JP3809046B2 - 像振れ補正装置 - Google Patents

像振れ補正装置 Download PDF

Info

Publication number
JP3809046B2
JP3809046B2 JP2000108314A JP2000108314A JP3809046B2 JP 3809046 B2 JP3809046 B2 JP 3809046B2 JP 2000108314 A JP2000108314 A JP 2000108314A JP 2000108314 A JP2000108314 A JP 2000108314A JP 3809046 B2 JP3809046 B2 JP 3809046B2
Authority
JP
Japan
Prior art keywords
shake
optical axis
blur
image blur
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000108314A
Other languages
English (en)
Other versions
JP2000352733A (ja
Inventor
行夫 上中
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP2000108314A priority Critical patent/JP3809046B2/ja
Publication of JP2000352733A publication Critical patent/JP2000352733A/ja
Application granted granted Critical
Publication of JP3809046B2 publication Critical patent/JP3809046B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、手ぶれ等に起因して光学機器が振動した場合に、観察体像のぶれを補正する像振れ補正装置に関する。
【0002】
【従来の技術】
従来の光学機器に備えられた像振れ補正装置は、ぶれ検出手段として設けられた角速度センサからの出力信号を積分して光学機器のぶれを算出し、光学機器のぶれによる観察体像のぶれが無くなるよう撮影光学系の光路中に設けられた補正光学系を駆動する。その結果、手振れ等に起因する光学機器の受像面、例えばカメラのフィルム面や光電変換素子の受光面の上での被写体像の移動、即ち像振れが補正される。実際には、補正光学系の駆動機構が有する周波数特性により、像振れに対して補正光学系は多少の位相差を伴って追従する。
【0003】
【発明が解決しようとする課題】
像振れの周波数が高くなると、補正光学系の駆動に位相遅れが発生し、像振れに対する補正光学系の追従性は低下してしまう。このような補正光学系の追従性の低下により、本来は像振れに追従するよう駆動されるべき補正光学系が像振れとは反対方向に駆動されるという現象が生じる。その結果、像振れ補正装置を作動させない場合よりも像振れが大きくなるという問題がある。
【0004】
例えば、カメラを三脚で固定して撮影する際、シャッタボタンを押すとレリーズショックによる振動に三脚が共振し、レリーズショックの振動が増幅されてカメラ本体に伝わる。従って、カメラを三脚で固定し、像振れ補正機能を作動させたままシャッタボタンを押すと、上述のように補正光学系が像振れを増幅し、撮影画像の質を低下させてしまう。
【0005】
本発明は、以上の問題を解決するものであり、像振れの周波数に応じて制御可能な像振れ補正装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明にかかる像振れ補正装置は、光学機器の光軸のぶれを検出するぶれ検出手段と、光軸のぶれを補正するための補正光学系と、補正光学系を駆動する駆動手段と、光軸のぶれに起因する観察体像のぶれが無くなるよう駆動手段を制御する制御手段と、所定時間毎に実行され、ぶれ検出手段により検出される光軸のぶれの方向の反転を検知するぶれ反転検知手段と、ぶれ反転検知手段により検知された前回の光軸のぶれの方向の反転からぶれ反転検知手段の現在の実行において検出される光軸のぶれの方向の反転までの時間間隔を計測する計測手段とを備え、制御手段は、その時間間隔が所定値より小さい場合、駆動手段を停止することを特徴とし、好ましくはこの所定値は25ミリ秒程度である。
【0007】
好ましくは、ぶれ反転検知手段は、ぶれ反転検知手段が前回実行された時点での光軸のぶれの量と、ぶれ反転検知手段が現在実行されている時点での光軸のぶれの量とを比較することにより光軸のぶれの方向を判別して記憶するぶれ方向記憶手段を備え、現在のぶれ反転検知手段の実行時においてぶれ方向記憶手段により判別される光軸のぶれの方向と、前回のぶれ反転検知手段の実行時においてぶれ方向記憶手段により記憶された光軸のぶれの方向とが異なる場合、光軸のぶれの方向の反転の発生を検知する。
【0008】
好ましくは、ぶれ方向記憶手段は、前回のぶれ反転検知手段の実行において検出された光軸のぶれの量に対する、現在のぶれ反転検知手段の実行において検出される光軸のぶれの量の増減関係を判別することにより、光軸のぶれの方向を判断する。
【0009】
ぶれ検出手段は異なる2軸線方向における光軸のぶれを検出することができ、例えば、2軸線方向のいずれか一方の軸線方向に関するぶれ反転検知手段の検知結果に基づいて計測手段により計測される時間間隔が所定時間より小さい場合、制御手段は、2軸線方向の双方において像振れ補正制御を停止する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。尚、本明細書において、交換レンズの光軸が水平となるようにカメラを水平に構えた状態においてカメラのフィルム面に平行な面を「垂直面」と呼び、この垂直面内で交換レンズの撮影光軸と交差し、かつカメラを鉛直方向において分割する軸線を「水平軸線a」と呼び、カメラを左右に分割する軸線を「垂直軸線b」と呼ぶこととする。
【0011】
図1は、本実施形態にかかる像振れ補正機能を有するカメラ1を示す。カメラ1は、対物光学系2、像振れ補正手段40、クイックリターンミラー3、ファインダー光学系4、AFセンサ7、サブミラー8、シャッターボタン20、被写体像が形成されるフィルムF、カメラ1全体を制御する制御手段30を備える。像振れ補正手段40には補正レンズ401(補正光学系)が備えられる。カメラ1において、撮影光学系は対物光学系2と補正レンズ401で構成される。被写体光は対物光学系2、補正レンズ401を通過後、クイックリターンミラー3に入射する。クイックリターンミラー3で反射される被写体光はファインダー光学系4により撮影者の眼に導かれ、クイックリターンミラー3を透過する被写体光はサブミラー8で反射されAFセンサ7へ導かれる。尚、像振れ補正手段40及び補正レンズ401の詳細については後述する。
【0012】
また、カメラ1には、被写体に対する撮影光学系のぶれを検出するぶれ検出手段として機能する角速度センサ51、52、撮影光学系中のレンズの光軸方向の移動を検出するレンズ移動検知手段60が設けられている。
【0013】
シャッターボタン20は2段階のスイッチになっており、1段押し込まれると測光スイッチがONし、2段押し込まれるとレリーズスイッチがONする。これらのスイッチのON/OFF情報は、制御手段30に入力される。
【0014】
角速度センサ51は、図1の上下方向(垂直方向)のカメラの回転運動の角速度を検出するもので、手ぶれなどによる該方向での角速度に応じた電圧を制御手段30へ出力する。角速度センサ52は、図1の紙面に直交する方向(水平方向)でのカメラの回転運動の角速度を検出するセンサで、検出した角速度に応じた電圧を制御手段30へ出力する。
【0015】
像振れ補正手段40は、上述のように撮影光学系の一部を構成し、撮影光学系の光軸を偏向するための補正レンズ401と、補正レンズ401を駆動する駆動手段とから構成されている。駆動手段は、制御手段30の指令に基づいて撮影光学系により形成される被写体像のフィルム面F上での移動を相殺するように補正レンズ401を駆動し、撮影光学系の光軸を紙面に垂直な方向および紙面に平行な方向に、互いに独立に偏向する。
【0016】
制御手段30は、レンズ移動検知手段60からレンズの移動が検知された際、および撮影の実行中に、角速度センサ51、52からの入力信号に基づいて、像振れ補正手段40を駆動することによりフィルム面F上、およびファインダー視野内での像振れを補正する。
【0017】
対物光学系2は、図1では1枚のレンズとして表わされているが、実際には複数枚のレンズまたは複数のレンズ群で構成され、フォーカシング、あるいはズーミングのためにその一部、または全部が光軸方向に移動可能である。本実施形態では、レンズ移動検知手段60は、対物光学系2を構成するレンズのうち、フォーカシングに関与するレンズ群(以下、「フォーカシングレンズ」と呼ぶ)の移動を検知している。
【0018】
観察時、クイックリターンミラー3は図1に示す位置に位置決めされている。従って、それぞれ撮影光学系の一部を構成する対物光学系2と像振れ補正手段40の補正レンズ401を介して入射する被写体の光束は、クイックリターンミラー3で反射され焦点板Bへ導かれる。焦点板B上の被写体像はペンタプリズム4により像反転がなされ、観察者はアイピースレンズ9を介して焦点板B上の像を正立像として観察することができる。すなわち、本実施形態においては、ファインダ光学系は、フォーカシングレンズを含む対物光学系2、補正レンズ401、クイックリターンミラー3、焦点板B、ペンタプリズム4、アイピースレンズ9を備えている。
【0019】
クイックリターンミラー3及びサブミラー8は、撮影時にはミラー駆動機構(図示せず)により焦点板Bと対向する位置に待避される。その結果、撮影時、被写体の光束は、対物光学系2、補正レンズ401を介してフィルム面Fへ導かれ、フィルム面F上にて被写体像が形成される。このようにして、被写体像はフィルム面Fに感光され被写体像の記録がなされる。
【0020】
フォーカシングレンズは、鏡筒5を回転させることにより図示せぬ公知のカム機構により光軸方向に移動するよう構成されている。鏡筒5は、カメラ1のボディ若しくはレンズユニットに設けられたモータにより、あるいは撮影者自身のフォーカシング操作環55の手動操作により、回転操作される。
【0021】
AFセンサ7は、位相検出方式により撮影光学系のデフォーカス量を検出する従来公知のセンサである。AFセンサ7内の撮像素子(図示せず)は、焦点板B及びフィルム面Fと光学的に等価な位置に配設されている。従って、焦点板B上の焦点状態はフィルム面F上の焦点状態と等価であり、撮影光学系により形成される焦点板B上の像が結像しているとき、換言すれば撮影光学系による焦点位置が焦点板Bと一致したときが合焦状態である。
【0022】
AFセンサ7は、撮影光学系により形成されるフィルム面F(予定焦点面)上の像の焦点状態をデフォーカス量として検出する。すなわち、AFセンサ7は、現時点における撮影光学系により形成される像の焦点位置が、焦点板B若しくはフィルム面Fから光軸上どの方向にどの程度ずれているかを示すデフォーカス量を検出する。制御手段30は、AFセンサ7により検出されたデフォーカス量に基づいて、フォーカシングレンズの駆動方向及び駆動量を演算し、フォーカシングレンズは制御手段30の演算結果に基づいて駆動され、自動焦点調整が行なわれる。
【0023】
レンズ移動検知手段60は、鏡筒5の外周に設けられたラック5aに噛合するピニオンギア61と、このピニオンギア61と同軸で設けられたスリット板62と、このスリット板62を挟んで設けられたフォトインタラプタ63とから構成される。スリット板62には、回転軸を中心として放射状に多数のスリットが設けられている。フォトインタラプタ63は、スリット板62を挟んで対向する発光部63aおよび受光部63bから構成されており、受光部63bからはスリット板62の回転に伴って光の明暗に応じた周期的な信号が出力される。上述のように、鏡筒5は、オートフォーカスの場合はカメラ1のボディ若しくはレンズユニットに設けられたモータにより回転され、マニュアルフォーカスの場合は撮影者自身の手動により回転操作される。従って、フォーカシングによる鏡筒5の回転に連動するスリット板62の回転に応じて、受光部63bからパルス信号が出力される。
【0024】
図2は、像振れ補正手段40の構成を示す。補正光学系を構成する補正レンズ401は、レンズ枠410にはめ込まれた状態で第1回動板420に固定され、第1回動板420は回動軸421を介して第2回動板430に回動可能に取り付けられる。さらに第2回動板430は、撮影光学系の光軸Oを中心として回動軸421とは90度離れて突設された回動軸431を介して基板440に回動可能に取り付けられる。基板440は、カメラ1に固定されている。
【0025】
上記の構成により、補正レンズ401は、第1回動版420、第2回動板430の回動により、光軸Oに対して垂直な面内で図中の矢印H、Vで示した方向に変位可能に保持される。
【0026】
レンズ枠410は、大径部411と小径部412とを有し、小径部412が第1回動板420の開口部422に嵌合される。第1回動板420の回動軸421は、第2回動板430に形成された軸孔439に挿入される。開口部422を挟んで回動軸421の反対側には、ネジ孔423が形成されたアーム424が設けられている。
【0027】
ネジ孔423には、フレキシブルジョイントを介してモータ425の回転軸に連結されたネジ部材426が螺合している。モータ425は、第2回動板430上に固定されている。モータ425が駆動されると、第1回動板420は、回動軸421を中心にネジ部材426の回転方向に応じて矢印Vで示す方向に回動駆動される。
【0028】
駆動アーム424の先端には、永久磁石427が設けられており、第2回動板430上には、永久磁石427の位置を検出するMR(Magnetic Resistance)センサ428が、永久磁石427と対向して設けられている。制御手段30は、MRセンサ428の出力信号によりレンズ401の矢印V方向の変位を検知する。
【0029】
第2回動板の回動軸431は、基板440に形成された軸孔449に挿入される。第2回動板430には小径部412が挿通される開口部432が形成されている。開口部432は、第1回動板420を第2回動板430に組み付けた際に、第1回動板420の回動による小径部412の移動を妨げない大きさになっている。
【0030】
開口部432を挟んで回動軸431の反対側には、ネジ孔433が形成された駆動アーム434が設けられている。ネジ孔433には、フレキシブルジョイントを介してモータ435の回転軸に連結されたネジ部材436が螺合している。モータ435が駆動されると、第2回動板430は、回動軸431を中心に、ネジ部材436の回転方向に応じて矢印Hで示す方向に回転駆動される。
【0031】
駆動アーム434の先端には、永久磁石437が設けられており、基板440上には、MRセンサ438が配されている。制御手段30は、MRセンサ438の出力信号によりレンズ401の矢印H方向の変位を検知する。
【0032】
基板440には小径部412が挿通される開口部442が設けられている。開口部442は、第1、第2回動板の回動による小径部412の移動を妨げない大きさとなっている。
【0033】
図3は、上述のレンズ枠410、第1回動板420、第2回動板430、および基板440が組み合わされた状態で像振れ補正手段40を対物光学系2の側から見た図である。図3は、補正レンズ401の光軸が対物光学系2(撮影光学系の一部を構成する他の光学系)の光軸に一致する基準状態を示す。基準状態では、第1回動板420の回動軸421の中心、撮影光学系の光軸O、永久磁石427、MRセンサ428が直線a上に並ぶ。同様に、第2回動板430の回動軸431の中心、撮影光学系の光軸O、永久磁石437、MRセンサ438が直線b上に並ぶ。
【0034】
図4は、前述した制御手段30を構成するCPU31の入出力信号を説明するブロック図である。シャッターボタン20に連動する測光スイッチ21、レリーズスイッチ22のON/OFFの情報は、それぞれ1ビットのデジタルパスとしてCPU31のポートPI1、PI2に入力される。角速度センサ51、52の電圧出力は、CPU31のA/D変換ポートAD2、AD1に、MRセンサ428、438からの電圧出力は、A/D変換ポートAD4、AD3にそれぞれ入力される。
【0035】
CPU31のD/A出力ポートDA1、DA2には、第2回動板430を駆動するモータ435および第1回動板420を駆動するモータ425が、それぞれモータ駆動回路462、461を介して接続されている。CPU31は、上述の入力信号に基づいて像振れを補正するために必要な補正レンズ401の移動量をモータ435、モータ425の駆動量に換算して演算し、ポートDA1、DA2から駆動量に対応した電圧を出力する。
【0036】
シャッターボタン20の半押しにより測光スイッチ21がオンし、第1の入力ポートPI1にオン信号が入力されると、CPU31は、図示しない測光機構を介して被写体光の測光動作を実行して露光値(Ev)を演算し、この露光値に基づき撮影に必要となる絞り値(Av)及び露出時間(Tv)を演算する。また、シャッターボタン20の全押しによりレリーズスイッチ22がオンし、第2の入力ポートPI2にオン信号が入力されると、CPU31は、撮影レンズの図示しない絞りを上述した絞り値に応じて絞り込み駆動し、クイックリターンミラー3を跳ね上げ駆動すると共に、図示しないシャッタ機構を所定のシャッタ速度でレリーズ駆動する。
【0037】
次に、図5〜図10に示すフローチャートを参照して、CPU31における手振れよる像振れを補正するための像振れ補正制御動作を説明する。
【0038】
カメラ1のメイン電源スイッチ(図示せず)がオンされると、CPU31はステップS100において初期設定処理として、デジタル変数値V3a、水平軸線方向のデジタル揺動変位値V4a、デジタル変数値V3b、及び垂直軸線方向のデジタル揺動変位値V4bにそれぞれ「0」をセットしクリアする。デジタル変数値V3aは、角速度センサ52から出力されるヌル電圧に基づく水平軸線方向の直流成分(即ち、手振れ検出信号の水平軸線方向のオフセット値)やカメラ1のゆっくりしたぶれに基づく水平軸線方向の直流成分を示し、デジタル変数値V3bは、角速度センサ51から出力されるヌル電圧に基づく垂直軸線方向の直流成分(即ち、手振れ検出信号の垂直軸線方向のオフセット値)やカメラ1のゆっくりしたぶれに基づく垂直軸線方向の直流成分を示す。
【0039】
ステップS102では、後述するぶれ周波数チェックルーチンの処理で用いられるフラグFa、Fb、STOP及び現在時間TCにそれぞれ「0」がセットされ初期化される。フラグFaは水平方向の像振れ周波数のチェック処理の実行が初回か、2回目以降かを示すフラグであり、フラグFbは垂直方向の像振れ周波数のチェック処理の実行が初回か、2回目以降かを示すフラグである。それぞれ「0」がセットされている場合は初回の実行を示し、「1」がセットされている場合は2回目以降の実行であることを示す。また、補正停止フラグSTOPは、後述する像振れ補正を行なうか否かを判断するフラグであり、「1」がセットされている場合は、像振れ補正は行なわないことを示す。尚、現在時間TCについては、ぶれ周波数チェックルーチンの説明時に詳述する。
【0040】
次いでステップS104で、1msec(ミリ秒)が経過したか否かがチェックされ、経過した場合のみステップS106へ進む。すなわち、ステップS106以降の処理は1msec毎に実行される。
【0041】
ステップS106では、水平軸線aに沿う手振れ検出信号としての角速度センサ52からのアナログ検出信号を、アナログ/デジタル変換入力端子AD1から読み込み、読み込んだアナログ検出信号をデジタル変換し、水平軸線方向のデジタル検出値V1aを算出する。同様に、垂直軸線bに沿う手振れ検出信号としての角速度センサ51からのアナログ検出信号を、アナログ/デジタル変換入力端子AD2から読み込み、読み込んだアナログ検出信号をデジタル変換し、垂直軸線方向のデジタル検出値V1bを算出する。
【0042】
ステップS108において、上述した直流成分による影響を除去するために、水平軸線方向のデジタル検出値V1aから直流成分を示すデジタル変数値V3aを減じ、水平軸線aに沿う角速度V2aを算出し、垂直軸線方向のデジタル検出値V1bから直流成分を示すデジタル変数値V3bを減じ、垂直軸線bに沿う角速度V2bを算出する。
【0043】
ステップS110において、角速度値V2aを第1の係数K1aで割った値をデジタル変数値V3aに加えることにより、新たにデジタル変数値V3aを演算し直して規定し、同様に、角速度値V2bを第1の係数K1bで割った値をデジタル変数値V3bに加えることにより、新たにデジタル変数値V3bを演算し直して規定する。
【0044】
次いでステップS112で測光スイッチ21がオンされているか否かを判断し、測光スイッチ21がオンされない限り、ステップS104〜ステップS110の処理を繰り返し実行する。即ち、デジタル検出値V1a(V1b)とデジタル変数値V3a(V3b)との差をとるための差動増幅器と、角速度V2a(V2b)の直流成分を除去する、デジタル変数値V3a(V3b)を出力するためのハイパスフィルタとから構成されるいわゆる負帰還回路と同等の機能を実行する。以上のように、デジタル変数値V3a、V3bは、初回の演算ではステップS100で「0」がセットされ、2回目以降の繰り返し演算においてはステップS110で演算される値が用いられる。
【0045】
尚、第1の係数K1a、K1bは比較的小さな値(具体的には後述する第2の係数K2a、K2bよりもそれぞれ小さな値)に設定されている。この結果、手振れが無い状態にもかかわらず、直流成分であるヌル電圧等が存在することにより角速度センサ51、52から出力される値(即ち、角速度センサ51、52で検出される角速度の値)が「0」とならない状態から、負帰還回路の機能を実現する上述のループ処理により残存直流出力成分が実質的に0レベルになるまでの時間を、極力短く設定することができる。
【0046】
この結果、メイン電源スイッチがオンされてから、シャッターボタン20が半押しされて測光スイッチ21がオンするまでの間において、例えば、カメラのメイン電源投入直後や、構図の決定・変更のためにカメラを一方向へ大きくパンさせた後等において、残存直流出力成分が実質的に0レベルになるまでに長い時間がかかる等の不具合が解消されることになり、速写性を損なってシャッタチャンスを逃す等の不都合が回避される。
【0047】
測光スイッチ21がオンされると、図6のステップS114へ進む。ステップS114では、図示しない測光機構を介して被写体光の測光動作を実行して露光値(Ev)を演算し、この露光値に基づき撮影に必要となる絞り値(Av)及び露出時間(Tv)を演算する。
【0048】
次いでステップS116で、1msecが経過したか否かがチェックされ、経過した場合のみステップS118へ進む。すなわち、ステップS118以降の処理は1msec毎に実行される。ステップS118では、ステップS106と同様に、水平軸線方向のデジタル検出値V1a及び垂直軸線方向のデジタル検出値V1bを算出し、ステップS120へ進む。
【0049】
ステップS120ではステップS108と同様、水平軸線方向のデジタル検出値V1aから直流成分を示すデジタル変数値V3aを減じ、水平軸線方向の角速度値V2aを算出すると共に、垂直軸線方向のデジタル検出値V1bから直流成分を示すデジタル変数値V3bを減じ、垂直軸線方向の角速度値V2bを算出する。
【0050】
次いでステップS122において、デジタル変数値V3aに対して角速度値V2aを第2の係数K2aで割った値を加えることにより、新たにデジタル変数値V3aを演算し直して規定し、デジタル変数値V3bに対して角速度値V2bを第2の係数K2bで割った値を加えることにより、新たにデジタル変数値V3bを演算し直して規定する。以上の処理により、カメラのゆっくりとした手振れに基づく像振れをも補正することができる。
【0051】
この後、ステップS124でレリーズスイッチ22がオンされているか否かを判断し、レリーズスイッチ22がオンされていない場合はステップS112へ戻り、以降の処理を繰り返す。すなわち、測光スイッチ21がオンされてからレリーズスイッチ22がオンされるまでの間、ステップS114〜S122までの処理が繰り返し実行される。ステップS124でレリーズスイッチ22がオンされたことが確認されると、図7のステップS126へ進む。尚、レリーズスイッチ22がオンする前に測光スイッチ21がオフされた場合は、上述した図5のステップS104〜S110の繰り返しループが再度実行される。
【0052】
ステップS122で用いられるデジタル変数値V3a、V3bは、初回の演算ではステップS110で演算された値が用いられる。即ち、角速度センサ51、52のヌル電圧等の直流成分(手振れ検出信号のオフセット量)は予め除去されている。一方、第2の係数K2a、K2bは比較的大きな値(具体的には第1の係数K1a、K1bよりもそれぞれ大きな値)に設定されている。従って、上述したハイパスフィルタは、デジタル検出値V1a(V1b)をフィルタリングするに際し、それぞれの低周波数領域までを通過帯域とされる。
【0053】
以上のように、ステップS120において、デジタル変数値V3a(V3b)との差分としてヌル電圧に基づく直流成分が除去された角速度値V2a(V2b)が演算される。従って、ステップS120で算出された角速度値V2a(V2b)は、角速度センサ52(51)の正規の出力を細かな手振れはもちろんのこと、ゆっくりした手振れをも含んだ状態で手振れを適正に反映させた値、即ち、検出した手振れの方向及び大きさを正確にそのまま表わした値となる。
【0054】
レリーズスイッチ22がオンされると、図7のステップS126において、撮影レンズの絞り(図示せず)を上述した絞り値となるよう絞り込み駆動し、クイックリターンミラー3を跳ね上げ駆動し、シャッタ機構(図示せず)を所定のシャッタ速度でレリーズ駆動する。
【0055】
次いでステップS128で、1msecが経過したか否かがチェックされ、経過した場合のみステップS130へ進む。すなわち、ステップS130以降の処理は1msec毎に実行される。ステップS130以降の処理において、像振れ補正手段40による像振れ補正動作が行われる。
【0056】
ステップS130で現在時間TCの値が1インクリメントされる。すなわち、現在時間TCにはレリーズスイッチ22がオンしてからの経過時間が1msec単位で格納される。
【0057】
ステップS132で、ステップS106と同様、水平軸線方向のデジタル検出値V1a及び垂直軸線方向のデジタル検出値V1bを算出する。次いでステップS134で、ステップS108及びS120と同様、水平軸線方向のデジタル検出値V1aから直流成分を示すデジタル変数値V3aを減じ、水平軸線方向の角速度値V2aを算出すると共に、垂直軸線方向のデジタル検出値V1bから直流成分を示すデジタル変数値V3bを減じ、垂直軸線方向の角速度値V2bを算出する。
【0058】
次いで、ステップS136では、ゆっくりした手振れに起因するカメラの像振れをも補正できるよう、デジタル変数値V3aに対して角速度値V2aをステップS122と同一の第2の係数K2aで割った値を加えることにより、新たにデジタル変数値V3aを演算し直して規定し、デジタル変数値V3bに対して角速度値V2bをステップS122と同一の第2の係数K2bで割った値を加えることにより、新たにデジタル変数値V3bを演算し直して規定する。
【0059】
ステップS138では、水平軸線方向の角速度値V2aを積分処理することにより、第2の回動板430の水平軸線aに沿う揺動位置を規定するためのデジタル揺動変位値V4aを算出し、垂直軸線方向の角速度値V2bを積分処理することにより、第1の回動板420の垂直軸線bに沿う揺動位置を規定するためのデジタル揺動変位値V4bを算出する。
【0060】
ステップS138の積分処理において、角速度値V2a(V2b)を積分することにより直接的に算出される積分値の大きさ(手振れ等による撮影光学系の光軸の傾き)を結像面上における像振れの大きさに変換すると共に、角速度値V2a(V2b)の発生方向(すなわち、像振れの発生方向)をそれぞれ逆転した状態で設定する。これにより、ステップS138で算出されるデジタル揺動変位値V4a(V4b)は、結像面における像振れの補正値として機能する。
【0061】
デジタル揺動変位値V4a及びV4bが算出されたら、ステップS140へ進み、ぶれ周波数チェックルーチン(BFSUBルーチン)が実行される。ここで、本実施形態における像振れのチェックについて図11を用いて説明する。特性曲線L1は、一般的な手振れに対応した像振れのぶれ量及びぶれ方向の変化を示す特性曲線であり、説明の簡略化のため正弦波形として示している。極点R1及びR2は、特性曲線L1を時間で微分した値、すなわちぶれ速度が「0」となる点であり、この極点R1、R2を境に像振れのぶれ方向は反転する。一般的な手振れの最大周波数は20Hzである。すなわち、1周期Pは約50ミリ秒であり、極点R1からR2に到るまでの時間Qは約25ミリ秒である。
【0062】
従って、像振れのぶれ方向の反転が一度発生してから再度発生するまでの時間を計測し、その時間が25ミリ秒以上であるか否かを確認することにより、その像振れは手振れに起因するものであるか否か判断することができる。ぶれ方向の反転から反転までの時間が25ミリ秒以上であれば手振れによる像振れが発生した可能性が高く、25ミリ秒より短ければ手振れ以外の要因により像振れが発生した可能性が高い。また、像振れの波形にはノイズ等による小さな乱れが含まれる場合がある。従って、本実施形態では、像振れのぶれ方向の反転から反転までの時間が25msecより短く、かつぶれ幅が所定の閾値より大きい場合に、20Hzより高い周波数の像振れが発生しており、手振れ以外の要因により発生した像振れであると判断する。
【0063】
図9及び図10は、ぶれ周波数チェックルーチン(BFSUBルーチン)の処理手順を示すフローチャートである。図9は水平軸線方向において発生する像振れをチェックする手順を示し、図10は垂直軸線方向において発生する像振れをチェックする手順を示す。
【0064】
図9のステップS200でフラグFaの値がチェックされ、本ルーチンの実行が初回か、2回目以降かが判断される。図5のステップS102の初期処理でフラグFaには既に「0」がセットされている。従って、フラグFaが「0」であれば本ルーチンの実行は初回であると判断し、ステップS202へ進む。ステップS202では次回の本ルーチンの実行に備えフラグFaに「1」をセットする。
【0065】
次いでステップS204で本ルーチンで用いられる各変数に値が代入される。フラグUPaには、像振れのぶれ方向が水平軸線方向における第1の方向に向かっている場合に「1」がセットされる。フラグDOWNaには、像振れのぶれ方向が、フラグUPaに「1」がセットされる場合とは反対の、水平軸線方向における第2の方向に向かっている場合に「1」がセットされる。また、開始時間TOaには、水平軸線方向の像振れのぶれ方向が前回、反転したときの時間が格納され、前反転時像振れ量SOaには、水平軸線方向の像振れのぶれ方向が前回、反転したときの水平軸線方向のデジタル揺動変位値が格納される。ステップS202を経てステップS204に進んだ場合は、各変数が初期化される。フラグUPa、DOWNaにそれぞれ「0」がセットされ、開始時間TOa及び前反転時像振れ量SOaには、本ルーチンの初回実行時点の現在時間TCの値、デジタル揺動変位値V4aの値が、それぞれ代入される。
【0066】
ステップS204の初期設定が行われるとステップS206へ進み、前揺動変位値V4aoldに現時点の水平軸線方向のデジタル揺動変位値V4aの値が格納され、図10のステップS300へ進む。前揺動変位値V4aoldは、本ルーチンが前回実行された時点における水平軸線方向のデジタル揺動変位値を格納する変数である。
【0067】
ステップS202でフラグFaに「1」がセットされることにより、次回以降の本ルーチンの実行時にはステップS200において2回目以降の実行であると判断される。従って、2回目以降のサブルーチン実行時は、処理は常時ステップS208へ進む。
【0068】
ステップS208では、前揺動変位値V4aoldの値が現在のデジタル揺動変位値V4aより小さいか否かが比較される。前揺動変位値V4aoldがデジタル揺動変位値V4aより小さい場合とは、水平軸線方向の揺動変位値が増加中で像振れのぶれ方向が一方向に向かっている場合である。また、前揺動変位値V4aoldがデジタル揺動変位値V4aより大きい場合とは、水平軸線方向の揺動変位値が減少中で像振れのぶれ方向が、水平軸線方向の揺動変位値が増加中の場合の像振れのぶれ方向とは反対方向に向かっている場合である。本実施形態では、水平軸線方向の揺動変位値が増加中の場合の像振れのぶれ方向を、フラグUPaに「1」をセットする上記第1の方向とし、水平軸線方向の揺動変位値が減少中の場合の像振れのぶれ方向をフラグDOWNaに「1」がセットする上記第2の方向とする。
【0069】
ステップS208において、前揺動変位値V4aoldがデジタル揺動変位値V4aより小さく、像振れのぶれ方向が第1の方向に向かっていることが確認されるとステップS210へ進み、フラグDOWNaの値が「1」が否かチェックされる。上述のように、水平軸線方向の揺動変位値が減少中の場合、フラグDOWNaには「1」がセットされている。すなわち、ステップS210においてフラグDOWNaが「1」である場合とは、前回の本ルーチンの実行時には水平軸線方向の揺動変位値が減少中であったのが、今回の実行時には水平軸線方向の揺動変位値が増加し、像振れのぶれ方向が第2の方向から第1の方向へ反転することを示し、フラグDOWNaが「1」でない場合とは、揺動変位値が増加中であり、像振れのぶれ方向が引き続き第1の方向へ向いていることを示す。フラグDOWNaが「1」の場合、ステップS212へ進む。
【0070】
ステップS210で、フラグDOWNaの値が「1」ではないと確認された場合、ステップS220へ進む。ステップS210でフラグDOWNaの値が「1」ではない場合とは、デジタル揺動変位値が増加中であり、像振れのぶれ方向が第1の方向に引き続き向かっている場合なので、ステップS220で、フラグUPaに「1」をセットし、フラグDOWNaに「0」をセットし、ステップS206へ進む。
【0071】
一方、ステップS208でデジタル揺動変位値V4aが前揺動変位値V4aoldがより大きくないことが確認されるとステップS222へ進み、前揺動変位値V4aoldがデジタル揺動変位値V4aより大きいか否かが確認される。
【0072】
ステップS222で前揺動変位値V4aoldがデジタル揺動変位値V4aより大きいと確認され、デジタル揺動変位値が減少中で像振れのぶれ方向が第2の方向へ向かっていると判断されるとステップS224へ進み、フラグUPaの値が「1」が否かチェックされる。上述のように、ぶれ方向が第1の方向の場合、フラグUPaには「1」がセットされている。すなわち、ステップS224においてフラグUPaが「1」である場合とは、前回の本ルーチンの実行時には水平軸線方向の揺動変位値が増加中であったのが、今回の実行時には水平軸線方向の揺動変位値が減少し、像振れのぶれ方向が第1の方向から第2の方向へ反転することを示し、フラグUPaが「1」でない場合とは、揺動変位値が減少中であり、像振れのぶれ方向が引き続き第2の方向へ向いていることを示す。フラグUPaが「1」の場合、ステップS212へ進む。
【0073】
ステップS224で、フラグUPaの値が「1」ではないと確認された場合、ステップS226へ進む。ステップS224でフラグUPaの値が「1」ではない場合とは、像振れのぶれ方向が引き続き第2の方向へ向いている場合なので、ステップS226で、フラグUPaに「0」をセットし、フラグDOWNaに「1」をセットし、ステップS206へ進む。
【0074】
ステップS222において、前揺動変位値V4aoldがデジタル揺動変位値V4aより大きくない場合とは、前揺動変位値V4aoldとデジタル揺動変位値V4aが等しい場合である。従って、フラグUPa及びDOWNaの変更は行なわずにステップS206へ進む。
【0075】
一方、上述のようにステップS210若しくはS224で像振れのぶれ方向が反転したことが確認され、処理がステップS212へ進むと、ステップS212では、現在時間TCから開始時間TOaを減算し、像振れのぶれ方向が前回反転してから今回反転するまでの時間が算出され経過時間Taに格納される。また、前反転時像振れ量SOaと現在像振れ量V4aの差分の絶対値が差分量Saに格納される。
【0076】
次いでステップS214において経過時間Taの値が「25」以上か否かがチェックされる。経過時間Taが「25」以上の場合とは、像振れのぶれ方向が前回反転してから25msec以上経過して再び反転した場合、すなわち像振れ周波数が20Hz以下の場合である。経過時間Taが「25」より小さい場合とは、像振れのぶれ方向が前回反転してから25msec経過する前に再び反転した場合、すなわち像振れ周波数が20Hzより高い可能性がある場合である。経過時間Taが「25」より小さい場合、ステップS216へ進む。
【0077】
ステップS216では、差分量Saが閾値SSより小さいか否かが確認される。閾値SSは、直流成分によるノイズの影響によりデジタル揺動変位値の値が乱れる場合があることを考慮し、ノイズ成分より大きい値に設定されている。差分量Saが閾値SSより大きい場合、像振れのぶれ方向の反転はノイズ以外の要因による変化を示し、差分量Saが閾値SSより小さい場合、像振れのぶれ方向の反転はノイズによるデジタル揺動変位値の乱れを示す。差分量Saが閾値SSより大きい場合、ステップS218へ進む。
【0078】
処理がステップS218へ進む場合とは、像振れのぶれ方向の反転がノイズによるものではなく、かつ像振れ周波数が20Hzより高い場合である。従って、補正可能範囲を超えた手振れが発生していると判断し、補正停止フラグSTOPに「1」をセットし、ステップS206へ進む。
【0079】
一方、ステップS214で経過時間Taが25msec以上であると確認された場合は、像振れが手振れにより起因するものであり、補正可能な範囲内にあるので補正停止フラグSTOPの値は変更せず、次回の本ルーチンの実行時に備え各変数の初期化を行なうべくステップS204へ進む。また、ステップS214で経過時間Taが25msecより小さいと確認されてもステップS216で差分量Saが閾値SSより小さいと確認された場合は、ぶれ方向の反転がノイズ成分によるデジタル揺動変位値の値の乱れと判断されるので、同様に、補正停止フラグSTOPの値は変更せず、次回の本ルーチンの実行時に備え各変数の初期化を行なうべくステップS204へ進む。
【0080】
尚、本ルーチンの処理手順は、カメラの一般的な使用条件を踏まえ、本ルーチンが始めて実行される時点で、カメラは静止時状態であり、像振れは発生していないことを前提としている。本ルーチンの初回実行時、ぶれ方向を示すフラグUPa及びDOWNaが初期化され、開始時間TOa及びSOaには初回実行の時点の現在時間TC、デジタル揺動変位値V4aが格納される(ステップS204)。その後、本ルーチンが繰り返し実行される過程でフラグUPa及びDOWNaに値がセットされる(ステップS220、S226)。そして、像振れのぶれ方向の反転が初めて確認されると(ステップS210若しくはS224)、その時点の現在時間TCと開始時間TOaに基づいて経過時間Taが算出され、その時点のデジタル揺動変位値V4aとSOaとの差分の絶対値が算出される(S212)。すなわち、1回目の像振れのぶれ方向の反転が検知された場合、ステップS212で本ルーチンの初回実行時の時刻及びデジタル揺動変位値との比較処理が行なわれ、その比較結果に基づいて像振れが手振れに起因するものか否かが判断される。
【0081】
さらに、一回目のぶれ方向の反転が検知された後の本ルーチンの実行時においてぶれ方向の反転が検出されると、ぶれ方向の反転が前回、検出された時点からの経過時間及び、前回の時点における像振れのぶれ量と現時点の像振れのぶれ量との差分が所定の条件を満たすか否かをチェックし、補正駆動を行なうか否かの判断がなされる。
【0082】
一方、実際には、カメラがぶれていて、像振れが起きている状態でカメラに電源が投入され、本ルーチンが実行される場合も考えられる。このような場合、本ルーチンの初回の実行は像振れのぶれ方向の反転と反転の間で行なわれる。従って、本ルーチンの初回の実行後初めてぶれ方向の反転が検出される際、ステップS212で算出される経過時間Ta及び差分量Saは、それぞれカメラの静止状態で本ルーチンが実行開始される場合に比べ小さい値が算出される。その結果、ステップS214でNO、ステップS216でYESとなり、ステップS204へ進み初期設定処理が実行される。これにより、次回以降の本ルーチンの処理において反転が検知された場合、ステップS212において経過時間Ta及び差分量Saの正確な算出が行われる。すなわち、ステップS214及びS216の条件を設定することにより、経過時間Ta及び差分量Saの検出精度が向上する。
【0083】
以上のように、水平軸線方向の像振れのぶれ方向の反転の有無を確認した上で、それぞれの場合に応じた処理を行なった後、次回の本ルーチンの実行に備えるべく、ステップS206で現時点の水平軸線方向のデジタル揺動変位値V4aの値を前揺動変位値V4aoldに格納する。
【0084】
水平軸線方向に沿って発生する像振れのぶれ周波数のチェック処理は以上で終了し、図10のステップS300へ進み、垂直方向に沿って発生する像振れの波形チェックルーチンを開始する。本ルーチンは水平軸線方向の像振れのぶれ周波数のチェックルーチンと同様に行われる。
【0085】
フラグFbの値をチェックすることにより本ルーチンの実行が初回か、2回目以降かを確認する(ステップS300)。垂直方向の像振れのぶれ方向の向きを示すフラグUPbとDOWNb、垂直軸線方向の像振れのぶれ方向が前回、反転したときの時間が格納される開始時間TOb、及び、垂直軸線方向の像振れのぶれ方向が前回、反転したときの垂直軸線方向のデジタル揺動変位値が格納される前反転時像振れ量SObを用いて、垂直軸線方向における像振れのぶれ周波数のチェック処理が実行される。
【0086】
ぶれ方向の波形のチェックは、現時点の垂直軸線方向のデジタル揺動変位値V4bと前揺動変位値V4boldの大小の比較結果(S308、S322)と、前回までの垂直軸線方向の像振れのぶれ方向との組合せから、ぶれ方向が反転しているか、同一方向に向かっているかを判断する(S310、S324)。反転している場合は、前回の反転からの経過時間Tbが25msec経過しておらず(S314でNO)、かつぶれ幅Sbが閾値SS以上であること(S316でNO)を条件として、垂直軸線方向における像振れの周波数が20Hzより高いと判断し、補正停止フラグSTOPに「1」をセットする(S318)。最後に、次回の本ルーチンの実行に備えるべく、現時点の垂直軸線方向のデジタル揺動変位値V4bの値を前揺動変位値V4boldに格納し(S306)、本ルーチンは終了する。
【0087】
図9の水平軸線方向の像振れのぶれ周波数チェックルーチン及び図10の垂直軸線方向の像振れのぶれ周波数チェックルーチンが終了すると、図7のステップS140へ戻り、次いでステップS142で補正停止フラグSTOPの値がチェックされる。補正停止フラグSTOPが「1」でない場合、図8のステップS146へ進み、「1」の場合、ステップS144へ進む。
【0088】
ステップS146で、第2の回動板430の水平軸線方向の現在位置検出信号としてのMRセンサ438のアナログ検出信号を、アナログ/デジタル変換入力端子AD3から読み込み、水平軸線方向のデジタル現在位置検出値V5aを算出し、第1の回動板420の垂直軸線方向の現在位置検出信号としてのMRセンサ428のアナログ検出信号を、アナログ/デジタル変換入力端子AD4から読み込み、垂直軸線方向のデジタル現在位置検出値V5bを算出する。
【0089】
ステップS148で、第2の回動板430の水平軸線方向のデジタル揺動変位値V4aの絶対値が、この像振れ補正手段40で機械的に規定される水平軸線方向の補正可能範囲MAXaを超えているか否かを判別する。水平軸線方向のデジタル揺動変位値V4aの絶対値が補正可能範囲MAXaを超えていない場合、即ち、補正可能範囲MAXa内にある場合、ステップS150へ進む。
【0090】
ステップS150で、第1の回動板420の垂直軸線方向のデジタル揺動変位値V4bの絶対値が、この像振れ補正手段40で機械的に規定される垂直軸線方向の補正可能範囲MAXbを超えているか否かを判別する。垂直軸線方向のデジタル揺動変位値V4bの絶対値が補正可能範囲MAXbを超えていない、即ち補正可能範囲MAXb内にあると判断される場合、ステップS152へ進む。
【0091】
ステップS152では、第2の回動板430の現在位置からの水平軸線方向のデジタル揺動駆動値V6a、即ち、モータ435の駆動量を算出するために、水平軸線方向のデジタル揺動変位値V4aからデジタル現在位置検出値V5aを減算し、第1の回動板420の現在位置からの垂直軸線方向のデジタル揺動駆動値V6b、即ち、モータ425の駆動量を算出するために、垂直軸線方向のデジタル揺動変位値V4bからデジタル現在位置検出値V5bを減算する。
【0092】
次いでステップS154で、水平軸線方向のデジタル揺動駆動値V6aをデジタル/アナログ変換してアナログ信号として第1のデジタル/アナログ変換出力端子DA1から出力すると共に、垂直軸線方向のデジタル揺動駆動値V6bをデジタル/アナログ変換してアナログ信号として第2のデジタル/アナログ変換出力端子DA2から出力する。
【0093】
第1のデジタル/アナログ変換出力端子DA1から出力されたアナログ揺動駆動信号(V6a)はモータ駆動回路462で増幅された後、モータ435に出力される。モータ435は、入力されたアナログ揺動駆動信号に基づき第2の回動板430を揺動駆動する。その結果、補正レンズ401は、手振れにより発生した像振れの水平軸線方向成分をキャンセルするように、水平軸線aに沿って移動駆動される。
【0094】
第2のデジタル/アナログ変換出力端子DA2から出力されたアナログ揺動駆動信号(V6b)はモータ駆動回路461で増幅された後、モータ425に出力される。モータ425は、入力されたアナログ揺動駆動信号に基づき第1の回動板420を揺動駆動する。その結果、補正レンズ401は、手振れにより発生した像振れの垂直軸線方向成分をキャンセルするように、垂直軸線bに沿って移動駆動される。
【0095】
一方、図7のステップS142で補正停止フラグSTOPの値が「1」であると確認され、ステップS144へ進む場合は、水平軸線方向及び垂直軸線方向のデジタル揺動駆動値V6a、V6bに、それぞれ「0」がセットされ、図8のステップS154へジャンプする。即ち、第1及び第2のデジタル/アナログ変換出力端子DA1、DA2の出力値が強制的に「0」に設定される。従って、第1及び第2の回動板420、430は駆動されず、像振れ補正は停止される。
【0096】
ステップS154で第1及び第2のデジタル/アナログ変換出力端子DA1、DA2からアナログ揺動駆動信号(V6a、V6b)を出力した後、ステップS156において、図6のステップS114で算出した露出時間が経過したか否かを判別する。露出時間が経過していない場合、図7のステップS128へ戻り、以降の処理を再度実行し、像振れを補正するための第1及び第2の補正用モータ435、425の駆動制御を実行する。一方、露出時間が経過したと判断された場合はステップS158へ進み、シャッタ機構(図示せず)を閉塞駆動し、可動反射ミラーを反射位置まで戻し駆動し、撮影レンズの絞り(図示せず)を開放駆動し、一連の撮影動作を終了する。
【0097】
ステップS148で、手振れによる像振れが大きく、水平軸線方向のデジタル揺動変位値V4aが補正可能範囲MAXaを超えている、即ち補正可能範囲MAXa内にないと判断される場合、像振れ補正手段40における水平軸線aに沿う像振れ補正動作を中断させるため、ステップS160でデジタル現在位置検出値V5aをデジタル揺動変位値V4aに強制的に設定する。従って、ステップS152において、デジタル揺動駆動値V6aは「0」となり、第1の補正用モータ435の駆動は停止され、補正レンズ401の光軸は現在位置に保持(待機)される。
【0098】
ステップS150で、手振れによる像振れが大きく、垂直軸線方向のデジタル揺動変位値V4bが補正可能範囲MAXbを超えている、即ち補正可能範囲MAXb内にないと判断される場合、像振れ補正手段40における垂直軸線bに沿う像振れ補正動作を中断させるため、ステップS162でデジタル現在位置検出値V5bをデジタル揺動変位値V4bに強制的に設定する。従って、ステップS152において、デジタル揺動駆動値V6bは「0」となり、第2の補正用モータ425の駆動は停止され、補正レンズ401の光軸は現在位置に保持(待機)される。
【0099】
以上のように、水平軸線方向に発生した像振れ及び垂直軸線方向に発生した像振れが、共に、補正可能範囲MAXa、MAXbを超えている場合には、ステップS148及びS150で共にYESと判断され、補正用モータ435、425の駆動が停止され、水平軸線方向及び垂直軸線方向において補正レンズ401の光軸は現在位置に保持(待機)される。
【0100】
尚、水平軸線方向及び垂直軸線方向の少なくとも一方において像振れの大きさが補正可能範囲を超えた状態から、手振れが抑えられ像振れの発生が抑制され、像振れの大きさが補正可能範囲内に復帰すると、復帰した水平軸線方向または垂直軸線方向に関するデジタル揺動変位値V4a(V4b)からデジタル現在位置検出値V5a(V5b)を減じる演算を再開し、対応するモータ435(425)の駆動量を算出する。
【0101】
以上のように、本実施形態によれば、像振れのぶれ方向の反転から反転までの経過時間を計測し所定値と比較することにより、像振れのぶれ周波数を判断し、周波数が20Hzより高い場合、像振れ補正制御を停止する。従って、カメラが三脚に取り付けられていることを検出するための三脚検知スイッチや、像振れ補正を停止するためのスイッチ等の部材を設ける必要がなく、カメラの部品の増加を抑えることができる。また、カメラの使用者がスイッチの切換等の作業を行なう必要もないので操作性もよい。
【0102】
本実施形態では、像振れ補正手段40は対物光学系2とフィルムFの間に配設されているが、これに限るものではない。補正レンズ401が対物光学系2を構成するレンズ群の中のいずれかの位置に介設されるよう、像振れ補正手段40を配設してもよく、また、対物光学系2の前方に配設してもよい。即ち、補正レンズ401が撮影光学系の一部を構成するよう配設されるのであれば、像振れ補正手段40は、対物光学系2に対してどこに配設されてもよい。
【0103】
本実施形態では水平軸線方向若しくは垂直軸線方向のいずれかにおいて像振れのぶれ周波数が20Hzより高い場合に、無駄な駆動を最小限にとどめるために両方向の像振れ補正を停止するがこれに限るものではなく、像振れのぶれ周波数が20Hzより高くなった方向についてのみ像振れ補正を停止してもよい。
【0104】
尚、本実施形態においては手振れ周波数の上限を20Hzと設定しているため、像振れのぶれ方向の反転時間間隔を25ミリ秒としている。しかしながら、手振れ周波数の上限を25Hz程度に高く設定する場合もあり、この場合、ぶれ方向の反転時間間隔は20ミリ秒となる。従って、一般的に反転時間間隔はおおよそ25ミリ秒程度に設定することが望ましい。
【0105】
また、本実施形態は一眼レフレックスカメラを用いて説明したがこれに限るものではなく、本実施形態の像振れ補正制御は像振れ補正機能を備える他の光学機器、例えば双眼鏡等にも適用可能である。
【0106】
【発明の効果】
以上のように、本発明によれば、像振れのぶれ周波数に応じて制御可能な像振れ補正装置が得られる。
【図面の簡単な説明】
【図1】この発明の実施形態にかかる像振れ補正機能を有するカメラの構成の概略を示すブロック図である。
【図2】実施形態のカメラの補正レンズ駆動機構の分解斜視図である。
【図3】図2の駆動機構を撮影レンズの側から見た正面図である。
【図4】実施形態のカメラの制御系の構成を示すブロック図である。
【図5】実施形態のカメラの制御シーケンスのうち測光スイッチがオンするまでの処理手順を示すフローチャートである。
【図6】実施形態のカメラの制御シーケンスのうちレリーズスイッチがオンするまでの処理手順を示すフローチャートである。
【図7】像振れ補正の前半部分の処理手順を示すフローチャートである。
【図8】像振れ補正の後半部分の処理手順とカメラの制御シーケンスの終了部分を示すフローチャートである。
【図9】水平軸線方向における像振れチェックをするルーチンの処理手順を示すフローチャートである。
【図10】垂直軸線方向における像振れチェックをするルーチンの処理手順を示すフローチャートである。
【図11】一般的な手振れに対応した像振れのぶれ量及びぶれ方向の変化を示すグラフである。
【符号の説明】
1 カメラ
2 対物光学系
4 ファインダー光学系
7 AFセンサ
20 シャッターボタン
21 測光スイッチ
22 レリーズスイッチ
30 制御手段
31 CPU
40 像振れ補正手段
51、52 角速度センサ
60 レンズ移動検知手段
401 補正レンズ
420 第1回動板
430 第2回動板
440 基板

Claims (5)

  1. 光学機器の光軸のぶれを検出するぶれ検出手段と、
    前記光軸のぶれを補正するための補正光学系と、
    前記補正光学系を駆動する駆動手段と、
    前記光軸のぶれに起因する観察体像のぶれが無くなるよう前記駆動手段を制御する制御手段と、
    所定時間毎に実行され、前記ぶれ検出手段により検出される前記光軸のぶれの方向の反転を検知するぶれ反転検知手段と、
    前記ぶれ反転検知手段により検知された前回の前記光軸のぶれの方向の反転が生じた前記光軸のぶれの第1の極点から前記ぶれ反転検知手段の現在の実行において検出される前記光軸のぶれの方向の反転が生じる前記第1の極点の次の極点である第2の極点までの時間間隔を計測する計測手段と
    前記第1の極点における前記光軸のぶれ量と、前記第2の極点における前記光軸のぶれ量との差分を演算する手段とを備え、
    前記制御手段は、前記時間間隔が所定値より小さい場合、および前記差分が所定の閾値より大きいとき、前記駆動手段を停止することを特徴とする像振れ補正装置。
  2. 前記所定値は25ミリ秒程度であることを特徴とする請求項1に記載の像振れ補正装置。
  3. 前記ぶれ反転検知手段は、前記ぶれ反転検知手段が前回実行された時点での前記光軸のぶれの量と、前記ぶれ反転検知手段が現在実行されている時点での前記光軸のぶれの量とを比較することにより前記光軸のぶれの方向を判別して記憶するぶれ方向記憶手段を備え、
    現在の前記ぶれ反転検知手段の実行時において前記ぶれ方向記憶手段により判別される前記光軸のぶれの方向と、前回の前記ぶれ反転検知手段の実行時において前記ぶれ方向記憶手段により記憶された前記光軸のぶれの方向とが異なる場合、前記光軸のぶれの方向の反転の発生を検知することを特徴とする請求項1に記載の像振れ補正装置。
  4. 前記ぶれ方向記憶手段は、前回の前記ぶれ反転検知手段の実行において検出された前記光軸のぶれの量に対する、現在の前記ぶれ反転検知手段の実行において検出される前記光軸のぶれの量の増減関係を判別することにより、前記光軸のぶれの方向を判断することを特徴とする請求項3に記載の像振れ補正装置。
  5. 前記ぶれ検出手段は異なる2軸線方向における前記光軸のぶれを検出することができ、前記2軸線方向のいずれか一方の軸線方向に関する前記ぶれ反転検知手段の検知結果に基づいて前記計測手段により計測される前記時間間隔が前記所定時間より小さい場合、前記制御手段は、前記2軸線方向の双方において像振れ補正制御を停止することを特徴とする請求項1に記載の像振れ補正装置。
JP2000108314A 1999-04-09 2000-04-10 像振れ補正装置 Expired - Fee Related JP3809046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108314A JP3809046B2 (ja) 1999-04-09 2000-04-10 像振れ補正装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-102738 1999-04-09
JP10273899 1999-04-09
JP2000108314A JP3809046B2 (ja) 1999-04-09 2000-04-10 像振れ補正装置

Publications (2)

Publication Number Publication Date
JP2000352733A JP2000352733A (ja) 2000-12-19
JP3809046B2 true JP3809046B2 (ja) 2006-08-16

Family

ID=26443414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108314A Expired - Fee Related JP3809046B2 (ja) 1999-04-09 2000-04-10 像振れ補正装置

Country Status (1)

Country Link
JP (1) JP3809046B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191224B2 (ja) * 2007-12-07 2013-05-08 イーストマン コダック カンパニー 画像処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836053B2 (ja) * 1990-06-22 1998-12-14 キヤノン株式会社 像ぶれ補正装置及び該装置に適用される装置
JPH07140507A (ja) * 1993-11-12 1995-06-02 Nikon Corp 手ブレ補正カメラ
JP3424441B2 (ja) * 1996-06-11 2003-07-07 ミノルタ株式会社 手ブレ補正機能を備えたカメラ
JP2000039637A (ja) * 1998-07-24 2000-02-08 Canon Inc 振れ補正装置

Also Published As

Publication number Publication date
JP2000352733A (ja) 2000-12-19

Similar Documents

Publication Publication Date Title
JP3861815B2 (ja) 手振れ補正機能付きカメラ
JP2006337680A (ja) 駆動装置、振れ補正ユニット及び撮像装置
JPH0980533A (ja) ブレ補正カメラ
JP2000059667A (ja) 電子カメラ及び銀塩カメラ
US6456789B1 (en) Device for correcting a tremble of a focused image and a camera which is provided with the same
JPH086095A (ja) カメラのぶれ補正装置
US6389228B1 (en) Device for correcting a tremble of a focused image and a camera which is provided with the same
JP2000321612A (ja) カメラの像振れ補正装置と交換レンズとカメラ本体
JP3809046B2 (ja) 像振れ補正装置
US5659808A (en) Optical apparatus
JPH0667255A (ja) 防振カメラ
JP3905745B2 (ja) 像振れ補正機能付カメラ
JP2881990B2 (ja) 像ぶれ補正装置及びカメラ
US8079720B2 (en) Mirror drive apparatus and imaging apparatus
JP3421447B2 (ja) 像ぶれ補正機能を有するカメラ
JP2001201777A (ja) ぶれ補正装置及び該ぶれ補正装置を含む光学機器
JP3487521B2 (ja) カメラの像ぶれ補正装置
JP3629182B2 (ja) 像振れ補正装置
JPH07261230A (ja) カメラの像ぶれ補正装置
JPH05107620A (ja) ブレ防止装置付きカメラ
JP2001075137A (ja) 像振れ補正装置
JP2003149700A (ja) 像振れ補正装置
JP3576197B2 (ja) カメラの防振装置
JP2000098438A (ja) 振れ補正機能付きカメラ
JPH07218946A (ja) 画像振れ防止のための制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Effective date: 20040909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A02 Decision of refusal

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20050224

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A61 First payment of annual fees (during grant procedure)

Effective date: 20060519

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120526

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120526

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130526

LAPS Cancellation because of no payment of annual fees