JP3815362B2 - Temperature detecting element and circuit board including the same - Google Patents

Temperature detecting element and circuit board including the same Download PDF

Info

Publication number
JP3815362B2
JP3815362B2 JP2002105040A JP2002105040A JP3815362B2 JP 3815362 B2 JP3815362 B2 JP 3815362B2 JP 2002105040 A JP2002105040 A JP 2002105040A JP 2002105040 A JP2002105040 A JP 2002105040A JP 3815362 B2 JP3815362 B2 JP 3815362B2
Authority
JP
Japan
Prior art keywords
heat receiving
temperature detection
heat
temperature
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105040A
Other languages
Japanese (ja)
Other versions
JP2003303702A (en
Inventor
聡 久村
英浩 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002105040A priority Critical patent/JP3815362B2/en
Priority to TW092104013A priority patent/TW584722B/en
Priority to KR1020030016095A priority patent/KR100616743B1/en
Priority to CNB031084397A priority patent/CN100405626C/en
Priority to DE10315519A priority patent/DE10315519B4/en
Publication of JP2003303702A publication Critical patent/JP2003303702A/en
Application granted granted Critical
Publication of JP3815362B2 publication Critical patent/JP3815362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえばサーミスタなどの温度検出素子およびこれを備える回路基板に関する。
【0002】
【従来の技術】
電気電子機器の小型化の進展に伴い、それに搭載されるパワートランジスタや、パワーICなどの部品に対する放熱などの対策はますます重要である。そのため、このような部品の温度を高精度に検出できる必要性は高い。このような実情からこれらパワーICなどの部品の温度を検出する温度検出素子の需要は拡大されている。
【0003】
図10は、このような温度検出素子の一例としてチップ型に構成された正特性サーミスタ1を示す。この正特性サーミスタ1は、素子本体部3と、電極部4,5とを有する。電極部4,5は、回路基板の配線パターンに半田付けするために設けられている。
【0004】
【発明が解決しようとする課題】
ところで、チップ型サーミスタ等の温度検出素子では温度検出対象部品に近づけて設置する必要がある。従来の温度検出素子の場合、回路基板上の配線や他部品との配置の関係から、温度検出対象部品に十分近づけることができない場合があり、温度検出が精度良く行えないことがあった。また、熱源と温度検出素子との位置関係のみならず、周囲の状況や、基板の熱放散係数などによって、温度検出素子の感熱条件が異なったりすることがあるから、検知精度が左右されやすい。
【0005】
本発明は、上記実状に鑑みてなされたものであって、温度検出対象に対する高精度な温度検出ができる温度検出素子を提供することを解決課題としている。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る温度検出素子は、素子本体部と、前記素子本体部に設けられた電極部と、温度検出対象側から伝導される熱を受容する熱受容部とを含み、前記熱受容部は、前記素子本体部の表面素材に対して非オーミック性接触の金属薄膜層を有することを特徴とする。
【0007】
請求項1に係る温度検出素子によれば、熱受容部を備えていることによって、素子本体部に対して温度検出対象からの熱が伝導されやすい。そのため、従来では温度検出対象からの熱による感温が十分に行えないほどにその温度検出対象から少し離れた箇所に温度検出素子を配置しなければならない場合でも、熱受容部への温度検出対象からの熱の伝導を図ることができる。したがって、そのように検出対象と温度検出素子との間における温度検出用の熱的な結合が良好に行えるものとなるので、その温度検出を精度良く行うことができる。
しかも、素子本体部の表面素材に対して非オーミック性接触の金属材料を熱受容部に有することで、素子本体部に対して検出に悪影響を与える電気的結合が熱受容部を通して生じないようにできる。ここで、素子本体部としては、例えば、BaTiO 3 、Mn−Ni系酸化物が用いられるとともに、これに対して熱受容部の非オーミック接触性を有する金属材料としては、例えば、銀、金、白金もしくはそれらの合金などが採用される。
【0008】
なお、回路基板上に本発明に係る温度検出素子を設ける場合、温度検出対象と温度検出素子との間を熱伝導可能にランドを設けることで、温度検出素子の熱受容部をそのランドに半田付けすれば、熱受容部がランドを通して温度検出対象から熱伝導されやすくなり、温度検出が一層良好に行える利点がある。本発明の構成を採用可能な温度検出素子としては、正特性サーミスタ、負特性サーミスタなどがある。
【0009】
本発明の請求項2に係る温度検出素子は、請求項1に記載の温度検出素子において、前記熱受容部は、前記非オーミック性接触の金属薄膜層に対する表層として半田濡れ性を有する接合用薄膜層を有することを特徴とする。
【0010】
請求項2に係る温度検出素子によれば、回路基板に設けた熱伝導用のランドに対して、接合用薄膜層によって温度検出素子の熱受容部を半田付けすることができ、回路基板上の温度検出対象から温度検出のための熱伝導を簡易に行えるようにできる。
【0011】
本発明の請求項3に係る温度検出素子は、素子本体部と、前記素子本体部に設けられた電極部と、温度検出対象側から伝導される熱を受容する熱受容部とを含み、前記素子本体部の表面に絶縁材層が設けられており、前記熱受容部は、前記素子本体部の表面に対して前記絶縁材層を介して設けられていることを特徴とする。
【0012】
請求項3に係る温度検出素子によれば、検出対象との温度検出用の熱的な結合が良好に行えるものとなるので、その温度検出を精度良く行うことができるほか、絶縁材層が素子本体部の表面と、熱受容部との間に介在させてあることから、熱受容部を介して素子本体部に電流が流れ込むような不具合を回避できる。また、熱受容部を構成する素材として、素子本体部の表面素材に対してオーミック性接触の金属材料を採用することも可能となり、安価に構成できる。
【0013】
本発明の請求項4に係る温度検出素子は、請求項1から3のいずれかに記載の温度検出素子において、前記素子本体部と前記電極部と前記熱受容部との全体形状がチップ型に構成されていることを特徴とする。
【0014】
請求項4に係る温度検出素子によれば、チップ型部品に温度検出素子が構成されているから、この温度検出素子は温度検出が必要な回路基板上へ実装し易い。
【0015】
本発明の請求項5に係る温度検出素子は、請求項1から4のいずれかに記載の温度検出素子において、前記素子本体部が、正特性サーミスタとして機能する部分に構成されていることを特徴とする。
【0016】
請求項5に係る温度検出素子によれば、温度上昇に伴い抵抗値も増加していくから、その抵抗値と温度との関係により簡易に温度検出できる。
【0017】
本発明の請求項6に係る温度検出素子は、請求項1から5のいずれかに記載の温度検出素子において、前記素子本体部は直方体状に構成されており、前記熱受容部は、前記素子本体部の表面の少なくとも一側面以上に備えられていることを特徴とする。
【0018】
請求項6に係る温度検出素子によれば、直方体状の素子本体部表面の少なくとも一側面以上に熱受容部が備えられていることから、その熱受容部が形成された面を温度検出対象側に臨ませておくことで、温度検出対象側からの熱を良好に受容できる状態にして温度感知できる。なお、熱受容部が素子本体部に腹巻状に形成されている場合には、素子本体部の全周に環状に熱受容部が備えられることになるから、回路基板に温度検出素子を付設する際に、熱受容部を温度検出対象側に臨ませるように温度検出素子の姿勢を調整する手間を少なくできる。
【0019】
本発明の請求項7に係る温度検出素子は、請求項1から6のいずれかに記載の温度検出素子において、さらに前記温度検出対象側から熱を伝導する伝導体が、前記熱受容部に設けられていることを特徴とする。
【0020】
請求項7に係る温度検出素子によれば、ランドなどの伝導体を別途回路基板などに付設しなくても、その伝導体を通して温度検出素子の熱受容部に温度検出対象側から熱が良好に伝導される。したがって、その伝導体を通して温度検出対象側からの熱が温度検出素子に一層伝導されやすくなり、検出精度も一層良いものとなる。
【0023】
本発明の請求項に係る温度検出素子を備える回路基板は、請求項1からのいずれかに記載の温度検出素子と、前記温度検出素子が備える前記熱受容部に対して熱結合可能なランドとを含むことを特徴とする。
【0024】
請求項に係る温度検出素子を備える回路基板によれば、回路基板のランドを介して温度検出素子の熱受容部へ温度検出対象側から熱伝導することができる。これにより、温度検出精度を高くできるとともに、温度検出対象に対する温度検出素子の配置設計の対応性を高めることになる。
【0025】
【発明の実施の形態】
以下、本発明の詳細を図面に基づいて説明する。
【0026】
(実施形態1)
図1から図3に、本発明に係る温度検出素子の実施形態の一例を示す。図1は、温度検出素子の一例としての正特性サーミスタの外観を示す斜視図、図2は、基板に搭載された正特性サーミスタやその周辺部品を示す平面図、図3は、基板に搭載された正特性サーミスタやその周辺部品を示す縦断面図である。
【0027】
図1を参照して、正特性サーミスタ1は、チップ型部品として、素子本体部3と、電極部4,5と、熱受容部6とで構成されている。
【0028】
素子本体部3は、チタン酸バリウム(BaTiO3)を主体とする素子であって、横長の直方体状に形成されている。
【0029】
電極部4,5は、素子本体部3の長手方向両端面それぞれに接合されている。
【0030】
熱受容部6は、素子本体部3の長手方向での中央に所定幅を有する状態で、素子本体部3の外周全周にわたって形成されている。この形成過程を説明すると、素子本体部3の表面にスパッタリング法により所定幅の銀(Ag)の薄膜層が形成される。この銀の薄膜層上に電解めっき法により錫(Sn)の薄膜層が積層形成される。熱受容部6は、この銀の薄膜層を下層側に、錫の薄膜層を上層側とする2つの薄膜層で構成されている。
【0031】
ここで、銀の薄膜層は、素子本体部3に対して非オーミック性接触である。これによって、熱受容部6は、銀の薄膜層が下層側とされることによって、素子本体部3に対して電気的に結合しないように図られている。熱受容部6は、錫の薄膜層が上層側に施されているので、熱受容部6の表面は、半田濡れ性を有する。熱受容部6の表面層は、銀の薄膜層に対してコーティングされた半田の薄膜層で構成されてもよい。熱受容部6は、電極部4,5と接しないよう、電極部4,5に対して間隔をおいて形成されている。熱受容部6は、素子本体部3の表面から突出しない状態で薄膜に形成されている。これによって、熱受容部6の表面と素子本体部3の表面とは、面一とされている。この場合、熱受容部6の表面と素子本体部3の表面とが面一である必要は必ずしもなく、素子本体部3の表面に積層されても良い。正特性サーミスタ1の寸法(長さ×幅×高さ)は、1.6mm×0.8mm×0.8mmである。ただし、正特性サーミスタ1の寸法は、この寸法に限定されない。
【0032】
図2および図3を参照して、7は回路基板、8はパワーIC、9はランドをそれぞれ示す。回路基板7上に、温度検出対象としてのパワーIC8が搭載されている。銅箔からなるランド9が回路基板7におけるパワーIC8を搭載した面領域から横外側に延出されている。正特性サーミスタ1は、ランド9の端部に位置させられて回路基板7上に実装されている。正特性サーミスタ1の各電極部4,5は、回路基板7の不図示の配線パターンに半田付けされている。正特性サーミスタ1の熱受容部6は、ランド9上に位置される状態でランド9に対して半田Hにより半田付けされている。ランド9が電極部4,5に対して電気絶縁されるよう、ランド9は正特性サーミスタ1の電極部4,5間に収められている。ランド9と熱受容部6それぞれの横幅は、同幅ないしはほぼ同幅に設定されている。
【0033】
この構成により、ランド9を通してパワーIC8の熱がランド9を介して正特性サーミスタ1の熱受容部6に伝導される。正特性サーミスタ1は、その伝導された熱に対応する検出信号を出力する。ランド9を介してパワーIC8側から熱伝導されるから、ランド9がない場合と比較して、精度良い温度検出に必要な熱の伝導がされ易い。したがって、熱受容部6が正特性サーミスタ1に設けられていることによって、温度検出対象側であるパワーIC8からの熱は、ランド9を通して伝導され易い。このことと相俟って、正特性サーミスタ1による温度検出精度が従来と比較して高い。この場合、ランド9は、直線状に延出されたものに限定されず、部品等の配置構成などに応じて適宜屈曲された形状でもよい。さらに、熱受容部6は、パワーIC8などの温度検出対象素子に設けられた放熱端子などの放熱部に直接接触もしくは半田付け等などの間接接触で熱結合されてもよい。
【0034】
(実施形態2)
実施形態1とは別形態を成す実施形態2について図に基づいて説明する。図4(a)は、温度検出素子を示す斜視図、図4(b)は温度検出素子の熱受容部における縦断面側面図である。
【0035】
図4を参照して、正特性サーミスタ1は、チップ部品として、直方体状に構成される素子本体部3と、その素子本体部3の両端に設けられた電極部4,5と、熱受容部6とを含む。熱受容部6は、電極部4,5間において素子本体部3の表面に積層形成される状態で設けられている。
【0036】
正特性サーミスタ1の熱受容部6は、絶縁層10と、金属薄膜11と、伝導体としての突起部12とを有する。絶縁層10は、素子本体部3の2つの側面に貼り付けられたシリコンゴムまたはシリコン樹脂の薄膜片で構成されている。
金属薄膜11は、絶縁層10の表面に形成された例えば銅を素材とする薄膜で構成されている。突起部12は、金属薄膜11の一端部に、同じく銅を素材とする板状のもので構成されている。この場合、突起部12は、金属薄膜11が形成されている面に対して直交する方向に沿って突出されている。
【0037】
図5を参照して、正特性サーミスタ1の突起部12は、例えば回路基板7に搭載されたパワーIC8のパッケージ8Aと回路基板7との間に差し込まれる。パワーIC8側から熱受容部6への熱は、突起部12を通して、伝導される。この場合、実施形態1とは異なり熱受容部6は、ランドなどに半田付けされなくても良い。この熱受容部6では、素子本体部3表面に絶縁層10を介して金属薄膜11が設けられるから、金属薄膜11の素材として、オーミック性接触の金属を採用することができる。
【0038】
本発明は、上記各実施形態に限定されず、以下の変形例が考えられる。
【0039】
(1)上記実施形態では、温度検出素子として負特性サーミスタを採用することも可能である。
【0040】
(2)熱受容部として用いられる非オーミック性接触の金属材料としては、金、白金、または、これらまたは銀を含む合金であっても良い。
【0041】
(3)図6(a),(b)に示すように、正特性サーミスタのチップ部品で構成される正特性サーミスタ1は、横長の直方体状に外形形状が構成されるとともに、その長手方向両端にそれぞれ電極部4,5を備える。これら電極部4,5間に、素子本体部3の表面に積層形成される状態で熱受容部6が設けられる。
【0042】
図6(a),(b)に示される正特性サーミスタ1の熱受容部6の場合、素子本体部3の2つの側面にシリコンゴムまたはシリコン樹脂の薄膜片が貼り付けられてなる絶縁層10と、この絶縁層10の表面に形成された例えば銅からなる金属薄膜11とにより構成される。
【0043】
(4)図7(a),(b)に示すように、正特性サーミスタのチップ部品で構成される正特性サーミスタ1は、横長の直方体状に外形形状が構成されるとともに、その長手方向両端にそれぞれ電極部4,5が設けられている。これら電極部4,5間には、素子本体部3の表面に積層形成される状態で熱受容部6が設けられている。
【0044】
図7(a),(b)に示される正特性サーミスタ1の熱受容部6の場合、素子本体部3の1つの側面にシリコンゴムまたはシリコン樹脂の薄膜片を貼り付けられてなる絶縁層10と、この絶縁層10の表面に形成された例えば銅からなる金属薄膜11とにより構成される。金属薄膜11の下端に横向きに突出する伝導体としての突起部12が設けられる。
【0045】
(5)図8に示すように、正特性サーミスタのチップ部品で構成される正特性サーミスタ1は、横長の直方体状に外形形状が構成されるとともに、その両端にそれぞれ電極部4,5が設けられている。これら電極部4,5間には、素子本体部3の表面に積層形成される状態で熱受容部6が設けられている。
【0046】
図8に示される正特性サーミスタ1の熱受容部6の場合、素子本体部3の2つの側面にシリコンゴムまたはシリコン樹脂の薄膜片を貼り付けられてなる絶縁層10a,10bと、この絶縁層10a,10bの表面に形成された例えば銅からなる金属薄膜11a,11bとにより構成されている。1つの面の絶縁層10aは、両電極部4,5の間に収まる小幅のものとなっており、その幅内に金属薄膜11aが形成されている。もう1つの面の絶縁層10bは、両電極部4,5に一部重なるよう広幅のものとなっており、その幅内に金属薄膜11bが形成されている。この金属薄膜11bは金属薄膜11aよりも広幅となっている。したがって、幅広のこの金属薄膜11bおよび金属薄膜11aは、電極部4,5とは電気的に絶縁されているとともに、幅広に形成した金属薄膜11bを備えていることにより、その金属薄膜11bへ熱伝導し易いものとなっている。
【0047】
(6)図9(a),(b)に示すように、正特性サーミスタのチップ部品で構成される正特性サーミスタ1は、横長の直方体状に外形形状が構成されるとともに、その長手方向両端にそれぞれ電極部4,5が設けられている。これら電極部4,5間には、素子本体部3の表面に積層形成される状態で熱受容部6が設けられている。
【0048】
図9(a),(b)に示される正特性サーミスタ1の熱受容部6の場合、素子本体部3の3つの側面にシリコンゴムまたはシリコン樹脂の薄膜片を貼り付けてなる絶縁層10と、該絶縁層10の表面に形成された例えば銅からなる金属薄膜11とにより構成されている。
【0049】
(7)本発明の実施形態として、図示しないが、上記のような絶縁層は、素子本体部における電極部を設けていない表面の全面を覆うように形成されたものでも良い。また、絶縁層は上述したシリコンゴムまたはシリコン樹脂に限定されるものでなく、電気的絶縁性のある各種材料を適用可能である。
【0050】
【発明の効果】
本発明によれば、熱受容部を備えていることによって、素子本体部に対して温度検出対象からの熱が伝導されやすくなっていることから、従来では温度検出対象からの熱による感温が十分に行えないほどにその温度検出対象から少し離れた箇所に温度検出素子を配置しなければならない場合でも、熱受容部への温度検出対象からの熱の伝導を図ることができる。したがって、そのように検出対象との温度検出に関する温度検出素子の結合が良好に行えるものとなるので、その温度検出対象の温度検出を精度良く行うことができる。
【図面の簡単な説明】
【図1】 本発明に係るチップ型正特性サーミスタの一例の外観を示す斜視図
【図2】 図1の正特性サーミスタを基板に配置した状態の一例を示す平面図
【図3】 図2における要部縦断面図
【図4】 別実施形態の正特性サーミスタの外観を示す斜視図(a)と、要部縦断面側面図(b)
【図5】 図4の正特性サーミスタを基板に配置した状態の一例を示す要部縦断面側面図
【図6】 別実施形態の正特性サーミスタの外観を示す斜視図(a)と、要部縦断面側面図(b)
【図7】 別実施形態の正特性サーミスタの外観を示す斜視図(a)と、要部縦断面側面図(b)
【図8】 別実施形態の正特性サーミスタの外観を示す斜視図
【図9】 別実施形態の正特性サーミスタの外観を示す斜視図(a)と、要部縦断面側面図(b)
【図10】 従来のチップ型正特性サーミスタの外観を示す斜視図
【符号の説明】
1 温度検出素子
3 素子本体部
4,5 電極部
6 熱受容部
7 回路基板
9 ランド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature detection element such as a thermistor and a circuit board including the same.
[0002]
[Prior art]
With the progress of miniaturization of electrical and electronic equipment, countermeasures such as heat radiation for power transistors and power ICs mounted thereon are becoming more and more important. Therefore, it is highly necessary to detect the temperature of such a component with high accuracy. Under such circumstances, the demand for temperature detecting elements for detecting the temperature of components such as power ICs is increasing.
[0003]
FIG. 10 shows a positive temperature coefficient thermistor 1 configured as a chip as an example of such a temperature detection element. The positive temperature coefficient thermistor 1 has an element body 3 and electrode portions 4 and 5. The electrode parts 4 and 5 are provided for soldering to the wiring pattern of the circuit board.
[0004]
[Problems to be solved by the invention]
By the way, a temperature detection element such as a chip-type thermistor needs to be installed close to the temperature detection target component. In the case of a conventional temperature detection element, there are cases where the temperature cannot be sufficiently close to the temperature detection target component due to the relationship between the wiring on the circuit board and the arrangement with other components. In addition, the thermal detection conditions of the temperature detection element may differ depending not only on the positional relationship between the heat source and the temperature detection element but also on the surrounding conditions, the heat dissipation coefficient of the substrate, and the like, so that the detection accuracy is easily affected.
[0005]
This invention is made | formed in view of the said actual condition, Comprising: It aims at providing the temperature detection element which can perform the temperature detection with high precision with respect to temperature detection object.
[0006]
[Means for Solving the Problems]
Temperature detecting element according to claim 1 of the present invention, viewed contains a device body portion, and an electrode portion provided in the device body unit, and a heat receiving part for receiving the heat conducted from the temperature detection target side, The heat receiving portion includes a metal thin film layer that is in non-ohmic contact with the surface material of the element main body .
[0007]
According to the temperature detection element of the first aspect, the heat from the temperature detection target is easily conducted to the element body by providing the heat receiving part. For this reason, in the past, even when the temperature detection element has to be arranged at a location slightly away from the temperature detection target so that the temperature cannot be sufficiently sensed by the heat from the temperature detection target, the temperature detection target to the heat receiving unit The heat can be conducted from the outside. Therefore, the thermal detection for detecting the temperature between the detection target and the temperature detecting element can be performed satisfactorily, so that the temperature can be detected with high accuracy.
In addition, by having a metal material in a non-ohmic contact with the surface material of the element body in the heat receiving portion, electrical coupling that adversely affects detection on the element body is prevented from occurring through the heat receiving portion. it can. Here, as the element body, for example, BaTiO 3 , Mn—Ni-based oxide is used, and as a metal material having non-ohmic contact property of the heat receiving portion, for example, silver, gold, Platinum or an alloy thereof is used.
[0008]
When the temperature detection element according to the present invention is provided on the circuit board, a land is provided between the temperature detection target and the temperature detection element so as to be able to conduct heat, and the heat receiving portion of the temperature detection element is soldered to the land. In this case, the heat receiving portion is easily conducted from the temperature detection target through the land, and there is an advantage that the temperature detection can be performed more satisfactorily. Examples of the temperature detecting element that can employ the configuration of the present invention include a positive characteristic thermistor and a negative characteristic thermistor.
[0009]
The temperature detection element according to claim 2 of the present invention is the temperature detection element according to claim 1, wherein the heat receiving portion has a solder wettability as a surface layer with respect to the metal thin film layer in the non-ohmic contact. It has a layer .
[0010]
According to the temperature detection element of the second aspect, the heat receiving portion of the temperature detection element can be soldered to the heat conduction land provided on the circuit board by the thin film layer for bonding. Heat conduction for temperature detection can be easily performed from the temperature detection target.
[0011]
A temperature detection element according to claim 3 of the present invention includes an element main body, an electrode provided in the element main body, and a heat receiving portion that receives heat conducted from the temperature detection target side, An insulating material layer is provided on the surface of the element main body, and the heat receiving portion is provided on the surface of the element main body via the insulating material layer .
[0012]
According to the temperature detection element of the third aspect, the thermal detection for detecting the temperature with the detection target can be satisfactorily performed. Therefore, the temperature detection can be performed with high accuracy, and the insulating material layer has the element. Since it is interposed between the surface of the main body and the heat receiving portion, it is possible to avoid a problem that current flows into the element main body through the heat receiving portion. In addition, it is possible to employ a metal material that is in ohmic contact with the surface material of the element main body as the material constituting the heat receiving portion, and can be configured at low cost.
[0013]
A temperature detection element according to a fourth aspect of the present invention is the temperature detection element according to any one of the first to third aspects, wherein the entire shape of the element main body part, the electrode part, and the heat receiving part is a chip type. It is configured .
[0014]
According to the temperature detection element of the fourth aspect, since the temperature detection element is configured in the chip-type component, the temperature detection element can be easily mounted on a circuit board that requires temperature detection.
[0015]
A temperature detection element according to a fifth aspect of the present invention is the temperature detection element according to any one of the first to fourth aspects, wherein the element main body is configured as a portion that functions as a positive temperature coefficient thermistor. And
[0016]
According to the temperature detection element of the fifth aspect, since the resistance value increases as the temperature rises, the temperature can be easily detected based on the relationship between the resistance value and the temperature.
[0017]
A temperature detection element according to a sixth aspect of the present invention is the temperature detection element according to any one of the first to fifth aspects, wherein the element main body is configured in a rectangular parallelepiped shape, and the heat receiving portion is the element It is provided on at least one side of the surface of the main body .
[0018]
According to the temperature detection element of the sixth aspect, since the heat receiving part is provided on at least one side of the surface of the rectangular parallelepiped element body, the surface on which the heat receiving part is formed is on the temperature detection target side. Therefore, the temperature can be sensed in a state in which heat from the temperature detection target side can be satisfactorily received. When the heat receiving portion is formed in a bellows shape on the element main body, the temperature receiving element is attached to the circuit board because the heat receiving portion is annularly provided on the entire circumference of the element main body. At this time, it is possible to reduce the trouble of adjusting the posture of the temperature detection element so that the heat receiving portion faces the temperature detection target side.
[0019]
A temperature detection element according to a seventh aspect of the present invention is the temperature detection element according to any one of the first to sixth aspects, further comprising a conductor that conducts heat from the temperature detection target side provided in the heat receiving portion. It is characterized by being.
[0020]
According to the temperature detection element of the seventh aspect, even if a conductor such as a land is not separately attached to the circuit board or the like, heat is favorably transmitted from the temperature detection target side to the heat receiving portion of the temperature detection element through the conductor. Conducted. Accordingly, heat from the temperature detection target side is more easily conducted to the temperature detection element through the conductor, and detection accuracy is further improved.
[0023]
A circuit board including a temperature detection element according to an eighth aspect of the present invention can be thermally coupled to the temperature detection element according to any one of the first to seventh aspects and the heat receiving portion included in the temperature detection element. And a land.
[0024]
According to the circuit board including the temperature detection element according to the eighth aspect , heat can be conducted from the temperature detection target side to the heat receiving portion of the temperature detection element via the land of the circuit board. As a result, the temperature detection accuracy can be increased, and the correspondence of the arrangement design of the temperature detection element to the temperature detection target is enhanced.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings.
[0026]
(Embodiment 1)
1 to 3 show an example of an embodiment of a temperature detecting element according to the present invention. FIG. 1 is a perspective view showing the appearance of a positive temperature coefficient thermistor as an example of a temperature detection element, FIG. 2 is a plan view showing the positive temperature coefficient thermistor mounted on the substrate and its peripheral components, and FIG. 3 is mounted on the substrate. It is the longitudinal cross-sectional view which shows the positive characteristic thermistor and its peripheral components.
[0027]
Referring to FIG. 1, a positive temperature coefficient thermistor 1 is composed of an element body part 3, electrode parts 4 and 5, and a heat receiving part 6 as chip-type components.
[0028]
The element body 3 is an element mainly composed of barium titanate (BaTiO 3 ) and is formed in a horizontally long rectangular parallelepiped shape.
[0029]
The electrode parts 4 and 5 are joined to both end faces in the longitudinal direction of the element body part 3.
[0030]
The heat receiving portion 6 is formed over the entire outer periphery of the element body 3 in a state having a predetermined width at the center in the longitudinal direction of the element body 3. Explaining this formation process, a thin film layer of silver (Ag) having a predetermined width is formed on the surface of the element body 3 by a sputtering method. A thin film layer of tin (Sn) is formed on the silver thin film layer by electrolytic plating. The heat receiving portion 6 is composed of two thin film layers with the silver thin film layer on the lower layer side and the tin thin film layer on the upper layer side.
[0031]
Here, the silver thin film layer is in non-ohmic contact with the element main body 3. Accordingly, the heat receiving portion 6 is designed not to be electrically coupled to the element main body portion 3 by setting the silver thin film layer as the lower layer side. Since the thin film layer of tin is given to the heat receiving part 6 on the upper layer side, the surface of the heat receiving part 6 has solder wettability. The surface layer of the heat receiving portion 6 may be composed of a solder thin film layer coated on a silver thin film layer. The heat receiving portion 6 is formed at a distance from the electrode portions 4 and 5 so as not to contact the electrode portions 4 and 5. The heat receiving portion 6 is formed in a thin film so as not to protrude from the surface of the element body portion 3. Accordingly, the surface of the heat receiving portion 6 and the surface of the element main body portion 3 are flush with each other. In this case, the surface of the heat receiving portion 6 and the surface of the element main body portion 3 do not necessarily have to be flush with each other, and may be laminated on the surface of the element main body portion 3. The dimension (length × width × height) of the positive temperature coefficient thermistor 1 is 1.6 mm × 0.8 mm × 0.8 mm. However, the dimension of the positive temperature coefficient thermistor 1 is not limited to this dimension.
[0032]
2 and 3, reference numeral 7 denotes a circuit board, 8 denotes a power IC, and 9 denotes a land. A power IC 8 as a temperature detection target is mounted on the circuit board 7. A land 9 made of copper foil is extended laterally outward from the surface area of the circuit board 7 on which the power IC 8 is mounted. The positive temperature coefficient thermistor 1 is positioned on the end of the land 9 and mounted on the circuit board 7. The electrode portions 4 and 5 of the positive temperature coefficient thermistor 1 are soldered to a wiring pattern (not shown) of the circuit board 7. The heat receiving portion 6 of the positive temperature coefficient thermistor 1 is soldered to the land 9 with solder H while being positioned on the land 9. The land 9 is accommodated between the electrode parts 4 and 5 of the positive temperature coefficient thermistor 1 so that the land 9 is electrically insulated from the electrode parts 4 and 5. The lateral width of each of the land 9 and the heat receiving portion 6 is set to the same width or substantially the same width.
[0033]
With this configuration, the heat of the power IC 8 is conducted through the land 9 to the heat receiving portion 6 of the positive temperature coefficient thermistor 1 through the land 9. The positive temperature coefficient thermistor 1 outputs a detection signal corresponding to the conducted heat. Since heat is conducted from the power IC 8 side via the land 9, heat necessary for accurate temperature detection is easily conducted as compared with the case where the land 9 is not provided. Therefore, since the heat receiving portion 6 is provided in the positive temperature coefficient thermistor 1, heat from the power IC 8 on the temperature detection target side is easily conducted through the land 9. Combined with this, the temperature detection accuracy by the positive temperature coefficient thermistor 1 is higher than the conventional one. In this case, the land 9 is not limited to a linearly extending shape, and may have a shape that is appropriately bent according to the arrangement configuration of components and the like. Furthermore, the heat receiving portion 6 may be thermally coupled to a heat radiating portion such as a heat radiating terminal provided in a temperature detection target element such as the power IC 8 by direct contact or indirect contact such as soldering.
[0034]
(Embodiment 2)
A second embodiment that is different from the first embodiment will be described with reference to the drawings. FIG. 4A is a perspective view showing a temperature detection element, and FIG. 4B is a longitudinal sectional side view of a heat receiving portion of the temperature detection element.
[0035]
Referring to FIG. 4, positive temperature coefficient thermistor 1 includes, as a chip component, element body portion 3 configured in a rectangular parallelepiped shape, electrode portions 4 and 5 provided at both ends of element body portion 3, and heat receiving portion. 6 are included. The heat receiving portion 6 is provided in a state of being laminated on the surface of the element body portion 3 between the electrode portions 4 and 5.
[0036]
The heat receiving portion 6 of the positive temperature coefficient thermistor 1 has an insulating layer 10, a metal thin film 11, and a protruding portion 12 as a conductor. The insulating layer 10 is formed of a thin film piece of silicon rubber or silicon resin that is affixed to the two side surfaces of the element body 3.
The metal thin film 11 is composed of a thin film made of, for example, copper formed on the surface of the insulating layer 10. The protruding portion 12 is formed of a plate-like material made of copper at one end of the metal thin film 11. In this case, the protruding portion 12 protrudes along a direction orthogonal to the surface on which the metal thin film 11 is formed.
[0037]
With reference to FIG. 5, the protrusion 12 of the positive temperature coefficient thermistor 1 is inserted between the circuit board 7 and the package 8 </ b> A of the power IC 8 mounted on the circuit board 7, for example. Heat from the power IC 8 side to the heat receiving portion 6 is conducted through the protrusion 12. In this case, unlike the first embodiment, the heat receiving portion 6 may not be soldered to a land or the like. In the heat receiving portion 6, the metal thin film 11 is provided on the surface of the element main body 3 via the insulating layer 10, and therefore, an ohmic contact metal can be employed as the material of the metal thin film 11.
[0038]
The present invention is not limited to the above-described embodiments, and the following modifications can be considered.
[0039]
(1) In the above embodiment, it is also possible to employ a negative characteristic thermistor as the temperature detection element.
[0040]
(2) The non-ohmic contact metal material used as the heat receiving portion may be gold, platinum, or an alloy containing these or silver.
[0041]
(3) As shown in FIGS. 6 (a) and 6 (b), the positive temperature coefficient thermistor 1 composed of chip components of the positive temperature coefficient thermistor is configured in a laterally rectangular parallelepiped shape and has both longitudinal ends. Are provided with electrode portions 4 and 5, respectively. Between the electrode parts 4 and 5, the heat receiving part 6 is provided in a state of being laminated on the surface of the element body part 3.
[0042]
In the case of the heat receiving portion 6 of the positive temperature coefficient thermistor 1 shown in FIGS. 6 (a) and 6 (b), the insulating layer 10 is formed by attaching a thin film piece of silicon rubber or silicon resin to the two side surfaces of the element body portion 3. And a metal thin film 11 made of, for example, copper formed on the surface of the insulating layer 10.
[0043]
(4) As shown in FIGS. 7A and 7B, the positive temperature coefficient thermistor 1 composed of positive characteristic thermistor chip parts has a laterally long rectangular parallelepiped shape and its longitudinal ends. Are provided with electrode portions 4 and 5, respectively. Between these electrode portions 4 and 5, a heat receiving portion 6 is provided in a state of being laminated on the surface of the element main body portion 3.
[0044]
In the case of the heat receiving portion 6 of the positive temperature coefficient thermistor 1 shown in FIGS. 7A and 7B, the insulating layer 10 is formed by attaching a thin film piece of silicon rubber or silicon resin to one side surface of the element body portion 3. And a metal thin film 11 made of, for example, copper formed on the surface of the insulating layer 10. A protrusion 12 serving as a conductor protruding laterally is provided at the lower end of the metal thin film 11.
[0045]
(5) As shown in FIG. 8, the positive temperature coefficient thermistor 1 composed of chip parts of the positive temperature coefficient thermistor has an outer shape in a horizontally long rectangular parallelepiped shape, and electrode portions 4 and 5 are provided at both ends, respectively. It has been. Between these electrode portions 4 and 5, a heat receiving portion 6 is provided in a state of being laminated on the surface of the element main body portion 3.
[0046]
In the case of the heat receiving portion 6 of the positive temperature coefficient thermistor 1 shown in FIG. 8, insulating layers 10 a and 10 b in which thin film pieces of silicon rubber or silicon resin are attached to two side surfaces of the element body 3, and the insulating layers The metal thin films 11a and 11b made of, for example, copper are formed on the surfaces 10a and 10b. The insulating layer 10a on one surface has a small width that fits between the electrode portions 4 and 5, and the metal thin film 11a is formed within the width. The insulating layer 10b on the other surface has a wide width so as to partially overlap the electrode portions 4 and 5, and the metal thin film 11b is formed within the width. The metal thin film 11b is wider than the metal thin film 11a. Therefore, the wide metal thin film 11b and the metal thin film 11a are electrically insulated from the electrode portions 4 and 5, and are provided with the wide metal thin film 11b. It is easy to conduct.
[0047]
(6) As shown in FIGS. 9 (a) and 9 (b), the positive temperature coefficient thermistor 1 including the positive temperature coefficient thermistor chip components has an outer shape in a horizontally long rectangular parallelepiped shape and both longitudinal ends thereof. Are provided with electrode portions 4 and 5, respectively. Between these electrode portions 4 and 5, a heat receiving portion 6 is provided in a state of being laminated on the surface of the element main body portion 3.
[0048]
In the case of the heat receiving portion 6 of the positive temperature coefficient thermistor 1 shown in FIGS. 9A and 9B, an insulating layer 10 formed by attaching silicon rubber or silicon resin thin film pieces to the three side surfaces of the element body portion 3; And a metal thin film 11 made of, for example, copper formed on the surface of the insulating layer 10.
[0049]
(7) Although not illustrated as an embodiment of the present invention, the insulating layer as described above may be formed so as to cover the entire surface of the element body portion where the electrode portion is not provided. Further, the insulating layer is not limited to the above-described silicon rubber or silicon resin, and various materials having electrical insulating properties can be applied.
[0050]
【The invention's effect】
According to the present invention, since the heat receiving part is provided, heat from the temperature detection target is easily conducted to the element main body part. Even when the temperature detection element needs to be arranged at a position slightly away from the temperature detection target so that it cannot be sufficiently performed, heat conduction from the temperature detection target to the heat receiving portion can be achieved. Therefore, since the temperature detection element relating to the temperature detection with the detection target can be well coupled as described above, the temperature detection of the temperature detection target can be accurately performed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an appearance of an example of a chip-type positive temperature coefficient thermistor according to the present invention. FIG. 2 is a plan view showing an example of a state in which the positive temperature coefficient thermistor of FIG. FIG. 4 is a perspective view (a) showing an external appearance of a positive temperature coefficient thermistor according to another embodiment, and a main part vertical cross-sectional side view (b).
5 is a longitudinal sectional side view of an essential part showing an example of a state in which the positive temperature coefficient thermistor of FIG. 4 is arranged on a substrate. FIG. 6 is a perspective view showing an external appearance of a positive temperature coefficient thermistor according to another embodiment. Longitudinal sectional side view (b)
FIG. 7A is a perspective view showing the appearance of a positive temperature coefficient thermistor according to another embodiment, and FIG.
FIG. 8 is a perspective view showing an external appearance of a positive temperature coefficient thermistor according to another embodiment. FIG. 9 is a perspective view showing an external appearance of a positive temperature coefficient thermistor according to another embodiment, and FIG.
FIG. 10 is a perspective view showing the appearance of a conventional chip type positive temperature coefficient thermistor.
DESCRIPTION OF SYMBOLS 1 Temperature detection element 3 Element main-body part 4,5 Electrode part 6 Heat receiving part 7 Circuit board 9 Land

Claims (8)

素子本体部と、前記素子本体部に設けられた電極部と、温度検出対象側から伝導される熱を受容する熱受容部とを含み、前記熱受容部は、前記素子本体部の表面素材に対して非オーミック性接触の金属薄膜層を有する、ことを特徴とする温度検出素子。A device body portion, and an electrode portion provided in the device body unit, looking containing a heat receiving section for receiving the heat conducted from the temperature detection target side, the heat receiving portion, the surface material of the element main body section A temperature detecting element having a metal thin film layer in non-ohmic contact with respect to . 請求項に記載の温度検出素子において、前記熱受容部は、前記非オーミック性接触の金属薄膜層に対する表層として半田濡れ性を有する接合用薄膜層を有する、ことを特徴とする温度検出素子。2. The temperature detecting element according to claim 1 , wherein the heat receiving portion includes a bonding thin film layer having solder wettability as a surface layer for the metal thin film layer in non-ohmic contact. 3. 素子本体部と、前記素子本体部に設けられた電極部と、温度検出対象側から伝導される熱を受容する熱受容部とを含み、前記素子本体部の表面に絶縁材層が設けられており、前記熱受容部は、前記素子本体部の表面に対して前記絶縁材層を介して設けられている、ことを特徴とする温度検出素子。 An element body part, an electrode part provided on the element body part, and a heat receiving part that receives heat conducted from the temperature detection target side, and an insulating material layer is provided on a surface of the element body part The temperature detecting element is characterized in that the heat receiving part is provided on the surface of the element body part via the insulating material layer. 請求項1から3のいずれかに記載の温度検出素子において、前記素子本体部と前記電極部と前記熱受容部との全体形状がチップ型に構成されている、ことを特徴とする温度検出素子。The temperature detection element according to any one of claims 1 to 3 , wherein the entire shape of the element main body part, the electrode part, and the heat receiving part is formed in a chip shape. . 請求項1から4のいずれかに記載の温度検出素子において、前記素子本体部が、正特性サーミスタとして機能する部分に構成されている、ことを特徴とする温度検出素子。5. The temperature detecting element according to claim 1, wherein the element main body is configured as a portion that functions as a positive temperature coefficient thermistor. 6. 請求項1からのいずれかに記載の温度検出素子において、前記素子本体部は直方体状に構成されており、前記熱受容部は、前記素子本体部の表面の少なくとも一側面以上に備えられている、ことを特徴とする温度検出素子。In the temperature sensor according to any one of claims 1 to 5, wherein the device body portion is configured in a rectangular parallelepiped shape, the heat receiving part is provided above at least one side surface of the device body unit A temperature detecting element characterized by that. 請求項1からのいずれかに記載の温度検出素子において、さらに前記温度検出対象側から熱を伝導する伝導体が、前記熱受容部に設けられている、ことを特徴とする温度検出素子。The temperature detection element according to any one of claims 1 to 6 , wherein a conductor that conducts heat from the temperature detection target side is further provided in the heat receiving portion. 請求項1からのいずれかに記載の温度検出素子と、前記温度検出素子が備える前記熱受容部に対して熱結合可能なランドとを含む、ことを特徴とする回路基板。Circuit board, wherein the temperature sensing element according, and a heat-bondable land relative to the heat receiving portion to which the temperature sensing element is provided, that in any of claims 1 to 7.
JP2002105040A 2002-04-08 2002-04-08 Temperature detecting element and circuit board including the same Expired - Fee Related JP3815362B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002105040A JP3815362B2 (en) 2002-04-08 2002-04-08 Temperature detecting element and circuit board including the same
TW092104013A TW584722B (en) 2002-04-08 2003-02-26 Temperature detection device and circuit board having the same
KR1020030016095A KR100616743B1 (en) 2002-04-08 2003-03-14 Device for detecting temperature and circuit board having the same
CNB031084397A CN100405626C (en) 2002-04-08 2003-03-31 Temp detecting device and circuit substrate installed with same
DE10315519A DE10315519B4 (en) 2002-04-08 2003-04-04 Temperature sensing element and provided with the same circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105040A JP3815362B2 (en) 2002-04-08 2002-04-08 Temperature detecting element and circuit board including the same

Publications (2)

Publication Number Publication Date
JP2003303702A JP2003303702A (en) 2003-10-24
JP3815362B2 true JP3815362B2 (en) 2006-08-30

Family

ID=28786361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105040A Expired - Fee Related JP3815362B2 (en) 2002-04-08 2002-04-08 Temperature detecting element and circuit board including the same

Country Status (5)

Country Link
JP (1) JP3815362B2 (en)
KR (1) KR100616743B1 (en)
CN (1) CN100405626C (en)
DE (1) DE10315519B4 (en)
TW (1) TW584722B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327026B2 (en) * 2003-11-12 2008-02-05 Sharp Kabushiki Kaisha Vacuum diode-type electronic heat pump device and electronic equipment having the same
JP2005278344A (en) * 2004-03-25 2005-10-06 Denso Corp Motor control device
DE102005038466B4 (en) 2005-08-13 2007-12-13 Sitronic Gesellschaft für elektrotechnische Ausrüstung mbH. & Co. KG Sensor arrangement for temperature measurement
JP2007093453A (en) * 2005-09-29 2007-04-12 Mitsubishi Materials Corp Surface-mounted temperature sensor
JP5034830B2 (en) * 2007-09-27 2012-09-26 三菱マテリアル株式会社 Chip-type thermistor and circuit board having the same
DE102011007271B4 (en) 2010-04-19 2022-08-11 Electronics And Telecommunications Research Institute Variable gate field effect transistor
KR101439259B1 (en) * 2010-04-19 2014-09-11 한국전자통신연구원 Variable gate field-effect transistor(FET) and, electrical and electronic apparatus comprising the same FET
KR101040647B1 (en) * 2010-04-29 2011-06-10 문구도 Load dispersion type outsole
KR101040648B1 (en) * 2010-09-06 2011-06-10 문구도 Load dispersion type outsole
JP5928829B2 (en) * 2013-01-31 2016-06-01 三菱マテリアル株式会社 Temperature sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3011672A1 (en) * 1980-03-26 1981-10-01 Draloric Electronic GmbH, 8500 Nürnberg High range temp. sensor - has connector wires sintered into plate-shaped ceramic body obviating protective housing
JP3058305B2 (en) * 1993-02-26 2000-07-04 三菱マテリアル株式会社 Thermistor and manufacturing method thereof
DE19516260C1 (en) * 1995-04-27 1996-10-02 Mannesmann Ag Measuring transducer temp indication device
JPH09210802A (en) * 1996-02-02 1997-08-15 Sharp Corp Surface mount temperature-detecting element
DE19708653C2 (en) * 1997-03-04 1999-07-08 Telefunken Microelectron Device for determining the temperature of at least one semiconductor component arranged on a carrier body with low thermal conductivity
JP3926424B2 (en) * 1997-03-27 2007-06-06 セイコーインスツル株式会社 Thermoelectric conversion element
DE19816941A1 (en) * 1998-04-16 1999-10-21 Viessmann Werke Kg Temperature sensor for use in heating and ventilation system
JP2000266608A (en) * 1999-03-15 2000-09-29 Murata Mfg Co Ltd Temperature sensor
JP2001141575A (en) * 1999-11-17 2001-05-25 Matsushita Electric Ind Co Ltd Temperature sensor element and temperature sensor using it

Also Published As

Publication number Publication date
CN100405626C (en) 2008-07-23
JP2003303702A (en) 2003-10-24
DE10315519A1 (en) 2003-11-27
TW200305007A (en) 2003-10-16
CN1450668A (en) 2003-10-22
KR100616743B1 (en) 2006-08-28
KR20030081021A (en) 2003-10-17
DE10315519B4 (en) 2005-08-11
TW584722B (en) 2004-04-21

Similar Documents

Publication Publication Date Title
US20090140369A1 (en) Semiconductor power module package without temperature sensor mounted thereon and method of fabricating the same
JP3815362B2 (en) Temperature detecting element and circuit board including the same
JPH0760761B2 (en) Film type power resistor assembly
US10643769B2 (en) Resistor element and resistor element assembly
JPH05226106A (en) Film-type resistor
JPH09210802A (en) Surface mount temperature-detecting element
US6529115B2 (en) Surface mounted resistor
TW393747B (en) Semiconductor device, film carrier tape, circuit board and the electronic device and their manunfacturing
JP2005129826A (en) Power semiconductor device
JP6790684B2 (en) Semiconductor device
JP3629811B2 (en) Wiring board with connection terminal
KR101075664B1 (en) Chip resister and method of manufacturing the same
JPH11288803A (en) Surface mounted thermistor component
WO2018168663A1 (en) Infrared sensor
US7621042B2 (en) Method for mounting electronic components on a substrate
JP3832165B2 (en) Polymer PTC thermistor
US20180122537A1 (en) Electronic component
JP2006278793A (en) Temperature detection element
WO2024084763A1 (en) Temperature sensor and current detection device
JP7490351B2 (en) Shunt resistor module and mounting structure of the shunt resistor module
JP4412034B2 (en) Surface mount type temperature sensor
JP2020060464A (en) Infrared sensor and manufacturing method thereof
WO2019176852A1 (en) Infrared sensor device
JP2771567B2 (en) Hybrid integrated circuit
JP2019174133A (en) Temperature sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees