JP3595695B2 - Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate - Google Patents

Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate Download PDF

Info

Publication number
JP3595695B2
JP3595695B2 JP24599098A JP24599098A JP3595695B2 JP 3595695 B2 JP3595695 B2 JP 3595695B2 JP 24599098 A JP24599098 A JP 24599098A JP 24599098 A JP24599098 A JP 24599098A JP 3595695 B2 JP3595695 B2 JP 3595695B2
Authority
JP
Japan
Prior art keywords
sheet
cylindrical
fluororesin
processed
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24599098A
Other languages
Japanese (ja)
Other versions
JP2000071330A (en
Inventor
正明 高橋
一夫 岸野
英雄 川元
修 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24599098A priority Critical patent/JP3595695B2/en
Publication of JP2000071330A publication Critical patent/JP2000071330A/en
Application granted granted Critical
Publication of JP3595695B2 publication Critical patent/JP3595695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,円筒および円柱上ヘのフッ素樹脂被覆方法に関し、とりわけ複写機・LBP(レーザービームプリンター)等の電子写真画像形成装置の定着部材を製造する際に好適に適用される方法に関する。
【0002】
【従来の技術】
従来、弾性ローラ上ヘのフッ素樹脂被覆方法としては、弾性ローラをフッ素樹脂チューブで覆う方法、もしくは弾性ローラ上にフッ素樹脂粉体及びフッ素樹脂分散液を塗装した後、加熱焼成する方法が用いられる。前記フッ素樹脂を加熱焼成する際には、フッ素樹脂の融点以上まで、フッ素樹脂を加熱し、焼成成膜する方法が取られている。
【0003】
このフッ素樹脂表面を平滑に仕上げる方法として下記のような方法が知られている。
【0004】
定着ローラの生産方法において表面フッ素樹脂層を研磨後フッ素樹脂層の表面温度をフッ素樹脂の融点よりやや高めで再焼成する方法(特公平5−55078)。円筒状基材上の特定のフッ素樹脂層に高温にした平滑な加圧面を押圧してフッ素樹脂層表面を平滑化する方法(特開平8−118561)。定着ローラの製造方法においてフッ素樹脂層は押圧平滑化(鏡面化)された後に焼成して溶融結合して平滑なフッ素樹脂層表面を設ける方法(特開平3−80277)。
【0005】
フッ素樹脂被覆ローラの製造方法においてゴム弾性体上のフッ素樹脂被覆したローラを加熱体に回転接触させ溶融後回転させたままローラ及び加熱体を冷却して平滑面を得る方法(特開昭62−227463)。
【0006】
また、以前に本発明者等は、フッ素樹脂の焼成成膜時に、金属などからなる円筒状基材、もしくはこれらを芯金として弾性体を表面形成した円筒状基材の表面にフッ素樹脂を予備形成した被加工円筒材の外側に配した面転写部材とで、フッ素樹脂を加圧し、同時に加熱することにより、フッ素樹脂表面に、面転写部材の表面模様を転写しつつ成膜する方法を提案している(特開平9−277378)。
【0007】
また、本発明者等は、フッ素樹脂の焼成成膜時に、金属などからなる円筒状基材、もしくはこれらを芯金として弾性体を表面形成した円筒状基材の表面にフッ素樹脂を予備形成した被加工円筒材の外側に円筒状の面転写部材を配し赤外線ヒータを加熱の手段として用い前記面転写部材の外側より直接表面を加熱することで、前記フッ素樹脂を加圧し、同時に加熱することにより、前記フッ素樹脂表面に、前記面転写部材の表面模様を転写しつつ成膜する方法も提案している。
【0008】
【発明が解決しようとする課題】
まず前記従来例のようなフッ素樹脂被覆方法には、次のような問題点がある。
【0009】
第1に、弾性体上にフッ素樹脂を塗装し、加熱焼成する場合、前記フッ素樹脂の溶融粘度が極めて高いため、前記フッ素樹脂の融点よりかなり高い温度で加熱焼成しても、成膜したフッ素樹脂層の平滑性が低い。
【0010】
また、前記のようなフッ素樹脂焼成条件を実行した場合、その温度に耐えるような弾性体が存在しないため、弾性体に極めて大きなダメージを与える結果となる。
【0011】
前記のことを解決しようという目的のもと、本発明者等は、弾性体とフッ素樹脂層の外側に配した面転写部材との間で、フッ素樹脂層を加圧し、面転写部材の表面模様を前記フッ素樹脂表面に転写しながら、前記フッ素樹脂の加熱焼成成膜を行なう方法を提案した。その結果、前記フッ素樹脂の表面模様を制御しながら、前記フッ素樹脂を従来よりも低い温度で成膜することが可能となり、下材であるゴムのダメージを比較的抑えることができるようになった。
【0012】
さらに、本発明者等は、金属などからなる円筒状基材、もしくはこれらを芯金として弾性体を表面形成した円筒状基材の表面にフッ素樹脂を予備形成した被加工円筒材の外側に円筒状の面転写部材を配し赤外線ヒータを加熱の手段として用い面転写部材の外側より前記被加工円筒材の直接表面を加熱することで下材であるゴムのダメージを抑えることができるようになった。
【0013】
しかしながら前記円筒状の面転写部材を用いる方法では以下3点の問題がある。
【0014】
まず1つは、面転写部材として円筒状の面転写部材が必要であるが、この面転写部材の内径は面転写される前記被加工円筒材、さらには前記円筒状基材の外径により適正な範囲がある。まずは、前記被加工円筒材が入るだけの内径が必要である。また、あまり内径が大きすぎると加熱の際に前記円筒状基材が膨張しても面転写部材との間でフッ素樹脂層を十分に加圧することができなくなり、面転写が行なわれなくなってしまうため、内径をあまり大きくして隙間を大きくすることはできない。このため、量産時等の前記円筒状基材の外径がばらつくときには安定した面転写および成膜が困難になる。
【0015】
つぎに、前記の面転写部材内径と前記被加工円筒材との隙間は、前記円筒状基材の熱膨張が小さいとき、または熱膨張させる前記円筒状基材の厚みが薄いときには、その隙間は非常に狭くしなければならなくなる。このため、安定した面転写および成膜を行なおうとすると実際には面転写部材ヘの前記被加工円筒材の挿入が困難になったり、加工後の円筒材製品が抜けにくくなってしまうという問題がある。
【0016】
さらにもう1つの問題は、前記加工法においては前記面転写部材の内面が非常に重要であるが、前記面転写部材はほとんど開口部に対し軸方向に長いため、内面の掃除が困難ということである。
【0017】
本発明の目的は、前記の諸問題を解決すること、すなわち、前記円筒状の面転写部材を用いる方法と同等の効果をもち、かつ、面転写される前記被加工円筒材の外径・内径による制約をできるだけ少なくし、前記の面転写部材の機能部位と前記被加工円筒材との隙間による制約をできるだけ少なくすることで前記円筒状基材の外径がばらつくときにも安定した面転写および成膜を可能にし、さらに、前記面転写部材の機能部位の掃除が容易である方法を開発することにある。
【0018】
【発明を解決するための手段】
本発明は、円筒状基材上に表面加工可能なフッ素樹脂層を予備形成した被加工円筒材に対して、前記円筒状基材上のフッ素樹脂層と、該フッ素樹脂層の外側に配した面転写部材との間で、前記円筒状基材と前記面転写部材の熱膨張率の差を利用し前記フッ素樹脂層を加圧した状態で加熱することによって、前記面転写部材の表面模様を、前記フッ素樹脂層表面に転写させる、フッ素樹脂表面に転写部材の表面模様を転写する方法において、前記面転写部材として前記円筒状基材よりも熱膨張率が小さい材質でシート形状のものを用い、加熱前に前記シートを前記被加工円筒材の円周の1/3以上巻き付けた状態で、前記シートの両端部を一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具に固定し、前記シートを張った状態で前記保持治具の位置を固定し、前記被加工円筒材の軸を回転自在に固定した状態で回転させながら前記シートを従動させつつ前記シートの外側より前記被加工円筒材を加熱する。
【0019】
なお、以下において、「円筒状基材」とはフッ素樹脂層を含まない内側の部分を指し、そのうち表面が弾性体の場合さらにその内側の剛体部分を「芯金」と呼ぶ。また、フッ素樹脂を予備形成した、加熱・加圧前のものを「被加工円筒材」と呼び、成膜完了したものを「円筒材製品」と呼ぶ。
【0020】
このような方法を用いると、前記円筒状基材は熱膨張により径が大きくなるのに対し、前記シートは熱膨張率が小さい上に前記保持治具によりその両端部を固定されているため伸びは小さく、そのため前記円筒状基材表面のフッ素樹脂層は加圧された状態で加熱されることとなり、基層に劣化を与えずに前記面転写部材の表面模様を、前記フッ素樹脂層表面に転写させつつ成膜することができる。前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれる。また前記被加工円筒材表層のフッ素樹脂は軟化している状熊で溶融まではしていない。さらに前記被加工円筒材と前記シートの剥離の場所は直接加熱しなければ温度が急激に下がるため、前記被加工円筒材表層のフッ素樹脂は面転写部材である前記シートには付着せず、そのため剥離跡も残らない。
【0021】
このような手法を用いることで円筒状の面転写部材を用いなくても前記円筒状基材と前記面転写部材の熱膨張率の差を利用し前記フッ素樹脂層を加圧した状態で加熱することが可能となる。このため円筒状の面転写部材では重要であった前記円筒状基材の外径のばらつきによる前記被加工円筒材と面転写部材との隙間がばらつくために安定した面転写および成膜が困難になるという問題は、それぞれの前記被加工円筒材で加熱前に保持治具を前記シートがたるまない位置に固定することで円筒状基材の外径のばらつきに関係なく前記被加工円筒材と面転写部材との隙間を一定にできるため解決する。
また前記円筒状基材の熱膨張が小さかったり厚みが薄いために、前記被加工円筒材と前記面転写部材の隙間を非常に狭くしなければならない場合、円筒状の面転写部材ヘの前記被加工円筒材の挿入が困難になったり、加工後に前記円筒材製品が抜けにくくなってしまうという問題は、シートを巻きつける本方法では、加熱前に前記被加工円筒材をセットし前記シートを巻き、加工後に前記シートを剥がしてやれば良いため無関係である。また加熱前に前記シート保持治具を前記シートが前記被加工円筒材にぴったりと付く状態で固定することで前記被加工円筒材と前記面転写部材の隙間を非常に狭くできるため、前記円筒状基材の熱膨張が小さかったり厚みが薄い場合に十分対応できる。
さらに前記面転写部材をシート形状にすることで前記被加工円筒材に面を転写する部分の表面掃除が非常に容易になる。
【0022】
【発明の実施の形態】
本発明の実施例において用いられる装置の構成、特に部材、加工材料について説明する(図1〜図7参照)。
【0023】
まず、被加工円筒材について述べる。11、21、31、41、51、61、71は各実施例(順に実施例1〜7)において使用した被加工円筒材であり、最外層にフッ素樹脂層(115、315、515など)を有する。このフッ素樹脂は、実施例ではテトラフルオロエチレン〜ヘキサフルオロプロピレン共重合体(FEP)が用いられたが、他にテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン〜エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVdF)、ポリクロロトリフルオロエチレン(PCTFE)、などが好ましい例として挙げられる。これらのフッ素樹脂の粉体および前記粉体を含むの水性塗料をコーティングする方法としては、実施例のようにディスパージョンをスプレー塗装する方法の他、水性塗料の場合、ディップコーティング、ローラコーティング、ブレードコーティングなどがあり、粉末の場合は静電粉体塗装などがある。コーティングされたフッ素樹脂層は、水性塗料の場合の乾燥後および粉体塗装後は、フッ素樹脂が微粒子の状体で凝集し層をなした状態である。
【0024】
このフッ素樹脂の層は、コーティング後、あらかじめ予備加熱焼成成膜しておいてもよい。フッ素樹脂の予備加熱焼成は、一時的にフッ素樹脂の溶融温度まで上昇させれば十分であるが、フッ素樹脂を完全に成膜させるまで行なってもよい。この際、フッ素樹脂の表面にクラック・凹凸等が存在してもよい。また予備加熱焼成後のフッ素樹脂を前記円筒状基材と前記面転写体で加圧、加熱する工程における前記フッ素樹脂層の温度は、200℃以上であれば特に制約はないが、予備加熱焼成温度まで上昇させる必要はなく、好ましくは240℃〜300℃に加熱するとよい。この方法を用いると予備加熱焼成を行なわなかった場合より、少ない熱量でフッ素樹脂に任意の表面模様を付与することができる。前記円筒状基材として樹脂やゴム等の耐熱性のない材質を用いた場合、フッ素樹脂の加熱焼成時に前記円筒状基材の熱劣化が起こるが、この方法を用いると急速加熱により前記円筒状基材の熱劣化を防止することができる。また前記フッ素樹脂層加圧時に高温を必要としないため作業効率も良い。
【0025】
フッ素樹脂層の内側円筒状基材(110、310、510)の材質としては、適切な強度と耐熱性を持つものであれば特に制限はないが、好適にはニッケル・鉄・アルミニウムなどの金属、ポリイミドなどの耐熱性樹脂、もしくは前記金属ないし樹脂を芯金(111、311、511)としてその表面にプライマー(112、114、312、314、512、514)、および/またはシリコーンゴム・フッ素ゴムなどの耐熱性ゴム(113、313、513)を形成したものが用いられ、特に下記に示すアルミニウム芯金−プライマー−シリコーンゴム−フッ素ゴム・フッ素樹脂混合プライマー(フッ素樹脂層)の構成が好ましい例として挙げられる(図1.A、図3.A、図5.A参照)。
【0026】
前記芯金は円柱または中空円筒のいずれでもよく、その直径は好ましくは円筒状基材全体の65〜90%である(111、311、511)。
【0027】
前記シリコーンゴム層(113、313、513)の厚さはほぼ前記円筒状基材全体の半径と芯金の半径の差に等しい。前記シリコーンゴム層の形成方法としては、たとえばプライマーを塗布した芯金を円筒状金型に挿入し、LTVの未加硫シリコーンゴムを注入し、それを加熱硬化することにより形成する方法が挙げられる。
【0028】
前記シリコーンゴム層と表層フッ素樹脂層を接着するためのプライマー層(114、314、514)はフッ素ゴムとフッ素樹脂の混合物からなり、形成方法としてはたとえば前記混合物の水性塗料をスプレーにより塗装し加熱硬化させることなどが挙げられる。
【0029】
なお加工後の円筒材製品(116、216、316、416、516、616、716)は図面上被加工円筒材と同一である。また、成膜後のフッ素樹脂膜(117、317、517)も図面上加工前と同一である。
【0030】
次に、面転写部材について述べる。12、22、32、42、52、62、72は各実施例において使用した面転写部材である。
【0031】
これらはシート状、またはその両端を接合したベルト状で前記被加工円筒材当接側には前記円筒状基材上に形成されているフッ素樹脂膜に転写したい表面模様が形成されたものをU字に曲げて用いている。材質としては、前記フッ素樹脂の焼成成膜時に必要な温度に耐え前記円筒状基材よりも熱膨張の小さいものであれば特に制約はないが、鉄・SUS・アルミニウム等の金属材料や、ポリイミド・ポリフェニンサルファイド等の耐熱性樹脂を用いることが好ましい。また前記円筒状基材当接側の面粗さは、仕上がり時の前記円筒材製品(116、316、516)の表面の面粗さを決定づける重要な要素であるので、十分に小さな値が望まれる。たとえば十点平均粗さ(Rz)で0.5μmとするのが好ましい。
【0032】
前記シ一ト状の面転写部材の前記被加工円筒材のへの巻き付けは円周の1/3以上が好ましい。これはある程度の巻き付けがないと熱膨張率の差による力が十分に前記円筒状基材表面の前記フッ素樹脂層を加圧することに使われないからであり、そのためできることならば1/2以上ほしい。
【0033】
また前記シートの長さは加熱の間ローラに従動して一方向に送る分だけの長さがあれば良いが、実際はφ20mmの被加工円筒材でローラ回転は20rpmほどで加熱時間が約150秒であるため約3.5mほどいることになる。こうなると装置的には非常に大きくなるため約600mm程度の長さのシートを用い、ローラ回転を数回反転させながら前記シートを従動させても良い。
【0034】
さらに、前記面転写部材の保持手段としては、代表的には13、23、33、43、53のように、前記シートの両端を固定するための、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具があり、ラック&ピニオンの機構を用いている。他にシーソーの機構も用いられる。
【0035】
前記被加工円筒材の両端は芯金部111、311、511によって回転台に接続される。前記回転台は14、24、34、44、54、64、74がこれに該当する。ここで、前記被加工円筒材と前記シートは互いに従動可能であるため、モータはそのいずれか一方につけ他方を従動させることになるが、前記シートを移動させ前記被加工円筒材を従動させる方がより好ましい。前記被加工円筒材を回転させ前記シートを従動させるようにすると(図1.B)、前記被加工円筒材の回転により慣性の大きいシート保持治具を動かそうとすることになり前記被加工円筒材表面とシートとの問にスリップが発生しやすく、それにより前記被加工円筒材表面にキズがつく場合がある。そこで前記シートを移動させ慣性の小さい前記被加工円筒材を従動させることでスリップを防止して前記被加工円筒材表面にキズをつけることなく前記フッ素樹脂の表面に、任意の模様および粗さを付与することが可能となる(図2.B)。
【0036】
またシートを前記被加工円筒材に巻き付ける際に巻き付けローラ(36、46、56、66および76)を用いることができる。(図3.B)これにより、前記被加工円筒材円周に前記面転写部材のシートを1/2以上巻き付けることが容易になり、このため、熱膨張率の差による力が十分に前記円筒状基材表面のフッ素樹脂層を加圧することに使われることになり前記被加工円筒材の軸にかかる負担が小さくなるため、軸の変形およびそれによる軸方向中央部の面転写および成膜の不良を防ぐことができる。
【0037】
加熱手段としては、15、25、35に示すようなアルミ製のヒートロールが代表的で、ステンレスシートの上から前記被加工円筒材に接触している。
【0038】
基本的には以上のような手段により、前記課題を解決しつつ従来表面模様および粗さの制御が困難であったフッ素樹脂の表面に、任意の模様および粗さを付与することが可能となる。
【0039】
赤外線ヒータ(45、55、65、75)を用い前記面転写部材の外側より前記被加工円筒材を加熱し前記被加工円筒材と前記面転写部材との間で前記フッ素樹脂を加圧し、前記面転写部材の表面模様を前記フッ素樹脂表面に転写および成膜する方法を用いると(図4〜7)、前記フッ素樹脂の焼成成膜時に付与する温度を低く設定しても、前記フッ素樹脂の成膜を容易に行なうことができる。また表面のフッ素樹脂を直接加熱できること、急速加熱が可能であること等により、その際の基層の劣化を押さえることができる。
【0040】
前記面転写部材としてポリイミドの薄肉シートを用いる(42、52、62、72)と、以下に述べるように種々の好ましい効果をもたらす(図4〜7)。まず、耐熱性および高温時の強度に優れており、そのため操り返し使用が可能となり前記面転写部材の耐久性が向上する。また非常に柔軟性に富み前記円筒状基材(41その他)および巻き付けローラ(46その他)ヘ密着しやすいので加工を行ないやすい。
【0041】
それに赤外線をある程度透過することで、その分のエネルギーは前記フッ素樹脂に届き、加熱に要するエネルギーを節約できる。さらに、前記面転写部材はあまり温まらないため、熱膨張も減ることによりさらに少ないエネルギーで前記面転写部材の表面を前記円筒状基材表面に形成されたフッ素樹脂表面に転写および成膜することができる。つまりゴムの熱劣化もさらに押さえることができる。
【0042】
また前記面転写部材であるシート62をロール67に巻いた状態で供給し、加熱前に前記シートを被加工円筒材61の円周の1/2以上巻き付けた状態で前記シートがたるまない程度に張った状態で巻き取り側のロール68と供給側のロール67とを一旦固定し、加熱時にシートの供給と巻き取りのスピードを同じにしつつ前記被加工円筒材を従動回転させることで前記被加工円筒材表面フッ素樹脂層を加圧した状態で加熱することができる(図6)。常に新しいシート面を供給できるため表面状態が良くなり、またシート62を1方向に送れば良いため装置構成も簡単になる。
【0043】
またシート72が一部で接続されたべルト形状となっており、加熱前に被加工円筒材71の円周方向に巻き付けた状態で前記被加工円筒材と平行に設けられた円筒状で回転可能なシート伸ばし部材73にて張力が加わるか、加わらない程度にシートを伸ばした状態で保持するようにすれば(図7)、前記ラック&ピニオンや、シーソーの機構のような複雑なシート保持治具を使用しなくてもシート伸ばし部材を回転させ前記シートの接合部分が前記被加工円筒材に接触しないように正・反転運動させることで被加工円筒材を従動させつつシートを移動できるためより簡単な装置構成で前記面転写部材の表面を前記円筒状基材表面に形成されたフッ素樹脂表面に転写および成膜することができる。
【0044】
【実施例】
(実施例1)
本発明の第1の実施例について(図1)を参照しながら説明する。
【0045】
11は最外層にフッ素樹脂を有する被加工円筒材であり、その外径は20mmで軸方向の長さは、230mmである。その断面図を(図1.A)に示す。111は円筒状基材110の芯金でありアルミニウムで構成され、その直径は13mmである。芯金111上には東レ・ダウコーニング・シリコーン社製、商品名:DY39−051を使用したプライマー層112を介してLTVのシリコーンゴム層113が接着されておりその厚みは約3.5mmである。前記シリコーンゴム層はプライマーを塗布した芯金を円筒状金型に挿入し、LTVの未加硫シリコーンゴム(東レ・ダウコーニング・シリコーン社製、商品名:DY35−561)を注入し、それを加熱硬化することにより形成した。114はシリコーンゴム層113と表層フッ素樹脂層を接着するためのプライマー層であり、フッ素ゴムとフッ素樹脂(FEP)の混合物で構成される。プライマー層114はフッ素ゴムとフッ素樹脂の混合物から成る水性塗料(ダイキン社製、商品名:ダイエルGLS−213)をスプレーにより塗装し200℃で30分加熱硬化させて得られたもので、その厚みは25μmであった。プライマー層114上にはフッ素樹脂(FEP)層115が形成されている。フッ素樹脂層115はフッ素樹脂(FEP)のディスパージョン(ダイキン社製、商品名:ネオフロンFEP ND−1)をスプレーで塗装し、150℃で20分乾燥した後、300℃で20分の予備加熱焼成をしたものであり、その際の厚みは15μmであった。その際フッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面粗さは、十点平均粗さ(Rz)で15μmであった。
【0046】
12は本発明における面転写部材であり、シート状で前記被加工円筒材当接側には前記円筒状基材上に仮形成されたフッ素樹脂膜に転写したい表面模様が形成されたのものをU字に曲げて用いている。本実施例では、幅250mm、長さ600mm、厚み0.05mmで前記円筒状基材のシリコーンゴムよりも熱膨の小さいステンレスシート(SUS304−H)を用いた。また前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いた。
【0047】
面転写部材12はその両端を、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具13に固定している。本実施例では、図1のようなラック&ピニオンの機構を用いた。まず、面転写部材12とシート保持治具13の問に被加工円筒材11を通し芯金111の両端を、被加工円筒材11を保持回転させるためのモータの付いた回転台14に接続する(図1.B)。この状態でシート保持治具13を移動して前記シートがたるまない程度に張った状態でシート保持治具13の位置を固定する。本実施例では被加工円筒材11とシート保持治具13のシート固定部の間隔がほぼ同一であったため前記シートの巻き付きは前記被加工円筒材の約1/2であった。
【0048】
以上のように装置を設定した後、前記ステンレスシートの上部よりアルミ製のヒートロール15(外径40mm、長さ300mm)を前記被加工円筒材に接触させ(図1)、ヒートロール15を270℃に加熱しつつ被加工円筒材11を前記モータにより20rpmの速度で回転させた。前記シートは前記被加工円筒材に従動させた。前記シートの端が前記シート保持治具の限界に来る前に前記モータを反転させる。約20sec毎にこの動作を繰り返しながら面転写および成膜を150sec行なった。その後、円筒材製品116を冷却しシート保持治具13を移動させ前記シートをゆるめた状態にして円筒材製品116を回転台14より取り外した。加熱の際前記シリコーンゴムの熱膨張が、面転写部材である前記ステンレスシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、前記シリコーンゴムがより膨張して、前記面転写部材と前記円筒状基材との問で前記フッ素樹脂層が加圧された状態を作り出す。また前記ヒートロールからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0049】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品とシートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0050】
このようにして得られた円筒材製品116表層のフッ素樹脂の焼成膜117の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前に前記保持治具を前記シートがたるまない位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。
【0051】
またシート状のため、掃除もしやすくなった。
【0052】
(実施例2)
本発明の第2の実施例について(図2)を参照しながら説明する。
【0053】
21は最外層にフッ素樹脂を有する被加工円筒材であり、実施例1の被加工円筒材11とおなじものでありフッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面粗さは、十点平均粗さ(Rz)で15μmであった。
【0054】
22も実施例1とおなじ面転写部材であり前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いる。面転写部材22はその両端を、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具23に固定している。本実施例では、図2のようなピニオンギアにラックを往復運動させるためのモータを接続したラック&ピニオンの機構を用いた。まず、面転写部材22とシート保持治具23の間に被加工円筒材21を通し被加工円筒材21の芯金の両端を保持回転させるための回転自在な回転台24に接続する(図2.B)。この状態でシート保持治具23を移動して前記シートがたるまない程度に張った状態でシート保持治具23の位置を固定する。本実施例では被加工円筒材21とシート保持治具23のシート固定部の間隔がほば同一であったため前記シートの巻き付きは前記被加工円筒材の約1/2であった。
【0055】
以上のように装置を設定した後、前記ステンレスシートの上部よりアルミ製のヒートロール25(外径40mm、長さ300mm)を前記被加工円筒材に接触させ(図2)、ヒートロール25を270℃に加熱しつつシート保持治具23に接続したモータにより前記シートを約21mm/secの速度で移動させた。被加工円筒材21はそれに伴い約20rpmの速度で従動回転した。前記シートの端が前記シート保持治具の限界に来る前にモータを反転させた。約20sec毎にこの動作を繰り返しながら面転写および成膜を150sec行なった。その後、円筒材製品216を冷却しシート保持治具23を移動させシートをゆるめた状態にして円筒材製品216を回転台24より取り外した。加熱の際前記シリコーンゴムの熱膨張が、面転写部材である前記ステンレスシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、前記シリコーンゴムがより膨張して、前記面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記ヒートロールからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0056】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品と前記シートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0057】
このようにして得られた前記フッ素樹脂の焼成膜の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材シリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前に保持治具を前記シートがたるまない位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。
【0058】
またシート状のため、掃除もしやすくなった。
【0059】
さらに実施例1のときは、被加工円筒材を回転させてシートおよび慣性の大きいラックを従動させていたため、前記被加工円筒材と前記シートとの間でスリップが発生しやすくフッ素樹脂表面に傷が発生しやすかった。しかし本実施例では従動させるのは慣性の小さい被加工円筒材のほうであるためスリップ、傷は発生しなくなった。
【0060】
(実施例3)
本発明の第3の実施例について(図3)を参照しながら説明する。
【0061】
31は最外層にフッ素樹脂を有する被加工円筒材であり、その外径は20mmで軸方向の長さは、230mmである。その断面図を(図3.A)に示す。311は円筒状基材310の芯金でありアルミニウムで構成され、その直径は13mmであるが中空であり直径11mmの穴が空いている。芯金311上にはプライマー層312(前記112と同一原料)を介してLTVのシリコーンゴム層313が接着されておりその厚みは約3.5mmである。前記シリコーンゴム層はプライマーを塗布した芯金を円筒状金型に挿入し、LTVの未加硫シリコーンゴム(113に同じ)を注入し、それを加熱硬化することにより形成した。314はシリコーンゴム層313と表層フッ素樹脂層を接着するためのプライマー層であり、フッ素ゴムとフッ素樹脂(FEP)の混合物で構成される。プライマー層314はフッ素ゴムとフッ素樹脂の混合物から成る水性塗料をスプレーにより塗装し200℃で30分加熱硬化させて得られたもので、その厚みは25μmであった。プライマー層314上にはフッ素樹脂(FEP)層315が形成されている。フッ素樹脂層315はフッ素樹脂(FEP)のディスパージョン(115に同じ)をスプレーで塗装し、150℃で20分乾燥した後、300℃で20分の予備加熱焼成をしたものであり、その際の厚みは15μmであった。その際フッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面粗さは、十点平均粗さ(Rz)で15μmであった。
【0062】
32も実施例1とおなじ面転写部材であり前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いる。面転写部材32はその両端を、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具33に固定している。本実施例では、実施例2と同様に図3のようなピニオンギアにラックを往復運動させるためのモータを接続したラック&ピニオンの機構を用いた。まず、面転写部材32とシート保持治具33の間に被加工円筒材31を通し被加工円筒材31の芯金311の両端を保持回転させるための回転自在な回転台34に接続する(図3.B)。本実施例では、この状態で外径16mmの巻き付けローラ36を2本用い面転写部材であるステンレスシート32を被加工円筒材31に約4/5巻き付けた。前記巻き付けローラは回転自在ではあるが位置は固定されている。この状態でシート保持治具33を移動しで前記シートがたるまない程度に張った状態でシート保持治具33の位置を固定する。
【0063】
以上のように装置を設定した後、前記ステンレスシートの上部よりアルミ製のヒートロール35(外径40mm、長さ300mm)を前記被加工円筒材に接触させ(図3)、ヒートロール35を270℃に加熱しつつシート保持治具33に接続したモータにより前記シートを約21mm/secの速度で移動させた。被加工円筒材31はそれに伴い約20rpmの速度で従動回転した。前記シートの端が前記シート保持治具の限界に来る前に前記モータを反転させる。約20sec毎にこの動作を繰り返しながら面転写を行なったところ90secで面転写および成膜が可能であった。その後、円筒材製品316を冷却しシート保持治具33を移動させ前記シートをゆるめた状態にして円筒材製品316をを回転台34より取り外した。加熱の際前記シリコーンゴムの熱膨張が、面転写部材である前記ステンレスシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、前記シリコーンゴムがより膨張して、前記面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記ヒートロールからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0064】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品と前記シートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0065】
このようにして得られた前記フッ素樹脂の焼成膜317の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様が前記フッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。
【0066】
また、それぞれの被加工円筒材で加熱前に前記保持治具を前記シートがたるまない位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。またシート状のため、掃除もしやすくなった。
【0067】
さらに実施例1、2の手法であると芯金の強度が十分でないと被加工円筒材の軸方向中央部の面転写が不十分になることがあった。そのため円筒状基材の芯金の強度(芯金厚み)と被加工円筒材の軸方向中央部の面転写状態の評価結果を下表1に示す。
【0068】
その結果より本実施例のように巻き付けローラを用いて被加工円筒材により多くシートを巻き付けた方が、円筒状基材と面転写部材との熱膨張の差により発生する力を表層を加圧する力により多く変換できるため、円筒状基材の芯金にかかる負荷を減らせ芯金強度が弱くても被加工円筒材の軸方向中央部の面転写および成膜が不十分にならないことが分かる。
【0069】
【表1】

Figure 0003595695
(実施例4)
本発明の第4の実施例について(図4)を参照しながら説明する。
【0070】
41は最外層にフッ素樹脂を有する被加工円筒材であり、実施例1の被加工円筒材11とおなじものでありフッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面組さは、十点平均粗さ(Rz)で15μmであった。
【0071】
42は本発明における面転写部材であり、シート状で前記被加工円筒材当接側には前記円筒状基材上に仮形成されたフッ素樹脂膜に転写したい表面模様が形成されたのものをU字に曲げて用いている。本実施例では、幅250mm、長さ600mm、厚み0.05mmで前記円筒状基材のシリコーンゴムよりも熱膨の小さいポリイミドシート(東レ・デュポン社製、商品名:カプトン200Hを用いた。また前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いた。
【0072】
面転写部材42はその両端を、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具43に固定している。本実施例では、実施例2と同様に図4のようなピニオンギアにラックを往復運動させるためのモータを接続したラック&ピニオンの機構を用いた。まず、面転写部材42とシート保持治具43の間に被加工円筒材41を通し被加工円筒材41の芯金の両端を保持回転させるための回転自在な回転台44に接続する(図4.B)。本実施例では、この状態で外径16mmの巻き付けローラ46を2本用い面転写部材であるポリイミドシート42を被加工円筒材41に約4/5巻き付けた。前記巻き付けローラは回転自在ではあるが位置は固定されている。この状態でシート保持治具43を移動しでシートが前記被加工円筒材にぴたりと付く状態でシート保持治具43の位置を固定する。
【0073】
以上のように装置を設定した後、ポリイミドシートの上部より(外側から)前記被加工円筒材を加熱した。本実施例では前記面転写シートより多少長い280mmの3kW出力の赤外線ラインヒータ45(線集光タイプ;焦点距離f=50mm)を面転写部材である前記シート表面より約40mm離して配置した。シート保持治具43に接続したモータにより前記シートを約21mm/secの速度で移動させつつ前記シート表面が270℃になるまで前記赤外線ラインヒータにより加熱した(3kW)。被加工円筒材41はそれに伴い約20rpmの速度で従動回転した。前記シートの端が前記シート保持治具の限界に来る前に前記モータを反転させる。約20sec毎にこの動作を繰り返しながら面転写を行なったところ60secで面転写および成膜が可能であった。これは面転写部材である前記ポリイミドシートおよび前記フッ素樹脂は赤外線をあまり吸収しないため熱膨張も少なくその上選択的に融着界面が加熱されるため早くなったといえる。その後、円筒材製品416を冷却しシート保持治具43を移動させ前記シートをゆるめた状態にして円筒材製品416を回転台44より取り外した。加熱の際前記シリコーンゴムの熱膨張が、面転写部材である前記ポリイミドシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、シリコーンゴムがより膨張して、面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記赤外線ラインヒータからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0074】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品とシートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0075】
このようにして得られた円筒材製品416表層のフッ素樹脂の焼成膜の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前に前記保持治具を前記シートが前記被加工円筒材にぴたりと付く位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。またシート状のため、掃除もしやすくなった。
【0076】
本実施例では、面転写部材としてポリイミドシートを用いたが前記フッ素樹脂の焼成成膜時に必要な温度に耐え前記円筒状基材よりも熱膨張の小さいものであれば特に制約はない。鉄・SUS・アルミニウム等の金属材料やポリフェニンサルファイド等の耐熱性樹脂を用いてもよい。
【0077】
(実施例5)
本発明の第5の実施例について(図5)を参照しながら説明する。
【0078】
51は最外層にフッ素樹脂を有する被加工円筒材であり、その外径は20mmで軸方向の長さは、230mmである。その断面図を(図5.A)に示す。511は円筒状基材510の芯金でありアルミニウムで構成され、その直径は18mmである。芯金511上にはプライマー層512(前記112、312と同一原料)を介してLTVのシリコーンゴム層513が接着されておりその厚みは約1mmである。前記シリコーンゴム層はプライマーを塗布した芯金を円筒状金型に挿入し、LTVの未加硫シリコーンゴム(113、313に同じ)を注入し、それを加熱硬化することにより形成した。514はシリコーンゴム層513と表層フッ率樹脂層を接着するためのプライマー層であり、フッ素ゴムとフッ素樹脂(FEP)の混合物で構成される。プライマー層514はフッ素ゴムとフッ素樹脂の混合物から成る水性塗料をスプレーにより塗装し200℃で30分加熱硬化させて得られたもので、その厚みは25μmであった。プライマー層514上にはフッ素樹脂(FEP)層515が形成されている。フッ素樹脂層515はフッ素樹脂(FEP)のディスパージョン(115、315に同じ)をスプレーで塗装し、150℃で20分乾燥した後、300℃で20分の予備加熱焼成をしたものであり、その際の厚みは15μmであった。その際フッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面粗さは、十点平均粗さ(Rz)で15μmであった。
【0079】
52は本発明における面転写部材であり、シート状で前記被加工円筒材当接側には前記円筒状基材上に仮形成されたフッ素樹脂膜に転写したい表面模様が形成されたのものをU字に曲げて用いている。本実施例では、幅250mm、長さ600mm、厚み0.05mmで円筒状基材のシリコーンゴムよりも熱膨の小さいポリイミドシート(42に同じ)を用いた。また前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いた。
【0080】
面転写部材52はその両端を、一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具53に固定している。本実施例では、実施例2と同様に図5のようなピニオンギアにラックを往復運動させるためのモータを接続したラック&ピニオンの機構を用いた。まず、面転写部材52とシート保持治具53の間に被加工円筒材51を通し被加工円筒材51の芯金の両端を保持回転させるための回転自在な回転台54に接続する(図5.B)。本実施例では、この状態で外径16mmの巻き付けローラ56を2本用い面転写部材であるポリイミドシート52を被加工円筒材51に約4/5巻き付ける。前記巻き付けローラは回転自在ではあるが位置は固定されている。この状態でシート保持治具53を移動してシートが前記被加工円筒材にぴたりと付く状態でシート保持治具53の位置を固定する。
【0081】
以上のように装置を設定した後、ポリイミドシートの上部より(外側から)前記被加工円筒材を加熱した。本実施例では前記面転写シートより多少長い280mmの3kW出力の赤外線ラインヒータ55(線集光タイプ;焦点距離f=50mm)を面転写部材である前記シート表面より約40mm離して配置した。シート保持治具53に接続したモータにより前記シートを約21mm/secの速度で移動させつつ前記シート表面が270℃になるまで前記赤外線ラインヒータにより加熱した(3kW)。被加工円筒材51はそれに伴い約20rpmの速度で従動回転した。前記シートの端が前記シート保持治具の限界に来る前に前記モータを反転させる。約20sec毎にこの動作を繰り返しながら面転写を行なったところ90secで面転写および成膜が可能であった。これは面転写部材である前記ポリイミドシートおよび前記フッ素樹脂は赤外線をあまり吸収しないため熱膨張も少なくその上選択的に融着界面が加熱されるため早くなったといえる。
【0082】
その後、円筒材製品516を冷却しシート保持治具53を移動させ前記シートをゆるめた状態にして円筒材製品516を回転台54より取り外した。加熱の際前記シリコーンゴムの熱膨張が、面転写部材である前記ポリイミドシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、シリコーンゴムがより膨張して、面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記赤外線ラインヒータからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0083】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品とシートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0084】
このようにして得られた円筒材製品516表層のフッ素樹脂の焼成膜517の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前に前記保持治具を前記シートが前記被加工円筒材にぴたりと付く位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。またシート状のため、掃除もしやすくなった。
【0085】
本実施例では、面転写部材としてポリイミドシートを用いたが前記フッ素樹脂の焼成成膜時に必要な温度に耐え前記円筒状基材よりも熱膨張の小さいものであれば特に制約はない。鉄・SUS・アルミニウム等の金属材料やポリフェニンサルファイド等の耐熱性樹脂を用いてもよい。
【0086】
さらに本実施例のように前記円筒状基材のシリコーンゴム層が1mmと非常に薄い場合、円筒状の面転写を使用した際の加工条件および評価結果を下表2に示す。
その結果より本実施例のように前記シリコーンゴム層の厚みが薄いために、前記円筒状基材と面転写部材の隙間を非常に狭くしなければならない場合、円筒状の面転写部材ヘの前記被加工円筒材の挿入が困難になったり、加工後に円筒材製品が抜けにくくなってしまうということは、シートを巻きつける本方法では、加熱前に前記被加工円筒材をセットし前記シートを巻き、加工後にその前記シートを剥がしてやれば良いため無関係である。また加熱前に前記シート保持治具を前記シートが前記被加工円筒材にぴたりと付く状態で固定することで前記被加工円筒材と面転写部材の隙間を非常に狭くできるため、前記シリコーンゴム層の厚みが薄い場合に十分対応でき前記シリコーンゴム層を劣化させずに面転写および成膜ができた。
【0087】
【表2】
Figure 0003595695
(実施例6)
本発明の第6の実施例について(図6)を参照しながら説明する。
【0088】
61は最外層にフッ素樹脂を有する被加工円筒材であり、実施例1の被加工円筒材11とおなじものでありフッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面組さは、十点平均粗さ(Rz)で15μmであった。
【0089】
62は本発明における面転写部材であり、シート状で前記被加工円筒材当接側には前記円筒状基材上に仮形成されたフッ素樹脂膜に転写したい表面模様が形成されたのものをU字に曲げて用いている。本実施例では、幅250mm、長さ600mm、厚み0.05mmで円筒状基材のシリコーンゴムよりも熱膨の小さいポリイミドシート(42、52に同じ)を用いた。また前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いた。
【0090】
本実施例では前記ポリイミドシートを芯上に巻いた供給ロール67を用いた。まず供給ロール67からシートを引き出し2本の外径16mmの巻き付けローラ66の下を通しシート巻き取りロール68に固定する。この状態で2本の巻き付けロールの間から前記シートを引き出しそのシートの間に被加工円筒材61を通し被加工円筒材61の芯金の両端を保持回転させるための回転自在な回転台64に接続する(図6.B)。供給ロール67もしくはシート巻き取りロール68により前記シートを巻き取ることで前記シートがたるまない状態にする。この時点で面転写部材であるポリイミドシート62を被加工円筒材61に約4/5巻き付けた状態となる。前記巻き付けローラは回転自在ではあるが位置は固定されている。
【0091】
供給ロール67とシート巻き取りロール68には、モータが付いており、以上のように装置を設定した後、加熱前の供給ロール67とシート巻き取りロール68の間の前記ポリイミドシートの長さを変化させないように前記シートを約21mm/secの速度で移動および巻き取りさせながら前記ポリイミドシートの上部より(外側から)前記被加工円筒材を加熱した。本実施例では前記面転写シートより多少長い280mmの3kW出力の赤外線ラインヒータ65(線集光タイプ;焦点距離f=50mm)を面転写部材である前記シート表面より約40mm離して配置し前記シート表面が270℃になるまで赤外線ラインヒータにより加熱した(3kW)。被加工円筒材61はそれに伴い約20rpmの速度で従動回転した。前記シートは供給ロール67からシート巻き取りロール68に巻き取られる一方向に流した。このように面転写を行なったところ60secで面転写および成膜が可能であった。これは面転写部材である前記ポリイミドシートおよび前記フッ素樹脂は赤外線をあまり吸収しないため熱膨張も少なくその上選択的に融着界面が加熱されるため早くなったといえる。
【0092】
その後、円筒材製品616を冷却し前記シートをゆるめた状態にして円筒材製品616を回転台64より取り外した。加熱の際シリコーンゴムの熱膨張が、面転写部材である前記ポリイミドシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、シリコーンゴムがより膨張して、面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記赤外線ラインヒータからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0093】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品とシートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0094】
このようにして得られた円筒材製品616表層のフッ素樹脂の焼成膜の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前の供給ロール67とシート巻さ取りロール68の間の前記ポリイミドシートの長さを変化させないようにシート移動することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。さらにシート供給ロール67にシートがなくなればシート巻さ取りロール68から巻き戻して再使用することも可能である。またシート供給ロール67から巻さ付けロール66の問でオンラインで前記シートを掃除できるため、常に新しくきれいな面での面転写がおよび成膜可能となった。
【0095】
本実施例では、面転写部材としてポリイミドシートを用いたが前記フッ素樹脂の焼成成膜時に必要な温度に耐え前記円筒状基材よりも熱膨張の小さいものであれば特に制約はない。鉄・SUS・アルミニウム等の金属材料やポリフェニンサルファイド等の耐熱性樹脂を用いてもよい。
【0096】
(実施例7)
本発明の第7の実施例について(図7)を参照しながら説明する。
【0097】
71は最外層にフッ素樹脂を有する被加工円筒材であり、実施例1の被加工円筒材11とおなじものでありフッ素樹脂層は完全には成膜されておらず、表面にクラック・凹凸等の不良が見られた。またその際フッ素樹脂表面の表面組さは、十点平均粗さ(Rz)で15μmであった。
【0098】
72は本発明における面転写部材であり、シート状で前記被加工円筒材当接側には前記円筒状基材上に仮形成されたフッ素樹脂膜に転写したい表面模様が形成されたのもので両端を接続したべルト状のものを用いている。本実施例では、幅250mm、長さ600mm、厚み0.05mmで円筒状基材のシリコーンゴムよりも熱膨の小さいポリイミドシート(42、52、62に同じ)を用いた。また前記被加工円筒材当接側はその面粗さを十点平均粗さ(Rz)で0.5μmに加工して用いた。
【0099】
面転写部材72である前記ポリイミドベルトはその内側に前記べルトを移動させるためのモータを備え、被加工円筒材71と平行に設けられた円筒状のシート伸ばし部材73を入れている。被加工円筒材71側のべルトは外径16mmの巻き付けローラ76の2本間を通して広げてある。このべルトの間に被加工円筒材71を通し被加工円筒材71の芯金の両端を保持回転させるための回転自在な回転台74に接続する(図7.B)。前記巻き付けローラは回転自在ではあるが位置は固定されている。この状態でシート伸ばし部材73を移動してシートが前記被加工円筒材にぴたりと付く状態でシート伸ばし部材73の位置を固定する。この時点で面転写部材であるポリイミドシート72を前記被加工円筒材71に約4/5巻き付けた状態となる。
【0100】
以上のように装置を設定した後、前記ポリイミドシートの上部より(外側から)前記被加工円筒材を加熱した。本実施例では前記面転写シートより多少長い280mmの3kW出力の赤外線ラインヒータ75(線集光タイプ;焦点距離f=50mm)を面転写部材である前記シート表面より約40mm離して配置した。シート伸ばし部材73に接続したモータにより前記シートを約21mm/secの速度で移動させつつ前記シート表面が270℃になるまで前記赤外線ラインヒータにより加熱した(3kW)。被加工円筒材71はそれに伴い約20rpmの速度で従動回転した。前記ベルト接合部が巻き付けローラ76にかかる前に前記モータを反転させた。約20sec毎にこの動作を繰り返しながら面転写を行なったところ60secで面転写および成膜が可能であった。これは面転写部材である前記ポリイミドシートおよび前記フッ素樹脂は赤外線をあまり吸収しなため熱膨張も少なくその上選択的に融着界面が加熱されるため早くなったといえる。
【0101】
その後、円筒材製品716を冷却し前記シートをゆるめた状態にして円筒材製品716を回転台74より取り外した。加熱の際シリコーンゴムの熱膨張が、面転写部材である前記ポリイミドシートより大きいため前記被加工円筒材のシートが巻き付いた部分で、シリコーンゴムがより膨張して、面転写部材と前記円筒状基材との間で前記フッ素樹脂層が加圧された状態を作り出す。また前記赤外線ラインヒータからの熱により前記円筒状基材表層のフッ素樹脂(FEP)が軟化し面転写および成膜がなされた。
【0102】
前記被加工円筒材は回転しているため前記被加工円筒材全面にわたり同様に面転写および成膜が行なわれた。また前記円筒状基材表層のフッ素樹脂は軟化している状態で溶融まではしていない、さらに前記被加工円筒材・円筒材製品とシートの剥離の場所は直接加熱していないため、前記円筒状基材表層のフッ素樹脂は面転写部材である前記シートには付着せずそのため剥離跡も残らなかった。
【0103】
このようにして得られた円筒材製品716表層のフッ素樹脂の焼成膜の表面の粗さは、十点平均粗さ(Rz)で0.5μmであり、前記面転写部材の表面模様がフッ素樹脂表面に転写され、かつフッ素樹脂の成膜がなされた。またその際成膜されたフッ素樹脂層表面を電子顕微鏡で観察したところ、表面にクラック等の不良は観察されなかった。また前記円筒状基材のシリコーンゴム層に劣化はみられなかった。また、それぞれの被加工円筒材で加熱前にシート伸ばし部材73をシートが被加工円筒材にぴったりと付く位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため円筒状基材の外径ばらつきによる不良はなくなった。さらに、掃除もしやすく、また装置構成も簡単になった。
【0104】
本実施例では、面転写部材としてポリイミドシートを用いたが前記フッ素樹脂の焼成成膜時に必要な温度に耐え前記円筒状基材よりも熱膨張の小さいものであれば特に制約はない。鉄・SUS・アルミニウム等の金属材料やポリフェニンサルファイド等の耐熱性樹脂を用いてもよい。
【0105】
(参考例1)
参考例1は、実施例3と同じ被加工円筒材を用い、実施例2の手法により同条件で面転写および成膜加工を行なったものである。
【0106】
(比較例1)
比較例1は、実施例4と同じ被加工円筒材を用い、面転写部材として、その内径がφ20.4で厚みが0.05mm、長さ280mmのポリイミド製の円筒状の面転写部材を用い、前記円筒状の面転写部材の中に被加工円筒材を配し、前記被加工円筒材を20rpmで回転させながら前記面転写部材の外側から実施例4と同じ加熱条件で前記赤外線ラインヒータにより加熱し面転写および成膜を行なったものである。この際必要な加工時間は90secであった。
【0107】
(比較例2)
比較例2は、実施例5と同じ被加工円筒材を用い、面転写部材として、その内径がφ20.4で厚みが0.05mm、長さ280mmのポリイミド製の円筒状の面転写部材を用い、前記円筒状の面転写部材の中に被加工円筒材を配し、前記被加工円筒材を20rpmで回転させながら前記面転写部材の外側から実施例5と同じ加熱条件で前記赤外線ラインヒータにより加熱し面転写および成膜を行なったものである。この際表面の温度は270℃では足りず300℃まで上げる必要があった。
【0108】
またそれに伴い加工時間も180secかかってしまいそのせいもありゴムの劣化が多少見られた。
【0109】
【発明の効果】
以上説明したように、このような手法を用いることで円筒状の面転写部材を用いなくても円筒状基材と面転写部材の熱膨張率の差を利用しフッ素樹脂層を加圧した状態で加熱することが可能となる。このため円筒状の面転写部材では重要であった円筒状基材の外径のばらつきによる被加工円筒材と面転写部材との隙間がばらつくために安定した面転写および成膜が困難になるという問題は、それぞれの被加工円筒材で加熱前に保持治具をシートがたるまない位置に固定することで円筒状基材の外径のばらつきに関係なく被加工円筒材と面転写部材との隙間を一定にできるため解決した。
【0110】
また円筒状基材の熱膨張が小さかったり厚みが薄いために、被加工円筒材と面転写部材の隙間を非常に狭くしなければならない場合、円筒状の面転写部材ヘの被加工円筒材の挿入が困難になったり、加工後に円筒材製品が抜けにくくなってしまうということは、シートを巻きつける本方法では、加熱前に被加工円筒材をセットし前記シートを巻き、加工後に前記シートを剥がしてやれば良いため無関係である。また加熱前に前記シート保持治具を前記シートが被加工円筒材にぴたりと付く状態で固定することで被加工円筒材と面転写部材の隙間を非常に狭くできるため、円筒状基材の熱膨張が小さかったり厚みが薄い場合に十分対応できた。
【0111】
さらに面転写部材をシート形状にすることで被加工円筒材に面を転写する部分の表面掃除が非常に容易になった。
【図面の簡単な説明】
【図1】実施例1のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
A 実施例1の被加工円筒材・円筒材製品の断面図
B 実施例1の被加工円筒材の取付け方法図
【図2】実施例2のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
【図3】実施例3のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
A 実施例3の被加工円筒材・円筒材製品の断面図
B 実施例3の被加工円筒材の取付け方法図
【図4】実施例4のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
B 実施例4の被加工円筒材の取付け方法図
【図5】実施例5のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
A 実施例5の被加工円筒材・円筒材製品の断面図
B 実施例5の被加工円筒材の取付け方法図
【図6】実施例6のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図(芯金冷却)
B 実施例6の被加工円筒材の取付け方法図
【図7】実施例7のフッ素樹脂表面に転写部材の表面模様を転写する方法の概略図
B 実施例7の被加工円筒材の取付け方法図
【符号の説明】
11:被加工円筒材
110:円筒状基材
111:芯金
112:プライマー
113:シリコーンゴム層
114:フッ素ゴム/フッ素樹脂層
115:フッ素樹脂層(予備形成)
116:円筒材製品
117:フッ素樹脂層(成膜後)
12:面転写部材
13:シート保持治具
14:回転台
15:ヒートロール
21:被加工円筒材
216:円筒材製品
22:面転写部材
23:シート保持治具
24:回転台
25:ヒートロール
31:被加工円筒材
310:円筒状基材
311:芯金
312:プライマー
313:シリコーンゴム層
314:フッ素ゴム/フッ素樹脂層
315:フッ素樹脂層(予備形成)
316:円筒材製品
317:フッ素樹脂層(成膜後)
32:面転写部材
33:シート保持治具
34:回転台
35:ヒートロール
36:巻付けローラ
41:被加工円筒材
416:円筒材製品
42:面転写部材
43:シート保持治具
44:回転台
45:赤外線ラインヒータ
46:巻付けローラ
51:被加工円筒材
510:円筒状基材
511:芯金
512:プライマー
513:シリコーンゴム層
514:フッ素ゴム/フッ素樹脂層
515:フッ素樹脂層(予備形成)
516:円筒材製品
517:フッ素樹脂層(成膜後)
52:面転写部材
53:シート保持治具
54:回転台
55:赤外線ラインヒータ
56:巻付けローラ
61:被加工円筒材
62:画転写部材
64:回転台
65:赤外線ラインヒータ
66:巻付けローラ
67:供給ロール
68:巻取りロール
71:被加工円筒材
72:面転写部材
73:シート伸ばし部材
74:回転台
75:赤外線ラインヒータ
76:巻付けローラ[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a fluorocarbon resin on a cylinder and a cylinder, and more particularly to a method suitably applied when manufacturing a fixing member of an electrophotographic image forming apparatus such as a copying machine and an LBP (laser beam printer).
[0002]
[Prior art]
Conventionally, as a method of coating a fluororesin on an elastic roller, a method of covering the elastic roller with a fluororesin tube, or a method of coating a fluororesin powder and a fluororesin dispersion liquid on the elastic roller, followed by heating and firing is used. . When the fluororesin is heated and calcined, a method is employed in which the fluororesin is heated to a melting point of the fluororesin or higher to form a calcined film.
[0003]
The following methods are known as methods for smoothing the surface of the fluororesin.
[0004]
In a method for producing a fixing roller, a method of polishing a surface fluororesin layer and refiring the surface temperature of the fluororesin layer slightly higher than the melting point of the fluororesin (Japanese Patent Publication No. 5-55078). A method of flattening the surface of a fluororesin layer by pressing a high-temperature, smooth pressurized surface against a specific fluororesin layer on a cylindrical substrate (Japanese Patent Application Laid-Open No. 8-118561). In a method of manufacturing a fixing roller, a method is provided in which a fluororesin layer is pressed and smoothed (mirror-finished), then baked and melt-bonded to provide a smooth fluororesin layer surface (Japanese Patent Laid-Open No. 3-80277).
[0005]
In a method of manufacturing a fluororesin-coated roller, a method in which a roller coated with a fluororesin on a rubber elastic body is brought into rotational contact with a heating body, and after melting and cooling, the roller and the heating body are cooled to obtain a smooth surface (Japanese Patent Laid-Open No. Sho 62-62) 227463).
[0006]
In addition, the present inventors previously prepared that a fluororesin was preliminarily prepared on the surface of a cylindrical base material made of metal or the like or a cylindrical base material on which an elastic body was formed by using these as a core metal at the time of firing and forming a film of the fluororesin. A method of forming a film while transferring the surface pattern of the surface transfer member to the surface of the fluororesin by pressing and simultaneously heating the fluororesin with the surface transfer member arranged outside the formed cylindrical material to be processed. (JP-A-9-277378).
[0007]
Further, the present inventors preliminarily formed a fluororesin on the surface of a cylindrical base material made of metal or the like, or a cylindrical base material on which an elastic body was formed by using these as a core metal at the time of firing and forming a film of the fluororesin. Pressurizing and simultaneously heating the fluororesin by arranging a cylindrical surface transfer member outside the processed cylindrical material and directly heating the surface from the outside of the surface transfer member using an infrared heater as a heating means. Has also proposed a method of forming a film while transferring the surface pattern of the surface transfer member on the surface of the fluororesin.
[0008]
[Problems to be solved by the invention]
First, the fluorine resin coating method as in the conventional example has the following problems.
[0009]
First, when a fluororesin is coated on an elastic body and fired and fired, the melt viscosity of the fluororesin is extremely high. Low smoothness of resin layer.
[0010]
In addition, when the fluororesin firing conditions as described above are performed, there is no elastic body that can withstand the temperature, resulting in extremely large damage to the elastic body.
[0011]
With the aim of solving the above, the present inventors pressurized the fluororesin layer between the elastic body and the surface transfer member disposed outside the fluororesin layer, and designed the surface pattern of the surface transfer member. While transferring the film onto the surface of the fluororesin, a method of performing the heating and baking of the fluororesin was proposed. As a result, while controlling the surface pattern of the fluororesin, the fluororesin can be formed at a lower temperature than in the past, and the damage of the rubber as the base material can be relatively suppressed. .
[0012]
Furthermore, the present inventors have proposed a method in which a cylindrical substrate made of metal or the like, or a cylindrical substrate in which an elastic body is formed on the surface of a core metal and a fluororesin is preliminarily formed on the surface of a cylindrical material is used. By disposing a surface transfer member in the shape of a circle and using an infrared heater as a heating means to heat the direct surface of the cylindrical material to be processed from the outside of the surface transfer member, it is possible to suppress the damage of the rubber as the lower material. Was.
[0013]
However, the method using the cylindrical surface transfer member has the following three problems.
[0014]
First, a cylindrical surface transfer member is required as the surface transfer member, and the inner diameter of the surface transfer member is determined by the outer diameter of the cylindrical material to be processed and the outer diameter of the cylindrical base material. Range. First, it is necessary to have an inside diameter enough to receive the cylindrical material to be processed. Also, if the inner diameter is too large, even if the cylindrical substrate expands during heating, the fluororesin layer cannot be sufficiently pressed with the surface transfer member, and the surface transfer will not be performed. Therefore, it is not possible to make the inner diameter too large to increase the gap. For this reason, when the outer diameter of the cylindrical base material varies during mass production or the like, stable surface transfer and film formation become difficult.
[0015]
Next, the gap between the inner diameter of the surface transfer member and the cylindrical material to be processed is when the thermal expansion of the cylindrical base material is small, or when the thickness of the cylindrical base material to be thermally expanded is small, the gap is It has to be very narrow. For this reason, if stable surface transfer and film formation are to be performed, it is actually difficult to insert the cylindrical material to be processed into the surface transfer member, or the cylindrical material product after processing becomes difficult to come off. There is.
[0016]
Still another problem is that the inner surface of the surface transfer member is very important in the processing method, but since the surface transfer member is almost axially long with respect to the opening, it is difficult to clean the inner surface. is there.
[0017]
An object of the present invention is to solve the above-mentioned problems, that is, to have the same effect as the method using the cylindrical surface transfer member, and the outer diameter and inner diameter of the cylindrical material to be surface-transferred By the surface transfer member as much as possible, and by reducing the restrictions due to the gap between the functional portion of the surface transfer member and the cylindrical material to be processed, even when the outer diameter of the cylindrical base material varies, stable surface transfer and An object of the present invention is to develop a method that enables film formation and facilitates cleaning of a functional portion of the surface transfer member.
[0018]
[Means for Solving the Invention]
The present invention provides, for a processed cylindrical material in which a fluororesin layer capable of surface processing is preformed on a cylindrical substrate, a fluororesin layer on the cylindrical substrate, and disposed outside the fluororesin layer. By heating the fluororesin layer in a pressurized state by using a difference in thermal expansion coefficient between the cylindrical base material and the surface transfer member between the surface transfer member, the surface pattern of the surface transfer member is changed. A fluororesin to be transferred to the surface of the fluororesin layer Transfer the surface pattern of the transfer member to the surface In the method, a sheet-shaped material having a smaller coefficient of thermal expansion than the cylindrical base material is used as the surface transfer member, and the sheet is wound about 1/3 or more of the circumference of the cylindrical material to be processed before heating. In this state, both ends of the sheet are fixed to a sheet holding jig such that the other end relatively moves by the amount of movement of one end, and the position of the holding jig in a state where the sheet is stretched. Is fixed, and the cylindrical member is heated from the outside of the sheet while the sheet is driven while rotating while the shaft of the cylindrical member is rotatably fixed.
[0019]
In the following, the “cylindrical substrate” refers to an inner portion that does not include the fluororesin layer, and when the surface is an elastic body, a further inner rigid portion is referred to as a “core metal”. The preformed fluorocarbon resin before heating and pressurizing is called "cylindrical material to be processed", and the one after film formation is called "cylindrical product".
[0020]
When such a method is used, the diameter of the cylindrical substrate increases due to thermal expansion, whereas the sheet has a low coefficient of thermal expansion and has both ends fixed by the holding jig. Therefore, the fluororesin layer on the surface of the cylindrical substrate is heated in a pressurized state, and the surface pattern of the surface transfer member is transferred to the surface of the fluororesin layer without deteriorating the base layer. The film can be formed while being formed. Since the cylindrical material to be processed is rotating, surface transfer and film formation are similarly performed over the entire surface of the cylindrical material to be processed. Further, the fluororesin on the surface layer of the cylindrical material to be processed is softened and not melted. Further, since the temperature of the place where the cylindrical material to be processed and the sheet are separated suddenly drops unless directly heated, the fluororesin of the surface layer of the cylindrical material to be processed does not adhere to the sheet which is a surface transfer member, and therefore, No trace of peeling remains.
[0021]
By using such a method, the fluororesin layer is heated in a pressurized state using a difference in the coefficient of thermal expansion between the cylindrical base material and the surface transfer member without using a cylindrical surface transfer member. It becomes possible. For this reason, the gap between the cylindrical member to be processed and the surface transfer member varies due to the variation in the outer diameter of the cylindrical substrate, which is important for the cylindrical surface transfer member. The problem is that by fixing a holding jig to a position where the sheet does not sag before heating in each of the processed cylindrical materials, the surface of the processed cylindrical material and the processed cylindrical material are fixed regardless of the variation in the outer diameter of the cylindrical base material. The problem is solved because the gap with the transfer member can be made constant.
Further, when the gap between the cylindrical member to be processed and the surface transfer member must be very small because the thermal expansion of the cylindrical base material is small or the thickness is small, the coating on the cylindrical surface transfer member is required. The problem that the insertion of the processed cylindrical material becomes difficult or the cylindrical material product becomes difficult to remove after the processing is performed by the method of winding a sheet, in which the processed cylindrical material is set before heating and the sheet is wound. This is irrelevant because the sheet may be peeled off after processing. Further, by fixing the sheet holding jig before heating so that the sheet is tightly attached to the cylindrical member to be processed, the gap between the cylindrical member to be processed and the surface transfer member can be extremely narrowed. It can sufficiently cope with the case where the thermal expansion of the base material is small or the thickness is thin.
Further, by making the surface transfer member into a sheet shape, it is very easy to clean the surface of the portion where the surface is transferred to the cylindrical material to be processed.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the apparatus used in the embodiment of the present invention, in particular, members and processing materials will be described (see FIGS. 1 to 7).
[0023]
First, a cylindrical material to be processed will be described. Reference numerals 11, 21, 31, 41, 51, 61, and 71 denote cylindrical materials to be processed used in the respective examples (Examples 1 to 7 in order), and a fluororesin layer (115, 315, 515, or the like) as an outermost layer. Have. As the fluororesin, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) was used in Examples, but a tetrafluoroethylene / perfluoroalkylvinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE) were also used. ), Tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVdF), polychlorotrifluoroethylene (PCTFE), and the like. As a method of coating these fluororesin powders and the water-based paint containing the powder, in addition to the method of spray-coating the dispersion as in the examples, in the case of the water-based paint, dip coating, roller coating, blade There are coatings and the like, and in the case of powder, electrostatic powder coating and the like. The coated fluororesin layer is in a state in which the fluororesin agglomerates in the form of fine particles to form a layer after drying in the case of an aqueous paint and after powder coating.
[0024]
After coating, the fluororesin layer may be preliminarily heated and fired to form a film. It is sufficient to temporarily raise the melting temperature of the fluororesin to the preliminary heating and firing of the fluororesin, but it may be performed until the fluororesin is completely formed into a film. At this time, cracks and irregularities may be present on the surface of the fluororesin. Further, the temperature of the fluororesin layer in the step of pressing and heating the fluororesin after the preliminary heating and sintering with the cylindrical substrate and the surface transfer body is not particularly limited as long as it is 200 ° C. or higher. There is no need to raise the temperature, and it is preferable to heat to 240 ° C to 300 ° C. By using this method, an arbitrary surface pattern can be imparted to the fluororesin with a smaller amount of heat than when preheating and firing are not performed. When a material having no heat resistance such as resin or rubber is used as the cylindrical base material, thermal deterioration of the cylindrical base material occurs when the fluororesin is heated and fired. Thermal deterioration of the substrate can be prevented. In addition, since a high temperature is not required at the time of pressurizing the fluororesin layer, work efficiency is high.
[0025]
The material of the inner cylindrical substrate (110, 310, 510) of the fluororesin layer is not particularly limited as long as it has appropriate strength and heat resistance, but is preferably a metal such as nickel, iron or aluminum. , A heat-resistant resin such as polyimide, or the above-mentioned metal or resin as a core metal (111, 311, 511), and a primer (112, 114, 312, 314, 512, 514) on its surface, and / or silicone rubber / fluorine rubber A heat-resistant rubber (113, 313, 513) is used, and particularly preferred is a structure of an aluminum core metal-primer-silicone rubber-fluoro rubber / fluoro resin mixed primer (fluoro resin layer) shown below. (See FIGS. 1.A, 3.A, and 5.A).
[0026]
The core metal may be a cylinder or a hollow cylinder, and its diameter is preferably 65 to 90% of the entire cylindrical substrate (111, 311 and 511).
[0027]
The thickness of the silicone rubber layer (113, 313, 513) is substantially equal to the difference between the radius of the entire cylindrical substrate and the radius of the cored bar. Examples of the method of forming the silicone rubber layer include a method of inserting a core coated with a primer into a cylindrical mold, injecting unvulcanized silicone rubber of LTV, and heating and curing the silicone rubber. .
[0028]
The primer layer (114, 314, 514) for bonding the silicone rubber layer and the surface fluororesin layer is composed of a mixture of fluororubber and fluororesin. For example, a water-based paint of the mixture is applied by spraying and heated. And curing.
[0029]
The processed cylindrical material (116, 216, 316, 416, 516, 616, 716) is the same as the processed cylindrical material in the drawing. Also, the fluororesin films (117, 317, 517) after film formation are the same as before processing in the drawing.
[0030]
Next, the surface transfer member will be described. Reference numerals 12, 22, 32, 42, 52, 62 and 72 are surface transfer members used in the respective embodiments.
[0031]
These are sheet-shaped or belt-shaped with both ends joined to each other, and have a surface pattern to be transferred to a fluororesin film formed on the cylindrical base material formed on the side of the cylindrical material to be processed, which is U. It is bent into a letter. The material is not particularly limited as long as it can withstand the required temperature at the time of film formation by firing the fluororesin and has a smaller thermal expansion than the cylindrical base material, but metal materials such as iron, SUS, aluminum, and polyimides -It is preferable to use a heat-resistant resin such as polyphenine sulfide. Since the surface roughness of the cylindrical base material contact side is an important factor that determines the surface roughness of the surface of the cylindrical product (116, 316, 516) at the time of finishing, a sufficiently small value is desirable. It is. For example, the ten-point average roughness (Rz) is preferably 0.5 μm.
[0032]
The winding of the sheet-shaped surface transfer member around the cylindrical material to be processed is preferably 1/3 or more of the circumference. This is because the force due to the difference in the coefficient of thermal expansion is not sufficiently used to press the fluororesin layer on the surface of the cylindrical base material without a certain degree of winding. .
[0033]
The length of the sheet may be long enough to feed in one direction following the rollers during heating, but in practice, the roller is rotated at about 20 rpm with a φ20 mm cylindrical workpiece, and the heating time is about 150 seconds. Therefore, it is about 3.5m. In this case, the apparatus becomes very large, so a sheet having a length of about 600 mm may be used, and the sheet may be driven while the roller rotation is reversed several times.
[0034]
Further, as a holding means of the surface transfer member, typically, like 13, 23, 33, 43, 53, one end is moved by one end for fixing both ends of the sheet. There is a sheet holding jig whose ends move relatively, and a rack and pinion mechanism is used. A seesaw mechanism is also used.
[0035]
Both ends of the cylindrical material to be processed are connected to a turntable by cores 111, 311 and 511. The rotary table corresponds to 14, 24, 34, 44, 54, 64, 74. Here, since the processed cylindrical material and the sheet can follow each other, the motor is attached to one of them and the other is driven.However, it is more preferable to move the sheet and follow the processed cylindrical material. More preferred. If the sheet is driven by rotating the cylindrical member to be processed (FIG. 1.B), the rotation of the cylindrical member attempts to move a sheet holding jig having a large inertia. Slip is likely to occur between the material surface and the sheet, which may cause scratches on the surface of the cylindrical material to be processed. Therefore, by moving the sheet and following the cylindrical material having a small inertia to prevent slipping, the surface of the fluororesin without any scratches on the surface of the cylindrical material to be processed has an arbitrary pattern and roughness. Can be applied (FIG. 2.B).
[0036]
When the sheet is wound around the cylindrical material to be processed, winding rollers (36, 46, 56, 66 and 76) can be used. (FIG. 3.B) Thereby, it becomes easy to wind the sheet of the surface transfer member by 1/2 or more around the circumference of the cylindrical material to be processed, and therefore, the force due to the difference in the coefficient of thermal expansion is sufficiently large. It is used for pressurizing the fluororesin layer on the surface of the cylindrical substrate, and the load on the shaft of the cylindrical material to be processed is reduced, so that the deformation of the shaft and the resulting surface transfer and film formation in the axial center portion are reduced. Failure can be prevented.
[0037]
As the heating means, aluminum heat rolls such as those shown in 15, 25, and 35 are typical, and they contact the cylindrical material to be processed from above a stainless steel sheet.
[0038]
Basically, by the means as described above, it is possible to impart an arbitrary pattern and roughness to the surface of the fluororesin, which has conventionally been difficult to control the surface pattern and the roughness while solving the above problems. .
[0039]
Using an infrared heater (45, 55, 65, 75), the cylindrical member to be processed is heated from the outside of the surface transfer member, and the fluorine resin is pressed between the cylindrical member to be processed and the surface transfer member; When the method of transferring the surface pattern of the surface transfer member to the surface of the fluororesin and forming the film is used (FIGS. 4 to 7), even if the temperature applied at the time of firing and forming the fluororesin is set low, Film formation can be easily performed. In addition, since the fluororesin on the surface can be directly heated and rapid heating is possible, the deterioration of the base layer at that time can be suppressed.
[0040]
When a thin sheet of polyimide is used as the surface transfer member (42, 52, 62, 72), various favorable effects are obtained as described below (FIGS. 4 to 7). First, it is excellent in heat resistance and strength at high temperatures, so that it can be used repeatedly and the durability of the surface transfer member is improved. Further, since it is very flexible and easily adheres to the cylindrical base material (41 and others) and the winding roller (46 and others), processing is easy.
[0041]
By transmitting infrared rays to a certain extent, the corresponding energy reaches the fluororesin, and the energy required for heating can be saved. Further, since the surface transfer member does not warm much, it is possible to transfer and form the surface of the surface transfer member to a fluororesin surface formed on the cylindrical substrate surface with less energy by reducing thermal expansion. it can. That is, thermal deterioration of rubber can be further suppressed.
[0042]
Further, the sheet 62, which is the surface transfer member, is supplied in a state of being wound around a roll 67, and the sheet is wound around at least half the circumference of the cylindrical material 61 to be processed before heating so that the sheet does not sag. In the stretched state, the roll 68 on the winding side and the roll 67 on the supply side are once fixed, and the cylindrical material to be processed is driven and rotated while the sheet supply and winding speeds are the same at the time of heating. Heating can be performed while the fluororesin layer on the surface of the cylindrical member is pressed (FIG. 6). Since a new sheet surface can always be supplied, the surface condition is improved, and since the sheet 62 may be fed in one direction, the device configuration is simplified.
[0043]
Further, the sheet 72 has a belt shape in which a part thereof is connected, and can be rotated in a cylindrical shape provided in parallel with the cylindrical material to be processed in a state of being wound in a circumferential direction of the cylindrical material 71 before heating. If the sheet is stretched to such an extent that the tension is applied by the simple sheet stretching member 73 or not to the extent that the sheet is stretched (FIG. 7), a complicated sheet holding jig such as the rack and pinion or the seesaw mechanism is used. Even without using a tool, it is possible to move the sheet while following the cylindrical member to be processed by rotating the sheet stretching member and performing forward / reverse movement so that the joint portion of the sheet does not contact the cylindrical member to be processed. The surface of the surface transfer member can be transferred and formed on the surface of the fluororesin formed on the surface of the cylindrical substrate with a simple apparatus configuration.
[0044]
【Example】
(Example 1)
A first embodiment of the present invention will be described with reference to FIG.
[0045]
Reference numeral 11 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, the outer diameter of which is 20 mm, and the length in the axial direction is 230 mm. The cross section is shown in FIG. 1.A. Reference numeral 111 denotes a metal core of the cylindrical substrate 110, which is made of aluminum and has a diameter of 13 mm. A silicone rubber layer 113 of LTV is adhered to the core metal 111 via a primer layer 112 made of Dow Corning Silicone Toray Co., Ltd., trade name: DY39-051, and its thickness is about 3.5 mm. . For the silicone rubber layer, a core coated with a primer is inserted into a cylindrical mold, and LTV unvulcanized silicone rubber (manufactured by Toray Dow Corning Silicone, trade name: DY35-561) is injected. It was formed by heat curing. Reference numeral 114 denotes a primer layer for bonding the silicone rubber layer 113 and the surface fluororesin layer, and is composed of a mixture of fluororubber and fluororesin (FEP). The primer layer 114 is obtained by applying a water-based paint (product name: Daiel GLS-213, manufactured by Daikin Co., Ltd.) made of a mixture of a fluororubber and a fluororesin by spraying and heating and curing at 200 ° C. for 30 minutes. Was 25 μm. On the primer layer 114, a fluororesin (FEP) layer 115 is formed. The fluororesin layer 115 is sprayed with a fluororesin (FEP) dispersion (manufactured by Daikin Co., trade name: NEOFLON FEP ND-1), dried at 150 ° C for 20 minutes, and then preheated at 300 ° C for 20 minutes. It was fired, and the thickness at that time was 15 μm. At that time, the fluororesin layer was not completely formed, and defects such as cracks and irregularities were observed on the surface. At that time, the surface roughness of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0046]
Reference numeral 12 denotes a surface transfer member according to the present invention, which is a sheet-like member having a surface pattern to be transferred to a fluororesin film temporarily formed on the cylindrical substrate on the side of the cylindrical material to be processed, which is U. It is bent into a letter. In this example, a stainless steel sheet (SUS304-H) having a width of 250 mm, a length of 600 mm, and a thickness of 0.05 mm and having a smaller thermal expansion than the silicone rubber of the cylindrical base material was used. The surface of the cylindrical material contacting side was processed to have a surface roughness of 0.5 μm as a ten-point average roughness (Rz).
[0047]
The both ends of the surface transfer member 12 are fixed to a sheet holding jig 13 in which the other end relatively moves by the movement of one end. In the present embodiment, a rack and pinion mechanism as shown in FIG. 1 is used. First, the cylindrical member 11 is passed through the surface transfer member 12 and the sheet holding jig 13, and both ends of the core bar 111 are connected to a turntable 14 having a motor for holding and rotating the cylindrical member 11. (FIG. 1.B). In this state, the sheet holding jig 13 is moved, and the position of the sheet holding jig 13 is fixed in a state where the sheet is stretched so as not to slack. In this embodiment, since the interval between the cylindrical member 11 to be processed and the sheet fixing portion of the sheet holding jig 13 is substantially the same, the winding of the sheet is about 1/2 of the cylindrical member to be processed.
[0048]
After setting the apparatus as described above, an aluminum heat roll 15 (outer diameter 40 mm, length 300 mm) was brought into contact with the cylindrical material to be processed from above the stainless steel sheet (FIG. 1), and the heat roll 15 was set to 270. The cylindrical material 11 to be processed was rotated at a speed of 20 rpm by the motor while being heated to ° C. The sheet was driven by the cylindrical material to be processed. The motor is reversed before the edge of the sheet reaches the limit of the sheet holding jig. The surface transfer and the film formation were performed for 150 seconds while repeating this operation about every 20 seconds. Thereafter, the cylindrical product 116 was cooled, the sheet holding jig 13 was moved, and the sheet was loosened to remove the cylindrical product 116 from the turntable 14. At the time of heating, the thermal expansion of the silicone rubber is larger than the stainless steel sheet as the surface transfer member, so that at the portion where the sheet of the cylindrical material to be processed is wound, the silicone rubber expands more, and the surface transfer member and the A state in which the fluororesin layer is pressurized is created in relation to the cylindrical substrate. Further, the heat from the heat roll softened the fluororesin (FEP) on the surface layer of the cylindrical base material, so that surface transfer and film formation were performed.
[0049]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. In addition, since the fluororesin of the surface layer of the cylindrical base material is not melted in a softened state, and furthermore, the place where the processed cylindrical material / cylindrical material product is separated from the sheet is not directly heated, so The fluororesin of the surface layer of the base material did not adhere to the sheet as the surface transfer member, so that no trace of peeling was left.
[0050]
The surface roughness of the fired fluororesin film 117 on the surface layer of the cylindrical product 116 obtained in this way is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is fluorine. The film was transferred to the resin surface and a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate. In addition, by fixing the holding jig to a position where the sheet does not sag before heating in each of the processed cylindrical members, regardless of the variation in the outer diameter of the cylindrical base material, the processing cylindrical member and the surface transfer member can be fixed. Since the gap can be made constant, defects due to variations in the outer diameter of the cylindrical substrate have been eliminated.
[0051]
In addition, the sheet shape makes cleaning easier.
[0052]
(Example 2)
A second embodiment of the present invention will be described with reference to FIG.
[0053]
Reference numeral 21 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, which is the same as the cylindrical material 11 to be processed in Example 1, in which the fluororesin layer is not completely formed, and cracks and irregularities are formed on the surface. Failure was seen. At this time, the surface roughness of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0054]
Reference numeral 22 denotes a surface transfer member similar to that of the first embodiment, and the surface of the cylindrical material contacting side is processed to have a ten-point average roughness (Rz) of 0.5 μm. Both ends of the surface transfer member 22 are fixed to a sheet holding jig 23 in which the other end relatively moves by the movement of one end. In this embodiment, a rack and pinion mechanism in which a motor for reciprocating the rack is connected to a pinion gear as shown in FIG. 2 is used. First, the cylindrical member 21 to be processed is passed between the surface transfer member 22 and the sheet holding jig 23 and connected to a rotatable rotary table 24 for holding and rotating both ends of the core metal of the cylindrical member 21 to be processed (FIG. 2). .B). In this state, the sheet holding jig 23 is moved, and the position of the sheet holding jig 23 is fixed in a state where the sheet is stretched so as not to slack. In this embodiment, since the interval between the cylindrical member 21 to be processed and the sheet fixing portion of the sheet holding jig 23 is almost the same, the winding of the sheet is about 1/2 of the cylindrical member to be processed.
[0055]
After setting the apparatus as described above, an aluminum heat roll 25 (outer diameter: 40 mm, length: 300 mm) was brought into contact with the cylindrical material to be processed from above the stainless steel sheet (FIG. 2), and the heat roll 25 was set to 270. The sheet was moved at a speed of about 21 mm / sec by a motor connected to the sheet holding jig 23 while heating to a temperature of ° C. The cylindrical material to be processed 21 was accordingly driven to rotate at a speed of about 20 rpm. The motor was reversed before the edge of the sheet reached the limit of the sheet holding jig. The surface transfer and the film formation were performed for 150 seconds while repeating this operation about every 20 seconds. Thereafter, the cylindrical material product 216 was cooled, the sheet holding jig 23 was moved to loosen the sheet, and the cylindrical material product 216 was removed from the turntable 24. At the time of heating, the thermal expansion of the silicone rubber is larger than the stainless steel sheet as the surface transfer member, so that at the portion where the sheet of the cylindrical material to be processed is wound, the silicone rubber expands more, and the surface transfer member and the A state in which the fluororesin layer is pressurized with the cylindrical substrate is created. Further, the heat from the heat roll softened the fluororesin (FEP) on the surface layer of the cylindrical base material, so that surface transfer and film formation were performed.
[0056]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. Further, since the fluororesin of the cylindrical base material surface layer is not melted in a softened state, and furthermore, the place where the sheet to be processed and the cylindrical material product and the sheet are separated is not directly heated, The fluororesin of the surface layer of the cylindrical substrate did not adhere to the sheet as the surface transfer member, and thus no trace of peeling was left.
[0057]
The surface roughness of the calcined film of the fluororesin thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is transferred to the fluororesin surface; In addition, a film of fluororesin was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the cylindrical base silicone rubber layer. In addition, by fixing the holding jig to a position where the sheet does not sag before heating in each of the cylindrical materials to be processed, the gap between the cylindrical material to be processed and the surface transfer member regardless of the variation in the outer diameter of the cylindrical base material. Can be kept constant, thereby eliminating defects due to variations in the outer diameter of the cylindrical substrate.
[0058]
In addition, the sheet shape makes cleaning easier.
[0059]
Further, in the case of the first embodiment, since the cylindrical member to be processed is rotated to move the sheet and the rack having a large inertia, a slip easily occurs between the cylindrical member to be processed and the sheet, and the surface of the fluororesin is damaged. Was easy to occur. However, in this embodiment, since the workpiece to be driven is the cylindrical material having a small inertia, no slip or scratch is generated.
[0060]
(Example 3)
A third embodiment of the present invention will be described with reference to FIG.
[0061]
Reference numeral 31 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, the outer diameter of which is 20 mm, and the length in the axial direction is 230 mm. The sectional view is shown in FIG. 3.A. Reference numeral 311 denotes a metal core of the cylindrical base material 310, which is made of aluminum and has a diameter of 13 mm, but is hollow and has a hole with a diameter of 11 mm. An LTV silicone rubber layer 313 is adhered to the core metal 311 via a primer layer 312 (the same raw material as that of the above-mentioned 112), and its thickness is about 3.5 mm. The silicone rubber layer was formed by inserting a core coated with a primer into a cylindrical mold, injecting unvulcanized silicone rubber of LTV (same as 113), and heating and curing it. Reference numeral 314 denotes a primer layer for bonding the silicone rubber layer 313 and the surface fluororesin layer, and is composed of a mixture of fluororubber and fluororesin (FEP). The primer layer 314 was obtained by spraying an aqueous paint composed of a mixture of a fluororubber and a fluororesin and heating and curing at 200 ° C. for 30 minutes, and its thickness was 25 μm. On the primer layer 314, a fluororesin (FEP) layer 315 is formed. The fluororesin layer 315 is formed by applying a fluororesin (FEP) dispersion (same as 115) by spraying, drying at 150 ° C. for 20 minutes, and preheating and firing at 300 ° C. for 20 minutes. Had a thickness of 15 μm. At that time, the fluororesin layer was not completely formed, and defects such as cracks and irregularities were observed on the surface. At that time, the surface roughness of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0062]
Reference numeral 32 denotes a surface transfer member similar to that of the first embodiment, and the surface of the cylindrical material contacting side is processed to have a ten-point average roughness (Rz) of 0.5 μm. The both ends of the surface transfer member 32 are fixed to a sheet holding jig 33 in which the other end relatively moves by the movement of one end. In the present embodiment, a rack and pinion mechanism in which a motor for reciprocating the rack is connected to a pinion gear as shown in FIG. First, the cylindrical member 31 to be processed is passed between the surface transfer member 32 and the sheet holding jig 33 and connected to a rotatable rotary table 34 for holding and rotating both ends of the core metal 311 of the cylindrical member 31 to be processed (FIG. 3.B). In this embodiment, in this state, the stainless steel sheet 32 as the surface transfer member was wound about 4/5 around the cylindrical material 31 using two winding rollers 36 having an outer diameter of 16 mm. The winding roller is rotatable but its position is fixed. In this state, the sheet holding jig 33 is moved and the position of the sheet holding jig 33 is fixed in a state where the sheet is stretched so as not to slack.
[0063]
After setting the apparatus as described above, an aluminum heat roll 35 (outer diameter 40 mm, length 300 mm) was brought into contact with the cylindrical material to be processed from above the stainless steel sheet (FIG. 3), and The sheet was moved at a speed of about 21 mm / sec by a motor connected to the sheet holding jig 33 while being heated to ° C. The cylindrical material 31 to be processed was driven and rotated at a speed of about 20 rpm. The motor is reversed before the edge of the sheet reaches the limit of the sheet holding jig. When the surface transfer was performed while repeating this operation about every 20 seconds, the surface transfer and the film formation were possible in 90 seconds. Thereafter, the cylindrical product 316 was cooled, and the sheet holding jig 33 was moved to loosen the sheet, and the cylindrical product 316 was removed from the turntable 34. At the time of heating, the thermal expansion of the silicone rubber is larger than the stainless steel sheet as the surface transfer member, so that at the portion where the sheet of the cylindrical material to be processed is wound, the silicone rubber expands more, and the surface transfer member and the A state in which the fluororesin layer is pressurized with the cylindrical substrate is created. Further, the heat from the heat roll softened the fluororesin (FEP) on the surface layer of the cylindrical base material, so that surface transfer and film formation were performed.
[0064]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. Further, since the fluororesin of the cylindrical base material surface layer is not melted in a softened state, and furthermore, the place where the sheet to be processed and the cylindrical material product and the sheet are separated is not directly heated, The fluororesin of the surface layer of the cylindrical substrate did not adhere to the sheet as the surface transfer member, and thus no trace of peeling was left.
[0065]
The surface roughness of the fluororesin fired film 317 thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is transferred to the fluororesin surface. And a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate.
[0066]
In addition, by fixing the holding jig to a position where the sheet does not sag before heating in each of the processed cylindrical members, regardless of the variation in the outer diameter of the cylindrical base material, the processing cylindrical member and the surface transfer member can be fixed. Since the gap can be made constant, defects due to variations in the outer diameter of the cylindrical substrate have been eliminated. In addition, the sheet shape makes cleaning easier.
[0067]
Further, in the methods of Examples 1 and 2, if the strength of the cored bar is not sufficient, the surface transfer at the axially central portion of the processed cylindrical material may be insufficient. Therefore, Table 1 below shows the evaluation results of the strength (core thickness) of the core metal of the cylindrical base material and the surface transfer state at the axial center of the cylindrical material to be processed.
[0068]
From the results, it is better to wind the sheet around the cylindrical material to be processed by using the winding roller as in the present embodiment, and to apply a force generated by a difference in thermal expansion between the cylindrical base material and the surface transfer member to the surface layer. It can be seen that since a large amount can be converted by the force, the load applied to the core metal of the cylindrical base material is reduced, and even if the core metal strength is weak, the surface transfer and film formation at the central portion in the axial direction of the processed cylindrical material are not insufficient.
[0069]
[Table 1]
Figure 0003595695
(Example 4)
A fourth embodiment of the present invention will be described with reference to FIG.
[0070]
Reference numeral 41 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, which is the same as the cylindrical material to be processed 11 of Example 1, in which the fluororesin layer is not completely formed, and the surface has cracks and irregularities. Failure was seen. At that time, the surface composition of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0071]
Reference numeral 42 denotes a surface transfer member according to the present invention, which is a sheet-shaped member having a surface pattern to be transferred to a fluororesin film temporarily formed on the cylindrical base material on the side of the cylindrical material to be processed, which is U-shaped. It is bent into a letter. In this example, a polyimide sheet (manufactured by Toray DuPont, trade name: Kapton 200H) having a width of 250 mm, a length of 600 mm, and a thickness of 0.05 mm and having a smaller thermal expansion than the silicone rubber of the cylindrical base material was used. The surface of the cylindrical material contacting side to be processed was processed to have a surface roughness of 0.5 μm in ten-point average roughness (Rz).
[0072]
The both ends of the surface transfer member 42 are fixed to a sheet holding jig 43 such that the other end relatively moves by the movement of one end. In this embodiment, a rack-and-pinion mechanism in which a motor for reciprocating the rack is connected to a pinion gear as shown in FIG. First, the cylindrical member 41 to be processed is passed between the surface transfer member 42 and the sheet holding jig 43 and connected to a rotatable rotary table 44 for holding and rotating both ends of the core of the cylindrical member 41 to be processed (FIG. 4). .B). In this embodiment, in this state, the polyimide sheet 42 as the surface transfer member is wound about 4/5 around the cylindrical material 41 to be processed by using two winding rollers 46 having an outer diameter of 16 mm. The winding roller is rotatable but its position is fixed. In this state, the sheet holding jig 43 is moved to fix the position of the sheet holding jig 43 in a state where the sheet sticks to the cylindrical member to be processed.
[0073]
After setting the apparatus as described above, the cylindrical material to be processed was heated from above (from outside) the polyimide sheet. In this embodiment, an infrared line heater 45 (line condensing type; focal length f = 50 mm) of 280 mm and 3 kW output slightly longer than the surface transfer sheet is arranged at a distance of about 40 mm from the surface of the sheet as a surface transfer member. The sheet was moved at a speed of about 21 mm / sec by a motor connected to the sheet holding jig 43, and heated by the infrared line heater until the sheet surface reached 270 ° C. (3 kW). The cylindrical member 41 to be processed was accordingly rotated at a speed of about 20 rpm. The motor is reversed before the edge of the sheet reaches the limit of the sheet holding jig. When this operation was repeated about every 20 seconds to perform surface transfer, surface transfer and film formation were possible in 60 seconds. This can be said that the polyimide sheet and the fluororesin, which are surface transfer members, do not absorb much infrared rays and thus have little thermal expansion, and furthermore, the fusion interface is selectively heated, so that the speed is faster. Thereafter, the cylindrical product 416 was cooled, the sheet holding jig 43 was moved, and the sheet was loosened to remove the cylindrical product 416 from the turntable 44. When heated, the thermal expansion of the silicone rubber is larger than the polyimide sheet, which is a surface transfer member, so that the silicone rubber expands more at the portion where the sheet of the cylindrical material to be processed is wound, and the surface transfer member and the cylindrical A state in which the fluororesin layer is pressurized with the substrate is created. The heat from the infrared line heater softened the fluororesin (FEP) on the surface of the cylindrical base material, so that surface transfer and film formation were performed.
[0074]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. In addition, since the fluororesin of the surface layer of the cylindrical base material is not melted in a softened state, and furthermore, the place where the processed cylindrical material / cylindrical material product is separated from the sheet is not directly heated, so The fluororesin of the surface layer of the base material did not adhere to the sheet as the surface transfer member, so that no trace of peeling was left.
[0075]
The surface roughness of the fired fluororesin film of the surface layer of the cylindrical material product 416 thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is a fluororesin. The film was transferred to the surface and a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate. Further, by fixing the holding jig at a position where the sheet is attached to the cylindrical member to be processed before heating in each cylindrical member to be processed, the cylindrical member to be processed regardless of the variation in the outer diameter of the cylindrical base material. Since the gap between the material and the surface transfer member can be made constant, defects due to variations in the outer diameter of the cylindrical base material are eliminated. In addition, the sheet shape makes cleaning easier.
[0076]
In this embodiment, the polyimide sheet is used as the surface transfer member. However, there is no particular limitation as long as the polyimide sheet can withstand the required temperature at the time of forming the fluororesin by firing and has a smaller thermal expansion than the cylindrical base material. A metal material such as iron, SUS, or aluminum, or a heat-resistant resin such as polyphenine sulfide may be used.
[0077]
(Example 5)
A fifth embodiment of the present invention will be described with reference to FIG.
[0078]
Reference numeral 51 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, the outer diameter of which is 20 mm, and the length in the axial direction is 230 mm. The sectional view is shown in FIG. Reference numeral 511 denotes a metal core of the cylindrical substrate 510, which is made of aluminum and has a diameter of 18 mm. An LTV silicone rubber layer 513 is adhered to the core metal 511 via a primer layer 512 (the same material as the above-mentioned 112 and 312), and its thickness is about 1 mm. The silicone rubber layer was formed by inserting a cored metal coated with a primer into a cylindrical mold, injecting unvulcanized silicone rubber (the same as 113 and 313) of LTV, and curing it by heating. Reference numeral 514 denotes a primer layer for bonding the silicone rubber layer 513 and the surface fluororesin layer, and is composed of a mixture of fluoro rubber and fluoro resin (FEP). The primer layer 514 was obtained by applying an aqueous paint composed of a mixture of a fluororubber and a fluororesin by spraying and heating and curing at 200 ° C. for 30 minutes, and its thickness was 25 μm. On the primer layer 514, a fluororesin (FEP) layer 515 is formed. The fluororesin layer 515 is formed by spraying a fluororesin (FEP) dispersion (same as 115 and 315) by spraying, drying at 150 ° C for 20 minutes, and preheating and firing at 300 ° C for 20 minutes. The thickness at that time was 15 μm. At that time, the fluororesin layer was not completely formed, and defects such as cracks and irregularities were observed on the surface. At that time, the surface roughness of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0079]
Reference numeral 52 denotes a surface transfer member according to the present invention, which is a sheet-like member having a surface pattern to be transferred to a fluororesin film temporarily formed on the cylindrical base material on the side of the cylindrical material to be processed, which is U-shaped. It is bent into a letter. In this example, a polyimide sheet (same as 42) having a width of 250 mm, a length of 600 mm, and a thickness of 0.05 mm and having a smaller thermal expansion than the silicone rubber of the cylindrical base material was used. The surface of the cylindrical material contacting side was processed to have a surface roughness of 0.5 μm as a ten-point average roughness (Rz).
[0080]
The both ends of the surface transfer member 52 are fixed to a sheet holding jig 53 such that the other end relatively moves by the movement of one end. In the present embodiment, a rack and pinion mechanism in which a motor for reciprocating the rack is connected to a pinion gear as shown in FIG. First, the cylindrical member 51 to be processed is passed between the surface transfer member 52 and the sheet holding jig 53 and connected to a rotatable rotary table 54 for holding and rotating both ends of the core of the cylindrical member 51 to be processed (FIG. 5). .B). In this embodiment, in this state, the polyimide sheet 52 as the surface transfer member is wound about 4/5 around the cylindrical member 51 to be processed by using two winding rollers 56 having an outer diameter of 16 mm. The winding roller is rotatable but its position is fixed. In this state, the sheet holding jig 53 is moved, and the position of the sheet holding jig 53 is fixed in a state where the sheet sticks to the cylindrical member to be processed.
[0081]
After setting the apparatus as described above, the cylindrical material to be processed was heated from above (from outside) the polyimide sheet. In this embodiment, an infrared line heater 55 (line condensing type; focal length f = 50 mm) of 280 mm and 3 kW output slightly longer than the surface transfer sheet is disposed at a distance of about 40 mm from the surface of the sheet as a surface transfer member. While moving the sheet at a speed of about 21 mm / sec by a motor connected to the sheet holding jig 53, the sheet was heated by the infrared line heater until the sheet surface reached 270 ° C. (3 kW). The cylindrical member 51 to be processed was accordingly driven to rotate at a speed of about 20 rpm. The motor is reversed before the edge of the sheet reaches the limit of the sheet holding jig. When the surface transfer was performed while repeating this operation about every 20 seconds, the surface transfer and the film formation were possible in 90 seconds. This can be said that the polyimide sheet and the fluororesin, which are surface transfer members, do not absorb much infrared rays and thus have little thermal expansion, and furthermore, the fusion interface is selectively heated, so that the speed is faster.
[0082]
Thereafter, the cylindrical product 516 was cooled, the sheet holding jig 53 was moved, and the sheet was loosened to remove the cylindrical product 516 from the turntable 54. When heated, the thermal expansion of the silicone rubber is larger than the polyimide sheet, which is a surface transfer member, so that the silicone rubber expands more at the portion where the sheet of the cylindrical material to be processed is wound, and the surface transfer member and the cylindrical A state in which the fluororesin layer is pressurized with the substrate is created. The heat from the infrared line heater softened the fluororesin (FEP) on the surface of the cylindrical base material, so that surface transfer and film formation were performed.
[0083]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. In addition, since the fluororesin of the surface layer of the cylindrical base material is not melted in a softened state, and furthermore, the place where the processed cylindrical material / cylindrical material product is separated from the sheet is not directly heated, so The fluororesin of the surface layer of the base material did not adhere to the sheet as the surface transfer member, so that no trace of peeling was left.
[0084]
The surface roughness of the baked fluororesin film 517 on the surface layer of the cylindrical material product 516 thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is fluorine. The film was transferred to the resin surface and a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate. Further, by fixing the holding jig at a position where the sheet is attached to the cylindrical member to be processed before heating in each cylindrical member to be processed, the cylindrical member to be processed regardless of the variation in the outer diameter of the cylindrical base material. Since the gap between the material and the surface transfer member can be made constant, defects due to variations in the outer diameter of the cylindrical base material are eliminated. In addition, the sheet shape makes cleaning easier.
[0085]
In this embodiment, the polyimide sheet is used as the surface transfer member. However, there is no particular limitation as long as the polyimide sheet can withstand the required temperature at the time of forming the fluororesin by firing and has a smaller thermal expansion than the cylindrical base material. A metal material such as iron, SUS, or aluminum, or a heat-resistant resin such as polyphenine sulfide may be used.
[0086]
Further, when the silicone rubber layer of the cylindrical base material is extremely thin as 1 mm as in this example, the processing conditions and the evaluation results when cylindrical surface transfer is used are shown in Table 2 below.
As a result, since the thickness of the silicone rubber layer is thin as in the present embodiment, when the gap between the cylindrical substrate and the surface transfer member must be extremely narrow, The fact that the insertion of the cylindrical material to be processed becomes difficult or that the cylindrical material product becomes difficult to be removed after processing means that in the present method of winding a sheet, the cylindrical material to be processed is set before heating and the sheet is wound. This is irrelevant because the sheet may be peeled off after processing. Further, by fixing the sheet holding jig before the heating in a state where the sheet is attached to the cylindrical member to be processed, the gap between the cylindrical member to be processed and the surface transfer member can be extremely narrowed. Can be adequately applied to the case where the thickness is small, and the surface transfer and the film formation can be performed without deterioration of the silicone rubber layer.
[0087]
[Table 2]
Figure 0003595695
(Example 6)
A sixth embodiment of the present invention will be described with reference to FIG.
[0088]
Reference numeral 61 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, which is the same as the cylindrical material to be processed 11 of Example 1, and the fluororesin layer is not completely formed, and the surface has cracks and irregularities. Failure was seen. At that time, the surface composition of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0089]
Reference numeral 62 denotes a surface transfer member according to the present invention, which is a sheet-like member having a surface pattern to be transferred to a fluororesin film temporarily formed on the cylindrical base material on the side of the cylindrical material to be processed, which is U. It is bent into a letter. In this example, a polyimide sheet (same as 42 and 52) having a width of 250 mm, a length of 600 mm, and a thickness of 0.05 mm and having a smaller thermal expansion than the silicone rubber of the cylindrical base material was used. The surface of the cylindrical material contacting side was processed to have a surface roughness of 0.5 μm as a ten-point average roughness (Rz).
[0090]
In this embodiment, a supply roll 67 in which the polyimide sheet is wound on a core is used. First, the sheet is pulled out from the supply roll 67, passes under two winding rollers 66 having an outer diameter of 16 mm, and is fixed to the sheet winding roll 68. In this state, the sheet is drawn out from between the two winding rolls, and a cylindrical member 61 to be processed is passed between the sheets. Connect (Fig. 6.B). The sheet is taken up by the supply roll 67 or the sheet take-up roll 68 so that the sheet does not slack. At this point, the polyimide sheet 62, which is a surface transfer member, is wound about 4/5 around the cylindrical material 61 to be processed. The winding roller is rotatable but its position is fixed.
[0091]
The supply roll 67 and the sheet take-up roll 68 are provided with a motor, and after setting the apparatus as described above, the length of the polyimide sheet between the supply roll 67 and the sheet take-up roll 68 before heating is adjusted. The cylindrical material to be processed was heated from above (from outside) the polyimide sheet while moving and winding the sheet at a speed of about 21 mm / sec so as not to change. In the present embodiment, an infrared line heater 65 (line focusing type; focal length f = 50 mm) of 280 mm and 3 kW output slightly longer than the surface transfer sheet is arranged at a distance of about 40 mm from the sheet surface as a surface transfer member. The surface was heated by an infrared line heater until the surface reached 270 ° C. (3 kW). The cylindrical material 61 to be processed was driven and rotated at a speed of about 20 rpm. The sheet was flowed in one direction from a supply roll 67 to a take-up roll 68. When the surface transfer was performed in this manner, the surface transfer and the film formation were possible in 60 seconds. This can be said that the polyimide sheet and the fluororesin, which are surface transfer members, do not absorb much infrared rays and thus have little thermal expansion, and furthermore, the fusion interface is selectively heated, so that the speed is faster.
[0092]
Thereafter, the cylindrical product 616 was cooled and the sheet was loosened to remove the cylindrical product 616 from the turntable 64. When heated, the thermal expansion of the silicone rubber is larger than that of the polyimide sheet as the surface transfer member, so that the silicone rubber further expands at the portion where the sheet of the cylindrical material to be processed is wrapped, and the surface transfer member and the cylindrical base member are expanded. A state in which the fluororesin layer is pressurized with a material is created. The heat from the infrared line heater softened the fluororesin (FEP) on the surface of the cylindrical base material, so that surface transfer and film formation were performed.
[0093]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. In addition, since the fluororesin of the surface layer of the cylindrical base material is not melted in a softened state, and furthermore, the place where the processed cylindrical material / cylindrical material product is separated from the sheet is not directly heated, so The fluororesin of the surface layer of the base material did not adhere to the sheet as the surface transfer member, so that no trace of peeling was left.
[0094]
The surface roughness of the calcined film of the fluororesin on the surface layer of the cylindrical material product 616 thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is a fluororesin. The film was transferred to the surface and a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate. In addition, by moving the polyimide sheet between the supply roll 67 and the sheet take-up roll 68 before heating so that the length of the polyimide sheet is not changed, the outer diameter of the cylindrical substrate varies. Irrespective of the above, the gap between the cylindrical member to be processed and the surface transfer member can be made constant, so that the defect due to the variation in the outer diameter of the cylindrical base material is eliminated. Further, when the sheet is no longer present in the sheet supply roll 67, the sheet can be rewound from the sheet take-up roll 68 and reused. In addition, since the sheet can be cleaned on-line from the sheet supply roll 67 to the winding roll 66, the transfer of the surface on a new and clean surface and film formation can be performed at all times.
[0095]
In this embodiment, the polyimide sheet is used as the surface transfer member. However, there is no particular limitation as long as the polyimide sheet can withstand the required temperature at the time of forming the fluororesin by firing and has a smaller thermal expansion than the cylindrical base material. A metal material such as iron, SUS, or aluminum, or a heat-resistant resin such as polyphenine sulfide may be used.
[0096]
(Example 7)
A seventh embodiment of the present invention will be described with reference to FIG.
[0097]
Reference numeral 71 denotes a cylindrical material to be processed having a fluororesin in the outermost layer, which is the same as the cylindrical material to be processed 11 of Example 1, in which the fluororesin layer is not completely formed, and cracks and irregularities are formed on the surface. Failure was seen. At that time, the surface composition of the fluororesin surface was 15 μm in terms of ten-point average roughness (Rz).
[0098]
Reference numeral 72 denotes a surface transfer member according to the present invention, which is a sheet-shaped member having a surface pattern to be transferred to a fluororesin film temporarily formed on the cylindrical substrate on the side of the cylindrical material to be processed abutting on both sides. The connected belt-shaped thing is used. In this embodiment, a polyimide sheet (same as 42, 52, and 62) having a width of 250 mm, a length of 600 mm, and a thickness of 0.05 mm and having a smaller thermal expansion than the silicone rubber of the cylindrical base material was used. The surface of the cylindrical material contacting side was processed to have a surface roughness of 0.5 μm as a ten-point average roughness (Rz).
[0099]
The polyimide belt serving as the surface transfer member 72 includes a motor for moving the belt inside thereof, and includes a cylindrical sheet stretching member 73 provided in parallel with the cylindrical member 71 to be processed. The belt on the side of the cylindrical member 71 to be processed is extended between two winding rollers 76 having an outer diameter of 16 mm. The cylindrical member 71 to be processed is passed between the belts and connected to a rotatable rotary table 74 for holding and rotating both ends of the metal core of the cylindrical member 71 to be processed (FIG. 7B). The winding roller is rotatable but its position is fixed. In this state, the sheet stretching member 73 is moved to fix the position of the sheet stretching member 73 in a state in which the sheet sticks to the cylindrical material to be processed. At this point, a polyimide sheet 72 as a surface transfer member is wound about 4/5 around the cylindrical member 71 to be processed.
[0100]
After setting the apparatus as described above, the cylindrical material to be processed was heated from above (from the outside) the polyimide sheet. In this embodiment, an infrared line heater 75 (line condensing type; focal length f = 50 mm) of 280 mm and 3 kW output slightly longer than the surface transfer sheet is disposed at a distance of about 40 mm from the surface of the sheet as the surface transfer member. While moving the sheet at a speed of about 21 mm / sec by a motor connected to the sheet stretching member 73, the sheet was heated by the infrared line heater until the sheet surface reached 270 ° C (3 kW). The cylindrical material to be processed 71 was driven to rotate at a speed of about 20 rpm. The motor was inverted before the belt joint wrapped around the wrap roller 76. When the surface transfer was performed while repeating this operation about every 20 seconds, the surface transfer and the film formation were possible in 60 seconds. This can be said that the polyimide sheet and the fluororesin, which are surface transfer members, do not absorb much infrared rays and thus have little thermal expansion, and moreover, the fusion interface is selectively heated, so that the speed is faster.
[0101]
Thereafter, the cylindrical product 716 was cooled and the sheet was loosened to remove the cylindrical product 716 from the turntable 74. When heated, the thermal expansion of the silicone rubber is larger than that of the polyimide sheet as the surface transfer member, so that the silicone rubber further expands at the portion where the sheet of the cylindrical material to be processed is wrapped, and the surface transfer member and the cylindrical base member are expanded. A state in which the fluororesin layer is pressurized with a material is created. The heat from the infrared line heater softened the fluororesin (FEP) on the surface of the cylindrical base material, so that surface transfer and film formation were performed.
[0102]
Since the cylindrical material to be processed is rotating, surface transfer and film formation were similarly performed over the entire surface of the cylindrical material to be processed. In addition, since the fluororesin of the surface layer of the cylindrical base material is not melted in a softened state, and furthermore, the place where the processed cylindrical material / cylindrical material product is separated from the sheet is not directly heated, so The fluororesin of the surface layer of the base material did not adhere to the sheet as the surface transfer member, so that no trace of peeling was left.
[0103]
The surface roughness of the calcined film of the fluororesin of the surface layer of the cylindrical material product 716 thus obtained is 0.5 μm in ten-point average roughness (Rz), and the surface pattern of the surface transfer member is a fluororesin. The film was transferred to the surface and a fluororesin film was formed. In addition, when the surface of the formed fluororesin layer was observed with an electron microscope, no defects such as cracks were observed on the surface. No deterioration was observed in the silicone rubber layer of the cylindrical substrate. In addition, by fixing the sheet stretching member 73 to a position where the sheet is tightly attached to the cylindrical member to be processed before heating in each cylindrical member to be processed, the sheet extending member 73 and the cylindrical member to be processed regardless of the variation in the outer diameter of the cylindrical base material. Since the gap with the surface transfer member can be kept constant, defects due to variations in the outer diameter of the cylindrical substrate are eliminated. Furthermore, cleaning is easy and the device configuration is also simple.
[0104]
In this embodiment, the polyimide sheet is used as the surface transfer member. However, there is no particular limitation as long as the polyimide sheet can withstand the required temperature at the time of forming the fluororesin by firing and has a smaller thermal expansion than the cylindrical base material. A metal material such as iron, SUS, or aluminum, or a heat-resistant resin such as polyphenine sulfide may be used.
[0105]
(Reference Example 1)
In Reference Example 1, surface transfer and film formation were performed under the same conditions by the method of Example 2 using the same cylindrical material to be processed as in Example 3.
[0106]
(Comparative Example 1)
Comparative Example 1 uses the same cylindrical material to be processed as in Example 4, and uses a polyimide cylindrical surface transfer member having an inner diameter of φ20.4, a thickness of 0.05 mm, and a length of 280 mm as the surface transfer member. Disposing a cylindrical material to be processed in the cylindrical surface transfer member, and rotating the cylindrical material to be processed at 20 rpm from the outside of the surface transfer member by the infrared line heater under the same heating conditions as in Example 4. The surface transfer and film formation were performed by heating. At this time, the required processing time was 90 seconds.
[0107]
(Comparative Example 2)
Comparative Example 2 used the same cylindrical material to be processed as in Example 5, and used a polyimide cylindrical surface transfer member having an inner diameter of φ20.4, a thickness of 0.05 mm, and a length of 280 mm as the surface transfer member. Disposing a cylindrical member to be processed in the cylindrical surface transfer member, and rotating the cylindrical member at 20 rpm from outside of the surface transfer member by the infrared line heater under the same heating conditions as in Example 5. The surface transfer and film formation were performed by heating. At this time, the temperature of the surface was not enough at 270 ° C. and needed to be raised to 300 ° C.
[0108]
In addition, the processing time also required 180 seconds, which resulted in some deterioration of the rubber.
[0109]
【The invention's effect】
As described above, the state in which the fluororesin layer is pressed using the difference in the coefficient of thermal expansion between the cylindrical base material and the surface transfer member without using the cylindrical surface transfer member by using such a method. Can be heated. For this reason, the gap between the cylindrical member to be processed and the surface transfer member varies due to the variation in the outer diameter of the cylindrical base material, which is important for the cylindrical surface transfer member, which makes stable surface transfer and film formation difficult. The problem is that by fixing the holding jig at the position where the sheet does not sag before heating the cylindrical material, the gap between the cylindrical material to be processed and the surface transfer member regardless of the variation in the outer diameter of the cylindrical substrate Was resolved because it was possible to keep
[0110]
In addition, when the gap between the cylindrical material to be processed and the surface transfer member must be extremely narrow because the thermal expansion of the cylindrical base material is small or the thickness is small, the cylindrical material to be processed is transferred to the cylindrical surface transfer member. The fact that insertion becomes difficult or that the cylindrical product becomes difficult to remove after processing means that in this method of winding a sheet, the cylindrical material to be processed is set before heating, the sheet is wound, and the sheet is processed after processing. It is irrelevant because you only have to peel it off. Further, by fixing the sheet holding jig before the heating in a state where the sheet is attached to the cylindrical member to be processed, the gap between the cylindrical member to be processed and the surface transfer member can be extremely narrowed. It was able to sufficiently cope with small expansion and thin thickness.
[0111]
Further, by making the surface transfer member into a sheet shape, it is very easy to clean the surface of the portion where the surface is transferred to the cylindrical material to be processed.
[Brief description of the drawings]
FIG. 1 is a fluororesin of Example 1. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
A Cross-sectional view of cylindrical material to be processed and cylindrical material product of Example 1
B. Diagram of how to attach the cylindrical material to be processed in the first embodiment
FIG. 2 is a fluororesin of Example 2. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
FIG. 3 is a fluororesin of Example 3. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
A Cross-sectional view of cylindrical material to be processed and cylindrical material product of Example 3
B Mounting method of the cylindrical material to be processed according to the third embodiment
FIG. 4 is a fluororesin of Example 4. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
B Mounting method of the cylindrical material to be processed according to the fourth embodiment
FIG. 5 is a fluororesin of Example 5. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
A Cross-sectional view of cylindrical material to be processed and cylindrical material product of Example 5
B Mounting method of the cylindrical material to be processed in the fifth embodiment
FIG. 6 is a fluororesin of Example 6. Transfer the surface pattern of the transfer member to the surface Schematic diagram of method (core cooling)
B Method of attaching cylindrical material to be processed in embodiment 6
FIG. 7 is a fluororesin of Example 7. Transfer the surface pattern of the transfer member to the surface Schematic diagram of the method
B Mounting method of the cylindrical material to be processed according to the seventh embodiment
[Explanation of symbols]
11: cylindrical material to be processed
110: Cylindrical substrate
111: Core
112: Primer
113: Silicone rubber layer
114: Fluoro rubber / Fluoro resin layer
115: Fluororesin layer (preformed)
116: Cylindrical material products
117: Fluororesin layer (after film formation)
12: Surface transfer member
13: Sheet holding jig
14: Turntable
15: Heat roll
21: cylindrical material to be processed
216: Cylindrical material products
22: Surface transfer member
23: Sheet holding jig
24: Turntable
25: Heat roll
31: Cylinder material to be processed
310: cylindrical substrate
311: Core metal
312: Primer
313: Silicone rubber layer
314: Fluoro rubber / fluoro resin layer
315: Fluororesin layer (preliminary formation)
316: Cylindrical material products
317: Fluororesin layer (after film formation)
32: Surface transfer member
33: Sheet holding jig
34: Turntable
35: Heat roll
36: Winding roller
41: Cylinder to be processed
416: Cylindrical material products
42: Surface transfer member
43: Sheet holding jig
44: Turntable
45: Infrared line heater
46: Winding roller
51: Cylinder material to be processed
510: Cylindrical substrate
511: core metal
512: Primer
513: Silicone rubber layer
514: Fluoro rubber / fluoro resin layer
515: Fluororesin layer (preliminary formation)
516: Cylindrical material products
517: Fluororesin layer (after film formation)
52: Surface transfer member
53: Sheet holding jig
54: Turntable
55: Infrared line heater
56: Winding roller
61: Cylinder to be processed
62: Image transfer member
64: turntable
65: Infrared line heater
66: Winding roller
67: Supply roll
68: Winding roll
71: Cylinder material to be processed
72: Surface transfer member
73: Sheet stretching member
74: Turntable
75: Infrared line heater
76: Winding roller

Claims (7)

円筒状基材上に表面加工可能なフッ素樹脂層を予備形成した被加工円筒材に対して、前記円筒状基材上のフッ素樹脂層と、該フッ素樹脂層の外側に配した面転写部材との間で、前記円筒状基材と前記面転写部材の熱膨張率の差を利用し前記フッ素樹脂層を加圧した状態で加熱することによって、前記面転写部材の表面模様を前記フッ素樹脂層表面に転写させる、フッ素樹脂表面に転写部材の表面模様を転写する方法において、前記面転写部材として前記円筒状基材よりも熱膨張率が小さい材質でシート形状のものを用い、加熱前に前記シートを前記被加工円筒材の円周の1/3以上巻き付けた状態で、前記シートの両端部を一方の端が移動した分だけもう一方の端が相対的に移動するようなシート保持治具に固定し、前記シートを張った状態で前記保持治具の位置を固定し、前記被加工円筒材の軸を回転自在に固定した状態で回転させながら前記シートを従動させつつ前記シートの外側より前記被加工円筒材を加熱することを特徴とするフッ素樹脂表面に転写部材の表面模様を転写する方法。For a processed cylindrical material in which a fluororesin layer capable of surface processing is preformed on a cylindrical substrate, a fluororesin layer on the cylindrical substrate, and a surface transfer member disposed outside the fluororesin layer. By heating the fluororesin layer in a pressurized state using the difference in the coefficient of thermal expansion between the cylindrical base material and the surface transfer member, the surface pattern of the surface transfer member is changed to the fluororesin layer. In the method of transferring the surface pattern of the transfer member to the surface of the fluororesin to be transferred to the surface , using a sheet-shaped material having a smaller coefficient of thermal expansion than the cylindrical base material as the surface transfer member, A sheet holding jig in which both ends of the sheet are relatively moved by an amount corresponding to the movement of one end in a state where the sheet is wound at least 1/3 of the circumference of the cylindrical material to be processed. With the sheet stretched forward. The position of the holding jig is fixed, and the workpiece is heated from the outside of the sheet while the sheet is driven while rotating while the axis of the workpiece is rotatably fixed. A method of transferring a surface pattern of a transfer member to a surface of a fluororesin. 前記被加工円筒材を直接回転させるのではなく、前記被加工円筒材に巻き付けた前記シートを移動することで前記被加工円筒材を従動させつつ前記シートの外側より前記被加工円筒材を加熱することを特徴とする、請求項1に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。Rather than directly rotating the processed cylindrical material, the processed cylindrical material is heated from the outside of the sheet while the processed cylindrical material is driven by moving the sheet wound around the processed cylindrical material. The method according to claim 1, wherein the surface pattern of the transfer member is transferred to the surface of the fluororesin. 前記シートを前記被加工円筒材に巻き付けるための巻き付けローラを少なくとも1本以上用い、該巻き付けローラにより前記被加工円筒材上に前記面転写部材として使用する前記シートを巻き付けた状態で、前記被加工円筒材を保持し回転させながら前記シートの外側より前記被加工円筒材を加熱することを特徴とする請求項2に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。Using at least one or more winding rollers for winding the sheet around the cylindrical member to be processed, and forming the sheet to be used as the surface transfer member on the cylindrical member to be processed by the winding roller, The method for transferring a surface pattern of a transfer member to a fluororesin surface according to claim 2, wherein the cylindrical material to be processed is heated from outside of the sheet while holding and rotating the cylindrical material. 加熱の手段として赤外線ヒータを用いることを特徴とする、請求項2または3に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。Characterized by using an infrared heater as heating means, a method of transferring a surface texture of the transfer member with fluorine resin surface according to claim 2 or 3. 前記面転写部材として使用する前記シートがポリイミドシートであることを特徴とする請求項1ないし4のいずれか1項に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。The method for transferring a surface pattern of a transfer member to a fluororesin surface according to any one of claims 1 to 4, wherein the sheet used as the surface transfer member is a polyimide sheet. 前記シートをロールから供給しもう1つのロールで巻き取るような構造になっていることを特徴とする、請求項1〜5のいずれか1項に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。 The surface pattern of the transfer member is provided on the fluororesin surface according to any one of claims 1 to 5, wherein the sheet is supplied from a roll and wound up by another roll. How to transfer . 前記シートが一部で接続されたべルト形状となっており、加熱前に前記被加工円筒材の円周方向に巻き付けた状態で該被加工円筒材と平行に設けられた円筒状で回転可能なシート伸ばし部材にて張力が加わるか、加わらない程度に前記シートを伸ばした状態で保持することを特徴とする、請求項1〜5のいずれか1項に記載のフッ素樹脂表面に転写部材の表面模様を転写する方法。The sheet has a belt shape partially connected thereto, and is rotatable in a cylindrical shape provided in parallel with the processed cylindrical material in a state of being wound in a circumferential direction of the processed cylindrical material before heating. The surface of the transfer member on the fluororesin surface according to any one of claims 1 to 5, wherein the sheet is held in a state where the sheet is stretched to such an extent that tension is applied or not applied to the sheet stretching member. How to transfer patterns .
JP24599098A 1998-08-31 1998-08-31 Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate Expired - Fee Related JP3595695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24599098A JP3595695B2 (en) 1998-08-31 1998-08-31 Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24599098A JP3595695B2 (en) 1998-08-31 1998-08-31 Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate

Publications (2)

Publication Number Publication Date
JP2000071330A JP2000071330A (en) 2000-03-07
JP3595695B2 true JP3595695B2 (en) 2004-12-02

Family

ID=17141837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24599098A Expired - Fee Related JP3595695B2 (en) 1998-08-31 1998-08-31 Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate

Country Status (1)

Country Link
JP (1) JP3595695B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820497B2 (en) * 2001-06-12 2011-11-24 株式会社金陽社 Fixing member
CN100353267C (en) * 2001-07-27 2007-12-05 郡是株式会社 Fluororesin tubes for fixing member for copier and printer
JP2003131460A (en) * 2001-10-24 2003-05-09 Bando Chem Ind Ltd Conductive roller and method of manufacturing the same
JP4400673B2 (en) * 2007-12-13 2010-01-20 住友金属鉱山株式会社 Three-dimensional circuit board forming apparatus and forming method

Also Published As

Publication number Publication date
JP2000071330A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP6214300B2 (en) Method and apparatus for manufacturing fixing member
JP4812886B2 (en) Method for producing fluororesin-coated roller or belt
JP3595695B2 (en) Method for transferring surface pattern of transfer member to fluororesin surface on cylindrical substrate
JP2002213432A (en) Covered roller or belt, and method of manufacture
JP4609595B1 (en) Mold holding method, cylindrical member manufacturing method, and cylindrical member manufacturing apparatus
CA2388225C (en) Method for manufacturing a polyimide sleeve
JPH06100876B2 (en) Fixing roller and fixing device having the same
JP2004109529A (en) Fixing roller
JP3697049B2 (en) Surface smoothing method of fluororesin coated elastic roller
JP2004245880A (en) Toner fixing member, method for manufacturing toner fixing member, and device for manufacturing toner fixing member
JP2002126600A (en) Apparatus for coating surface of endless belt, coating method using the apparatus, and endless belt
JP2004151446A (en) Thermal fixing member, method of manufacturing the same, and fixing device equipped with the same
JP2000246813A (en) Rubber-coated roller and production thereof
JP3990809B2 (en) Fluororesin coating method, fixing member manufacturing method, and electrophotographic apparatus
JPS59168471A (en) Roller for fixing device
JP2001277266A (en) Method for coating with fluororesin, toner fixing member, toner fixing apparatus and apparatus for electrophotographic apparatus
JP2991340B2 (en) Manufacturing method of multilayer structure roller
US20170060058A1 (en) Fixing device using stainless steel material
JP4001759B2 (en) Manufacturing method and manufacturing apparatus for resin-coated roller having smooth surface
JP4564709B2 (en) Manufacturing method of non-right cylinder with resin layer
JP2004118120A (en) Heat fixing member and its manufacturing method
JP3103168B2 (en) Roller manufacturing method
JPS62225264A (en) Production of fluororesin-coated roller
JP2000024586A (en) Method for coating cylindrical or columnar base material with fluoroplastic
JPH08328418A (en) Coating member of fluororesin and its production and fixing member formed by using the coating member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees