の他方の面に設けられた第2の二次元回折格子とを備え、
前記第1の二次元回折格子は、前記透明平板に平行な第1方向に沿って3段以上の階段状に形成された第1の階段周期構造を有しており、
前記第2の二次元回折格子は、前記第1方向と反対の第2方向に沿って3段以上の階段状に形成された第2の階段周期構造を有しており、
前記第1の階段周期構造の階段状の傾斜方向と、前記第2の階段周期構造の階段状の傾斜方向とが、互いに平行であることを特徴とする二波長用回折素子。
A two-wavelength diffractive element in which light of wavelength λ1 and light of wavelength λ2 are incident,
A first two-dimensional diffraction grating provided on one surface of the transparent flat plate, and a second two-dimensional diffraction grating provided on the other surface of the transparent flat plate,
The first two-dimensional diffraction grating has a first step periodic structure formed in a step shape of three or more steps along a first direction parallel to the transparent flat plate,
The second two-dimensional diffraction grating has a second step periodic structure formed in a step shape of three or more steps along a second direction opposite to the first direction,
The two-wavelength diffraction element, wherein the stepwise inclination direction of the first staircase periodic structure and the stepwise inclination direction of the second staircase periodic structure are parallel to each other.
前記第1の二次元回折格子は、前記透明平板に平行な方向であって前記第1方向に直交する第3方向に沿って凹凸状に形成された第1の凹凸周期構造をさらに有しており、
前記第2の二次元回折格子は、前記第3方向に沿って凹凸状に形成された第2の凹凸周期構造をさらに有しており、
前記第1の階段周期構造の各段の高さと、前記第2の階段周期構造の各段の高さとは、等しく、
前記第1の凹凸周期構造の凹凸深さと、前記第2の凹凸周期構造の凹凸深さとは、異なる請求項6記載の二波長用回折素子。
The first two-dimensional diffraction grating further includes a first uneven periodic structure formed in an uneven shape along a third direction that is parallel to the transparent flat plate and perpendicular to the first direction. And
The second two-dimensional diffraction grating further includes a second uneven periodic structure formed in an uneven shape along the third direction,
The height of each step of the first staircase periodic structure is equal to the height of each step of the second staircase periodic structure,
The two-wavelength diffraction element according to claim 6, wherein the uneven depth of the first uneven periodic structure is different from the uneven depth of the second uneven periodic structure.
前記第1および第2の二次元回折格子において、
前記第1および第2の階段周期構造の各段の高さ:h、
前記第1および第2の二次元回折格子の屈折率:n、
としたとき、(n−1)×hが波長λ1の整数倍となるように前記第1および第2の階段周期構造を形成し、
前記第2の凹凸周期構造の凹凸深さ:d
前記第2の二次元回折格子の屈折率:n
としたとき、(n−1)×dが波長λ2の整数倍となるように前記第2の凹凸周期構造を形成する請求項7記載の二波長用回折素子。
In the first and second two-dimensional diffraction gratings,
Height of each step of the first and second staircase periodic structures: h,
Refractive index of the first and second two-dimensional diffraction gratings: n,
The first and second step periodic structures are formed so that (n−1) × h is an integral multiple of the wavelength λ1,
Concave and convex depth of the second concave and convex periodic structure: d 2
Refractive index of the second two-dimensional diffraction grating: n 2
The two-wavelength diffraction element according to claim 7, wherein the second uneven periodic structure is formed so that (n 2 −1) × d 2 is an integral multiple of the wavelength λ2.
前記第1および第2の階段周期構造は、互いに発光点が異なる波長λ1の光と波長λ2の光とのうちの波長λ2の光を回折させて前記波長λ1の光と波長λ2の光との光軸を揃え、
前記第1の凹凸周期構造は、前記波長λ1の光を前記第3方向に沿って回折させたサブビームを生成し、
前記第2の凹凸周期構造は、前記波長λ2の光を前記第3方向に沿って回折させたサブビームを生成する請求項7記載の二波長用回折素子。
The first and second staircase periodic structures diffract light of wavelength λ2 out of light of wavelength λ1 and light of wavelength λ2 having different emission points from each other to obtain light of wavelength λ1 and light of wavelength λ2. Align the optical axes,
The first concave-convex periodic structure generates a sub beam obtained by diffracting the light of the wavelength λ1 along the third direction,
The two-wavelength diffractive element according to claim 7, wherein the second uneven periodic structure generates a sub beam obtained by diffracting the light having the wavelength λ <b> 2 along the third direction.
前記波長λ1の光と波長λ2の光とは、前記第1の二次元回折格子に入射し、前記第2の二次元回折格子から出射する請求項6記載の二波長用回折素子。   The two-wavelength diffraction element according to claim 6, wherein the light of wavelength λ1 and the light of wavelength λ2 are incident on the first two-dimensional diffraction grating and are emitted from the second two-dimensional diffraction grating. 請求項1および6のいずれかに記載の二波長用回折素子を備えたことを特徴とする光ピックアップ。





An optical pickup comprising the two-wavelength diffraction element according to claim 1.





JP2009089179A 2009-04-01 2009-04-01 Diffraction element for two wavelength, and optical pickup using the same Pending JP2010244588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089179A JP2010244588A (en) 2009-04-01 2009-04-01 Diffraction element for two wavelength, and optical pickup using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089179A JP2010244588A (en) 2009-04-01 2009-04-01 Diffraction element for two wavelength, and optical pickup using the same

Publications (1)

Publication Number Publication Date
JP2010244588A true JP2010244588A (en) 2010-10-28

Family

ID=43097447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089179A Pending JP2010244588A (en) 2009-04-01 2009-04-01 Diffraction element for two wavelength, and optical pickup using the same

Country Status (1)

Country Link
JP (1) JP2010244588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228674A (en) * 2013-05-22 2014-12-08 セイコーエプソン株式会社 Diffraction optical element, method for manufacturing diffraction optical element, and electronic equipment
CN108445555A (en) * 2018-05-09 2018-08-24 华南师范大学 Super surface lens
CN108490523A (en) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 Diffraction optical element and its manufacturing method, laser projection module, depth camera and electronic device
CN113302559A (en) * 2019-01-15 2021-08-24 卡尔蔡司Smt有限责任公司 Optical diffraction element for suppressing at least one target wavelength by destructive interference

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228674A (en) * 2013-05-22 2014-12-08 セイコーエプソン株式会社 Diffraction optical element, method for manufacturing diffraction optical element, and electronic equipment
CN108490523A (en) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 Diffraction optical element and its manufacturing method, laser projection module, depth camera and electronic device
CN108445555A (en) * 2018-05-09 2018-08-24 华南师范大学 Super surface lens
CN113302559A (en) * 2019-01-15 2021-08-24 卡尔蔡司Smt有限责任公司 Optical diffraction element for suppressing at least one target wavelength by destructive interference

Similar Documents

Publication Publication Date Title
JP2000076689A (en) Optical pickup device
JP2010244588A (en) Diffraction element for two wavelength, and optical pickup using the same
JP2004327005A (en) Optical head, diffraction element and its manufacturing method
KR100656000B1 (en) Optical diffraction device and optical information processing device
JP2008041234A (en) Optical pickup and optical information processing device
JP2007234094A (en) Diffraction grating body, optical head device using the same and manufacturing method of diffraction grating body
US8134908B2 (en) Diffractive optical element and optical pickup
JP3817438B2 (en) Optical member and optical device using the same
US8045443B2 (en) Optical pickup apparatus
KR20060046502A (en) Optical pickup apparatus and optical disk apparatus
JP2006228260A (en) Optical pickup
JP2003223738A (en) Optical pickup device and optical disk device, and optical device and composite optical element
JP2004253111A (en) Optical pickup device
JP2008216424A (en) Diffraction element and optical head device using the same
JP5337841B2 (en) Optical pickup device
JP2007323762A (en) Diffraction grating, method of manufacturing the same, and optical pickup device
JP2007293938A (en) Diffraction grating, its manufacturing method, and optical pickup apparatus
JP2001028145A (en) Optical head device and disk recording/reproducing device
WO2014013719A1 (en) Optical pickup device
JP2009076165A (en) Optical head device
JP4501583B2 (en) Optical pickup device
JP5509137B2 (en) Optical pickup device
KR100894321B1 (en) Grating device and optical pickup apparatus using the same
JP4877375B2 (en) Optical head device
JP2005092903A (en) Optical pickup, optical disk reproduction device, and laser light source