JP4266556B2 - Method for producing metal separator for fuel cell - Google Patents

Method for producing metal separator for fuel cell Download PDF

Info

Publication number
JP4266556B2
JP4266556B2 JP2001399629A JP2001399629A JP4266556B2 JP 4266556 B2 JP4266556 B2 JP 4266556B2 JP 2001399629 A JP2001399629 A JP 2001399629A JP 2001399629 A JP2001399629 A JP 2001399629A JP 4266556 B2 JP4266556 B2 JP 4266556B2
Authority
JP
Japan
Prior art keywords
separator
bending
conductive
conductive inclusions
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001399629A
Other languages
Japanese (ja)
Other versions
JP2003197216A (en
Inventor
輝幸 大谷
政男 宇都宮
誠 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001399629A priority Critical patent/JP4266556B2/en
Priority to DE10297507T priority patent/DE10297507T5/en
Priority to PCT/JP2002/011467 priority patent/WO2003049220A1/en
Priority to CA002469410A priority patent/CA2469410C/en
Priority to US10/496,317 priority patent/US7507490B2/en
Publication of JP2003197216A publication Critical patent/JP2003197216A/en
Application granted granted Critical
Publication of JP4266556B2 publication Critical patent/JP4266556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池が備える金属製セパレータの製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、例えば、表面に導電経路を形成する導電性介在物が分散・露出したステンレス鋼からなる薄板を素材とし、この素材板をプレス成形して上記ガス流路や冷媒流路を形成したものが挙げられる。
【0004】
【発明が解決しようとする課題】
上記ガス流路や冷媒流路は、素材板を断面凹凸状に曲げ加工して得られる表裏の溝で構成されるが、曲げ加工によって角となるR部の外面側においては引っ張り応力によって表面の伸び量が大きくなるので、母材と導電性介在物との界面に割れが生じて導電性介在物が脱落する場合がある。導電性介在物が脱落したセパレータを用いると、燃料電池の運転中に脱落痕を起点とする孔食が生成し、腐食が進行するといった問題が生じる。
【0005】
よって本発明は、プレス成形時の導電性介在物の脱落を抑制して健全なセパレータを製造することができる燃料電池用金属製セパレータの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、曲げ加工によって導電性介在物の脱落が生じ得るR部の曲げ半径の値と、セパレータの素材板中に存在する導電性介在物の板厚断面での平均面積との比率を規定することにより、導電性介在物の脱落が生じない曲げ半径、あるいは導電性介在物の寸法(径)を得るものである。具体的には、セパレータの表面から突出する導電性介在物を有する燃料電池用金属製セパレータをプレス成形によって素材板から凹凸状に曲げ加工して製造するにあたり、プレス成形による最小曲げ半径をr(μm)、ただし曲げ半径が1つの場合はその曲げ半径がrであり、曲げ半径が複数の場合は最小の曲げ半径がrであり、プレス成形前のセパレータの素材板中に存在する導電性介在物の曲げ方向を含む板厚断面での平均面積をS(μm)とした場合、Sおよびrが以下の式(1),(2)をともに満たし、rが0.05〜0.5mmであることを特徴としている。
【数2】

Figure 0004266556
【0007】
【数2】
Figure 0004266556
【0008】
オーステナイト系ステンレス鋼板等の素材板をプレス成形により凹凸状に曲げ加工してセパレータのガス流路や冷媒流路を形成する際、最小曲げRは、0.1〜0.5mm程度が好ましいとされているが、この範囲内では、上記(1)式および(2)式で表される本発明の条件は、従来のステンレス鋼板が満足することは困難であった。それは、導電性介在物の径が大きいからである。そこで、材料の鋳造時における冷却速度を調整したり、素材板の圧延工程で導電性介在物を破砕したりすることにより、導電性介在物の微細化を図る制御を行って本発明を実現することができた。具体的には、ステンレス鋼の鋳造を撹拌連続鋳造で行い、連続鋳造時の冷却速度(引き抜き速度)を制御して冷却過程で生成する導電性介在物の平均径を制御することができる。また、圧延によって素材板を製造する際、圧下率を大きくとることにより、素材中に存在する導電性介在物を破砕して導電性介在物の平均径を制御することができる。このようにして、析出する導電性介在物の平均径を制御することにより導電性介在物の板厚断面での平均面積Sを制御することができる。
【0009】
なお、上記オーステナイト系ステンレス鋼は、本発明に係るセパレータの材質として好適である。具体的には、表1に示す各成分と、残部がFe,Bおよび不可避的不純物とを含有し、かつ、CrおよびBが次の式を満足している。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17
そして、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物として表面に析出しており、これら硼化物が、セパレータの表面に導電経路を形成する導電性介在物である。
【0010】
【表1】
Figure 0004266556
【0011】
【実施例】
次に、本発明の実施例を説明する。
表2に示す各成分と、残部がFeおよび不可避的不純物とを含有するオーステナイト系ステンレス鋼を連続鋳造してスラブを得た。次いでこのスラブを、表3に示すように(素材板1〜11)最終圧延工程での圧下率を11通りに異ならせて圧延を行い、厚さ0.2mmの圧下率が異なる11種類の素材板を得た。次いで、これら11種類の素材板を100mm×100mmの正方形状に切り出した。これら素材板は、最終圧延工程での圧下率を異ならせることによって導電性介在物の板厚断面での平均面積が異なるものであり、設定圧下率およびその圧下率でで圧延された素材板における導電性介在物の平均面積S(μm)を、表3に示す。なお、この平均面積は顕微鏡写真から求めた。
【0012】
【表2】
Figure 0004266556
【0013】
【表3】
Figure 0004266556
【0014】
上記のようにして圧延時の圧下率を異ならせることによって導電性介在物の板厚断面での平均面積を異ならせた11種類の素材板を、平な金型(定盤)を用いて荷重3トンでプレスした。プレス後の素材板1〜11における導電性介在物の板厚断面での平均面積S(μm)を求め、さらに、このSの値を次の(3)式にあてはめて求めた。これら値を、表4に示す。
【0015】
【数3】
Figure 0004266556
【0016】
【表4】
Figure 0004266556
【0017】
また、これらプレス後の素材板1〜11の導電性介在物の脱落率を、次のようにして求めた。素材板から10mm×20mmの試験片をワイヤーカット法により切り出し、この試験片を、20mm断面が観察面となるように、油圧式自動樹脂埋め機で直径30mmの円柱状熱硬化型フェノール樹脂に埋め込んだ。この試験片の観察面を、耐水研磨紙を用いて粗さ♯600、♯1000の順に研磨した。次いで、ダイヤモンドペーストを3μm、0.25μmの順で用いて試験片の観察面をバフ研磨し、鏡面に仕上げた。この試験片の観察面を、倒立型金属顕微鏡によって400倍の倍率で撮像し、得られた写真から、母材から突出する導電性介在物の個数(a)と、母材から導電性介在物が抜け落ちてできた孔の個数(b)とを計測した。そして、a+bが1000となるまで計測し、a,bの数値を次の式にあてはめて導電性介在物の脱落率を求めた。
脱落率(%)={b/(a+b)}×100
その結果を表4に併記する。
【0018】
次に、上記素材板1〜11のうち素材板1〜6を選択し、これら6種類の素材板から、最小曲げRが50μm、100μm、200μm、300μm、500μmの5種類の試験用金型によって図1に示すようなセパレータをプレス成形して試料No.1〜30のセパレータを得た。表5に、試料No.1〜30のセパレータの最小曲げRの値r(μm)と、導電性介在物の板厚断面での平均面積S(μm)との組み合わせを示す。さらに、これらrおよびSの値を上記(3)式および以下の(4)式にあてはめて求めた値を、表5に併記する。
【0019】
【表5】
Figure 0004266556
【0020】
【数4】
Figure 0004266556
【0021】
上記のようにして製造した試料No.1〜30のセパレータから、曲げ加工されたR部を含むようにして、10mm×20mmの試験片をワイヤーカット法により切り出して得た。これら試験片を用い、上記と同様にして曲げ加工部の導電性介在物の脱落率を求めた。
【0022】
上記脱落率を表5に併記する。また、上記(3)式の値が1以上を満たす試料につき、上記(4)式の値と導電性介在物の脱落率との関係を調べ、図2にグラフ化した。また、図3は、プレス後の素材1〜11、すなわち曲げ加工されていない平面部における上記(3)式の値と導電性介在物の脱落率との関係をグラフ化したものである。
【0023】
表5および図2によれば、上記(3)式の値が1以上で、かつ上記(4)式の値が0.1以下の条件を満足するセパレータは、導電性介在物の脱落率が2〜3%、多くても5%であった。これに比べ、特に(4)式を満足しないセパレータの導電性介在物の脱落率は90%前後ときわめて高く、本発明の効果が実証された。また、図3によれば、平面部においては、上記(3)式の値が1以上を満足すれば導電性介在物の脱落率が大幅に少なくなることが判った。
【0024】
【発明の効果】
以上説明したように、本発明によれば、プレス成形による最小曲げRの値と、プレス成形前のセパレータの素材板中に存在する導電性介在物の板厚断面での平均面積の値とを適宜に規定することにより、導電性介在物の脱落が抑制されて健全なセパレータを製造することができるといった効果を奏する。
【図面の簡単な説明】
【図1】 実施例で製造したセパレータの写真である。
【図2】 実施例で得たセパレータのR部の導電性介在物の脱落率を示す線図である。
【図3】 実施例で得た平坦な素材板の導電性介在物の脱落率を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal separator provided in a polymer electrolyte fuel cell.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a plate electrode assembly (MEA) is formed as one unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. The metal separator is made of, for example, a thin plate made of stainless steel in which conductive inclusions that form a conductive path on the surface are dispersed and exposed, and this material plate is press-molded to form the gas flow path and the refrigerant flow path. What was formed is mentioned.
[0004]
[Problems to be solved by the invention]
The gas flow path and the refrigerant flow path are configured by front and back grooves obtained by bending a material plate into a concavo-convex shape in cross section. On the outer surface side of the R portion that becomes a corner by bending, the surface of the surface is caused by tensile stress. Since the amount of elongation increases, the conductive inclusions may fall off due to cracks at the interface between the base material and the conductive inclusions. When the separator from which the conductive inclusions have fallen is used, there arises a problem that pitting corrosion starts from the drop marks during the operation of the fuel cell, and corrosion progresses.
[0005]
Accordingly, an object of the present invention is to provide a method for producing a metallic separator for a fuel cell, which can produce a healthy separator by suppressing the falling of conductive inclusions during press molding.
[0006]
[Means for Solving the Problems]
The present invention defines the ratio between the value of the bending radius of the R portion at which the conductive inclusions can be removed by bending and the average area of the conductive inclusions existing in the material plate of the separator. By doing so, the bending radius at which the conductive inclusions do not fall off, or the dimension (diameter) of the conductive inclusions is obtained. Specifically, when a metal separator for a fuel cell having conductive inclusions protruding from the surface of the separator is manufactured by bending from a material plate into an uneven shape by press molding, the minimum bending radius by press molding is r ( μm), where the bending radius is r when there is only one bending radius, and the minimum bending radius is r when there are a plurality of bending radii. When the average area in the plate thickness section including the bending direction of the object is S (μm 2 ), S and r satisfy both the following formulas (1) and (2), and r is 0.05 to 0.5 mm. It is characterized by being.
[Expression 2]
Figure 0004266556
[0007]
[Expression 2]
Figure 0004266556
[0008]
When a material plate such as an austenitic stainless steel plate is bent into a concavo-convex shape by press forming to form a gas channel or a refrigerant channel of a separator, the minimum bending R is preferably about 0.1 to 0.5 mm. However, within this range, it was difficult for the conventional stainless steel plate to satisfy the conditions of the present invention represented by the above formulas (1) and (2). This is because the diameter of the conductive inclusion is large. Therefore, the present invention is realized by controlling the refinement of the conductive inclusions by adjusting the cooling rate at the time of casting the material or by crushing the conductive inclusions in the rolling process of the material plate. I was able to. Specifically, stainless steel is cast by stirring continuous casting, and the average diameter of conductive inclusions generated in the cooling process can be controlled by controlling the cooling rate (drawing rate) during continuous casting. Moreover, when manufacturing a raw material board by rolling, it can crush the conductive inclusion which exists in a raw material by taking a large reduction rate, and can control the average diameter of a conductive inclusion. Thus, the average area S in the plate | board thickness cross section of a conductive inclusion can be controlled by controlling the average diameter of the conductive inclusion to precipitate.
[0009]
The austenitic stainless steel is suitable as a material for the separator according to the present invention. Specifically, each component shown in Table 1, the balance contains Fe, B and unavoidable impurities, and Cr and B satisfy the following formula.
Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17
Then, B is precipitated on the surface as M 2 B and MB type borides and M 23 (C, B) 6 type borides, and these borides form a conductive path on the surface of the separator. It is a sex inclusion.
[0010]
[Table 1]
Figure 0004266556
[0011]
【Example】
Next, examples of the present invention will be described.
Austenitic stainless steel containing each component shown in Table 2 and the balance containing Fe and inevitable impurities was continuously cast to obtain a slab. Next, as shown in Table 3, the slab was rolled with 11 different rolling reduction ratios in the final rolling step as shown in Table 11, and 11 types of raw materials with different rolling reduction thicknesses of 0.2 mm were obtained. I got a plate. Next, these 11 kinds of material plates were cut into a square shape of 100 mm × 100 mm. These material plates have different average areas in the plate thickness cross section of the conductive inclusions by varying the rolling reduction rate in the final rolling step, and in the material plate rolled at the set rolling reduction rate and the rolling reduction rate. Table 3 shows the average area S (μm 2 ) of the conductive inclusions. In addition, this average area was calculated | required from the micrograph.
[0012]
[Table 2]
Figure 0004266556
[0013]
[Table 3]
Figure 0004266556
[0014]
As described above, 11 types of material plates with different average areas in the plate thickness cross section of the conductive inclusions by using different rolling reduction ratios during rolling were loaded using a flat mold (surface plate). Pressed at 3 tons. The average area S (μm 2 ) in the plate thickness section of the conductive inclusions in the material plates 1 to 11 after pressing was determined, and this S value was further applied to the following equation (3). These values are shown in Table 4.
[0015]
[Equation 3]
Figure 0004266556
[0016]
[Table 4]
Figure 0004266556
[0017]
Moreover, the drop-off rate of the conductive inclusions of the material plates 1 to 11 after the press was determined as follows. A 10 mm × 20 mm test piece is cut out from the material plate by the wire cutting method, and this test piece is embedded in a cylindrical thermosetting phenol resin having a diameter of 30 mm with a hydraulic automatic resin filling machine so that the 20 mm cross section becomes the observation surface. It is. The observation surface of this test piece was polished in the order of roughness # 600 and # 1000 using water-resistant abrasive paper. Next, the observation surface of the test piece was buffed using a diamond paste in the order of 3 μm and 0.25 μm to finish it as a mirror surface. The observation surface of this test piece was imaged with an inverted metal microscope at a magnification of 400 times. From the obtained photograph, the number (a) of conductive inclusions protruding from the base material and the conductive inclusions from the base material were measured. And the number of holes (b) formed by falling off. And it measured until a + b became 1000, the numerical value of a and b was applied to the following formula | equation, and the drop-off rate of the conductive inclusion was calculated | required.
Dropout rate (%) = {b / (a + b)} × 100
The results are also shown in Table 4.
[0018]
Next, the material plates 1 to 6 are selected from the material plates 1 to 11, and from these six types of material plates, the minimum bending R is determined by five types of test molds having a size of 50 μm, 100 μm, 200 μm, 300 μm, and 500 μm. A separator as shown in FIG. 1-30 separators were obtained. In Table 5, Sample No. The combination of the value r (micrometer) of the minimum bending R of the separator of 1-30 and the average area S (micrometer < 2 >) in the plate | board thickness cross section of an electroconductive inclusion is shown. Further, Table 5 shows values obtained by applying these r and S values to the above equation (3) and the following equation (4).
[0019]
[Table 5]
Figure 0004266556
[0020]
[Expression 4]
Figure 0004266556
[0021]
Sample No. manufactured as described above was used. From the 1-30 separator, a 10 mm × 20 mm test piece was cut out by the wire cut method so as to include the bent R portion. Using these test pieces, the falling rate of the conductive inclusions in the bent portion was determined in the same manner as described above.
[0022]
The dropout rate is also shown in Table 5. Further, the relationship between the value of the above formula (4) and the falling rate of the conductive inclusions was examined for a sample satisfying the value of the above formula (3) of 1 or more, and the graph is shown in FIG. FIG. 3 is a graph showing the relationship between the value of the above expression (3) and the falling rate of the conductive inclusions in the materials 1 to 11 after pressing, that is, in the flat portion not bent.
[0023]
According to Table 5 and FIG. 2, the separator satisfying the condition that the value of the above expression (3) is 1 or more and the value of the above expression (4) is 0.1 or less has a drop rate of conductive inclusions. It was 2-3% and at most 5%. Compared to this, the dropout rate of the conductive inclusions in the separator that does not satisfy the formula (4) is extremely high, around 90%, and the effect of the present invention was proved. In addition, according to FIG. 3, it was found that, in the flat portion, if the value of the above expression (3) satisfies 1 or more, the falling rate of the conductive inclusions is greatly reduced.
[0024]
【The invention's effect】
As described above, according to the present invention, the value of the minimum bending R by press molding and the value of the average area in the plate thickness section of the conductive inclusions present in the material plate of the separator before press molding are determined. By defining appropriately, there exists an effect that the omission of a conductive inclusion is suppressed and a sound separator can be manufactured.
[Brief description of the drawings]
FIG. 1 is a photograph of a separator manufactured in an example.
FIG. 2 is a diagram showing a dropout rate of conductive inclusions in an R portion of the separator obtained in the example.
FIG. 3 is a diagram showing a dropout rate of conductive inclusions in a flat material plate obtained in an example.

Claims (1)

セパレータの表面から突出する導電性介在物を有する燃料電池用金属製セパレータをプレス成形によって素材板から凹凸状に曲げ加工して製造するにあたり、プレス成形による最小曲げ半径をr(μm)、ただし曲げ半径が1つの場合はその曲げ半径がrであり、曲げ半径が複数の場合は最小の曲げ半径がrであり、プレス成形前のセパレータの素材板中に存在する導電性介在物の曲げ方向を含む板厚断面での平均面積をS(μm)とした場合、Sおよびrが以下の式(1),(2)をともに満たし、rが0.05〜0.5mmであることを特徴とする燃料電池用金属製セパレータの製造方法。
Figure 0004266556
When manufacturing metal separators for fuel cells having conductive inclusions projecting from the surface of the separator by bending the material plate into irregularities by press molding, the minimum bending radius by press molding is r (μm), but bending When the radius is one, the bending radius is r, and when there are a plurality of bending radii, the minimum bending radius is r, and the bending direction of the conductive inclusion existing in the material plate of the separator before press molding is determined. S and r satisfy both the following formulas (1) and (2), and r is 0.05 to 0.5 mm, where S (μm 2 ) is the average area in the plate thickness section including A method for producing a metal separator for a fuel cell.
Figure 0004266556
JP2001399629A 2001-12-07 2001-12-28 Method for producing metal separator for fuel cell Expired - Fee Related JP4266556B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001399629A JP4266556B2 (en) 2001-12-28 2001-12-28 Method for producing metal separator for fuel cell
DE10297507T DE10297507T5 (en) 2001-12-07 2002-11-01 Metallic separator for fuel cell and manufacturing process for the same
PCT/JP2002/011467 WO2003049220A1 (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method
CA002469410A CA2469410C (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method
US10/496,317 US7507490B2 (en) 2001-12-07 2002-11-01 Metal separator for fuel cell and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399629A JP4266556B2 (en) 2001-12-28 2001-12-28 Method for producing metal separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2003197216A JP2003197216A (en) 2003-07-11
JP4266556B2 true JP4266556B2 (en) 2009-05-20

Family

ID=27604574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399629A Expired - Fee Related JP4266556B2 (en) 2001-12-07 2001-12-28 Method for producing metal separator for fuel cell

Country Status (1)

Country Link
JP (1) JP4266556B2 (en)

Also Published As

Publication number Publication date
JP2003197216A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
JP5014644B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
WO2006135108A1 (en) Metal separator for fuel cell and manufacturing method thereof
US20180034070A1 (en) Stainless steel sheet for polymer electrolyte fuel cell separator
US7507490B2 (en) Metal separator for fuel cell and its production method
CN105609802B (en) The manufacturing method of fuel cell surface component and surface component
US7049022B2 (en) Metal separator for fuel cell and production method therefor
US10622643B2 (en) Carbon separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell stack
JP4266556B2 (en) Method for producing metal separator for fuel cell
JP4133323B2 (en) Press separator for fuel cell
KR101312861B1 (en) Stainless steel for bipolar plate of PEMFC with excellent corrosion resistance and contact resistance and method of manufacturing the bipolar plate
JP3702122B2 (en) Fuel cell separator
US20060068262A1 (en) Separator for fuel cell and method for producing the same
JP2003142119A (en) Method of manufacturing metallic separator for fuel cell
JP5163028B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3816385B2 (en) Method for producing metal separator for fuel cell
US20210062300A1 (en) Metal porous material, fuel cell, and method of producing metal porous material
JP2017088931A (en) Titanium alloy for solid polymer electrolyte fuel cell, titanium material using the same and solid polymer electrolyte fuel cell using the same
JP4854992B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2005171333A (en) Metal glass alloy
JPH10125337A (en) Separator for fuel cell
JP2003187829A (en) Metal separator for fuel cell, and its manufacturing method
DE10297620B4 (en) fuel cell
JP4535660B2 (en) Method for producing metal separator for fuel cell
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees