JP3863687B2 - Method for forming polyimide cylindrical film - Google Patents

Method for forming polyimide cylindrical film Download PDF

Info

Publication number
JP3863687B2
JP3863687B2 JP19895499A JP19895499A JP3863687B2 JP 3863687 B2 JP3863687 B2 JP 3863687B2 JP 19895499 A JP19895499 A JP 19895499A JP 19895499 A JP19895499 A JP 19895499A JP 3863687 B2 JP3863687 B2 JP 3863687B2
Authority
JP
Japan
Prior art keywords
film
cylindrical
polyimide
cylindrical film
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19895499A
Other languages
Japanese (ja)
Other versions
JP2001026025A (en
Inventor
稔 松尾
亜希子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19895499A priority Critical patent/JP3863687B2/en
Publication of JP2001026025A publication Critical patent/JP2001026025A/en
Application granted granted Critical
Publication of JP3863687B2 publication Critical patent/JP3863687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、プリンター、ファクシミリ等の静電複写装置において、中間トナー担持体用無端ベルトとされるポリイミド円筒膜の形成方法に関する。
【0002】
【従来の技術】
静電複写装置において中間トナー担持体用無端ベルトとされる円筒膜は、耐熱性、難燃性、引っ張り強さ、曲げ強さ、電気安定性等の性質が要求されるので、かかる要求を満たすことができるポリイミドにより構成されている。このような円筒膜は、ポリイミドの前駆体であるポリアミド酸溶液の遠心塗布成形法により成形されている。
【0003】
遠心塗布成形法は、回転するアルミニウム、真鍮、ステンレス等より構成される円筒形の成形型の内面にスプレー塗布等の手段により樹脂溶液を流し込み、その遠心力で塗布液を軸方向に拡げて均一な円筒形膜を形成する成形方法である。樹脂溶液の遠心塗布成形法により成形された樹脂円筒膜は、乾燥し必要により硬化した後、円筒形の成形型から脱型して無端ベルトとされる。遠心塗布成形法によれば、(1) 膜厚の調整が塗布液量で任意に調整することができること、(2) 塗布液を必要量のみ塗布すればよいので効率的であること、(3) 円筒形の成形型の内部は、閉空間となっているので、溶剤除去の際には、排気経路に溶剤トラップを設けることにより、溶剤を効率よく外部に回収することができること、等の利点がある。
【0004】
ポリイミドは、接着性が良いために接着剤としても使用されるほどの樹脂であるため、これを直接遠心塗布成形して円筒膜を成形することはできない。そのために、従来においては、例えば、ポリイミドの前駆体であるポリアミド酸(ポリアミック酸ともよばれている)の溶液をステンレス等の円筒成形型に遠心塗布して円筒膜を成形し、これを加熱乾燥した後、加熱硬化してイミド化することにより、ポリイミド円筒膜を成形している。ポリアミド酸の溶液は、例えば、無水ピロメリット酸及び4,4´−ジアミノジフェニルエーテルよりなる2種のモノマーをジメチルホルムアミドのような極性溶媒中で溶液重合させることにより得ている。
【0005】
ポリアミド酸を用いて遠心塗布成形法により成形して得た円筒膜は、加熱による溶剤乾燥が不十分であると柔らかくて成形型からの取り出す際に破れてしまい、また、加熱による溶剤乾燥をし過ぎたり、硬化し過ぎたりすると、成形型に密着し過ぎて成形型から取り出す際に破れが生じてしまうという問題があった。
【0006】
そこで、このような問題を解決するために、従来においては、▲1▼円筒成形型の内面にフッ素樹脂等よりなる離型膜を設けること、▲2▼離型性材料で構成され円筒成形型を用いること、▲3▼遠心塗布成形されたポリアミド酸よりなる円筒膜を、適度に乾燥した後、細心の注意を払って円筒成形型から取り出し、次に、この円筒膜の中に別途準備した硬化用円筒型を挿入してから、該円筒膜を加熱硬化すること、等により、ポリイミド円筒膜を作成している。
【0007】
【発明が解決しようとする課題】
しかしながら、内面にフッ素樹脂等よりなる離型膜を設けた円筒成形型を用いたり、また、離型性材料で構成され円筒成形型を用いたりする場合には、ポリアミド酸を円筒成形型の内面に塗布し乾燥してポリアミド酸円筒膜にするまでは、ポリアミド酸円筒膜が円筒成形型の内面にへばりついても問題はないが、かかる乾燥したポリアミド酸円筒膜を加熱硬化させてポリイミド円筒膜にしようとすると、該円筒膜の端部から浮き始め、甚だしい時には、円筒膜全体が浮いてしまい、さらに、浮いた部分は不均一に収縮するので、均一な径のポリイミド円筒膜が得られないという問題があった。
【0008】
そして、乾燥したポリアミド酸円筒膜を円筒成形型から取り出し、これに別途準備した硬化用円筒型に挿入してから、該ポリアミド酸円筒膜を加熱硬化することにより円筒膜を作成しようとする場合には、工程が多くなるという問題があり、さらには、硬化用円筒型と該ポリアミド酸円筒膜との間に空気が入るとその空気が抜け出せなくなって、硬化されたポリアミド酸円筒膜、即ち、ポリイミド円筒膜に空気による凸状の変形が生じてしまったり、また、かかる空気による凸状の変形を防止するためにクリアランスを大きくすると収縮が不均一になってポリイミド円筒膜にシワが発生してしまうという問題があった。
【0009】
本発明は、かかる問題を解決することを目的としている。
即ち、本発明は、凸状変形、シワの発生等を防止した均一な径のポリイミド円筒膜の形成方法を、硬化用円筒型を別途用いることなく、提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、前記従来の問題点を考察したところ、次の事実がわかった。
1)円筒成形型に均一に塗布されたポリアミド酸円筒膜は、乾燥及び硬化の過程で加熱されているうちは収縮しないが、冷却時に収縮すること。
2)円筒成形型に均一に塗布されたポリアミド酸円筒膜は、遠心をかけている限り、溶剤を加熱乾燥しても円筒成形型から剥離しないこと。
3)乾燥したポリアミド酸円筒膜を加熱硬化させてポリイミド円筒膜に形成する際の浮きは、該円筒膜の端部から浮き始めること。
【0011】
本発明者は、かかる事実を踏まえて、従来の問題の解決を鋭意探求したところ、回転する円筒成形型の内面にポリアミド酸溶液を塗布した後充分に加熱乾燥してポリアミド酸円筒膜を形成し、続いて、該ポリアミド酸円筒膜を、その両端及び両端近傍の内側部分を円周方向にフッ素樹脂被覆金属リング、熱硬化性接着剤被覆金属箔等の非収縮性耐熱部材で覆うようにして、加熱硬化すれば、硬化用円筒型を別途用いなくても、凸状変形、シワの発生等を防止した均一な径のポリイミド円筒膜が形成できることを見出して本発明を完成するに至った。
【0012】
即ち、請求項1に記載された発明は、回転する円筒成形型の内面にポリアミド酸溶液を塗布した後加熱乾燥してポリアミド酸円筒膜を形成し、続いて、このポリアミド酸円筒膜を、その両端及び両端近傍の内側部分を非収縮性耐熱部材で円周方向に覆うようにして、加熱硬化させることを特徴とするポリイミド円筒膜の形成方法である。
【0013】
請求項2に記載された発明は、請求項1に記載された発明において、非収縮性耐熱部材が表面にフッ素樹脂を被覆した金属リングであることを特徴とするものである。
【0014】
請求項3に記載された発明は、請求項1に記載された発明において、非収縮性耐熱部材が表面に熱硬化性接着剤を被覆した金属箔であることを特徴とするものである。
【0015】
請求項4に記載された発明は、請求項1ないし3のいずれかに記載された発明において、円筒成形型がその内面に離型膜を有することを特徴とするものである。
【0016】
請求項5に記載された発明は、請求項4に記載された発明において、離型膜がフッ素樹脂皮膜よりなることを特徴とするものである。
【0017】
請求項6に記載された発明は、請求項4に記載された発明において、離型膜が多孔性の陽極酸化皮膜及び該陽極酸化皮膜上に形成されたフッ素樹脂皮膜よりなり、そして、該フッ素樹脂皮膜表面がバフ研磨処理されていることを特徴とするものでわる。
【0018】
請求項7に記載された発明は、請求項1ないし3のいずれかに記載された発明において、円筒成形型が離型性材料で構成されていることを特徴とするものである。
【0019】
請求項8に記載された発明は、請求項7に記載された発明において、離型性材料がガラスであることを特徴とするものである。
【0020】
請求項9に記載された発明は、請求項1ないし8のいずれかに記載された発明において、円筒成形型の両端近傍内面にポリアミド酸溶液の流動を防止するための堰止めを着脱可能に設けたことを特徴とするものである。
【0021】
請求項10に記載された発明は、請求項9に記載された発明において、堰止めを取り除いた後ポリアミド酸円筒膜乾燥することを特徴とするものである。
【0022】
【発明の実施の形態】
図1は、本発明の一実施の形態を示すポリイミド円筒膜の形成方法の断面説明図であって、(a)は、ポリアミド酸円筒膜を形成する状態を示し、(b)は、ポリアミド酸円筒膜を加熱硬化させてポリイミド円筒膜を形成する状態を示す。
【0023】
図1(a)に示すように、回転する円筒成形型1の内面にポリアミド酸溶液を塗布した後、充分に加熱乾燥してポリアミド酸円筒膜3を形成する。この際、円筒成形型1の両端近傍内面に塗布されたポリアミド酸溶液の流動を防止するための堰止め2を着脱可能に設けてもかまわない。堰止め2を設ける場合には、堰止め2を取り除いた後、充分に加熱乾燥する。このように、堰止め2を取り除いて溶剤を充分に加熱乾燥しておけば、ぼろぼろの凝集膜となることがなく、きれいに成膜することができる。
【0024】
続いて、図1(b)に示すように、充分に乾燥したポリアミド酸円筒膜3(図1(a)参照)を、その両端及び両端近傍の内側部分を非収縮性耐熱部材5で円周方向にで覆うようにして、加熱硬化させることにより、ポリイミド円筒膜4とすることができる。加熱硬化する時点では、従来通り円筒成形型1の回転を止め、これを別の炉に移して、ポリアミド酸円筒膜3を加熱硬化させることにより、ポリイミド円筒膜4としてもかまわない。このように充分に乾燥したポリアミド酸円筒膜3を、その両端及び両端近傍の内側部分を非収縮性耐熱部材5で円周方向にで覆うようにして、加熱硬化させると、加熱硬化時にポリアミド円筒膜の両端ないし両端内側部分に生じる浮きを抑えることができるので、凸状変形、シワの発生等を防止した均一な径のポリイミド円筒膜4が形成できる。
【0025】
前記非収縮性耐熱部材5は、例えば、表面にフッ素樹脂を被覆したアルミニウム、真鍮、ステンレス等の金属リング、及び、表面に熱硬化性接着剤を被覆したステンレス、真鍮、銅等の金属箔である。
【0026】
前記円筒成形型1は、その内面に離型膜(図示せず)を設けることができる。前記離型膜は、例えば、フッ素樹脂皮膜である。また、前記離型膜は、アルミニウム、又は、アルミニウム合金よりなる円筒成形型1の内表面を硬質陽極酸化処理して形成した多孔性の陽極酸化皮膜及び該多孔性の陽極酸化皮膜上に形成されたフッ素樹脂皮膜よりなり、そして、該フッ素樹脂皮膜表面をバフ研磨処理したものとすることができる。このように円筒成形型1の内面に離型膜を設けると、ポリイミド円筒膜4を容易に剥離でき、そのために、離型時の剥離痕が残ることもない。また、前記「多孔性の陽極酸化皮膜及び該陽極酸化皮膜上に形成されたフッ素樹脂皮膜」よりなる離型膜は、離型性とポリアミド酸円筒膜を形成するまでの密着性とが良好であるが、画像に悪影響を及ぼすことがある。しかし、該フッ素樹脂皮膜表面をバフ研磨処理することでこのような悪影響を回避することができる。
【0027】
前記円筒成形型1は、ガラス等の離型性材料で構成することができる。特に、ガラスは、優れた離型部材であるので、円筒成形型1に用いると、容易に剥離でき、そのために、離型時の剥離痕が残ることもない。
【0028】
【実施例】
(実施例1)
アルミニウムよりなる円筒成形型の内面にハードクロム処理し、続いて、フッ素樹脂被覆処理して円筒成形型を作成した。かかる処理は、テフロック(登録商標)処理として知られている。この円筒成形型の両端近傍内面にポリテトラフルオロエチレン(以下、「PTFE」という)シートを張り付けて堰止めした。この堰止めした円筒成形型を回転させながらその内表面部分に、ポリイミド前駆体であるポリアミド酸溶液(トレニース#3000、東レ社製)と導電体であるカーボンブラックとを溶媒N,N−ジメチルアセトアミド(DMAC)で30%に希釈した溶液を、塗布し、そして、この円筒成形型を高速回転しながら塗布膜を均一にした後、これを80℃に加熱して溶剤乾燥した。この円筒成形型の回転を止めて円筒成形型を取り出し、そして、その堰止めをとり外した後、この円筒成形型を恒温槽に移し、これを100℃に加熱して、円筒成形型の内表面に塗布されたポリアミド酸円筒膜の溶剤を充分に除去した。溶剤の完全除去を行ったポリアミド酸円筒膜の両端及び両端近傍の内側部分を円周方向に、表面にフッ素樹脂を被覆したアルミニウムリングをはめ込み、そして、円筒成形型の内表面に塗布されたポリアミド酸円筒膜をさらに300℃に加熱硬化してポリイミド円筒膜を形成した。円筒成形型の内表面に形成されたポリイミド円筒膜を冷却し、該フッ素樹脂を被覆したアルミニウムリングを取り除いたが、浮きはなく、良好にポリイミド円筒膜が形成されていた。そして、このポリイミド円筒膜を円筒成形型より手で剥離したが、剥離はスムースに行うことができ、剥離跡も残らなかった。
【0029】
(実施例2)
ガラスよりなる円筒成形型の内面に実施例1と同じ成分の塗布液を実施例と同様に塗布し、この円筒成形型の内表面に塗布されたポリアミド酸円筒膜を90℃で溶剤を乾燥した後、実施例1と同様に加熱硬化させてポリイミド円筒膜を形成した。このように形成されたポリイミド円筒膜は、フッ素樹脂を被覆したアルミニウムリングを取り除いたが、浮きはなく、良好に型に張り付いていた。そして、このポリイミド円筒膜を円筒成形型より手で剥離したが、剥離はスムースに行うことができ、剥離跡も残らなかった。
【0030】
(実施例3)
実施例1と同じ円筒成形型の内面に実施例1と同じ成分の塗布液を実施例と同様に塗布し、実施例1と同様に乾燥した後、円筒成形型の内表面に塗布されたポリアミド酸円筒膜の両端及び両端近傍の内側部分を表面に熱硬化性接着剤を被覆したステンレス鋼(SUS)箔により円周方向に覆うようにして張り付けた。この円筒成形型を恒温槽に移し、その内表面に塗布されたポリアミド酸円筒膜をさらに300℃に加熱硬化して、ポリイミド円筒膜を形成した。このように形成されたポリイミド円筒膜は、熱硬化性接着剤を被覆したSUS箔を取り除いたが、浮きはなく、良好に型に張り付いていた。そして、このポリイミド円筒膜の端部をナイフエッジで少し浮かし、円筒成形型より手で剥離したが、剥離はスムースに行うことができ、剥離跡も残らなかった。このようにして作成したポリイミド円筒膜の端部を切り落として、所定寸法の無端ベルトとし、これをリコー社製のフルカラー複写機プリテールに搭載して画像を評価したが、画像は良好であった。
【0031】
(比較例1)
ポリアミド酸円筒膜の両端及び両端近傍の内側部分に、表面にフッ素樹脂を被覆したアルミニウムリングをはめ込まないで、実施例1と同様のテフロック処理円筒成形型を用いて、実施例1と同様の処理をした。すると、該円筒成形型の表面に形成されたポリアミド円筒膜は、硬化時において、200℃を越えた頃から、その端部が浮き始め、硬化終了時には、ポリイミド円筒膜の半分が収縮してしまった。
【0032】
(比較例2)
ポリアミド酸円筒膜の両端及び両端近傍の内側部分に、表面にフッ素樹脂を被覆したアルミニウムリングをはめ込まないで、実施例2と同様のガラスよりなる円筒成形型を用いて、実施例2と同様の処理をした。すると、該円筒成形型の表面に形成されたポリイミド円筒膜は、硬化時において、180℃を越えた頃から、その端部が浮き始め、硬化終了時には、ポリイミド円筒膜の半分以上が収縮してしまった。
【0033】
(比較例3)
実施例1と同様のテフロック処理円筒成形型を用いて、堰止めを付けたまま乾燥と硬化処理を行った。該円筒成形型に形成されたポリアミド円筒膜は、乾燥するまでは、良好に存在していたが、硬化時においては、200℃を越えた頃から、堰止め部材のPTFEシートが収縮し始めて、ポリイミド円筒膜の端部が引きずられるように浮いてきた。硬化処理後は、ポリイミド円筒膜は、堰止め部材が円筒成形型の内部で宙に浮くような状態になって、両端から10cm位収縮した。
【0034】
以上、本発明の利点あげると次のとおりとなる。
請求項1〜3に記載された発明によれば、回転する円筒成形型の内面にポリアミド酸溶液を塗布した後加熱乾燥してポリアミド酸円筒膜を形成し、続いて、このポリアミド酸円筒膜を、その両端及び両端近傍の内側部分を、「表面にフッ素樹脂を被覆した金属リング」、「表面に熱硬化性接着剤を被覆した金属箔」等の非収縮性耐熱部材で円周方向に覆うようにして、加熱硬化させるので、加熱硬化時にポリイミド円筒膜の両端ないし両端内側部分に生じる浮きを抑えることができ、そのために、凸状変形、シワの発生等を防止した均一な径のポリイミド円筒膜が形成できる。
【0035】
請求項4,5に記載された発明によれば、円筒成形型がその内面に「フッ素樹脂皮膜」等の離型膜を有し、請求項6に記載された発明のよれば、「多孔性の陽極酸化皮膜及び該陽極酸化皮膜上に形成されたフッ素樹脂皮膜よりなり、そして、該フッ素樹脂皮膜表面がバフ研磨処理されている」剥離膜をしているので、ポリイミド円筒膜を容易に剥離でき、そのために、離型時の剥離痕が残ることもない。また、請求項6に記載された発明のよれば、「多孔性の陽極酸化皮膜及び該陽極酸化皮膜上に形成されたフッ素樹脂皮膜」よりなる離型膜は、離型性とポリアミド酸円筒膜を形成するまでの密着性とが良好であるが、画像に悪影響を及ぼすことがある。しかし、該フッ素樹脂皮膜表面をバフ研磨処理することでこのような悪影響を回避することができる。
【0036】
請求項7,8に記載された発明によれば、円筒成形型がガラス等の離型性材料で構成されているので、ポリイミド円筒膜を容易に剥離でき、そのために、離型時の剥離痕が残ることもない。
【0037】
請求項9,10に記載された発明によれば、円筒成形型の両端近傍内面にポリアミド酸溶液の流動を防止するための堰止めを着脱可能に設けたので、円筒成形型の両端近傍内面に塗布されたポリアミド酸溶液の流動を防止することができる。また、請求項10に記載された発明によれば、堰止めを取り除いた後ポリアミド酸円筒膜を乾燥するので、ポリイミド円筒膜は、ぼろぼろの凝集膜となることがなく、きれいに成膜することができる。
【0038】
【発明の効果】
加熱硬化時にポリイミド円筒膜の両端ないし両端内側部分に生じる浮きを抑えることができ、そのために、凸状変形、シワの発生等を防止した均一な径のポリイミド円筒膜の形成方法を、硬化用円筒型を別途用いることなく、提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示すポリイミド円筒膜の形成方法の断面説明図であって、(a)は、ポリアミド酸円筒膜を形成する状態を示し、(b)は、ポリアミド酸円筒膜を加熱硬化させてポリイミド円筒膜を形成する状態を示す。
【符号の説明】
1 円筒成形型
2 堰止め
3 ポリアミド酸円筒膜
4 ポリイミド円筒膜
5 非収縮性耐熱部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a polyimide cylindrical film used as an endless belt for an intermediate toner carrier in an electrostatic copying apparatus such as a copying machine, a printer, or a facsimile machine.
[0002]
[Prior art]
The cylindrical film used as an endless belt for an intermediate toner carrier in an electrostatic copying apparatus satisfies such requirements because it requires properties such as heat resistance, flame retardancy, tensile strength, bending strength, and electrical stability. It is made of polyimide that can be used. Such a cylindrical membrane is formed by a centrifugal coating method of a polyamic acid solution which is a polyimide precursor.
[0003]
Centrifugal coating is a method in which a resin solution is poured onto the inner surface of a cylindrical mold made of rotating aluminum, brass, stainless steel, etc. by means of spray coating, etc., and the coating solution is spread in the axial direction by the centrifugal force to be uniform. This is a molding method for forming a simple cylindrical film. The resin cylindrical film formed by the centrifugal application molding method of the resin solution is dried and cured as necessary, and then removed from the cylindrical mold to form an endless belt. According to the centrifugal coating method, (1) the film thickness can be adjusted arbitrarily with the amount of coating solution, (2) it is efficient because only a necessary amount of coating solution is applied, and (3 ) Since the inside of the cylindrical mold is a closed space, the solvent can be efficiently recovered outside by providing a solvent trap in the exhaust path when removing the solvent. There is.
[0004]
Since polyimide is a resin that can be used as an adhesive because of its good adhesiveness, it cannot be directly coated by centrifugal coating to form a cylindrical film. Therefore, conventionally, for example, a solution of polyamic acid (also called polyamic acid), which is a precursor of polyimide, is centrifugally applied to a cylindrical mold such as stainless steel to form a cylindrical film, which is then heated and dried. Thereafter, the polyimide cylindrical film is formed by heat curing and imidization. The polyamic acid solution is obtained, for example, by solution polymerization of two monomers consisting of pyromellitic anhydride and 4,4′-diaminodiphenyl ether in a polar solvent such as dimethylformamide.
[0005]
Cylindrical membranes obtained by the centrifugal coating method using polyamic acid are soft if the solvent drying by heating is insufficient, and will be broken when taken out from the mold, and the solvent will be dried by heating. If it is too hard or hardened too much, there is a problem that it is too close to the mold and tears when taken out from the mold.
[0006]
Therefore, in order to solve such problems, conventionally, (1) a release film made of a fluororesin or the like is provided on the inner surface of the cylindrical mold, and (2) a cylindrical mold formed of a releasable material. (3) After the cylindrical film made of the polyamic acid formed by centrifugal coating is appropriately dried, it is taken out from the cylindrical mold with great care, and then separately prepared in this cylindrical film. A polyimide cylindrical film is formed by inserting a curing cylindrical mold and then heat-curing the cylindrical film.
[0007]
[Problems to be solved by the invention]
However, when using a cylindrical mold having a release film made of fluororesin or the like on the inner surface, or using a cylindrical mold made of a releasable material, polyamic acid is used as the inner surface of the cylindrical mold. There is no problem even if the polyamic acid cylindrical film adheres to the inner surface of the cylindrical mold until it is coated and dried to form a polyamic acid cylindrical film, but the dried polyamic acid cylindrical film is heated and cured to form a polyimide cylindrical film. Attempts to float from the end of the cylindrical membrane, and when it is severe, the entire cylindrical membrane floats, and the floated portion shrinks non-uniformly, so a polyimide cylindrical membrane with a uniform diameter cannot be obtained. There was a problem.
[0008]
When the dried polyamic acid cylindrical film is taken out from the cylindrical mold and inserted into a separately prepared curing cylindrical mold, and then the polyamic acid cylindrical film is heated and cured to create a cylindrical film. Has a problem that the number of processes is increased, and furthermore, when air enters between the curing cylindrical mold and the polyamic acid cylindrical film, the air cannot escape, and thus the cured polyamic acid cylindrical film, that is, polyimide Convex deformation due to air occurs in the cylindrical film, or if the clearance is increased to prevent the convex deformation due to air, the shrinkage becomes uneven and wrinkles occur in the polyimide cylindrical film. There was a problem.
[0009]
The present invention aims to solve this problem.
That is, an object of the present invention is to provide a method for forming a polyimide cylinder film having a uniform diameter that prevents convex deformation, wrinkles, and the like without using a curing cylinder.
[0010]
[Means for Solving the Problems]
The inventor considered the above-mentioned conventional problems and found the following facts.
1) A polyamic acid cylindrical film uniformly applied to a cylindrical mold does not shrink while being heated in the course of drying and curing, but shrinks when cooled.
2) The polyamic acid cylindrical film uniformly applied to the cylindrical mold should not be peeled off from the cylindrical mold even if the solvent is dried by heating, as long as centrifugation is applied.
3) When the dried polyamic acid cylindrical film is cured by heating to form a polyimide cylindrical film, the float should start to float from the end of the cylindrical film.
[0011]
Based on this fact, the present inventor has eagerly sought to solve the conventional problems, and after applying the polyamic acid solution to the inner surface of the rotating cylindrical mold, it is sufficiently heated and dried to form a polyamic acid cylindrical film. Subsequently, the polyamic acid cylindrical membrane is covered with a non-shrinkable heat-resistant member such as a fluororesin-coated metal ring or a thermosetting adhesive-coated metal foil in the circumferential direction at both ends and in the vicinity of both ends. The present invention has been completed by finding that a polyimide cylindrical film having a uniform diameter that prevents convex deformation, wrinkle generation and the like can be formed by heat curing without using a separate curing cylinder.
[0012]
That is, in the invention described in claim 1, a polyamic acid solution is applied to the inner surface of a rotating cylindrical mold and then dried by heating to form a polyamic acid cylindrical film. The polyimide cylindrical film forming method is characterized in that both ends and inner portions near both ends are covered with a non-shrinkable heat-resistant member in the circumferential direction and cured by heating.
[0013]
The invention described in claim 2 is characterized in that, in the invention described in claim 1, the non-shrinkable heat-resistant member is a metal ring whose surface is coated with a fluororesin.
[0014]
The invention described in claim 3 is the invention described in claim 1, characterized in that the non-shrinkable heat-resistant member is a metal foil whose surface is coated with a thermosetting adhesive.
[0015]
The invention described in claim 4 is the invention described in any one of claims 1 to 3, characterized in that the cylindrical mold has a release film on the inner surface thereof.
[0016]
The invention described in claim 5 is the invention described in claim 4, wherein the release film is made of a fluororesin film.
[0017]
The invention described in claim 6 is the invention described in claim 4, wherein the release film comprises a porous anodic oxide film and a fluororesin film formed on the anodic oxide film, and the fluorine film This is characterized in that the resin film surface is buffed.
[0018]
The invention described in claim 7 is the invention described in any one of claims 1 to 3, wherein the cylindrical mold is made of a releasable material.
[0019]
The invention described in claim 8 is the invention described in claim 7, wherein the releasable material is glass.
[0020]
The invention described in claim 9 is the invention described in any one of claims 1 to 8, wherein a damming member for preventing the flow of the polyamic acid solution is detachably provided on the inner surface in the vicinity of both ends of the cylindrical mold. It is characterized by that.
[0021]
The invention described in claim 10 is characterized in that, in the invention described in claim 9, the polyamic acid cylindrical film is dried after the weir is removed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional explanatory view of a method for forming a polyimide cylindrical film showing an embodiment of the present invention, wherein (a) shows a state in which a polyamic acid cylindrical film is formed, and (b) shows a polyamic acid. A state in which a cylindrical cylindrical film is formed by heat-curing the cylindrical film is shown.
[0023]
As shown in FIG. 1 (a), a polyamic acid solution is applied to the inner surface of a rotating cylindrical mold 1, and then sufficiently heated and dried to form a polyamic acid cylindrical film 3. At this time, a dam 2 for preventing the flow of the polyamic acid solution applied to the inner surfaces near both ends of the cylindrical mold 1 may be detachably provided. When the dam 2 is provided, the dam 2 is removed and then sufficiently dried by heating. In this way, if the weir 2 is removed and the solvent is sufficiently heated and dried, the film can be formed cleanly without becoming a rag-agglomerated film.
[0024]
Subsequently, as shown in FIG. 1 (b), the sufficiently dried polyamic acid cylindrical film 3 (see FIG. 1 (a)) is circumferentially surrounded by the non-shrinkable heat-resistant member 5 at both ends and inside portions near both ends. It can be set as the polyimide cylindrical film 4 by making it heat-harden so that it may cover in a direction. At the time of heat curing, the rotation of the cylindrical mold 1 may be stopped as before, and this may be transferred to another furnace, and the polyamic acid cylindrical film 3 may be heat cured to form the polyimide cylindrical film 4. When the polyamic acid cylindrical membrane 3 thus dried is heat-cured so that both ends and inner portions near both ends are covered with the non-shrinkable heat-resistant member 5 in the circumferential direction, the polyamide cylinder is heated and cured. Since the float generated at both ends of the film or the inner portions of both ends can be suppressed, it is possible to form the polyimide cylindrical film 4 having a uniform diameter that prevents convex deformation, generation of wrinkles and the like.
[0025]
The non-shrinkable heat-resistant member 5 is made of, for example, a metal ring such as aluminum, brass or stainless steel whose surface is coated with a fluororesin, and a metal foil such as stainless steel, brass or copper whose surface is coated with a thermosetting adhesive. is there.
[0026]
The cylindrical mold 1 can be provided with a release film (not shown) on its inner surface. The release film is, for example, a fluororesin film. The release film is formed on a porous anodized film formed by hard anodizing the inner surface of the cylindrical mold 1 made of aluminum or an aluminum alloy, and the porous anodized film. Further, the surface of the fluororesin film can be buffed. When the release film is provided on the inner surface of the cylindrical mold 1 as described above, the polyimide cylindrical film 4 can be easily peeled off, and therefore, no peeling trace remains at the time of release. In addition, the release film composed of the “porous anodic oxide film and the fluororesin film formed on the anodic oxide film” has good releasability and adhesion until a polyamic acid cylindrical film is formed. Yes, it can adversely affect the image. However, such adverse effects can be avoided by buffing the surface of the fluororesin film.
[0027]
The cylindrical mold 1 can be made of a releasable material such as glass. In particular, since glass is an excellent release member, when it is used for the cylindrical mold 1, it can be easily peeled off, so that no peeling marks remain at the time of release.
[0028]
【Example】
Example 1
The inner surface of a cylindrical mold made of aluminum was hard-chromed, followed by coating with a fluororesin to produce a cylindrical mold. Such a process is known as a Teflock (registered trademark) process. A polytetrafluoroethylene (hereinafter referred to as “PTFE”) sheet was attached to the inner surfaces near both ends of the cylindrical mold to dam. While rotating this blocked cylindrical mold, a polyamic acid solution (Trenice # 3000, manufactured by Toray Industries, Inc.), which is a polyimide precursor, and carbon black, which is a conductor, are mixed with a solvent N, N-dimethylacetamide on the inner surface portion. A solution diluted to 30% with (DMAC) was applied, and the coating film was made uniform while rotating the cylindrical mold at a high speed, and then heated to 80 ° C. to dry the solvent. After stopping the rotation of the cylindrical mold, the cylindrical mold is taken out, and after the weir is removed, the cylindrical mold is transferred to a thermostatic bath and heated to 100 ° C. The solvent of the polyamic acid cylindrical film applied on the surface was sufficiently removed. Polyamide coated on the inner surface of the cylindrical mold by inserting the aluminum ring coated with fluororesin on the surface in the circumferential direction at both ends of the polyamic acid cylindrical membrane from which the solvent has been completely removed The acid cylindrical film was further heated and cured at 300 ° C. to form a polyimide cylindrical film. The polyimide cylindrical film formed on the inner surface of the cylindrical mold was cooled and the aluminum ring coated with the fluororesin was removed. However, there was no floating, and the polyimide cylindrical film was well formed. The polyimide cylindrical film was peeled off from the cylindrical mold by hand, but the peeling could be performed smoothly and no peeling trace was left.
[0029]
(Example 2)
A coating solution having the same components as in Example 1 was applied to the inner surface of a cylindrical mold made of glass in the same manner as in the example. The polyamic acid cylindrical film applied to the inner surface of this cylindrical mold was dried at 90 ° C. After that, it was cured by heating in the same manner as in Example 1 to form a polyimide cylindrical film. The polyimide cylindrical film formed in this manner removed the aluminum ring coated with the fluororesin, but did not float and adhered well to the mold. The polyimide cylindrical film was peeled off from the cylindrical mold by hand, but the peeling could be performed smoothly and no peeling trace was left.
[0030]
Example 3
A coating solution having the same components as in Example 1 was applied to the inner surface of the same cylindrical mold as in Example 1 in the same manner as in Example 1, dried in the same manner as in Example 1, and then applied onto the inner surface of the cylindrical mold Both ends of the acid cylindrical film and inner portions near the both ends were pasted so as to be covered with a stainless steel (SUS) foil whose surface was covered with a thermosetting adhesive in the circumferential direction. This cylindrical mold was transferred to a thermostat, and the polyamic acid cylindrical film applied on the inner surface was further heated and cured at 300 ° C. to form a polyimide cylindrical film. The polyimide cylindrical film formed in this manner removed the SUS foil coated with the thermosetting adhesive, but did not float and adhered well to the mold. And although the edge part of this polyimide cylindrical film floated a little with the knife edge and peeled by hand from the cylindrical shaping | molding die, peeling could be performed smoothly and the peeling trace did not remain. The end portion of the polyimide cylindrical film thus prepared was cut off to form an endless belt having a predetermined size, and this was mounted on a full color copying machine pre-tail manufactured by Ricoh Co., Ltd., and the image was evaluated.
[0031]
(Comparative Example 1)
The same treatment as in Example 1 was carried out using a Teflock-treated cylindrical mold similar to that in Example 1 without fitting an aluminum ring coated with a fluororesin on both ends of the polyamic acid cylindrical membrane and in the inner portions near both ends. Did. Then, the polyamide cylindrical film formed on the surface of the cylindrical mold begins to float at the end when it exceeds 200 ° C., and half of the polyimide cylindrical film contracts at the end of curing. It was.
[0032]
(Comparative Example 2)
A cylindrical mold made of the same glass as in Example 2 is used, without fitting an aluminum ring whose surface is coated with a fluororesin on both ends of the polyamic acid cylindrical membrane and in the inner portions near both ends. Processed. Then, the polyimide cylindrical film formed on the surface of the cylindrical mold begins to float when the temperature exceeds 180 ° C. at the time of curing, and at the end of curing, more than half of the polyimide cylindrical film shrinks. Oops.
[0033]
(Comparative Example 3)
Using the same Teflock-treated cylindrical mold as in Example 1, drying and curing treatments were performed with the weirs attached. The polyamide cylindrical film formed in the cylindrical mold was well present until it was dried, but at the time of curing, the PTFE sheet of the damming member began to shrink from around 200 ° C., The end of the polyimide cylindrical membrane floated so as to be dragged. After the curing treatment, the polyimide cylindrical film was contracted by about 10 cm from both ends in such a state that the blocking member floated in the air inside the cylindrical mold.
[0034]
The advantages of the present invention are as follows.
According to the first to third aspects of the present invention, the polyamic acid solution is applied to the inner surface of the rotating cylindrical mold and then dried by heating to form the polyamic acid cylindrical film. The inner part of both ends and the vicinity of both ends are covered in the circumferential direction with a non-shrinkable heat-resistant member such as “a metal ring whose surface is coated with a fluororesin” or “a metal foil whose surface is coated with a thermosetting adhesive”. In this way, since it is heat-cured, it is possible to suppress the floating that occurs at both ends of the polyimide cylinder film during heat-curing, or to the inner portions of both ends. A film can be formed.
[0035]
According to the invention described in claims 4 and 5, the cylindrical mold has a release film such as “fluororesin film” on its inner surface, and according to the invention described in claim 6, The anodized film and the fluororesin film formed on the anodized film, and the surface of the fluororesin film is buffed. ” For this reason, no peeling marks remain at the time of mold release. According to the invention described in claim 6, the release film composed of “a porous anodic oxide film and a fluororesin film formed on the anodic oxide film” has a mold release property and a polyamic acid cylindrical film. Adhesiveness until forming is good, but the image may be adversely affected. However, such adverse effects can be avoided by buffing the surface of the fluororesin film.
[0036]
According to the invention described in claims 7 and 8, since the cylindrical mold is made of a releasable material such as glass, the polyimide cylindrical film can be easily peeled off. Will not remain.
[0037]
According to the ninth and tenth aspects of the present invention, since the weirs for preventing the flow of the polyamic acid solution are detachably provided on the inner surfaces in the vicinity of both ends of the cylindrical mold, the inner surfaces in the vicinity of both ends of the cylindrical mold are provided. Flow of the applied polyamic acid solution can be prevented. Further, according to the invention described in claim 10, since the polyamic acid cylindrical film is dried after removing the weir, the polyimide cylindrical film can be formed cleanly without becoming a shabby aggregate film. it can.
[0038]
【The invention's effect】
It is possible to suppress the floating that occurs at both ends of the polyimide cylindrical film at the time of heat-curing or at both ends, and for this purpose, a method for forming a polyimide cylindrical film with a uniform diameter that prevents the occurrence of convex deformation, wrinkles, etc. It can be provided without using a separate mold.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a method for forming a polyimide cylindrical film showing an embodiment of the present invention, wherein (a) shows a state in which a polyamic acid cylindrical film is formed, and (b) shows a polyamic acid A state in which a cylindrical cylindrical film is formed by heat-curing the cylindrical film is shown.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical shaping | molding die 2 Damping 3 Polyamic-acid cylindrical film 4 Polyimide cylindrical film 5 Non-shrinkable heat-resistant member

Claims (10)

回転する円筒成形型の内面にポリアミド酸溶液を塗布した後加熱乾燥してポリアミド酸円筒膜を形成し、続いて、このポリアミド酸円筒膜を、その両端及び両端近傍の内側部分を非収縮性耐熱部材で円周方向に覆うようにして、加熱硬化させることを特徴とするポリイミド円筒膜の形成方法。  A polyamic acid solution is applied to the inner surface of a rotating cylindrical mold and then dried by heating to form a polyamic acid cylindrical film. Subsequently, this polyamic acid cylindrical film is heat-resistant and non-shrinkable at both ends and inside portions near both ends. A method for forming a polyimide cylindrical film, characterized by covering with a member in the circumferential direction and curing by heating. 非収縮性耐熱部材が表面にフッ素樹脂を被覆した金属リングであることを特徴とする請求項1に記載のポリイミド円筒膜の形成方法。  2. The method for forming a polyimide cylindrical film according to claim 1, wherein the non-shrinkable heat-resistant member is a metal ring having a surface coated with a fluororesin. 非収縮性耐熱部材が表面に熱硬化性接着剤を被覆した金属箔であることを特徴とする請求項1に記載のポリイミド円筒膜の形成方法。  The method for forming a polyimide cylindrical film according to claim 1, wherein the non-shrinkable heat-resistant member is a metal foil having a surface coated with a thermosetting adhesive. 円筒成形型がその内面に離型膜を有することを特徴とする請求項1ないし3のいずれかに記載のポリイミド円筒膜の形成方法。  4. The method for forming a polyimide cylindrical film according to claim 1, wherein the cylindrical mold has a release film on its inner surface. 離型膜がフッ素樹脂皮膜よりなることを特徴とする請求項4記載のポリイミド円筒膜の形成方法。  The method for forming a polyimide cylindrical film according to claim 4, wherein the release film is made of a fluororesin film. 離型膜が多孔性の陽極酸化皮膜及び該陽極酸化皮膜上に形成されたフッ素樹脂皮膜よりなり、そして、該フッ素樹脂皮膜表面がバフ研磨処理されていることを特徴とする請求項4記載のポリイミド円筒膜の形成方法。  The release film comprises a porous anodic oxide film and a fluororesin film formed on the anodized film, and the surface of the fluororesin film is buffed. Method for forming a polyimide cylindrical film. 円筒成形型が離型性材料で構成されていることを特徴とする請求項1ないし3のいずれかに記載のポリイミド円筒膜の形成方法。  4. The method for forming a polyimide cylindrical film according to claim 1, wherein the cylindrical mold is made of a releasable material. 離型性材料がガラスであることを特徴とする請求項7記載のポリイミド円筒膜の形成方法。8. The method for forming a polyimide cylindrical film according to claim 7, wherein the releasable material is glass. 円筒成形型の両端近傍内面にポリアミド酸溶液の流動を防止するための堰止めを着脱可能に設けたことを特徴とする請求項1ないし8のいずれかに記載のポリイミド円筒膜の形成方法。 9. The method for forming a polyimide cylindrical film according to claim 1, wherein a damming member for preventing the flow of the polyamic acid solution is detachably provided on the inner surfaces near both ends of the cylindrical mold. 堰止めを取り除いた後ポリアミド酸円筒膜乾燥することを特徴とする請求項9に記載のポリイミド円筒膜の形成方法。The method for forming a polyimide cylindrical film according to claim 9, wherein the polyamide acid cylindrical film is dried after the weir is removed.
JP19895499A 1999-07-13 1999-07-13 Method for forming polyimide cylindrical film Expired - Lifetime JP3863687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19895499A JP3863687B2 (en) 1999-07-13 1999-07-13 Method for forming polyimide cylindrical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19895499A JP3863687B2 (en) 1999-07-13 1999-07-13 Method for forming polyimide cylindrical film

Publications (2)

Publication Number Publication Date
JP2001026025A JP2001026025A (en) 2001-01-30
JP3863687B2 true JP3863687B2 (en) 2006-12-27

Family

ID=16399712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19895499A Expired - Lifetime JP3863687B2 (en) 1999-07-13 1999-07-13 Method for forming polyimide cylindrical film

Country Status (1)

Country Link
JP (1) JP3863687B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002240063A (en) * 2001-02-20 2002-08-28 Kanegafuchi Chem Ind Co Ltd Polyimide belt and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001026025A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP4094457B2 (en) Method for producing fluororesin-coated roller and fluororesin-coated roller
JP3863687B2 (en) Method for forming polyimide cylindrical film
JP2003084593A (en) Endless belt and manufacturing method therefor
JP2000108223A (en) Manufacture of rubber-coated roller
JP3667661B2 (en) Manufacturing method of polyimide sleeve
JP4057708B2 (en) Coating type and endless belt manufacturing method
JP2002079535A (en) Cylindrical molding mold, its production method, and method for producing cylindrical film
JP4768249B2 (en) Cylindrical curing mold for forming polyimide cylindrical cured film from demolded polyamic acid cylindrical coating film, and method for producing polyimide cylindrical cured film using the same
JP4766189B1 (en) Endless belt manufacturing method
JP2001158023A (en) Coating mold for centrifugal molding, method for centrifugal molding, and method for manufacturing endless belt
JP3976392B2 (en) Polyimide coating mold and manufacturing method thereof, and manufacturing method of polyimide endless belt
JP2007296839A (en) Cylindrical core body and method for manufacturing endless belt using cylindrical core body
JP3856629B2 (en) Manufacturing method of endless belt
JP4051160B2 (en) Endless belt manufacturing method
JP2912922B2 (en) Manufacturing method for tubular objects
JP2004223963A (en) Method for forming fluororesin coated layer, and fluororesin coated roller and belt
JP3810613B2 (en) Endless belt molding application mold and endless belt molding method
JP4155478B2 (en) Manufacturing method of endless resin belt and jig for manufacturing the same
JP2001252926A (en) Cylindrical mold, method of manufacturing the same, and method for manufacturing cylindrical film
JP2007296838A (en) Cylindrical core body and method for producing endless belt using the core body
JP2001018192A (en) Synthetic resin cylindrical film cutting method and cylindrical molding die for cutting synthetic resin cylindrical film
JP4609254B2 (en) Recycling method of cylindrical core and manufacturing method of endless belt
JP3833401B2 (en) Method for manufacturing fluororesin-coated roller
JPS61169863A (en) Production of fixing roll
JPH0312543B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6