JP3804912B2 - 受信機及び受信動作のテスト方法 - Google Patents
受信機及び受信動作のテスト方法 Download PDFInfo
- Publication number
- JP3804912B2 JP3804912B2 JP2000250430A JP2000250430A JP3804912B2 JP 3804912 B2 JP3804912 B2 JP 3804912B2 JP 2000250430 A JP2000250430 A JP 2000250430A JP 2000250430 A JP2000250430 A JP 2000250430A JP 3804912 B2 JP3804912 B2 JP 3804912B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- reception
- clock signal
- receiver
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Monitoring And Testing Of Transmission In General (AREA)
Description
【発明の属する技術分野】
本発明は、携帯無線機等の受信機(送信機能も有する無線機も含む。)に関し、更に詳しくは受信動作の点検、確認に好適な受信機に関するものである。
【0002】
【従来の技術】
従来の一例である受信機について図2、3を参照して説明する。図2はクロック発振器を含む受信機の構成を示すブロック図である。図3は受信機に用いるクロック発振器の構成の一例を示す回路図である。
【0003】
以下、この受信機の構成及び動作について図2を用いて説明する。アンテナ1にて受信した高周波信号はフロントエンド2にて帯域制限及び増幅され第一ミクサ3へ入力される。一方、クロック発振器15からのクロック信号が入力されるとマイコン14は第一局部発振器13から出力される発振信号の発振周波数を制御し、この発振信号は第一ミクサ3へ入力される。即ちマイコン14は第一局部発振器13へ分周数のデータ信号を出力することにより、設定された発振周波数の発振信号が第1ミクサ3へ入力される。(高周波信号の周波数に応じて発振信号の発振周波数が決まる。)フロントエンド2からの高周波信号、第一局部発振器13からの発振信号が第一ミクサ3に入力されることにより、高周波信号は周波数の低い所定の第一中間周波数に変換される。第一ミクサ3にて第一中間周波数に変換された第一中間周波数信号は、帯域濾波器4にて帯域制限され第一中間周波増幅器5にて増幅され第二ミクサ6に入力される。第二ミクサ6には第二局部発振器12からの信号が入力され、第一中間周波数信号は更に周波数の低い第二中間周波数に変換される。変換された第二中間周波数信号は、帯域濾波器7にて帯域制限され第二中間周波増幅器8にて増幅された後、復調器9にて復調される。復調された音声帯域信号はベースバンド信号処理回路10にて帯域制限の処理を施されスピーカ11から出力される。
【0004】
次に、受信機不要輻射について説明する。受信機不要輻射とは不要に輻射されるクロック信号の高次成分のことであり、このクロック信号の高次成分はマイコンによりクロック信号を波形整形、分周処理が行われたときに発生する。図2の受信機もクロック信号の高次成分が不要に輻射されることがある。この受信機で受信動作を行わせるとき、クロック信号の高次成分は輻射されるとノイズとなることにより不要であるため、輻射されないようにクロック信号周波数を設定する。(クロック信号の高次成分が輻射されないようにクロック信号周波数を設定する受信機について、その詳細は特願平11−191684に示している。)しかし、この受信機で受信動作が正常であるか否かをテストする(以下、「受信動作をチェックする」と記載する。)ときにはクロック信号の高次成分が輻射されるようにクロック信号周波数を設定する。(クロック信号周波数の設定については、後で説明する。)このクロック信号の高次成分はマイコン14、ベースバンド信号処理回路10に使用している素子、または素子に接続されている基板上のパターンから輻射される。従って、受信動作をチェックするときは、クロック信号の高次成分が受信周波数帯域内となるように設定し、クロック信号の高次成分を受信したか否かによりにより行う。ノイズスケルチ25が輻射されたクロック信号の高次成分を検出したとき、検出信号をマイコン14へ出力する。マイコン14は検出信号の有無に応じてクロック信号の高次成分を受信したか否かにより受信動作をチェックする。(検出信号がマイコン14に入力されたとき、クロック信号の高次成分を受信したと判定する。)
次に、クロック信号の周波数の設定について、図3を用いて説明する。クロック発振器15は水晶振動子16、コンデンサ17〜20、可変容量ダイオード21、22、抵抗23、24、マイコン14からの制御信号線26、27から構成される。可変容量ダイオード21、22にはそれぞれ抵抗23、24を介してマイコン14からの制御信号が印加されている。この制御信号のレベル(LレベルかHレベルか)に応じて可変容量ダイオード21、22の電気容量が変化しクロック発振器15から出力されるクロック信号の周波数が変化する。受信動作をチェックする場合にクロック信号の高次成分が受信帯域内にすることが必要である。クロック信号の高次成分が受信帯域外となったとき、マイコン14からの制御信号のレベルを変える(LレベルのときはHレベルへ、HレベルのときはLレベルへ変える)ことにより、クロック信号の高次成分が受信帯域内となるようにする。クロック信号の高次成分が受信帯域内に入るか否かを判別するためにマイコン14に計算させることができる。この計算よりクロック信号の高次成分が受信帯域内となる周波数のクロック信号が出力されるように制御信号のレベルをマイコン14は設定する。また、複数個のチャネル(受信周波数)を持つ受信機の場合、クロック信号の高次成分が受信帯域内にあるか否かを制御信号のレベルがLレベルのときとHレベルのとき両方で計算し、この計算結果に応じて各受信周波数毎に制御信号のレベル(LレベルにするかHレベルにするか)を設定することもできる。そして得られた受信周波数と制御信号のレベルとの関係について、データテーブルとしてマイコン14に格納しておくことができる。
【0005】
また、図3のクロック発振器ではマイコン14からの制御信号のレベルはL、Hの2段階であるときについて説明したが、(2のn乗)段階に増やしてクロック信号周波数を(2のn乗)通りに変えることにより、クロック信号周波数を微調整し、必要最小限だけ変えるようにすることもできる(ただし、n≧2)。マイコン14からの制御信号のレベルを(2のn乗)段階に増やすためには、マイコン14からの制御信号線の数をn本(n≧2)にすると共に制御信号をD/A変換することが必要である。アナログ信号に変換された制御信号は(2のn乗)段階のレベルがあるため、可変容量ダイオード21、22の電気容量及びクロック信号周波数を(2のn乗)通りに変えることができる。
【0006】
次に、従来の受信動作のテスト方法(以下、受信チェック方法と称する。)について説明する。受信周波数fR、受信帯域幅B、クロック信号周波数fCが下記(1)〜(3)式に示す値のときについて説明する。
【0007】
受信周波数fR=154.8250(MHz) ………(1)
受信帯域幅B=12(KHz) ………(2)
(受信する電波の周波数fR−6(KHz)〜fR+6(KHz))
クロック信号周波数fC=3.6864(MHz) ………(3)
クロック信号の高次成分の1つであるクロック信号の42倍波成分f42が下記(4)、(5)式に示すように受信周波数fRに対して+3.8KHzとなり受信帯域内に存在する。従って、クロック信号の42倍波成分f42を受信するか否かを検出することにより単体で受信機の受信動作が正常か否かを確認すること(以下、受信チェックと称する。)ができる。
【0008】
クロック信号の42倍波成分f42を受信したか否かの検出は、復調器9からの復調信号成分の一部を利用したノイズスケルチ25が行う。クロック信号の42倍波成分を受信したとき、ノイズスケルチ25は検出信号をマイコン14へ出力する。マイコン14が検出信号の有無に応じてクロック信号の42倍波成分を受信したか否かを判別することにより、受信機の各ブロックが正常に動作して受信しているか否かをチェックすることができる。
【0009】
以上のような受信機の受信動作のチェックをマイコン14により、例えば受信機の電源を入れたとき、またはマイコン14に接続されたスイッチを操作したときに行わせるように制御することもできる。また、受信動作をチェックした結果、受信することができる場合は通常の受信動作に移行する。逆に、受信することができない場合、ユーザーに修理を促すよう例えばアラーム表示やアラーム音により報知する。
【0010】
上記の例は、クロック信号の高次成分が受信機の受信周波数帯域内にある場合について説明したが、クロック信号の高次成分が受信機の受信周波数帯域外である場合、以下の▲1▼、▲2▼により受信チェックを行うことができる。
【0011】
▲1▼クロック信号の高次成分が受信機の受信帯域内となるようにマイコン14からの制御信号によりクロック発振器15から出力するクロック信号の周波数を制御する。
【0012】
▲2▼シンセサイザ方式の受信機の場合、クロック信号の高次成分が受信機の受信帯域内となるように受信周波数をマイコン14により制御する。
【0013】
また、上記の例ではクロック信号の高次成分を受信するか否かを検出する手段としてノイズスケルチを用いた場合について説明したが、RSSI信号を用いても同様にして、クロック信号の高次成分を受信するか否かを検出することができる。
【0014】
この受信機では、クロック信号の周波数がクロック発振器15の水晶振動子16、コンデンサ17〜20、可変容量ダイオード21、22によって決定される。しかし、水晶振動子16の周波数偏差及び温度特性とコンデンサ17〜20、可変容量ダイオード21、22の許容偏差及び温度特性によりクロック信号の周波数がずれることがある。このクロック信号の周波数がずれることにより、クロック信号の高次成分を受信できるか否か検出できないことがある。
【0015】
次に、検出できない例として水晶振動子16の周波数偏差による場合について説明する。水晶振動子16の周波数偏差が例えば±100ppmであったとすると、クロック信号の42倍波成分f42は、下記(6)、(7)式により154.8133〜154.8443(MHz)となり、受信帯域内(154.8190〜154.8310(MHz))に存在しない場合がある。受信帯域内に存在しない場合、クロック信号の42倍波成分f42を受信することができないことにより単体で受信チェックを行うことができない。
【0016】
周波数偏差が+100(ppm)のとき:
周波数偏差が−100(ppm)のとき:
次に、検出できない例として水晶振動子16の温度特性による場合について説明する。水晶振動子16の温度特性により、受信機の使用される周囲温度によってはクロック信号の42倍波成分を受信することができないため、単体で受信チェックを行うことができない場合がある。
【0017】
【発明が解決しようとする課題】
以上のように、従来の受信機ではクロック発振器を構成する部品の許容偏差、温度特性及びバラツキによりクロック信号の周波数がずれることがある。クロック信号の周波数がずれが大きいとき、クロック信号の高次成分が受信機の受信帯域内に存在しない場合がある。この場合、単体で受信チェックを行うことができないという問題が発生する。この問題により、特に相手局との通信が確実に行うことが必要不可欠である職種で用いる受信機、例えば災害救助活動のように人命救助に係わる職種で用いる携帯無線機では、始業前に受信チェックを行うことが必要であり且つ持ち運んで頻繁に相手局と通信を行うため、この受信機を採用することができない。
【0018】
本発明は以上の点に鑑み、クロック信号の周波数がずれたとき単体で受信チェックを行うことができないという問題を解決するためになされたものである。即ち、クロック発振器を構成する部品の許容偏差、温度特性及びバラツキによりクロック信号の周波数がずれても、受信チェックを単体で確実に行うことができるようにした極めて利便性の良い受信機及び受信チェック方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は上記の目的を達成するため、受信周波数の前後に受信帯域幅よりも小さい周波数間隔で受信チェック用チャネル(受信周波数よりも大きい周波数範囲での受信チェック用チャネルの数と受信周波数よりも小さい周波数範囲での受信チェック用チャネルの数が同じとなるようにする。)を制御手段(本実施例では、マイコン)に設けることにより所定の周波数範囲の輻射電波を受信できるようにすることで、クロック発振器から出力されるクロック信号の周波数がずれても輻射電波の有無を検出して単体で受信チェックを行うようにしたものである。そして受信チェックは、制御手段(本実施例では、マイコン)により周波数が受信周波数と同じとなる受信チャネルに設定した後、周波数が受信周波数に近い順に受信チェック用チャネルを設定し、検出手段(本実施例では、ノイズスケルチ)により受信チャネル及び各々の受信チェック用チャネルで輻射電波の有無を検出することにより行うことができるようにしたものである。
【0020】
【発明の実施の形態】
以下、本発明の一実施例である受信機及び受信チェック方法について図1〜5を参照して説明する。図1は本実施例の受信チェック方法に用いる受信チャネルと受信周波数を示す図である。図2はクロック発振器を含む受信機の構成の一例を示すブロック図である。図3は受信機に用いるクロック発振器の構成の一例を示す回路図である。図4は本実施例の受信チェック方法を示すフローチャートである。図5はスキャン幅(受信周波数よりも大きい周波数で設定される受信チェック用チャネルの数、及び受信周波数よりも小さい周波数で設定される受信チェック用チャネルの数)の計算方法を示すフローチャートである。
【0021】
以下、この受信機の構成及び動作について図2を用いて説明する。アンテナ1にて受信した高周波信号はフロントエンド2にて帯域制限及び増幅され第一ミクサ3へ入力される。一方、クロック発振器15からのクロック信号が入力されるとマイコン14は第一局部発振器13から出力される発振信号の発振周波数を制御し、この発振信号は第一ミクサ3へ入力される。即ちマイコン14は第一局部発振器13へ分周数のデータ信号を出力することにより、設定された発振周波数の発振信号が第1ミクサ3へ入力される。(高周波信号の周波数に応じて発振信号の発振周波数が決まる。)フロントエンド2からの高周波信号、第一局部発振器13からの発振信号が第一ミクサ3に入力されることにより、高周波信号は周波数の低い所定の第一中間周波数に変換される。第一ミクサ3にて第一中間周波数に変換された第一中間周波数信号は、帯域濾波器4にて帯域制限され第一中間周波増幅器5にて増幅され第二ミクサ6に入力される。第二ミクサ6には第二局部発振器12からの信号が入力され、第一中間周波数信号は更に周波数の低い第二中間周波数に変換される。変換された第二中間周波数信号は、帯域濾波器7にて帯域制限され第二中間周波増幅器8にて増幅された後、復調器9にて復調される。復調された音声帯域信号はベースバンド信号処理回路10にて帯域制限の処理を施されスピーカ11から出力される。
【0022】
次に、受信機不要輻射について説明する。受信機不要輻射とは不要に輻射されるクロック信号の高次成分のことであり、このクロック信号の高次成分はマイコンによりクロック信号を波形整形、分周処理が行われたときに発生する。図2の受信機もクロック信号の高次成分が不要に輻射されることがある。この受信機で受信動作を行わせるとき、クロック信号の高次成分は輻射されるとノイズとなることにより不要であるため、輻射されないようにクロック信号周波数を設定する。(クロック信号の高次成分が輻射されないようにクロック信号周波数を設定する受信機について、その詳細は特願平11−191684に示している。)しかし、この受信機で受信動作をチェックするときにはクロック信号の高次成分が輻射されるようにクロック信号周波数を設定する。(クロック信号周波数の設定については、後で説明する。)このクロック信号の高次成分はマイコン14、ベースバンド信号処理回路10に使用している素子、または素子に接続されている基板上のパターンから輻射される。従って、受信動作をチェックするときは、クロック信号の高次成分が受信周波数帯域内となるように設定し、クロック信号の高次成分を受信したか否かにより行う。ノイズスケルチ25が輻射されたクロック信号の高次成分を検出したとき、検出信号をマイコン14へ出力する。マイコン14は検出信号の有無に応じてクロック信号の高次成分を受信したか否かにより受信動作をチェックする。(検出信号がマイコン14に入力されたとき、クロック信号の高次成分を受信したと判定する。)
次に、クロック信号周波数の設定について、図3を用いて説明する。クロック発振器15は水晶振動子16、コンデンサ17〜20、可変容量ダイオード21、22、抵抗23、24、マイコン14からの制御信号線26、27から構成される。可変容量ダイオード21、22にはそれぞれ抵抗23、24を介してマイコン14からの制御信号が印加される。この制御信号のレベル(LレベルかHレベルか)に応じて可変容量ダイオード21、22の電気容量が変化しクロック発振器15から出力されるクロック信号の周波数が変化する。受信動作をチェックする場合にクロック信号の高次成分が受信帯域内にすることが必要である。クロック信号の高次成分が受信帯域外となったとき、マイコン14からの制御信号のレベルを変える(LレベルのときはHレベルへ、HレベルのときはLレベルへ変える)ことにより、クロック信号の高次成分が受信帯域内となるようにする。クロック信号の高次成分が受信帯域内に入るか否かを判別するためにマイコン14に計算させることができる。この計算よりクロック信号の高次成分が受信帯域内となる周波数のクロック信号が出力されるように制御信号のレベルをマイコン14は設定する。また、複数個のチャネル(受信周波数)を持つ受信機の場合、クロック信号の高次成分が受信帯域内にあるか否かを制御信号のレベルがLレベルのときとHレベルのとき両方で計算し、この計算結果に応じて各受信周波数毎に制御信号のレベル(LレベルにするかHレベルにするか)を設定することもできる。そして得られた受信周波数と制御信号のレベルとの関係について、データテーブルとしてマイコン14に格納しておくことができる。
【0023】
また、図3のクロック発振器ではマイコン14からの制御信号のレベルはL、Hの2段階であるときについて説明したが、(2のn乗)段階に増やしてクロック信号周波数を(2のn乗)通りに変えることにより、クロック信号周波数を微調整し、必要最小限だけ変えるようにすることもできる(ただし、n≧2)。マイコン14からの制御信号のレベルを(2のn乗)段階に増やすためには、マイコン14からの制御信号線の数をn本(n≧2)にすると共に制御信号をD/A変換することが必要である。アナログ信号に変換された制御信号は(2のn乗)段階のレベルがあるため、可変容量ダイオード21、22の電気容量及びクロック信号周波数を(2のn乗)通りに変えることができる。
【0024】
次に、本実施例の受信チェック方法の概略について、図1を用いて説明する。
受信周波数fR、受信帯域幅B、クロック信号周波数fCが下記(1)〜(3)式に示す値のときについて説明する。
【0025】
受信周波数fR=154.8250(MHz) ………(1)
受信帯域幅B=12(KHz) ………(2)
(受信する電波の周波数fR−6(KHz)〜fR+6(KHz))
クロック信号周波数fC=3.6864(MHz) ………(3)
クロック信号の高次成分の1つであるクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)が下記(4)、(5)式に示すように受信周波数fRに対して+3.8KHzとなり受信帯域内に存在するため、一見するとクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かをノイズスケルチ25が検出することにより単体で受信チェックを行うことができるようにみえる。
【0026】
しかし、水晶振動子16の周波数偏差が例えば±100(ppm)であるとき、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の周波数は、下記(6)、(7)式により154.8133〜154.8443(MHz)となり、受信機の受信帯域内(154.8190〜154.8310(MHz))に存在しない場合がある。
【0027】
周波数偏差が+100(ppm)のとき:
周波数偏差が−100(ppm)のとき:
そこで、受信周波数fR=154.8250(MHz)を中心としてこの受信周波数の前後に受信帯域幅b=12(KHz)よりも小さい周波数間隔で、例えば10(KHz)の周波数間隔で受信チェック用チャネルをマイコン14に4個設ける。受信周波数fRよりも周波数の大きい受信チェック用チャネルは2個とし、この受信チェック用チャネルの周波数は154.8350(MHz)、154.8450(MHz)とする。一方、受信周波数fRよりも周波数の小さい受信チェック用チャネルは2個とし、この受信チェック用チャネルの周波数は154.8050(MHz)、154.8150(MHz)とする。受信周波数fRよりも大きい周波数の受信チェック用チャネルを2個、受信周波数fRよりも小さい周波数の受信チェック用チャネルを2個設けることにより、154.8133〜154.8443(MHz)の周波数範囲でクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信することができる。そして、受信周波数fR=154.8250(MHz)の受信チャネルを例えばp0チャネル、周波数154.8050(MHz)、154.8150(MHz)、154.8350(MHz)、154.8450(MHz)の受信チェック用チャネルを例えばそれぞれq2チャネル、q1チャネル、p1チャネル、p2チャネルとする。そして受信チャネル及び各々の受信チェック用チャネルで、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かをチェックする。例えばp0チャネル、p1チャネル、q1チャネル、p2チャネル、q2チャネルの順番でチャネル(受信チャネル及び各々の受信チェック用チャネル)を変えてクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かをチェックする。このチェックにより、クロック信号の42倍波成分f42が受信周波数帯域内にないときでも確実に受信することができる。クロック信号の42倍波成分f42を受信したとき、復調器9からの復調信号成分の一部を利用したノイズスケルチ25によりクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)が検出される。そして、ノイズスケルチ25は検出信号をマイコン14へ出力し、マイコン14は検出信号の有無によりクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かを判別する。この判別により受信機全体の各ブロックが正常に動作しているか、即ち受信できるか否かをチェックすることができる。もし受信できなかったとき、受信機に異常があるのでユーザーに修理を促すように例えばアラーム表示やアラーム音により報知する。
【0028】
次に、本実施例の受信チェック方法の詳細について、図4を用いて説明する。
受信周波数fR、受信帯域幅B、クロック信号周波数fCが上記(1)〜(3)式に示す値のときについて説明する。初期設定でm=0とすることにより受信チャネルをp0チャネルにする(ステップ30)と、スキャン幅nが計算される(ステップ31)。スキャン幅nとは、受信動作をチェックするとき、受信周波数fRよりも大きい周波数で設定される受信チェック用チャネルの数、受信周波数fRよりも小さい周波数で設定される受信チェック用チャネルの数である。本実施例ではスキャン幅n=2である。(スキャン幅nの計算方法については後で詳細に説明する。)スキャン幅nが算出された後、周波数が受信周波数fR(fR=154.8250(MHz))に設定される(ステップ32)。そして、輻射電波(キャリア)であるクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かを検出する(ステップ33)。クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出したとき、受信動作が行えると判定し、通常動作モード(受信モード)へ移行する(ステップ40)。逆に、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出しなかったとき、m=1とし受信チェック用チャネルをp1チャネルに変える(ステップ34)ことで周波数が受信周波数fRよりも10(KHz)大きい周波数154.8350(MHz)に設定される(ステップ35)。そして、輻射電波(キャリア)であるクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かを検出する(ステップ36)。クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出したとき、受信動作が行えると判定し、通常動作モード(受信モード)へ移行する(ステップ40)。逆に、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出しなかったとき、マイコン14は受信チェック用チャネルをq1チャネルに変える(ステップ37)ことで周波数が受信周波数fRよりも10(KHz)小さい周波数154.8150(MHz)に設定される。そして、輻射電波(キャリア)であるクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かを検出する(ステップ38)。クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出したとき、受信動作が行えると判定し、通常動作モード(受信モード)へ移行する(ステップ40)。逆に、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出しなかったとき、mがスキャン幅n(本実施例では、n=2)以上であるか否かを判定する(ステップ39)。本実施例ではm=1よりm<nとなるので、m=2として受信チェック用チャネルがp2チャネル(周波数がfR+2×10(KHz))のとき、またはq2チャネル(周波数がfR−2×10(KHz))のときに輻射電波(キャリア)であるクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を受信するか否かを検出する(ステップ34〜39)。クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出したとき、受信動作が行えると判定し、通常動作モード(受信モード)へ移行する(ステップ40)。逆に、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)を検出しなかったとき、m=2よりスキャン幅nと同じ値であることで輻射電波を受信できないため受信機に異常があると判定される(ステップ39)。受信機の異常をユーザーに報知して修理を促すように、例えばアラーム表示をしたり、またはアラーム音を出力する(ステップ41)。
【0029】
次に、スキャン幅nの計算方法について図5を用いて説明する。受信周波数fR、受信帯域幅B、クロック信号周波数fCが上記(1)〜(3)式に示す値であると共に周波数偏差p=±100(ppm)のときについて説明する。まず、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fU、最小周波数fDを下記(8)、(9)式よりそれぞれ求める(ステップ50)。
【0030】
fR:受信周波数(例えば、154.8250(MHz))
N:クロック信号の高次成分の周波数とクロック信号の周波数との比
(例えば、42)
p:周波数偏差
(例えば、(6)式のときは+100(ppm))
(例えば、(7)式のときは−100(ppm))
次に、初期設定でL=1とし(ステップ51)、p1チャネルのときの周波数fp1、q1チャネルのときの周波数fq1を下記(10)、(11)式よりそれぞれ求める(ステップ52、53)。
【0031】
fR:受信周波数(例えば、154.8250(MHz))
U:周波数間隔(例えば、10.0(KHz)=0.010(KHz))
次に、p1チャネルのときの周波数fp1とクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fUとの差の絶対値、q1チャネルのときの周波数fq1とクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最小周波数fDとの差の絶対値を下記(12)、(13)式よりそれぞれ求める。そして、各々の絶対値とb/2(b:受信帯域幅)との大小を比較する。(ステップ54〜56)。
【0032】
fU:クロック信号の42倍波成分の最大周波数(MHz)
fD:クロック信号の42倍波成分の最小周波数(MHz)
fp1:p1チャネルのときの周波数(MHz)
fq1:q1チャネルのときの周波数(MHz)
上記(12)式より|fU−fp1|>b/2であること及び図1から、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fUはp1チャネルの周波数帯域には入らない。一方、上記(13)式より|fq1−fD|≦b/2であること及び図1から、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最小周波数fDはq1チャネルの周波数帯域に入る。クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fUがp1チャネルの周波数帯域に入らないがクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最小周波数fDがq1チャネルの周波数帯域に入るときは、L=2とし(ステップ58)、p2チャネルのときの周波数fp2を下記(14)式より求める(ステップ61)。
【0033】
fR:受信周波数(例えば、154.8250(MHz))
U:周波数間隔(例えば、10.0(KHz)=0.010(KHz))
次に、p2チャネルのときの周波数fp2とクロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fUとの差の絶対値を下記(15)式より求める。そして、求めた絶対値とb/2(b:受信帯域幅)との大小を比較する。(ステップ63)。
【0034】
fU:クロック信号の42倍波成分の最大周波数(MHz)
fp2:+2チャネルのときの周波数(MHz)
上記(15)式より|fU−fp2|≦b/2であること及び図1から、クロック信号の42倍波成分f42(本実施例でのクロック信号の高次成分)の最大周波数fUはp2チャネルの周波数帯域には入る。本実施例の様に、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUがp2チャネルの周波数帯域に入るとき、スキャン幅n=2とする(ステップ65)。一方、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUがp2チャネルの周波数帯域に入らないとき、Lを1ずつ大きくしクロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUがpLチャネルの周波数帯域に入るか否かを計算する。そして、例えばクロック信号の高次成分(例えば、クロック信号の42倍波成分f42)がp5チャネルの周波数帯域に入るとき、スキャン幅n=5とする(ステップ58、61、63、65)。
【0035】
以上のように、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最小周波数fDが周波数帯域に入る受信チェック用チャネルを先に求めることができた場合、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUが周波数帯域に入る受信チェック用チャネルがpnチャネルであるとき、スキャン幅はnとなる。
【0036】
逆に、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUが周波数帯域に入る受信チェック用チャネルを先に求めることができた場合、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最小周波数fDが周波数帯域に入る受信チェック用チャネルがqnチャネルであるとき、スキャン幅はnとなる(ステップ59、62、64、66)。
【0037】
また、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最小周波数fDが周波数帯域に入る受信チェック用チャネルがqnチャネルであると共に、クロック信号の高次成分(例えば、クロック信号の42倍波成分f42)の最大周波数fUが周波数帯域に入る受信チャネルがpnチャネルであるとき、スキャン幅はnとなる(ステップ54、56、60)。
【0038】
以上のように、本実施例の受信機及び受信チェック方法では、周波数偏差によりクロック信号の周波数がずれても、単体で確実に受信動作をチェックすることができる。周波数偏差によるクロック信号周波数のずれ以外でも、クロック発振器を構成する部品の偏差、温度特性によりクロック信号周波数がずれた場合でも、同様にして単体で確実に受信動作をチェックすることができる。
【0039】
【発明の効果】
以上説明したように本発明によれば、例えば測定器、相手局、更に回路(受信チェック用回路)を追加することなく、クロック信号周波数がずれた場合でも単体で受信動作をチェックすることができる。従って、極めて利便性の良い受信機及び受信チェック方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である受信チェック方法に用いる受信チャネルと受信周波数との関係を示す図
【図2】クロック発振器を含む受信機の構成の一例を示すブロック図
【図3】受信機に用いるクロック発振器の構成の一例を示す回路図
【図4】本発明の一実施例である受信チェック方法を示すフローチャート
【図5】スキャン幅の計算方法の一例を示すフローチャート
【符号の説明】
1.アンテナ 2.フロントエンド
3.第一ミクサ 4.帯域濾波器
5.第一中間周波増幅器 6.第二ミクサ
7.帯域濾波器 8.第二中間周波増幅器
9.復調器 10.ベースバンド信号処理回路
11.スピーカ 12.第二局部発振器
13.第一局部発振器 14.マイコン
15.クロック発振器 16.水晶振動子
17.18.19.20.コンデンサ 21.22.可変容量ダイオード
23.24.抵抗 25.ノイズスケルチ
26.27.マイコンからの制御信号線
30〜41.図4のフローチャートのブロック
50〜66.図5のフローチャートのブロック
Claims (2)
- 受信部と、
該受信部の後段に設けられ受信周波数を所要値に変換して出力する周波数変換手段と、
前記受信周波数を設定し前記周波数変換手段の動作を制御する制御手段と、
クロック信号を出力し前記制御手段を動作せしめるクロック発振器と、
前記周波数変換手段の後段に設けられ輻射電波の有無を検出する検出手段とを含む受信機において、
前記受信周波数よりも大きい周波数範囲と小さい周波数範囲に受信帯域幅以下の周波数間隔で各々同数の受信チェック用チャネルを前記制御手段に備え、所要の周波数範囲の輻射電波を受信するようにし、
前記クロック信号の周波数がずれたときも前記輻射電波の有無を検出し、
単体で受信チェックを行うように構成したことを特徴とする受信機。 - 受信部と、
該受信部の後段に設けられ受信周波数を所要値に変換して出力する周波数変換手段と、
前記受信周波数を設定し前記周波数変換手段の動作を制御する制御手段と、
クロック信号を出力し前記制御手段を動作せしめるクロック発振器と、
前記周波数変換手段の後段に設けられ輻射電波の有無を検出する検出手段とを含み、
前記制御手段は前記受信周波数よりも大きい周波数範囲と小さい周波数範囲に受信帯域幅以下の周波数間隔で各々同数の受信チェック用チャネルを備え、
所定の周波数範囲の輻射電波を受信する受信機の受信動作のテスト方法において、
前記制御手段により周波数が前記受信周波数と同じである受信チャネルに設定した後、
前記周波数が前記受信周波数に近い順に前記受信チェック用チャネルを設定するようにし、
前記制御手段が設定した前記受信チャネル及び各々の前記受信チェック用チャネルで前記輻射電波の有無を前記検出手段により検出するようにしたことを特徴とする受信動作のテスト方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250430A JP3804912B2 (ja) | 2000-08-22 | 2000-08-22 | 受信機及び受信動作のテスト方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250430A JP3804912B2 (ja) | 2000-08-22 | 2000-08-22 | 受信機及び受信動作のテスト方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002064442A JP2002064442A (ja) | 2002-02-28 |
JP3804912B2 true JP3804912B2 (ja) | 2006-08-02 |
Family
ID=18739999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000250430A Expired - Fee Related JP3804912B2 (ja) | 2000-08-22 | 2000-08-22 | 受信機及び受信動作のテスト方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3804912B2 (ja) |
-
2000
- 2000-08-22 JP JP2000250430A patent/JP3804912B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002064442A (ja) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1393403B1 (en) | Tunable phase shifter and applications for same | |
JP3906792B2 (ja) | 高周波信号受信装置とその製造方法 | |
US6646449B2 (en) | Intermodulation detector for a radio receiver | |
EP1083668A1 (en) | Radio terminal unit | |
US20050221776A1 (en) | Test signal generation circuit, and reception circuit | |
JP2000049875A (ja) | 直接変換受信機 | |
CN106656227B (zh) | 一种3~18GHz微波接收前端 | |
JP2001298372A (ja) | 周波数自己最適化を用いた送信機回路 | |
US6683925B1 (en) | Wireless terminal device | |
JP3804912B2 (ja) | 受信機及び受信動作のテスト方法 | |
US6987957B2 (en) | Dual-band frequency converter unit with high operability | |
JPH04266223A (ja) | 無線受信機 | |
JP2001077709A (ja) | 送信機の出力電力検出回路 | |
WO2004040755A1 (ja) | フィルタ回路及び無線装置 | |
JP3441311B2 (ja) | 受信機 | |
JP4268543B2 (ja) | 受信機及び受信チェック方法 | |
JP4249867B2 (ja) | 受信機 | |
JP2005191753A (ja) | 受信機及び受信チェック方法 | |
RU2594180C1 (ru) | Ультракоротковолновая радиостанция | |
JPH04269041A (ja) | 受信機 | |
KR0140418B1 (ko) | 휴대용 무선전화기의 주파수 보상 방법 및 장치 | |
JPH07177045A (ja) | 高周波増幅回路の消費電力低減方式 | |
JPH07250003A (ja) | 無線通信装置 | |
JP2001024531A (ja) | 受信機 | |
JP3263251B2 (ja) | 受信回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060508 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3804912 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140519 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |