JP3814080B2 - Centrifugal mold - Google Patents

Centrifugal mold Download PDF

Info

Publication number
JP3814080B2
JP3814080B2 JP15190698A JP15190698A JP3814080B2 JP 3814080 B2 JP3814080 B2 JP 3814080B2 JP 15190698 A JP15190698 A JP 15190698A JP 15190698 A JP15190698 A JP 15190698A JP 3814080 B2 JP3814080 B2 JP 3814080B2
Authority
JP
Japan
Prior art keywords
mold
film
centrifugal
heat absorption
centrifugal mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15190698A
Other languages
Japanese (ja)
Other versions
JPH11320586A (en
Inventor
稔 松尾
秀樹 小松
亜希子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15190698A priority Critical patent/JP3814080B2/en
Publication of JPH11320586A publication Critical patent/JPH11320586A/en
Application granted granted Critical
Publication of JP3814080B2 publication Critical patent/JP3814080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、プリンター等の静電複写プロセスの中間トナー像担持体として利用される無端状ベルトを製造する遠心成形用型に関する。
【0002】
【従来の技術】
図5は従来の遠心成形による無端状ベルトの製造方法を示す断面図である。従来の遠心成形方法は、円筒状をした回転する塗布型の遠心成形用型10′の内面にスプレー塗布等で溶液を流し込んでから、遠心成形用型10′を円筒の軸a回りに高速回転し、その遠心力で塗布された溶液を軸方向に拡げて均一の厚さの膜2を形成し、その後、均一の膜2をヒータ3で加熱して乾燥固化した後(場合によってはさらに硬化処理した後)剥離して取り出すものである。この膜2が無端状ベルトになる。
【0003】
この加熱処理は、型内部の塗布液が液垂れを起こさないように型10′を回転させつつ行わなければならないので、一般的には、回転しつつある型の外部のヒータ3から型10′を介して加熱する。
【0004】
ヒータ3はハロゲンランプのような可視光あるいは遠赤外線ランプのような遠赤外光を一般的に用いている。そして、塗布された膜2が一定の均一な膜になったときに、このヒータをオンにし、乾燥させる。そして、塗布膜が指で触っても付着しない程度の乾燥した状態でヒータ3をオフにし、型10′の回転を停止して剥離することになる。
【0005】
膜2を硬化させる場合には、上記ヒータ3をオフにする時点で、オフにせず、逆にさらにヒータへの入力を上昇し、型10′の温度を上昇させて膜2を硬化させる。そして、膜2が所望の硬度に達した時点でヒータ3をオフにし、型10′の回転を停止して膜2を剥離する。
【0006】
ところで、遠心塗布された塗布膜は溶剤の乾燥が不十分であると、膜2は柔らかくて剥離するとき破れてしまい、また、乾燥し過ぎたり、固化し過ぎたりすると、膜2が遠心成形用型10′に密着しすぎて破れるという問題があり、加熱条件は細心に制御されなければならない。
【0007】
そこで、塗布された膜の乾燥や硬化処理時の加熱時の昇温速度や到達保持温度は自在にコントロールできるのが望ましい。
【0008】
また、遠心成形用型10′における型本体1の材質としては、塗布された膜2の乾燥や硬化処理時の加熱処理を行うために一般に金属の型が使用されるが、膜剥離性のために鏡面に近い表面面粗度加工が要求される。また、加熱冷却時の熱膨張収縮による内部応力発生の防止、そして加熱温度に対する耐熱性も要求される。このような要求のすべてに応えるものとして、アルミ又はアルミ合金が使用されている。
【0009】
ところが、アルミやアルミ合金は、そのまま用いると、表面光沢を持つことから分かるように、熱吸収率が悪く、温度上昇が極めて緩慢である。そこで、昇温を早めるため、型の肉厚を薄くする、とか、熱吸収率の良い黒体物質を塗布して熱吸収膜4を形成する等の改善が試みられている。
【発明が解決しようとする課題】
【0010】
しかし、この遠心成形方式では、高速回転させなければならないので、型は両側からチャックして固く固定しておかなければならず、そのためにせっかく加熱昇温させても型10′の両端部からチャックを通して熱が流出していき、両端部の温度が低下し、型10′の軸方向における温度が均一にならなかった。
【0011】
このような温度分布が生じると、塗布膜の溶剤除去が不均一になり、さらに膜の硬化時間も不均一になるので膜厚がバラツキ、また、硬化時の内部応力が不均一なため、膜を取り出したときに皺が発生し、画像を形成しても良好な画像ができないという問題があった。
【0012】
本発明は、このような問題を解決して、軸方向の温度分布(温度の相違)が生じずに、良好な無端状ベルトを成形できる遠心成形用型を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記の目的を達成するために本発明は、遠心成形により無端ベルトを形成する円筒形で塗布型の遠心成形用型において、該遠心成形用型の熱吸収率を円筒の軸方向に沿って相違させたことを特徴としている。
【0014】
上記遠心成形用型の中央部の熱吸収率を小さくし、両端部の熱吸収率を大きくしたり、上記遠心成形用型の外側に熱吸収膜を形成し、該熱吸収膜の粗密を変化させることにより上記熱吸収率を相違させたり、上記熱吸収膜の密度を、両端部では大きく、中央部では小さくしたり、上記熱吸収膜を遠心成形用型の中央部で網目状に形成したりすることができる。
【0015】
【発明の実施の形態】
以下に本発明の実施例を図面を用いて説明する。
〔実施例1〕
図1及び図2は本発明の遠心成形用型の実施態様を示す断面図である。遠心成形用型10の型本体1は従来のものと同じアルミ乃至はアルミ合金から形成されたもので、円筒形をしている。本発明では、この型本体1の外側に形成された熱吸収膜14に特徴がある。
【0016】
本発明の熱吸収膜14は、熱吸収物質をスプレー塗布することによって形成される。そこで、スプレー塗布に先だって、アルミ製円筒形状をした型本体1の両端から6分の1ほどを残し、SUS製の1mmメッシュの網5を巻き付け、その上から黒体塗料をスプレーで塗布した。乾燥後、網を取り除き、図1に示すような熱吸収膜14が形成された遠心成形用型10を得た。
【0017】
すなわち、中央部分では、熱吸収膜14が形成されたところとされないところとが分布することになる。したがって、熱吸収膜14の網目状の部分と両端部の全面に形成された部分とでは熱吸収率が相違し、遠心成形用型10の両端部における温度が中央部の温度より上昇する。そして、両端部からチャックを通して熱が流出しても、網5の網目の粗さや網5の長さ等を適当に設定することによって、遠心成形用型10の温度分布を一定に保つことができる。
【0018】
上記の実施例では、SUS製の1mmメッシュの網5を使用したが、メッシュの粗さや網の素材は、これに限定されるものではない。また、金属製であることも必要でなく、樹脂などの他の素材を使用することも可能である。さらには、網であることも必要ではなく、糸状の素材を平行に並べたものなど、種々の形態のものを使用できる。
【0019】
この型を回転装置に片側を固定し、ゆっくりと回転させながら、予め作成したポリアミック酸であるポリイミド前駆体溶液(東レ製トレニース#3000)を溶媒DMACに希釈した分散液を、上記の型の内側に塗布した。
【0020】
その後、遠心成形用型を両端で固定し、高速回転して塗布膜を均一な厚さの膜に成形した後、外部ヒータのスイッチをオンして100℃に加熱して溶剤を乾燥した。
【0021】
遠心成形用型の温度を放射温度計で測定すると、図5に示す従来の型10′では図3のグラフの点線▲1▼に示すように従来は両端部が低く、中央部が高くなっていたが、この実施例では、図3の実線▲1▼のように型の両端と中央とで温度変動は見られず、一定の温度が保たれているのが分かった。
【0022】
ヒータをオフにして回転を止め、冷却後膜を剥離したが、良好に剥離できた。この膜の膜厚を測定したところ、塗布膜厚は両端、中央部ともに均一で、皺等の外観の異常も無かった。
【0023】
〔実施例2〕
実施例1と同じようにして熱吸収膜が形成された遠心成形用型で、同様の希釈分散液を塗布乾燥した後、外部ヒータの入力を上げて型の温度を280℃にして塗布膜を硬化させた。
【0024】
遠心成形用型の温度を放射温度計で測定したが、図3のグラフの実線▲2▼に示すように、両端と中央部の温度は均一で、点線▲2▼に示すような従来の型10′におけるような温度分布は認められなかった。
【0025】
〔比較例1〕
実施例1と同一の型本体1に熱吸収膜4を図5に示すように、型本体1の外面の全域に形成したものを使用し、実施例1と同様にして塗布膜を形成し、加熱した。そして、そのときの温度分布を測定し、乾燥硬化膜の膜厚、外観を観察した。
【0026】
図3のグラフの点線▲1▼及び▲2▼に示すように、100℃(点線▲1▼)でも実施例(実線▲1▼)に比べると両端の温度が低下しており、280℃(点線▲2▼)ではさらに温度差が大きくなっているのが判る。
【0027】
膜厚の分布は、乾燥時は殆ど見られなかったが、端部付近が厚めであり、凹凸の外観異常が認められた。
280℃では、膜厚分布は殆ど見られなかったが、剥離後しばらくすると、両端部に、周方向に波打つような皺が発生した。
【0028】
〔比較例2〕
図4に示すように、実施例1と同一の型本体1に、熱吸収膜24を型外面の両端のみに被覆形成した。この遠心成形用型10″に、実施例1,2と同様にして塗布膜を形成し、ヒータ3によって加熱した。そして、温度分布測定と、乾燥硬化膜の膜厚、外観を観察した。型の温度を放射温度計で測定したが、中央部は正しく測定できず、塗布膜は全くでこぼこの形状になっていた。
【0029】
そこで、低速回転しながら接触温度計で測温し、入力との対応をとった後、所定の入力で実施例2と同様に行ったが、中央部にはぶつぶつの鯖目模様が発生した。
【0030】
【発明の効果】
以上に説明したように本発明によれば、無端ベルトを作成する遠心成形法で、円筒形をした遠心成形用型の軸方向の熱吸収率を相違させたので、型の両端部から接触伝熱で熱が逃げても、両端部と中央部の温度差を小さくできる。
【0031】
遠心成形用型の中央部の熱吸収率を小さくし、両端部の熱吸収率を大きくすれば、型の両端部から熱が逃げても、型全体についてほぼ一定の温度を保てるようにすることができ、無端ベルトの膜厚を一定にし、外観形状の異常を低減することができる。
【0032】
上記遠心成形用型の外側に熱吸収膜を形成し、該熱吸収膜の粗密を変化させる構成であれば、簡単な構成で所望の分布をさせることができる。
熱吸収膜を遠心成形用型の中央部で網目状に形成した構成とすれば、膜厚をコントロールするより簡単にできる。
【図面の簡単な説明】
【図1】本発明の実施例の遠心成形用型の断面図である。
【図2】図1の遠心成形用型の熱吸収膜の形成方法を説明する斜視図である。
【図3】実施例1,2における遠心成形用型の温度分布を示す図で、実線は実施例1,2、点線は比較例1である。
【図4】本発明の比較例2に使用した遠心成形用型の断面図である。
【図5】従来(比較例1)の遠心成形用型の断面図である。
【符号の説明】
10 遠心成形用型
1 型本体
2 無端ベルト(膜)
3 ヒータ
5 網
14 熱吸収膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a centrifugal mold for producing an endless belt used as an intermediate toner image carrier in an electrostatic copying process such as a copying machine or a printer.
[0002]
[Prior art]
FIG. 5 is a sectional view showing a conventional method for producing an endless belt by centrifugal molding. In the conventional centrifugal molding method, a solution is poured into the inner surface of a cylindrical coating mold 10 'which is a rotating coating mold by spray coating or the like, and then the centrifugal molding mold 10' is rotated at high speed around the axis a of the cylinder. Then, the solution applied by the centrifugal force is spread in the axial direction to form a film 2 having a uniform thickness, and then the uniform film 2 is heated by a heater 3 to be dried and solidified (in some cases, further cured) After treatment) it is peeled off. This membrane 2 becomes an endless belt.
[0003]
Since this heat treatment must be performed while rotating the mold 10 'so that the coating liquid inside the mold does not dripping, generally, the mold 10' is moved from the heater 3 outside the rotating mold. Heat through.
[0004]
The heater 3 generally uses visible light such as a halogen lamp or far infrared light such as a far infrared lamp. When the applied film 2 becomes a certain uniform film, the heater is turned on and dried. Then, the heater 3 is turned off in a dry state where the coating film does not adhere even when touched with a finger, and the rotation of the mold 10 ′ is stopped to peel off.
[0005]
When the film 2 is cured, when the heater 3 is turned off, the heater 2 is not turned off. Conversely, the input to the heater is further increased, and the temperature of the mold 10 'is increased to cure the film 2. When the film 2 reaches a desired hardness, the heater 3 is turned off, the rotation of the mold 10 'is stopped, and the film 2 is peeled off.
[0006]
By the way, if the coating film applied by centrifugation is not sufficiently dried by the solvent, the film 2 is soft and tears when it is peeled off, and if it is too dry or solidified, the film 2 is used for centrifugal molding. There is a problem that the mold 10 ′ is too close to the mold and is torn, and the heating conditions must be carefully controlled.
[0007]
Therefore, it is desirable to be able to freely control the rate of temperature rise and the ultimate holding temperature during heating during drying or curing of the applied film.
[0008]
In addition, as a material of the mold body 1 in the centrifugal mold 10 ′, a metal mold is generally used for performing heat treatment during drying or curing treatment of the applied film 2, but because of film releasability. In addition, surface roughness processing close to a mirror surface is required. Moreover, prevention of internal stress due to thermal expansion and contraction during heating and cooling and heat resistance against heating temperature are also required. Aluminum or an aluminum alloy is used to meet all of these requirements.
[0009]
However, if aluminum or aluminum alloy is used as it is, it can be seen from the fact that it has surface gloss, so the heat absorption rate is poor and the temperature rise is very slow. Therefore, in order to speed up the temperature rise, attempts have been made to improve such as reducing the thickness of the mold or forming the heat absorption film 4 by applying a black body material having a good heat absorption rate.
[Problems to be solved by the invention]
[0010]
However, in this centrifugal molding method, since the mold must be rotated at a high speed, the mold must be firmly fixed by chucking from both sides. For this reason, even if the temperature is raised by heating, chucking is performed from both ends of the mold 10 '. Through this, heat flowed out, the temperature at both ends decreased, and the temperature in the axial direction of the mold 10 'did not become uniform.
[0011]
When such a temperature distribution occurs, the solvent removal of the coating film becomes non-uniform, and the film curing time also becomes non-uniform, resulting in variations in film thickness and non-uniform internal stress during curing. There was a problem that wrinkles occurred when the image was taken out and a good image could not be formed even if an image was formed.
[0012]
An object of the present invention is to solve such a problem and to provide a centrifugal mold that can form a good endless belt without causing an axial temperature distribution (temperature difference).
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a centrifugal coating mold for forming an endless belt by centrifugal molding, wherein the heat absorption rate of the centrifugal molding mold is different along the axial direction of the cylinder. It is characterized by that.
[0014]
Decreasing the heat absorption rate at the center of the mold for centrifugal molding, increasing the heat absorption rate at both ends, or forming a heat absorption film on the outside of the mold for centrifugal molding, and changing the density of the heat absorption film The heat absorption rate is made different, or the density of the heat absorption film is increased at both ends and decreased at the center, or the heat absorption film is formed in a mesh shape at the center of the centrifugal mold. Can be.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
1 and 2 are sectional views showing an embodiment of a centrifugal mold according to the present invention. The mold body 1 of the centrifugal mold 10 is formed of the same aluminum or aluminum alloy as the conventional one and has a cylindrical shape. The present invention is characterized by the heat absorption film 14 formed outside the mold body 1.
[0016]
The heat absorbing film 14 of the present invention is formed by spraying a heat absorbing material. Therefore, prior to spray application, about one-sixth was left from both ends of the mold body 1 having an aluminum cylindrical shape, and a 1 mm mesh net 5 made of SUS was wound around, and a black body paint was applied from above by spraying. After drying, the net was removed to obtain a centrifugal mold 10 on which a heat absorbing film 14 as shown in FIG. 1 was formed.
[0017]
That is, in the central portion, the place where the heat absorption film 14 is formed and the place where it is not formed are distributed. Therefore, the heat absorption rate is different between the mesh portion of the heat absorption film 14 and the portions formed on the entire surface of both ends, and the temperature at both ends of the centrifugal mold 10 is higher than the temperature at the center. Even if heat flows out from both ends through the chuck, the temperature distribution of the centrifugal mold 10 can be kept constant by appropriately setting the mesh size of the mesh 5, the length of the mesh 5, and the like. .
[0018]
In the above embodiment, the 1 mm mesh net 5 made of SUS is used. However, the mesh roughness and the net material are not limited thereto. Further, it is not necessary to be made of metal, and other materials such as a resin can be used. Furthermore, it is not necessary to be a net, and various forms such as those in which thread-like materials are arranged in parallel can be used.
[0019]
While the mold is fixed on one side to a rotating device and rotated slowly, a dispersion prepared by diluting a polyimide precursor solution (Toray Nice # 3000 manufactured by Toray Industries, Inc.) prepared in advance in a solvent DMAC is added to the inside of the mold. It was applied to.
[0020]
Thereafter, the centrifugal mold was fixed at both ends and rotated at a high speed to form a coating film to a uniform thickness, and then the external heater was turned on and heated to 100 ° C. to dry the solvent.
[0021]
When the temperature of the mold for centrifugal molding is measured with a radiation thermometer, the conventional mold 10 'shown in FIG. 5 has a lower end portion and a higher central portion as shown by the dotted line (1) in the graph of FIG. However, in this example, as shown by the solid line (1) in FIG. 3, no temperature fluctuation was observed at both ends and the center of the mold, and it was found that a constant temperature was maintained.
[0022]
The heater was turned off and the rotation was stopped. After cooling, the film was peeled off. When the film thickness of this film was measured, the coating film thickness was uniform at both ends and the center, and there was no abnormality in appearance such as wrinkles.
[0023]
[Example 2]
In the same manner as in Example 1, a centrifugal mold having a heat absorbing film formed thereon was coated and dried with the same diluted dispersion, and then the input of an external heater was raised to raise the mold temperature to 280 ° C. Cured.
[0024]
The temperature of the centrifugal mold was measured with a radiation thermometer. As shown by the solid line (2) in the graph of FIG. 3, the temperature at both ends and the central part was uniform, and the conventional mold as shown by the dotted line (2) No temperature distribution was observed as in 10 '.
[0025]
[Comparative Example 1]
As shown in FIG. 5, a heat absorption film 4 formed on the entire outer surface of the mold body 1 is used on the same mold body 1 as in Example 1, and a coating film is formed in the same manner as in Example 1. Heated. And the temperature distribution at that time was measured, and the film thickness and external appearance of the dry cured film were observed.
[0026]
As shown by the dotted lines (1) and (2) in the graph of FIG. 3, even at 100 ° C. (dotted line (1)), the temperature at both ends is lower than that of the example (solid line (1)). The dotted line (2)) shows that the temperature difference is further increased.
[0027]
The film thickness distribution was hardly observed during drying, but the vicinity of the edge was thicker, and irregular appearance of irregularities was observed.
At 280 ° C., almost no film thickness distribution was observed, but after a while after peeling, wrinkles that wavy in the circumferential direction occurred at both ends.
[0028]
[Comparative Example 2]
As shown in FIG. 4, the heat absorbing film 24 was formed on the same mold body 1 as in Example 1 only at both ends of the outer surface of the mold. A coating film was formed on this centrifugal mold 10 ″ in the same manner as in Examples 1 and 2 and heated by the heater 3. Then, the temperature distribution was measured, and the film thickness and appearance of the dried cured film were observed. The temperature was measured with a radiation thermometer, but the central part could not be measured correctly, and the coating film had a bumpy shape.
[0029]
Therefore, the temperature was measured with a contact thermometer while rotating at a low speed, and after taking correspondence with the input, the measurement was performed in the same manner as in Example 2 with a predetermined input.
[0030]
【The invention's effect】
As described above, according to the present invention, in the centrifugal molding method for creating an endless belt, the axial heat absorption coefficient of the cylindrical centrifugal mold is made different. Even if heat escapes due to heat, the temperature difference between both ends and the center can be reduced.
[0031]
If the heat absorption rate at the center of the mold for centrifugal molding is reduced and the heat absorption rate at both ends is increased, even if heat escapes from both ends of the die, it is possible to maintain a substantially constant temperature throughout the die. Thus, the film thickness of the endless belt can be made constant, and abnormality in the external shape can be reduced.
[0032]
If the heat absorption film is formed outside the centrifugal mold and the density of the heat absorption film is changed, a desired distribution can be obtained with a simple structure.
If the heat absorption film is formed in a mesh shape at the center of the centrifugal mold, it is easier than controlling the film thickness.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a centrifugal mold according to an embodiment of the present invention.
2 is a perspective view for explaining a method of forming a heat absorption film of the centrifugal mold of FIG. 1. FIG.
3 is a graph showing the temperature distribution of a centrifugal mold in Examples 1 and 2, in which solid lines are Examples 1 and 2 and dotted lines are Comparative Example 1. FIG.
FIG. 4 is a cross-sectional view of a centrifugal mold used in Comparative Example 2 of the present invention.
FIG. 5 is a cross-sectional view of a conventional centrifugal molding die (Comparative Example 1).
[Explanation of symbols]
10 Centrifugal mold 1 Mold body 2 Endless belt (membrane)
3 Heater 5 Net 14 Heat absorption film

Claims (5)

遠心成形により無端ベルトを形成する円筒形で塗布型の遠心成形用型において、該遠心成形用型の熱吸収率を円筒の軸方向に沿って相違させたことを特徴とする遠心成形用型。A centrifugal mold for forming an endless belt by centrifugal molding, wherein the heat absorption rate of the centrifugal mold is different along the axial direction of the cylinder. 上記遠心成形用型の中央部の熱吸収率を小さくし、両端部の熱吸収率を大きくしたことを特徴とする請求項1記載の遠心成形用型。The centrifugal mold according to claim 1, wherein the heat absorption rate at the center of the centrifugal mold is reduced and the heat absorption rate at both ends is increased. 上記遠心成形用型の外側に熱吸収膜を形成し、該熱吸収膜の粗密を変化させることにより上記熱吸収率を相違させることを特徴とする請求項1又は2記載の遠心成形用型。The centrifugal mold according to claim 1 or 2, wherein a heat absorption film is formed outside the centrifugal mold, and the heat absorption rate is varied by changing the density of the heat absorption film. 上記熱吸収膜の密度を、両端部では大きく、中央部では小さくしたことを特徴とする請求項3記載の遠心成形用型。4. The centrifugal mold according to claim 3, wherein the density of the heat absorption film is large at both ends and small at the center. 上記熱吸収膜を遠心成形用型の中央部で網目状に形成したことを特徴とする請求項4記載の遠心成形用型。5. The centrifugal mold according to claim 4, wherein the heat absorbing film is formed in a mesh shape at the center of the centrifugal mold.
JP15190698A 1998-05-18 1998-05-18 Centrifugal mold Expired - Fee Related JP3814080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15190698A JP3814080B2 (en) 1998-05-18 1998-05-18 Centrifugal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15190698A JP3814080B2 (en) 1998-05-18 1998-05-18 Centrifugal mold

Publications (2)

Publication Number Publication Date
JPH11320586A JPH11320586A (en) 1999-11-24
JP3814080B2 true JP3814080B2 (en) 2006-08-23

Family

ID=15528788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15190698A Expired - Fee Related JP3814080B2 (en) 1998-05-18 1998-05-18 Centrifugal mold

Country Status (1)

Country Link
JP (1) JP3814080B2 (en)

Also Published As

Publication number Publication date
JPH11320586A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JP3814080B2 (en) Centrifugal mold
JP5669008B2 (en) Seamless belt forming method and seamless belt forming apparatus
JP3292328B2 (en) Thermal peripheral dryer
JP4057708B2 (en) Coating type and endless belt manufacturing method
JP3595695B2 (en) Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate
JP3856629B2 (en) Manufacturing method of endless belt
JP2001158023A (en) Coating mold for centrifugal molding, method for centrifugal molding, and method for manufacturing endless belt
JP3519963B2 (en) Endless belt forming device
JPS6327872A (en) Baking method for black paint on inside surface of core shaft for heat fixing roller
JP4768249B2 (en) Cylindrical curing mold for forming polyimide cylindrical cured film from demolded polyamic acid cylindrical coating film, and method for producing polyimide cylindrical cured film using the same
JP2991340B2 (en) Manufacturing method of multilayer structure roller
JP3552293B2 (en) Image forming device
JP3863687B2 (en) Method for forming polyimide cylindrical film
JP3103168B2 (en) Roller manufacturing method
JPH0825517A (en) Manufacture of roller
JP2002018971A (en) Endless belt, method for manufacturing the same, molding apparatus and image forming apparatus equipped with endless belt
JPH0312543B2 (en)
JP2000343620A (en) Production condition setting method in production of endless belt, and method and apparatus for producing endless belt
JP3304347B2 (en) Roll heating device
JP2004219774A (en) Fixing roller
JP3893224B2 (en) Endless belt manufacturing method
JP2002278340A (en) Oil coating applicator, oil coating application roller and method of manufacturing oil coating application roller
JP2000343540A (en) Method for forming endless belt
JP2000210958A (en) Preparation of endless resin belt
JP3994572B2 (en) Intermediate transfer medium manufacturing method and intermediate transfer medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees