JP3816385B2 - Method for producing metal separator for fuel cell - Google Patents

Method for producing metal separator for fuel cell Download PDF

Info

Publication number
JP3816385B2
JP3816385B2 JP2001396168A JP2001396168A JP3816385B2 JP 3816385 B2 JP3816385 B2 JP 3816385B2 JP 2001396168 A JP2001396168 A JP 2001396168A JP 2001396168 A JP2001396168 A JP 2001396168A JP 3816385 B2 JP3816385 B2 JP 3816385B2
Authority
JP
Japan
Prior art keywords
separator
conductive inclusions
conductive
fuel cell
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001396168A
Other languages
Japanese (ja)
Other versions
JP2003197212A (en
Inventor
輝幸 大谷
政男 宇都宮
誠 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001396168A priority Critical patent/JP3816385B2/en
Priority to US10/496,317 priority patent/US7507490B2/en
Priority to DE10297507T priority patent/DE10297507T5/en
Priority to CA002469410A priority patent/CA2469410C/en
Priority to PCT/JP2002/011467 priority patent/WO2003049220A1/en
Publication of JP2003197212A publication Critical patent/JP2003197212A/en
Application granted granted Critical
Publication of JP3816385B2 publication Critical patent/JP3816385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池が備える金属製セパレータの製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、例えば、表面に導電経路を形成する導電性介在物が分散・露出したステンレス鋼からなる薄板を素材とし、この素材板をプレス成形して上記ガス流路や冷媒流路を形成したものが挙げられる。
【0004】
【発明が解決しようとする課題】
上記ガス流路や冷媒流路は、素材板を断面凹凸状に曲げ加工して得られる表裏の溝で構成されるが、曲げ加工によって角となるR部の外面側においては引っ張り応力によって表面の伸び量が大きくなるので、母材と導電性介在物との界面に割れが生じて導電性介在物が脱落する場合がある。導電性介在物が脱落したセパレータを用いると、燃料電池の運転中に脱落痕を起点とする孔食が生成し、腐食が進行したり、接触抵抗が増大したりするといった問題が生じる。また、導電性介在物の形状によっては、その介在物を起点とする割れが発生しやすく、かつ助長されてしまう場合があった。図1は、セパレータの素材板10をプレス成形してセパレータ10Aを製造した際の曲げ加工によって、導電性介在物30を起点とした割れの発生状況を示している。同図に示すように、特に、中央に析出している断面縦長の形状の導電性介在物30は、母材20に対してくさびを打ったように作用して割れ20aが発展し、こうなると燃料ガスや酸化性ガスのリークが生じてセパレータとしての機能の低下を招くことになる。
【0005】
よって本発明は、プレス成形時の導電性介在物の脱落や導電性介在物を起点とした割れを防止して健全なセパレータを製造することができる燃料電池用金属製セパレータの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明者は、上記のように曲げ加工によって生じる導電性介在物の脱落や導電性介在物を起点とした母材の割れは、析出している導電性介在物の板厚断面での面方向および板厚方向の各フェレ径の比に依存することを見い出し、本発明を完成するに至った。すなわち、本発明は、セパレータの表面から突出する導電性介在物を有する燃料電池用金属製セパレータをプレス成形によって製造するにあたり、プレス成形前のセパレータの素材板の表裏面を片面の研削量が前記素材板の厚さの14.3%以上で23.7%以下となるように研削し、前記素材板中に存在する導電性介在物の曲げ方向を含む断面で見た板厚断面での面方向のフェレ径の平均値をx、板厚方向のフェレ径の平均値をyとした場合、xおよびyが、0.5≦x/y≦1.2を満たすことを特徴とする。ここで言うフェレ径x,yは、図2に示すように、導電性介在物における素材板10の面方向の投影像の最大幅がフェレ径xであり、素材板10の板厚方向の投影像の最大幅がフェレ径yである。
【0007】
発明のセパレータの素材板は、オーステナイト系ステンレス鋼等の連続鋳造スラブを圧延したものが好適に用いられ、鋼中に析出した導電性介在物は、圧延によって破砕されたり伸ばされて変形する。その場合の導電性介在物の変形の度合いは、図3に示すように、表面に近いほど圧延の影響を大きく受けて導電性介在物は鋼板の面方向に沿って扁平になり、板厚の中央付近では析出時の形状(図3では縦長楕円状である)が比較的保たれる。したがって、圧延後の鋼板の表面を研削することによっ導電性介在物のフェレ径x,yを制御することができる。
【0008】
なお、上記オーステナイト系ステンレス鋼は、本発明に係るセパレータの材質として好適である。具体的には、表1に示す各成分と、残部がFe,Bおよび不可避的不純物とを含有し、かつ、CrおよびBが次の式を満足している。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17
そして、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物として表面に析出しており、これら硼化物が、セパレータの表面に導電経路を形成する導電性介在物である。
【0009】
【表1】

Figure 0003816385
【0010】
【実施例】
次に、本発明の実施例を説明する。
A.セパレータの製造
表2に示す各成分と、残部がFeおよび不可避的不純物とを含有するオーステナイト系ステンレス鋼を連続鋳造した。次いで、得られたスラブを、表3に示すように0.2mmから0.47mmの28種類の厚さに冷間圧延して試料No.1〜28の材料板を得た。次に、これら材料板から200mm×200mmの正方形板を切り出し、窒素ガス中で1100℃にて10分間の熱処理を施した。この後、りん酸系電解液(ジャスコ社製:6C 016)を用いた電解研磨により両面を研削して厚さ0.2mmに仕上げ、導電性介在物の板厚断面での面方向のフェレ径の平均値をx、板厚方向のフェレ径の平均値をyとした場合のx/yの値を異ならせた28種類の素材板(試料No.1〜28)を得た。表3に、片面電解研磨量と研削後の厚さを示す。また、表4に試料No.1〜28のx/yの値を示す。x/yの値は、表面の研削によって制御することができた。
【0011】
【表2】
Figure 0003816385
【0012】
【表3】
Figure 0003816385
【0013】
【表4】
Figure 0003816385
【0014】
次に、試料No.1〜28の素材板を、それぞれ50tonのプレス荷重でプレス成形し、セパレータを得た。図4は成形されるセパレータの全体平面を示しており、図5は、セパレータの凹凸成形部分の一部断面および設計寸法を示している。
【0015】
B.導電性介在物の脱落率および割れ発生の基点となった導電性介在物の割合の測定
上記のようにして製造した試料No.1〜28のセパレータから、曲げ加工されたR部を含むようにして、10mm×20mmの試験片をワイヤーカット法により切り出して得た。これら試験片を、20mm断面が観察面となるように、油圧式自動樹脂埋め機で直径30mmの円柱状熱硬化型フェノール樹脂に埋め込んだ。この試験片の観察面を、耐水研磨紙を用いて粗さ♯600、♯1000の順に研磨した。次いで、ダイヤモンドペーストを3μm、0.25μmの順で用いて試験片の観察面をバフ研磨し、鏡面に仕上げた。この試験片の観察面を、倒立型金属顕微鏡によって400倍の倍率で撮像し、得られた写真から、次のようにして導電性介在物の脱落率および割れ発生の基点となった導電性介在物の割合を求めた。
【0016】
a)導電性介在物の脱落率
母材から突出する導電性介在物の個数(a)と、母材から導電性介在物が抜け落ちてできた孔の個数(b)とを計測した。そして、a+bが1000となるまで計測し、a,bの数値を次の式にあてはめて導電性介在物の脱落率を求めた。
脱落率(%)={b/(a+b)}×100
b)割れ発生の基点となった導電性介在物の割合
母材から突出する導電性介在物の個数(a)と、発生した母材の割れの起点となった導電性介在物の個数(c)とを計測した。そして、a+cが1000となるまで計測し、a,cの数値を次の式にあてはめて割れ発生の基点となった導電性介在物の割合を求めた。
割れ発生の起点となった導電性介在物の割合(%)
={c/(a+c)}×100
上記測定の結果を表4に示すとともに、図6にグラフ化した。
【0017】
表4の測定結果および図6によれば、上記x/yの値が0.5以上に確保されていると、導電性介在物の脱落率は0が保持され、逆に0.5未満では急激に脱落率が上昇している。また、x/yが1.2以下では、導電性介在物が起点となった割れは発生していないが、1.2を超えると導電性介在物を起点とした割れが発生している。したがって、導電性介在物の脱落と、導電性介在物を起点とした割れの発生は、導電性介在物の板厚断面での面方向のフェレ径の平均値をx、板厚方向のフェレ径の平均値をyとした場合のx/yの値を0.5〜1.2の範囲内に制御することで防止することができることが実証された。
【0018】
【発明の効果】
以上説明したように、本発明によれば、プレス成形前のセパレータの素材板中に存在する導電性介在物の板厚断面での面方向および板厚方向の各フェレ径の比を適切な値に制御することにより、プレス成形時の導電性介在物の脱落や導電性介在物を起点とした割れが防止されて健全なセパレータを製造することができるといった効果を奏する。
【図面の簡単な説明】
【図1】 セパレータをプレス成形した際に生じる導電性介在物を起点とした割れの発生状況を模式的に示す図である。
【図2】 フェレ径x,yの定義を説明するための素材板の断面図である。
【図3】 圧延による導電性介在物の板厚方向の変形状況を説明するための圧延鋼の模式的断面図である。
【図4】 本発明の実施例で製造したセパレータの平面を示す写真である。
【図5】 本発明の実施例で製造したセパレータの凹凸成形部分の断面図である。
【図6】 本発明の実施例の測定結果を示す線図である。
【符号の説明】
10…素材板、10A…セパレータ、20…母材、20a…割れ、
30…導電性介在物。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal separator provided in a polymer electrolyte fuel cell.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a plate electrode assembly (MEA) is formed as one unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. The metal separator is made of, for example, a thin plate made of stainless steel in which conductive inclusions that form a conductive path on the surface are dispersed and exposed, and this material plate is press-molded to form the gas flow path and the refrigerant flow path. What was formed is mentioned.
[0004]
[Problems to be solved by the invention]
The gas flow path and the refrigerant flow path are configured by front and back grooves obtained by bending a material plate into a concavo-convex shape in cross section. On the outer surface side of the R portion that becomes a corner by bending, the surface of the surface is caused by tensile stress. Since the amount of elongation increases, the conductive inclusions may fall off due to cracks at the interface between the base material and the conductive inclusions. When a separator from which conductive inclusions have dropped is used, pitting corrosion starting from the drop marks is generated during the operation of the fuel cell, which causes problems such as corrosion progressing and contact resistance increasing. Further, depending on the shape of the conductive inclusions, cracks starting from the inclusions are likely to occur and may be promoted. FIG. 1 shows the occurrence of cracks starting from the conductive inclusions 30 by bending when the separator material plate 10 is press-molded to produce the separator 10A. As shown in the figure, in particular, the conductive inclusion 30 having a vertically long cross section deposited at the center acts like a wedge on the base material 20 and the crack 20a develops. Fuel gas or oxidizing gas leaks, resulting in a decrease in separator function.
[0005]
Therefore, this invention provides the manufacturing method of the metal separator for fuel cells which can prevent the omission of the conductive inclusion at the time of press molding, and the crack which started from the conductive inclusion, and can manufacture a healthy separator. The purpose is that.
[0006]
[Means for Solving the Problems]
The inventor found that the conductive inclusions dropped by bending as described above and cracks in the base material starting from the conductive inclusions are in the plane direction in the plate thickness section of the deposited conductive inclusions. The inventors have found that the ratio depends on the ratio of each ferret diameter in the plate thickness direction, and have completed the present invention. That is, in the present invention, when manufacturing a fuel cell metal separator having conductive inclusions protruding from the surface of the separator by press molding, the amount of grinding on one side of the front and back surfaces of the separator material plate before press molding is as described above. Surface in the plate thickness cross section as seen in the cross section including the bending direction of the conductive inclusions present in the raw material plate after grinding to be 14.3% to 23.7% of the thickness of the raw material plate When the average value of the ferret diameter in the direction is x and the average value of the ferret diameter in the thickness direction is y, x and y satisfy 0.5 ≦ x / y ≦ 1.2. As shown in FIG. 2, the ferret diameters x and y referred to here are such that the maximum width of the projected image in the surface direction of the material plate 10 in the conductive inclusion is the ferret diameter x, and the projection in the plate thickness direction of the material plate 10. The maximum width of the image is the ferret diameter y.
[0007]
As the material plate of the separator of the present invention, a material obtained by rolling a continuous cast slab such as austenitic stainless steel is preferably used, and conductive inclusions precipitated in the steel are deformed by being crushed or stretched by rolling. As shown in FIG. 3, the degree of deformation of the conductive inclusions in that case is greatly affected by rolling as the surface is closer, and the conductive inclusions become flat along the surface direction of the steel plate, In the vicinity of the center, the shape at the time of deposition (in FIG. 3, a vertically long ellipse) is relatively maintained. Therefore, Feret's diameter x of the conductive inclusions depending on grinding the surface of the steel sheet after rolling, it is possible to control the y.
[0008]
The austenitic stainless steel is suitable as a material for the separator according to the present invention. Specifically, each component shown in Table 1, the balance contains Fe, B and unavoidable impurities, and Cr and B satisfy the following formula.
Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17
Then, B is precipitated on the surface as M 2 B and MB type borides and M 23 (C, B) 6 type borides, and these borides form a conductive path on the surface of the separator. It is a sex inclusion.
[0009]
[Table 1]
Figure 0003816385
[0010]
【Example】
Next, examples of the present invention will be described.
A. Production of separator Austenitic stainless steel containing each component shown in Table 2 and the balance containing Fe and inevitable impurities was continuously cast. Next, the obtained slab was cold-rolled to 28 types of thickness from 0.2 mm to 0.47 mm as shown in Table 3, and sample No. 1-28 material plates were obtained. Next, a square plate of 200 mm × 200 mm was cut out from these material plates and heat-treated at 1100 ° C. for 10 minutes in nitrogen gas. Thereafter, both surfaces are ground by electrolytic polishing using a phosphoric acid electrolyte (Jusco: 6C 016) to a thickness of 0.2 mm, and the ferret diameter in the plane direction in the plate thickness cross section of the conductive inclusions 28 kinds of material plates (Sample Nos. 1 to 28) having different values of x / y, where x is the average value and y is the average ferret diameter in the plate thickness direction, were obtained. Table 3 shows the amount of single-sided electropolishing and the thickness after grinding. Table 4 shows the sample No. An x / y value of 1 to 28 is indicated. The value of x / y could be controlled by surface grinding.
[0011]
[Table 2]
Figure 0003816385
[0012]
[Table 3]
Figure 0003816385
[0013]
[Table 4]
Figure 0003816385
[0014]
Next, sample No. Each of the 1 to 28 material plates was press-molded with a press load of 50 tons to obtain a separator. FIG. 4 shows the entire plane of the separator to be molded, and FIG. 5 shows a partial cross-section and design dimensions of the concave-convex molded portion of the separator.
[0015]
B. Measurement of the falling rate of the conductive inclusions and the ratio of the conductive inclusions which became the starting point of cracking Sample No. manufactured as described above A 10 mm × 20 mm test piece was cut out from the 1 to 28 separators by the wire cut method so as to include the bent R portion. These test pieces were embedded in a columnar thermosetting phenol resin having a diameter of 30 mm with a hydraulic automatic resin embedding machine so that the 20 mm cross section was an observation surface. The observation surface of this test piece was polished in the order of roughness # 600 and # 1000 using water-resistant abrasive paper. Next, the observation surface of the test piece was buffed using a diamond paste in the order of 3 μm and 0.25 μm to finish it as a mirror surface. The observation surface of this test piece was imaged at a magnification of 400 times with an inverted metal microscope, and from the obtained photograph, the conductive inclusions that became the starting point of the dropout rate of conductive inclusions and the occurrence of cracks were as follows. The percentage of things was determined.
[0016]
a) Dropping rate of conductive inclusions The number of conductive inclusions protruding from the base material (a) and the number of holes (b) formed by the conductive inclusions falling off from the base material were measured. And it measured until a + b became 1000, the numerical value of a and b was applied to the following formula | equation, and the drop-off rate of the conductive inclusion was calculated | required.
Dropout rate (%) = {b / (a + b)} × 100
b) Proportion of conductive inclusions that are the starting point of cracking The number of conductive inclusions protruding from the base material (a) and the number of conductive inclusions that are the starting point of cracking of the generated base material (c) ) And measured. And it measured until a + c was set to 1000, and applied the numerical value of a and c to the following formula | equation, and calculated | required the ratio of the conductive inclusion used as the starting point of a crack generation.
Percentage of conductive inclusions that started cracking (%)
= {C / (a + c)} × 100
The results of the above measurements are shown in Table 4 and graphed in FIG.
[0017]
According to the measurement results in Table 4 and FIG. 6, when the value of x / y is ensured to be 0.5 or more, the falling rate of the conductive inclusions is maintained at 0, and conversely if it is less than 0.5, The dropout rate is rising rapidly. Further, when x / y is 1.2 or less, cracks originating from the conductive inclusions are not generated, but when it exceeds 1.2, cracks originating from the conductive inclusions are generated. Therefore, the omission of the conductive inclusions and the occurrence of cracks starting from the conductive inclusions are expressed as follows. The average value of the ferret diameter in the surface direction in the plate thickness section of the conductive inclusions is x, and the ferret diameter in the plate thickness direction. It has been proved that it can be prevented by controlling the value of x / y within the range of 0.5 to 1.2 when the average value of y is y.
[0018]
【The invention's effect】
As described above, according to the present invention, the ratio of the ferret diameters in the plane direction and the plate thickness direction in the plate thickness section of the conductive inclusions present in the material plate of the separator before press molding is an appropriate value. By controlling to, the removal of the conductive inclusions during press molding and the cracking starting from the conductive inclusions are prevented, and a sound separator can be produced.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the occurrence of cracks starting from conductive inclusions generated when a separator is press-formed.
FIG. 2 is a cross-sectional view of a material plate for explaining the definition of ferret diameters x and y.
FIG. 3 is a schematic cross-sectional view of rolled steel for explaining the deformation state of conductive inclusions in the plate thickness direction due to rolling.
FIG. 4 is a photograph showing a plane of a separator manufactured in an example of the present invention.
FIG. 5 is a cross-sectional view of a concavo-convex molded portion of a separator manufactured in an example of the present invention.
FIG. 6 is a diagram showing measurement results of an example of the present invention.
[Explanation of symbols]
10 ... Material plate, 10A ... Separator, 20 ... Base material, 20a ... Crack,
30: Conductive inclusions.

Claims (1)

セパレータの表面から突出する導電性介在物を有する燃料電池用金属製セパレータをプレス成形によって製造するにあたり、プレス成形前のセパレータの素材板の表裏面を片面の研削量が前記素材板の厚さの14.3%以上で23.7%以下となるように研削し、前記素材板中に存在する導電性介在物の曲げ方向を含む断面で見た板厚断面での面方向のフェレ径の平均値をx、板厚方向のフェレ径の平均値をyとした場合、xおよびyが、0.5≦x/y≦1.2を満たすことを特徴とする燃料電池用金属製セパレータの製造方法。When manufacturing a metal separator for a fuel cell having conductive inclusions protruding from the surface of the separator by press molding, the amount of grinding on one side of the front and back surfaces of the separator material plate before press molding is equal to the thickness of the material plate. The average of the ferret diameters in the plane direction in the plate thickness section as seen from the cross section including the bending direction of the conductive inclusions present in the material plate after grinding to be 14.3% to 23.7%. Production of metal separator for fuel cell, wherein x and y satisfy 0.5 ≦ x / y ≦ 1.2, where x is the value and y is the average ferret diameter in the plate thickness direction Method.
JP2001396168A 2001-12-07 2001-12-27 Method for producing metal separator for fuel cell Expired - Fee Related JP3816385B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001396168A JP3816385B2 (en) 2001-12-27 2001-12-27 Method for producing metal separator for fuel cell
US10/496,317 US7507490B2 (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method
DE10297507T DE10297507T5 (en) 2001-12-07 2002-11-01 Metallic separator for fuel cell and manufacturing process for the same
CA002469410A CA2469410C (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method
PCT/JP2002/011467 WO2003049220A1 (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396168A JP3816385B2 (en) 2001-12-27 2001-12-27 Method for producing metal separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2003197212A JP2003197212A (en) 2003-07-11
JP3816385B2 true JP3816385B2 (en) 2006-08-30

Family

ID=27602339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396168A Expired - Fee Related JP3816385B2 (en) 2001-12-07 2001-12-27 Method for producing metal separator for fuel cell

Country Status (1)

Country Link
JP (1) JP3816385B2 (en)

Also Published As

Publication number Publication date
JP2003197212A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
RU2518832C2 (en) Stainless steel of high conductance and plasticity for use in fuel element and method of its production
KR20080087043A (en) Separator for solid polymer fuel cell and method for manufacturing the same
US20050249999A1 (en) Press separator for fuel cell
US7507490B2 (en) Metal separator for fuel cell and its production method
US7049022B2 (en) Metal separator for fuel cell and production method therefor
JP3922154B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell
US20110033783A1 (en) Metal separator for fuel cell and its production method
US20060068262A1 (en) Separator for fuel cell and method for producing the same
KR101312861B1 (en) Stainless steel for bipolar plate of PEMFC with excellent corrosion resistance and contact resistance and method of manufacturing the bipolar plate
JP3816385B2 (en) Method for producing metal separator for fuel cell
JP2017088931A (en) Titanium alloy for solid polymer electrolyte fuel cell, titanium material using the same and solid polymer electrolyte fuel cell using the same
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP4266556B2 (en) Method for producing metal separator for fuel cell
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2003142119A (en) Method of manufacturing metallic separator for fuel cell
JP2009231150A (en) Ferrite system roughened surface stainless steel plate for separator, and separator as well as polymer electrolyte fuel cell
JP6648273B2 (en) Stainless steel for separator of polymer fuel cell having improved hydrophilicity and contact resistance and method for producing the same
JP4535660B2 (en) Method for producing metal separator for fuel cell
JP3913053B2 (en) Method for producing metal separator for fuel cell
JP2005171333A (en) Metal glass alloy
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
US7014938B2 (en) Separator for fuel cell
JP2003187829A (en) Metal separator for fuel cell, and its manufacturing method
JP6308330B2 (en) Titanium alloy, titanium material, separator, cell, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees