JP3808890B2 - アンテナ装置及びこれを用いた無線機 - Google Patents

アンテナ装置及びこれを用いた無線機 Download PDF

Info

Publication number
JP3808890B2
JP3808890B2 JP2004324375A JP2004324375A JP3808890B2 JP 3808890 B2 JP3808890 B2 JP 3808890B2 JP 2004324375 A JP2004324375 A JP 2004324375A JP 2004324375 A JP2004324375 A JP 2004324375A JP 3808890 B2 JP3808890 B2 JP 3808890B2
Authority
JP
Japan
Prior art keywords
antenna
feed line
feeding point
radiation
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004324375A
Other languages
English (en)
Other versions
JP2005124223A (ja
Inventor
紀章 大舘
秀一 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004324375A priority Critical patent/JP3808890B2/ja
Publication of JP2005124223A publication Critical patent/JP2005124223A/ja
Application granted granted Critical
Publication of JP3808890B2 publication Critical patent/JP3808890B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Support Of Aerials (AREA)

Description

本発明は、主として携帯用の無線機に内蔵されるアンテナ装置及びこれを用いた無線機に関する。
携帯電話機、PHS端末および小形無線基地局のような携帯無線機では、無線機とアンテナが一体化されている場合が多い。携帯電話機、PHS端末のアンテナでは落下時の破壊を防ぐために、また無線基地局の場合には風雨などによる破壊などに耐性を持たせるために、アンテナを携帯無線機に内蔵することが求められている。
従来、携帯無線機の内蔵アンテナとしては、逆F型アンテナが多く用いられている。図11に、従来の逆F型アンテナを用いた携帯無線機の構成を示す。無線機回路102を内蔵したシールドを兼ねる金属筐体101上に、逆F型アンテナ103が配置されている。この例に見られるように、逆F型アンテナ103は低姿勢で小形であり、筐体101に近接して配置されているにもかかわらず、良好な放射特性が得られるという利点を有する。
一般に、内蔵アンテナには小型化、薄型化が求められているために、アンテナ自体の性能は劣化する傾向がある。図11のように逆F型アンテナ103を用いると、金属筐体101をアンテナの一部として利用することで、この性能劣化を補うことができ、アンテナ性能を向上させることができる。
このように逆F型アンテナ103はアンテナとしての性能は良好であるが、反面で無線機回路102の無線回路部や信号処理回路から漏洩してきた高周波ノイズを拾い易いという欠点を持っている。実際、図11に示したような構成で金属筐体101によって無線回路や信号処理回路を完全にシールドすることは困難であり、漏洩してきたノイズが筐体101上に存在してしまう。しかも、図11では金属筐体101をアンテナの一部として利用しているために、この漏洩ノイズは逆F型アンテナ103で直接受信されることになり、通信品質を大きく劣化させてしまうという問題がある。特に、信号処理回路の処理速度が高速化され、無線通信周波数と漏洩ノイズの周波数の差が小さくなってきている現在、信号処理回路からの漏洩ノイズによる通信品質の劣化は非常に深刻な問題となっている。
こうした漏洩ノイズの影響を削減するため、図12に示すようにダイポールアンテナ104を携帯無線機に用いる試みもなされている。既に知られているように、ダイポールアンテナはグランドを必要としないアンテナなので、図12のようにダイポールアンテナ104は直接グランドである金属筐体101に接続される必要はない。このため、金属筐体101上に漏洩ノイズが存在しても、それが直接的にダイポールアンテナ104に流れ込まないようにすることができる。
しかしながら、ダイポールアンテナでも携帯無線機の内蔵アンテナとして実用化する際には問題が生じる。ダイポールアンテナを携帯無線機に内蔵すると、アンテナは金属筐体に近接して配置されることとなり、アンテナ性能が劣化するという問題である。一般的に、ダイポールアンテナは周りに何も存在しない自由空間に配置されたときに最も良好な性能を発揮するアンテナであり、近傍に金属筐体があるとアンテナ性能は劣化する。これは金属筐体にダイポールアンテナが近接することにより、アンテナの放射電力が低下する、いわゆる不整合損が原因である。
図13は、発明者らによるダイポールアンテナの不整合損の計算結果を示している。横軸がアンテナの置かれた状態、縦軸が不整合損である。不整合損は、給電線とアンテナのインピーダンスとの整合がとれていないときに生じる損失であり、この整合がとれていないと、アンテナからの放射電力が減少し、通信品質の劣化を招く。図13では、金属筐体がなくダイポールアンテナが自由空間に存在する場合と、ダイポールアンテナの近傍に金属筐体がある場合の結果を示している。ダイポールアンテナが自由空間に存在する場合には、不整合損は0.2dB程度と小さく、非常に良好な特性であるが、金属筐体がダイポールアンテナの近傍にあるときには、不整合損は8.5dB程度と増大し、特性が大幅に劣化していることが明確に分かる。
このようなダイポールアンテナの入力特性を改善する方法は、既に考案されており、T整合アンテナとして知られている(「アンテナ工学ハンドブック」、電子情報通信学会編、PP.114−115、昭和55)。図14にT整合アンテナを示す。T整合アンテナは、ダイポールアンテナ110に二つの1/4波長エレメント111,112間を短絡する短絡エレメント113を付加したアンテナである。短絡エレメント113がアンテナインピーダンスの整合用素子として働くことにより、図15に示すようにダイポールアンテナ110を金属筐体101に近接して配置した場合でも、良好なアンテナ特性が得られる。
図13の右側に、金属筐体近傍にこのようなT整合を行ったダイポールアンテナを配置した場合の不整合損を示す。アンテナ近傍に金属筐体があるにもかかわらず、不整合損は0.5dB程度と小さく、良好な特性となっている。
これまでの検討は、アンテナと無線機回路を接続する給電線を考えない場合のT整合を行ったダイポールアンテナの特性であるが、実際には給電線の存在を考慮しなければならない。給電線が存在すると、無線機回路からの漏洩ノイズが給電線に伝わって最終的にアンテナまで伝達し、通信品質を損なうことがある。これを防止する方法として、パーソナルコンピュータ(PC)とディスプレイをつなぐフェライトコアなどがある。しかし、フェライトコアは比較的容積が大きいために、内蔵型アンテナの給電線に用いるには適さない。
このようなフェライトコアを用いずに、無線機回路からの漏洩ノイズがアンテナに伝達しないようにする方法として、図15に示すように金属筐体101の近傍にT整合を行ったダイポールアンテナ110を配置し、給電線114を金属筐体101の一部より引き出して金属筐体101に対し電気的に非接触で平行になるようにする方法が考えられる。
このような構成とした上で、給電線114の長さを4分の1波長とすると、図15の破線に示されるように金属筐体101上に発生する給電線のイメージにより短絡平行2線が構成される。長さが4分の1波長の短絡平行2線を給電点から見たインピーダンスは非常に高いので、もし給電線上(特に、同軸型給電線の外部導体上)に漏洩ノイズの電流が流れたとしても、この高いインピーダンスの部分で漏洩ノイズ電流が遮断され、アンテナまでは伝達しないことになる。
この方法は給電線の長さに4分の1波長という制約を設けるものであるが、一般に給電線の長さは常に自由度が保証されているとは限らない。実際、携帯無線機の無線機回路には無線回路部以外にも、信号処理回路、情報処理回路、電源回路や外部とのインタフェース部などがあり、これら全体の最適なレイアウトを考慮すると、必ずしも給電線の長さを最適化することはできない。
発明者らは、アンテナと無線機回路を結ぶ給電線の長さが変わった場合のノイズに対する特性劣化を評価するために、アンテナの給電点に給電を行って送信状態としたときに、アンテナから給電線に漏洩する電流の大きさを計算した。これは、受信状態において金属筐体から給電線上に漏洩したノイズがアンテナに流れ込むかどうかの評価と等価となる。
送信時にアンテナから給電線に漏洩する電流が少ないということは、アンテナの給電点と給電線の各点の電磁界的な結合が小さいということである。これは受信時に給電線上に漏洩ノイズ電流が分布しても、給電点での電流に与える影響は小さいということを示す。
図16は、横軸に給電線の長さ、縦軸に給電線上の電流の最大値をアンテナ上の電流の最大値で規格化した値をそれぞれ示している。給電線の長さが4分の1波長のときには、給電線上の最大電流は最小となっている。給電線の長さが4分の1波長から外れると、給電線上の電流は最大で10dBも増大する。この結果からも明らかなように、給電線の長さによって漏洩ノイズの影響に大きな差が生じる。
一方、携帯無線機などではアンテナの指向性を水平面内で無指向性にすることが望まれるが、その場合には給電線の影響がますます顕著となる。図17は、水平面内指向性を狙ったダイポールアンテナの例であり、無線機回路132を内蔵した金属筐体131の上表面に近接して設けられた線状エレメント136と、螺旋状エレメント137と、半波長エレメント138および同軸型給電線133によりアンテナが構成される。
同軸型給電線133はアンテナと無線機回路134を接続するためのもので、外導体134の一端は線状エレメント136の一端である第1の給電点に接続され、中心導体135の一端は螺旋状エレメント137の一端である第2の給電点に接続される。半波長エレメント138は、螺旋状エレメント137の他端に接続される。
この図17のアンテナでは、半波長エレメント138が主たる放射源となることによって、水平面内において垂直偏波で無指向性の放射パターンを実現することが期待される。この場合、螺旋状エレメント137は半波長エレメント138に比べて放射量は小さく、単なる整合回路として働く。このアンテナのZX、ZY、YX各面内の放射パターンを計算で求めた結果を図18(a)(b)(c)に示す。この結果から分かるように、放射パターンは水平面内で無指向性を実現しているが、2dB以上のリップルが生じている。
携帯無線機のための通信方式として、近い将来の実用化が予定されているW−CDMA(広帯域符号分割多元接続)方式では、高速のデータ通信を実現するために、端末である無線機のアンテナに水平面内無指向性が求められており、しかもなるべく指向性パターンのリップルを抑えることが要求されている。このようなW−CDMA端末では、図18に示すようなリップルの発生は許容限度を超えることがあり、さらにリップルを低減させることが必要となる。
ここで、このようなリップルの発生原因を簡単に説明すると、このリップルは同軸型給電線133の外導体134の表面に漏洩した不要電流からの放射により発生するものと考えられる。図18(a)(b)(c)から明らかなように、ZX面、ZY面、YX面の各放射パターンにおいて交差偏波である水平偏波が生じているが、これは水平面に平行な同軸型給電線133の外導体134からの放射である。また、図18(b)のZY面の放射パターンは左右非対称となっているが、これも同軸型給電線13の外導体134からの放射により半波長エレメント138の放射パターンが歪んだことが原因と考えられる。
上述の方法では、金属筐体の近傍に位置するダイポールアンテナを例にとって給電線の影響について説明を行った。以下では、金属筐体上に配置されたモノポールアンテナを例にとり、筐体の影響について説明する。
ヘリカルアンテナは、モノポールアンテナの線状素子をコイル状にして小型化したものであり、PHS端末などのアンテナとして用いられている。図30は、このヘリカルアンテナを採用した無線機モデルの放射パターンを示す図であり、(a)は地面に対して垂直な面(XZ面)の放射パターン、(b)は地面に対して水平な面(XY面)の放射パターンをそれぞれ示している。また、図30(c)は無線機モデルを示している。
図30(a)に示されるように、垂直面の放射パターンは水平方向に対して−45°方向と+30°方向にピークを持ったパターンとなっている。従って、図30(b)の水平面の放射パターンは無指向性に近い形状をしているものの、レベルが低いために、良好な通信を行うには適さないものとなっている。このような放射パターンとなる理由は、携帯無線機においてはアンテナからの放射のみならず、金属筐体に漏洩した高周波電流からも放射が起きているためである。
そして、金属筐体が半波長よりも長い場合、アンテナ上の高周波電流と金属筐体上の高周波電流の位相差が反転してしまい、水平面内における各々の放射は打ち消し合うことになる。このように金属筐体からの放射によってアンテナの放射特性は変化し、特に水平面内のレベルは低いものになってしまうのである。
このような劣化を抑制し、水平面内の利得を改善する方法としては、既に説明したダイポールアンテナを用いる方法があるが、その他の方法としてアンテナからの放射を増加させる方法も知られている。
ヘリカルアンテナは、約1/4波長の長さの線状素子を螺旋状に巻いているために、実際の長手方向の寸法は1/10波長程度となっていて、放射量は非常に少ない。従って、アンテナ自体の放射よりも無線機の金属筐体からの放射が優勢となり、既に説明した金属筐体による放射特性の劣化が増大してしまうことになる。
そこで、ヘリカルアンテナの先端に半波長の線状のエレメントを接続し、アンテナからの放射を増加させる方法が提案されている。こうすると、アンテナの全長はヘリカルアンテナの長さと半波長エレメントの長さの和となって実質的に長くなるので、アンテナからの放射量は増加する。また、ヘリカルアンテナに半波長のエレメントを接続することから、整合はヘリカルアンテナのみの場合と同様の良好な状態となる。
図31は、このようにヘリカルアンテナの先端に半波長エレメントを接続した場合の放射パターンを示している。図30と同様に、図31(a)は地面に対して垂直な面(XZ面)の放射パターン、(b)は地面に対して水平な面(XY面)の放射パターンをそれぞれ示し、(c)は無線機モデルを示している。図31(a)の水平面の放射パターンから明らかなように、水平面の放射量は増加しているのに対して、図31(b)の垂直面の放射パターンでは、水平面に対して+30°方向と−50°方向に大きな放射が生じている。
すなわち、この方法では水平面における放射量を増加させることはできるが、水平方向以外の方向に最大の放射を行っているため、良好な通信を行う上で最適なアンテナとはいえない。このような放射パターンとなる原因は、ヘリカルアンテナと半波長エレメントが互いの放射を劣化させることにある。つまり、ヘリカルアンテナと半波長エレメント上の高周波電流の位相が反転しており、水平方向においてヘリカルアンテナからの放射と半波長エレメントからの放射が打ち消し合うからである。
上述したように、携帯無線機と一体化しさらに内蔵化を図ったアンテナでは、無線機回路からの漏洩ノイズを受信しないようにアンテナを構成することが困難であり、またT整合を施したダイポールアンテナを用い、給電線の長さを最適化することで漏洩ノイズの受信量を少なくすることは可能であるが、給電線の長さの自由度が小さくなり、給電線の長さに関する自由度を維持しつつアンテナ特性と漏洩ノイズの影響に対する抑圧特性を両立して良好な通信品質を確保することが困難であるという問題点があった。
さらに、水平面内の放射パターンを無指向性とするためにダイポールアンテナの一方のエレメントを螺旋状エレメントとしたダイポールアンテナでは、給電線からの不要放射によってアンテナの放射パターンにリップルや歪みが生じ、通信品質を劣化させるという問題点があった。
また、小型化されたモノポールアンテナであるヘリカルアンテナを無線機の金属筐体に一体化したアンテナにおいて、水平面内の利得を向上させるために半波長エレメントをヘリカルアンテナの先端に取り付ける方法では、ヘリカルアンテナと半波長エレメント上の電流位相が異なることから、水平面内の利得の上昇が制限されてしまうという問題点があった。
本発明は、上記のような問題点を解決し、無線機とアンテナを一体化した構成において、無線機回路からの漏洩ノイズや給電線からの不要放射の影響を低減して良好な通信品質が得られるアンテナ装置及びこれを用いた無線機を提供することを目的とする。
さらに、本発明は無線機とアンテナを一体化した構成において、水平面内の利得を増大させて良好な通信品質が得られるアンテナ装置及びこれを用いた無線機を提供することを目的とする。
上記の課題を解決するため、本発明に係るアンテナ装置は、無線機回路を内蔵した金属筐体の表面に近接して同一線上に設けられた第1、第2の1/4波長エレメントからなり、第1、第2の1/4波長エレメントの互いに対向する端部を第1、第2の給電点とするダイポールアンテナと、第1、第2の1/4波長エレメント間を短絡する短絡エレメントと、第1、第2の給電点と無線機回路とを接続する同軸型給電線とからなる。そして、同軸型給電線は、第1、第2の給電点から第1、第2の1/4波長エレメントの一部および短絡エレメントをそれぞれ介して該同軸型給電線に流れ込む電流がほぼ逆相となるように接続並びに配置される。
より具体的には、同軸型給電線は第1の給電点に一端が接続された外導体および第2の給電点に一端が接続された中心導体からなり、第1の1/4波長エレメントおよび短絡エレメントの一部に沿って配置されると共に、短絡エレメントのダイポールアンテナの長手方向中間位置より引き出される。そして、外導体は第1の1/4波長エレメントおよび短絡エレメントの一部に電気的に接続される。
このように構成されたアンテナ装置では、二つの給電点からダイポールアンテナの二つの1/4波長エレメントにそれぞれ流れる電流が短絡エレメントとの接続点から1/4波長エレメントと短絡エレメントにそれぞれ分岐し、短絡エレメントヘ流れ込む電流は同軸型給電線が引き出される位置で合成され、同軸型給電線の外導体に漏洩電流として流れ込む。ここで、二つの1/4波長エレメントを経由して短絡エレメントにそれぞれ流れ込む電流の位相はほぼ逆位相となるので、同軸型給電線の外導体上の漏洩電流はほぼ0となる。これによって無線機回路からの漏洩ノイズの影響が飛躍的に改善され、従来に比較して良好な通信品質が実現されることになる。
本発明に係る他のアンテナ装置は、無線機回路を内蔵した金属筐体の表面に近接して設けられ、一端を第1の給電点とする線状エレメントと、この線状エレメントの第1の給電点近傍の一端を第2の給電点とする螺旋状エレメントと、この螺旋状エレメントの他端に接続された半波長エレメントと、金属筐体の表面に近接して線状エレメントと平行に設けられ、第1、第2の給電点と無線機回路とを接続する給電線とからなる。そして、螺旋状エレメントは給電線の上方において該給電線とほぼ平行な状態で螺旋を描くように配置される。
給電線としては、例えば第1の給電点に一端が接続された外導体および第2の給電点に一端が接続された中心導体からなる同軸型給電線が用いられる。螺旋状エレメントは、この同軸型給電線の上方において該同軸型給電線とほぼ平行な状態で螺旋を描くように配置されることにより、外導体の表面を流れる電流とほぼ逆相の電流が流れる。すなわち、螺旋状エレメントは、外導体の表面を流れる電流による不要放射を打ち消す放射界を形成するように配置される。
このアンテナ装置では、螺旋状エレメントが給電点の近傍において給電線に対し給電線とほぼ平行な状態で近接しており、給電線上の電流による不要放射が螺旋状エレメントを流れる電流によって打ち消されることにより、水平面内放射パターンのリップルが低減され、良好な水平面内無指向性が得られる。
本発明に係るさらに別のアンテナ装置は、無線機回路を内蔵した金属筐体の近傍に設けられた半波長の長さを有する直線状アンテナと、この直線状アンテナの基端に一端が接続される1/4波長の長さを有する整合用エレメントと、整合用エレメントの他端と無線機回路とを接続する給電線路とからなる。そして、整合用エレメントの一端は金属筐体の上端よりも下側の位置で直線状アンテナの基端に接続され、他端が金属筐体の上端において給電線路と接続される。
このアンテナ装置では、半波長の長さの直線状アンテナ上の電流位相と1/4波長の長さの整合用エレメント上の電流位相は逆相であるが、給電点である整合用エレメントの他端から見て、直線状アンテナは上向き、整合用エレメントは下向きである。従って、直線状アンテナと整合用エレメントからそれぞれ放射される電磁界は同相となり、水平面における放射レベル、すなわち利得が増大する。
さらに、本発明によると上述したアンテナ装置と無線機回路および金属筐体からなる無線機が提供される。
本発明によれば、T整合を施したダイポールアンテナを用いたアンテナ装置において、同軸型給電線をダイポールアンテナの給電点からダイポールアンテナの1/4波長エレメントの一方と短絡エレメントに沿って配置し、短絡エレメントの中央から引き出すように構成することにより、漏洩ノイズの影響が従来例に比べて30dB以上改善され、良好な通信品質を実現することができる。
また、本発明によれば螺旋状エレメントをダイポールアンテナの一方のエレメントとしたアンテナ装置において、螺旋状エレメントを給電点の近傍において給電線とほぼ平行な状態で近接させ、給電線上の電流による不要放射を螺旋状エレメントを流れる電流によって打ち消すことにより、水平面内放射パターンのリップルを低減させ、良好な水平面内無指向性を実現することができる。
さらに、本発明によると1/4波長の長さの整合用エレメントを金属筐体の上端において給電線路と接続し、金属筐体の上端よりも下側の位置で半波長の長さの直線状アンテナと接続することにより、従来に比べて水平面内の放射量、すなわち利得を格段に増大させることができる。
以下、図面を参照して本発明の実施の形態を説明する。
(第1の実施形態)
まず、図1〜図4を用いて本発明の一実施形態について説明する。
図1は、本実施形態のアンテナ装置を含む携帯無線機の概略構成を示す斜視図である。筐体11はシールド部材を兼ねる金属筐体であり、無線機回路12を内蔵している。無線機回路12は、無線回路部、信号処理回路部、情報処理部、電源回路部及び外部とのインタフェース部などを含んでいるのとする。
図2(a)(b)は、アンテナ装置の詳細な構成を示す平面図およびA−A′線に沿う断面図である。図2(a)に示すように、金属筐体11の一つの端面に近接してアンテナ基板13が配置され、このアンテナ基板13上にダイポールアンテナ14と短絡エレメント15および同軸型給電線16が形成されている。
ダイポールアンテナ14は、同一線上に設けられた1/4波長の長さを持つ二つの直線上エレメント(1/4波長エレメント)21,22からなり、これらの1/4波長エレメント21,22の互いに対向する端部が給電点23,24となっている。短絡エレメント15は、1/4波長エレメント21,22間を適当な位置で短絡するように形成され、これによりダイポールアンテナ14に対してT整合が施されている。
同軸型給電線16は、ダイポールアンテナ14の二つの給電点23,24と無線機回路12の無線回路部とを接続するものであり、外導体25と中心導体26からなる。外導体25の一端は1/4波長エレメント21の給電点23に接続され、中心導体26の一端は外導体25の一端より露出され、1/4波長エレメント22の給電点24に接続されている。
ここで、同軸型給電線16は1/4波長エレメント21の一部(給電点23から短絡エレメント15の一端側までの間の領域)と短絡エレメント15の一部に沿って配置され、短絡エレメント15の中央部(短絡エレメント15のダイポールアンテナ14の長手方向中間位置)より引き出されている。また、外導体25は給電点23を起点とし、1/4波長エレメント21および短絡エレメント15に電気的に接続されている。中心導体26は、外導体25から露出している部分以外は外導体25と同じ経路を辿る。
短絡エレメント15の中央部より引き出された同軸型給電線16は、アンテナ基板13上を図2(a)で右端部に向かって延在され、同軸コネクタ17を介して無線機12に至る同軸型給電線18に接続される。
図2(a)のA−A′線に沿う断面図を図2(b)に示したように、この例ではダイポールアンテナ14、短絡エレメント15および同軸型給電線16は多層印刷技術により形成される。
すなわち、アンテナ基板13上に、まず第1層導体としてダイポールアンテナ14(1/4波長エレメント21,22)および短絡エレメント15が形成され、その上に第2層導体として同軸型給電線16の外導体25の下部導体25−1が形成される。下部導体25−1の上に下部絶縁層27−1を介して中心導体26が形成され、その上に上部絶縁層27−2が形成される。絶縁層27−1,27−2は、同軸型給電線16の外導体25(25−1,25−2)と中心導体26間を絶縁するためのものであり、下部導体25−1より狭い幅で形成されている。そして、上部絶縁層27の上に第3層導体として外導体25の上部導体25−2が形成され、その幅方向両側で下部導体25−1と電気的に接続される。
本実施形態によると、ダイポールアンテナ14の入力特性を良好に維持しながら、このダイポールアンテナ14が漏洩ノイズを受信しないようにすることができる。以下、このアンテナ装置の特性結果について述べ、次に特性が改善される原理について述べる。
発明者らは、本実施形態に従って構成した無線機用アンテナモデルを用いて、不整合損の計算を行った。同軸型給電線16の長さは12分の1波長、4分の1波長、2分の1波長の3種類を選んでいる。この結果、不整合損はいずれの場合も高々0.5dBであり、給電線16の長さに依存せずに、非常に良好な入力特性となっていることが分かる。
図3は、この無線機用アンテナモデルを用いて、同軸型給電線16に漏洩したノイズに対するダイポールアンテナ14の性能を評価した結果を示している。同軸型給電線16の長さは、12分の1波長、4分の1波長、2分の1波長の3種類を選んでいる。先に示した図16と同様に、給電点23,24に給電を行って送信状態にしたときに、ダイポールアンテナ14から同軸型給電線16に漏洩する電流を計算して評価を行った。
図3から明らかなように、図14、図15に示した従来のT整合を施したダイポールアンテナと同様に、同軸型給電線16の長さに依存して漏洩量に変化はあるものの、同軸型給電線16の長さが12分の1波長、4分の1波長、2分の1波長のいずれの場合においても、従来の比較して30dB以上小さな電流しか漏洩しないことが分かる。
以下、本実施形態の構成よりアンテナの特性が改善される原理について簡単に説明する。
まず、始めにアンテナの入力特性が良好である理由について述べる。ダイポールアンテナにT整合を施すとアンテナの入力特性が改善されることは、既に述べた通りである。本実施形態においても、ダイポールアンテナ14の二つの1/4波長エレメント21,22間を短絡する短絡エレメント15を用いており、これがT整合の効果でアンテナの入力特性を改善していることとなる。
次に、図4を用いて給電線上に漏洩したノイズに対して特性が良好になる理由について述べる。
ここでは、図3および図16で評価した方法と同じように、ダイポールアンテナ14を送信状態として説明する。図4に示すように、給電点23,24からダイポールアンテナ14の1/4波長エレメント21,22に電流I1,I2がそれぞれ流れる。これらの電流I1,I2は、短絡エレメント15との接続点において1/4波長エレメント21,22と短絡エレメント15に分岐する。1/4波長エレメント21,22に流れ込む電流をI1a,I2a、短絡エレメント15に流れこむ電流をI1s,I2sと記している。1/4波長エレメント21,22に流れ込む電流I1a,I2aは、放射波源として空間へ放射される。
一方、短絡エレメント15ヘ流れ込む電流I1s,I2sは、同軸型給電線16が引き出される位置で合成され、Iline=I1s+I2sなるダイポールアンテナ14からの漏洩電流として同軸型給電線16の外導体25に流れ込む。
短絡エレメント15に流れ込む電流I1s,I2sの位相は、ダイポールアンテナ14に対して短絡エレメント15がほぼ対称に設けられていれば、すなわち短絡エレメント15の両端が1/4波長エレメント21,22の給電点23,24からほぼ等距離の位置に接続されていれば、ほぼ逆位相(I1s≒−I2s)となる。実際に、ダイポールアンテナにT整合を行うときには、対称になるように短絡エレメントを接続する方法が一般的であり、このI1s≒−I2sの関係が得られる。
このように短絡エレメント15上の電流位相が逆位相(I1s≒−I2s)となるので、同軸型給電線16の外導体25上の漏洩電流は、Iline=I1s+I2s≒I1s−I1s=0となる。
また、このように送信時にダイポールアンテナ14から同軸型給電線16の外導体25上に漏洩する電流が小さいということは、ダイポールアンテナ14の給電点23,24と同軸型給電線16の各点の電磁界的な結合が小さいということであるり、結果として受信時に同軸型給電線16の外導体25上に無線機回路12からの漏洩ノイズによる電流が分布しても、給電点23,24での電流に与える影響は小さいということになる。すなわち、同軸型給電線16の長さに全く依存しない構成で、給電線16に漏洩したノイズをダイポールアンテナ14が受信してしまうことを防止でき、本発明の所期の目的を達成することが可能となる。
(第2の実施形態)
図5は、本発明の第2の実施形態に係るアンテナ装置の要部の平面図である。図2と同一部分に同一符号を付して説明すると、本実施形態では短絡エレメント15の中央部を分断し、この分断部における短絡エレメント15の互いに対向する端部を給電点23,24としている。短絡エレメント15がダイポールアンテナ14の1/4波長エレメント21,22間を適当な位置で短絡するように形成されている点は、第1の実施形態と同様である。
同軸型給電線16は、短絡エレメント15の二つの給電点23,24と無線機回路12の無線回路部とを接続するものであり、外導体25の一端は給電点23に接続され、中心導体26の一端は外導体25の一端より露出され、もう一つの給電点24に接続されている。
ここで、同軸型給電線16は短絡エレメント15の一部(給電点23から1/4波長エレメント21までの間の領域)と1/4波長エレメント21の一部に沿って配置され、1/4波長エレメント21,22の中間位置より引き出されている。また、外導体25は給電点23を起点とし、短絡エレメント16および1/4波長エレメント21に電気的に接続されている。中心導体26は、外導体25から露出している部分以外は外導体25と同じ経路を辿る。
1/4波長エレメント21,22の中間位置より引き出された同軸型給電線15は、図示しないアンテナ基板上を端部に向かって延在され、図示しない同軸コネクタを介して無線機に至る別の同軸型給電線に接続される。
本実施形態によっても、第1の実施形態と同様の効果が得られることは明らかである。
(第3の実施形態)
図6は、本発明の第3の実施形態に係るアンテナ装置を含む携帯無線機の構成を示す斜視図である。本実施形態におけるアンテナ装置は、螺旋状エレメントを一方のエレメントとするダイポールアンテナを用いて、水平面内の放射パターンを無指向性となるように構成されている。
まず、無線機回路32を内蔵した金属筐体31の表面に近接して、外導体34と中心導体35からなる同軸型給電線33および線状エレメント36が平行に設けられている。線状エレメント36の一端は第1の給電点であり、同軸型給電線33の外導体34の一端に電気的に接続される。同軸型給電線33の他端は、無線機回路32に接続される。
螺旋状エレメント37は、線状エレメント36の給電点近傍の一端を第2の給電点とし、同軸型給電線33の中心導体35に接続される。そして、螺旋状エレメント37の他端に半波長エレメント38の一端が接続される。
ここで、螺旋状エレメント37は同軸型給電線33の上方において、この給電線33とほぼ平行な状態で螺旋を描くように配置および構成されている。すなわち、螺旋状エレメント37は給電点から同軸型給電線33に対して直角に延び、その後給電線33と平行となるように折れ曲がりつつ、給電線33上で螺旋を描いている。これによって、螺旋状エレメント37には同軸型給電線33の外導体34の表面を流れる電流とほぼ逆相の電流が流れ、この電流によって外導体34上を流れる不要電流を打ち消すようになっている。
図7(a)(b)(c)は、図6のアンテナ装置のZX面、ZY面、YX面内の放射パターンを計算で求めた結果を示している。この結果から分かるように、放射パターンは図17に示した従来のアンテナ装置の放射パターン(図18)に比較して交差偏波成分が減少し、またZY面内での対称性が改善され、結果として水平面(YX面)内の垂直偏波のリップルが大幅に減少している。
図8は、図6に示した携帯無線機のアンテナ部の平面図であり、同軸型給電線33および線状エレメント36と螺旋状エレメント37とが水平面内でなす角をθとしている。図17に示した従来のアンテナ装置ではθ=180°であり、これに対して図6ではθ=0°となっている。
図9は、この角度θの変化に対する水平面内放射パターンのリップルの変化を示したものである。θ=180°の場合に比較して、θ=°の場合の方が1dB以上のリップル低減が達成されており、本発明の有効性が明らかである。また、この結果からθ=0°である必要は必ずしもなく、θ=90°以下の範囲であれば概ね良好なリップル低減効果が得られる。
次に、本実施形態の構成により水平面内放射パターンが改善される理由について、図10を用いて説明する。
図10(a)は、受信時に同軸型給電線33(外導体34、中心導体35)と線状エレメント36および螺旋状エレメント37に流れる電流を定性的に示している。まず、同軸型給電線33の内部では、中心導体35の表面と外導体34の内面とがペアになって、高周波電流I1,I2がそれぞれ流れている。これらの電流I1,I2は、互いに位相が逆である。
中心導体35の表面を流れる電流I1は、そのまま螺旋状エレメント37に電流I1′として流れる。一方、外導体34の内面を流れる電流I2は、線状エレメント36に電流I2′として流れるだけでなく、同軸型給電線33の表面(外導体34の外面)にも電流I2″として流れる。この後者の電流I2″が同軸型給電線33からの不要放射の原因の一つになると考えられる。
ここで、図6に示した本実施形態の構成に従い、図10(b)に示すように螺旋状エレメント37を同軸型給電線33の上方で螺旋を描くように配置すると、問題となる電流I2″による不要放射が低減される。すなわち、図10(b)から明らかなように、この場合に螺旋状エレメント36を流れる電流I1′は、同軸型給電線33の外導体34の表面を流れる電流I2″と逆位相となっており、それぞれによる放射界を打ち消し合う。電流I1′と電流I2″の組み合わせによる放射界Aは、I1′とI2″の電流差に比例することになる(A∝I1′−I2″)。
これに対し、図17に示した従来の構成に従い、図10(c)のように螺旋状エレメント37を同軸型給電線33と反対側の位置で螺旋を描くように配置した場合には、電流I′と電流I2″は同相となることから、それぞれによる放射界は足し合わせられる。従って、電流I′と電流I2″の組み合わせによる放射界Bは、I1′とI2″の電流和に比例することになる(B∝I1′+I2″)。AとBの関係は、明らかにA<Bである。
図10(b)は図9に示した水平面内放射パターンのリップル特性においてθ=0°の場合に相当し、図10(c)はθ=180°の場合に相当しており、図10(b)の方が図10(c)に対してリップルが抑制されているのは、螺旋状エレメント37による不要放射打ち消しの効果によるものと推定される。
図9で説明したように、θは0°でなくとも90°以下であれば有効である。すなわち、螺旋状エレメント37は図6のように完全に金属筐体31側に向いている必要は必ずしもなく、図6の状態から螺旋状エレメント37を少し回転させても構わない。要するに、螺旋状エレメント37を少なくとも一部が同軸型給電線33の上に位置するように配置することにより、電流I′と電流I2″が多少なりとも打ち消し合う効果が発揮されればよい。
(第4の実施形態)
図21は、本発明の第4の実施形態に係るアンテナ装置を含む携帯無線機の概略構成を示す斜視図である。本実施形態におけるアンテナ装置では、まず無線機回路42を内蔵した金属筐体41の近傍に、半波長の長さの直線状アンテナ(半波長エレメント)43が図示しないアンテナ支持体により支持されて設けられている。
直線状アンテナ43の基端には、1/4波長の長さの整合用エレメント44の一端が接続され、この整合用エレメント44の他端は給電線路45を介して無線機回路42に接続されている。整合用エレメント44は、これに限られるものではないが、この例では螺旋状に形成され、直線状アンテナ43は整合用エレメント44の螺旋の内側を通過するように配置される。
図22は、整合用エレメント44及びその付近の拡大図である。この図22に示されるように、整合用エレメント44の一端(接続点B)は、金属筐体41の上端面よりも下側の位置で直線状アンテナ43の基端と接続される。言い換えれば、直線状アンテナ43の基端は金属筐体41の上端面より下側に位置するように配置されている。一方、整合用エレメント44の他端は給電点Aであり、金属筐体41の上端面で給電線路45と接続される。
すなわち、給電点Aから見ると、1/4波長エレメントである整合用エレメント44は、下向きのエレメントとして形成されることになる。これに対し、半波長エレメントである直線状アンテナ43は、上向きのエレメントとなっている。このような構成により、本実施形態におけるアンテナ装置は、水平面における放射レベル(放射量)が効果的に増大するという利点を有する。放射量が増大する理由は、次の通りである。
まず、直線状アンテナ43の長さは半波長であるのに対し、整合用エレメント44の長さは1/4波長であるから、直線状アンテナ43上の高周波電流の位相と整合用エレメント44上の高周波電流の位相は逆相である。一方、アンテナエレメントの機械的な向きについて考えると、上述したように直線状アンテナ43は上向き、整合用エレメント44は下向きである。従って、直線状アンテナ43と整合用エレメント44から放射される電磁界は同相となるため、放射量は増大するのである。
図23は、本実施形態に従う無線機モデルを用いて放射パターンを計算した結果であり、(a)は地面に対して垂直な面(XZ面)の放射パターン、(b)は地面に対して水平な面(XY面)の放射パターンをそれぞれ示している。このモデルでは、図21および図22に示したように整合用エレメント44を螺旋状に形成し、直線状アンテナ43を整合用エレメント44の螺旋の内側を通して配置する構成とした。
図23(b)に示した水平面の放射パターンから明らかなように、放射量は非常に増大しており、水平面で無指向性が実現されていることが分かる。また、図23(a)に示した垂直面の放射パターンから、最大放射方向が水平方向であることも確認できる。
このように本実施形態のアンテナ装置は、水平面において無指向性でかつレベルの非常に高い放射パターンが得られるため、携帯電話機やPHS端末などの携帯無線端末用のアンテナとして非常に適しており、良好な通信を可能とすることができる。
本発明の第1の実施形態に係るアンテナ装置及び無線機の概略構成を示す斜視図 同実施形態における要部を拡大して示す平面図及びA−A′線に沿う断面図 同実施形態における同軸型給電線の長さを変えた場合の給電線上の漏洩ノイズ電流の変化を示す図 同実施形態において同軸型給電線上に漏洩した高周波ノイズを受信しない原理を説明するためのアンテナ部分の各部に流れる電流を示す図 本発明の第2の実施形態に係るアンテナ装置の要部の構成を示す平面図 本発明の第3の実施形態に係るアンテナ装置及び無線機の構成を示す斜視図 同実施形態における各面での放射パターンを示す図 同実施形態における要部の平面図 図8における螺旋状エレメントの取り付け角度θと放射パターンのリップルの関係を示す図 同実施形態において放射パターンのリップルが減少する効果を説明するための図 従来の内蔵逆F型アンテナを用いた携帯無線機の斜視図 従来の内蔵ダイポールアンテナを用いた携帯無線機の斜視図 ダイポールアンテナの種々の状態での不整合損を示す図 T整合を施したダイポールアンテナの説明図 従来のT整合を施したダイポールアンテナを用いた携帯無線機の斜視図 図15の構成において同軸型給電線の長さを変えた場合の給電線上の漏洩ノイズ電流の変化を示す図 ダイポールアンテナの一方のエレメントに螺旋状エレメントを用いた携帯無線機の斜視図 図17のアンテナにおける各面での放射パターンを示す図 本発明の第4の実施形態に係るアンテナ装置及び無線機の構成を示す斜視図 同実施形態の要部を拡大して示す斜視図 同実施形態における各面での放射パターンを示す図 従来のヘリカルアンテナの各面での放射パターンを示す図 従来のヘリカルアンテナの先端にダイポールアンテナを取付けたときの各面での放射パターンを示す図
符号の説明
11…金属筐体、12…無線機回路、13…アンテナ基板、14…ダイポールアンテナ、15…短絡エレメント、16…同軸型給電線、17…同軸コネクタ、18…同軸型給電線、21,22…第1、第2の1/4波長エレメント、23,24…第1、第2の給電点、25…外導体、26…中心導体、31…金属筐体、32…無線機回路、33…同軸型給電線、34…外導体、35…中心導体、36…線状エレメント、37…螺旋状エレメント、38…半波長エレメント、41…金属筐体、42…無線機回路、43…半波長の長さの直線状アンテナ、44…1/4波長の長さの整合用エレメント、45…給電線路

Claims (4)

  1. 無線機回路を内蔵した筐体の外側表面に近接し平行に設けられ、一端を第1の給電点とする線状エレメントと、
    前記線状エレメントの前記第1の給電点近傍の一端を第2の給電点とする螺旋状エレメントと、
    前記螺旋状エレメントの他端に接続された半波長エレメントと、
    前記筐体の表面に近接して前記線状エレメントと平行に設けられ、前記第1の給電点に一端が接続された外導体および前記第2の給電点に一端が接続された中心導体からなり、前記第1、第2の給電点と前記無線機回路とを接続する同軸型給電線とを具備し、
    前記螺旋状エレメントは、前記給電線の上方に延び、該給電線とほぼ並行な状態で螺旋を描くように配置されることを特徴とするアンテナ装置。
  2. 無線機回路を内蔵した筐体の外側表面に近接し平行に設けられ、一端を第1の給電点とする線状エレメントと、
    前記線状エレメントの前記第1の給電点近傍の一端を第2の給電点とする螺旋状エレメントと、
    前記螺旋状エレメントの他端に接続された半波長エレメントと、
    前記筐体の表面に近接して前記線状エレメントと平行に設けられ、前記第1の給電点に一端が接続された外導体および前記第2の給電点に一端が接続された中心導体からなり、前記第1、第2の給電点と前記無線機回路とを接続する同軸型給電線とを具備し、
    前記螺旋状エレメントは、前記同軸型給電線の上方に延び、該同軸型給電線とほぼ並行な状態で螺旋を描くように配置され、前記外導体の表面を流れる電流とほぼ逆相の電流が流れることを特徴とするアンテナ装置。
  3. 無線機回路を内蔵した筐体の外側表面に近接し平行に設けられ、一端を第1の給電点とする線状エレメントと、
    前記線状エレメントの前記第1の給電点近傍の一端を第2の給電点とする螺旋状エレメントと、
    前記螺旋状エレメントの他端に接続された半波長エレメントと、
    前記筐体の表面に近接して前記線状エレメントと平行に設けられ、前記第1の給電点に一端が接続された外導体および前記第2の給電点に一端が接続された中心導体からなり、前記第1、第2の給電点と前記無線機回路とを接続する同軸型給電線とを具備し、
    前記螺旋状エレメントは、前記外導体の表面を流れる電流による不要放射を打ち消す放射界を形成するように配置されていることを特徴とするアンテナ装置。
  4. 請求項1乃至3のいずれか1項に記載のアンテナ装置と前記無線機回路および前記筐体からなる無線機。
JP2004324375A 2004-11-08 2004-11-08 アンテナ装置及びこれを用いた無線機 Expired - Fee Related JP3808890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324375A JP3808890B2 (ja) 2004-11-08 2004-11-08 アンテナ装置及びこれを用いた無線機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324375A JP3808890B2 (ja) 2004-11-08 2004-11-08 アンテナ装置及びこれを用いた無線機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05146299A Division JP3655483B2 (ja) 1999-02-26 1999-02-26 アンテナ装置及びこれを用いた無線機

Publications (2)

Publication Number Publication Date
JP2005124223A JP2005124223A (ja) 2005-05-12
JP3808890B2 true JP3808890B2 (ja) 2006-08-16

Family

ID=34617040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324375A Expired - Fee Related JP3808890B2 (ja) 2004-11-08 2004-11-08 アンテナ装置及びこれを用いた無線機

Country Status (1)

Country Link
JP (1) JP3808890B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300714B (zh) * 2005-11-08 2011-12-07 松下电器产业株式会社 复合天线和使用其的便携终端
JP2007324314A (ja) * 2006-05-31 2007-12-13 Univ Of Yamanashi メモリ素子、データ記録方法及びicタグ
JP5461277B2 (ja) * 2010-03-31 2014-04-02 長野日本無線株式会社 アンテナ装置、送電装置、受電装置および非接触電力伝送システム
JP6656408B2 (ja) * 2016-11-25 2020-03-04 三菱電機株式会社 アンテナ装置

Also Published As

Publication number Publication date
JP2005124223A (ja) 2005-05-12

Similar Documents

Publication Publication Date Title
JP3655483B2 (ja) アンテナ装置及びこれを用いた無線機
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
US10062956B2 (en) Antenna device and electronic apparatus
JP4146478B2 (ja) 無線モジュール及び携帯端末
US9306284B2 (en) Antenna
JP4991684B2 (ja) 無線装置
US7821463B2 (en) Mobile telephone with broadcast receiving element
JPWO2011102143A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
JP2007081712A (ja) 携帯無線機およびアンテナ装置
JP2008199688A (ja) 無線モジュール
US20110043421A1 (en) Portable electronic device and antenna thereof
JP2009302663A (ja) 携帯無線機
JP2008160411A (ja) アンテナ装置及び携帯無線機
JP6656704B2 (ja) アンテナ装置および携帯端末
KR101274291B1 (ko) 무선기
US9306274B2 (en) Antenna device and antenna mounting method
JP3808890B2 (ja) アンテナ装置及びこれを用いた無線機
JP5511841B2 (ja) アンテナ装置
JP4835884B2 (ja) 携帯無線機
WO2016186092A1 (ja) アンテナ装置および電子機器
JP3838971B2 (ja) 無線装置
KR101303153B1 (ko) 안테나 장치 및 이를 구비하는 이동통신 단말기
US20230076815A1 (en) Antenna apparatus
JP2013175842A (ja) アンテナ装置及び電子機器
WO2022190876A1 (ja) アンテナ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

LAPS Cancellation because of no payment of annual fees