JP3802465B2 - 垂直共振器型面発光半導体レーザ - Google Patents
垂直共振器型面発光半導体レーザ Download PDFInfo
- Publication number
- JP3802465B2 JP3802465B2 JP2002239146A JP2002239146A JP3802465B2 JP 3802465 B2 JP3802465 B2 JP 3802465B2 JP 2002239146 A JP2002239146 A JP 2002239146A JP 2002239146 A JP2002239146 A JP 2002239146A JP 3802465 B2 JP3802465 B2 JP 3802465B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor
- active layer
- layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は、基板の一主面と垂直方向にレーザ光を出射する垂直共振器型面発光半導体レーザに関する。
【0002】
【従来の技術】
垂直共振器型面発光半導体レーザ(以下では、面発光レーザと呼ぶ)は、端面へき開なしに作製できること、二次元アレイ化が可能なこと、出射ビームを容易に円形化できることなど、端面発光型の半導体レーザにはない特徴があり注目をされている。
【0003】
面発光レーザの最も一般的な構造としては、半導体基板上において、活性層の上下に一対の分布ブラッグ反射型半導体多層膜反射鏡(Distributed Bragg Reflection Mirror、以下DBRミラーと呼ぶ)を配置した積層構造を形成し、このDBRミラーの外側に形成した電極からDBRミラーを介して、電流を注入する構造がよく知られている。このような構造の面発光レーザにおいては、端面発光型の半導体レーザと比べると素子の熱抵抗が非常に大きく、レーザ発振時には通電による発熱で、活性層内部の温度が素子の外部と比べて上昇することも知られている。
面発光レーザの熱抵抗を低減する方法の一つとして、発熱源となるpn接合部のある基板表面側をヒートシンクにマウントする、いわゆるジャンクションダウン型とすることにより、レーザ光を基板の表面側からではなく裏面側から取り出す方法がある。ジャンクションダウン型では、基板がレーザ光に対して透明な場合は、基板裏面から容易にレーザ光を取り出すことが可能であるが、基板が不透明な場合は、レーザ光を取り出すためには基板に光取り出し用の孔を設ける必要がある。
【0004】
図5は、レーザ光に対して基板が不透明でかつ、基板裏面からレーザ光を取り出す構成の面発光レーザの従来例を示す構造断面図である。このような構成の面発光レーザと同様な構成は、例えば、ELECTRONICS LETTERS Vol.25 No.24 pp.1644-1645(1989年11月23日発行)に記載されている。
図5に示した面発光レーザでは、活性層にGaAsを量子井戸に用いた多重量子井戸(MQW:Multiple Quantum well)構造を用いているため、発振波長が約850nmとなり、レーザ光はGaAs基板によって吸収されるため、基板には裏面から孔を開けて、そこからレーザ光を取り出す構造となっている。
【0005】
以下、図5に示した従来例の作製法を簡単に説明する。最初に、n型GaAs基板408上に、n型GaAlAs系DBRミラー407、n型Ga0.7Al0.3As クラッド層406、GaAs系MQW活性層405、p型Ga0.7Al0.3As クラッド層404、p型GaAlAs系DBRミラー403、p型GaAsコンタクト層402をMOCVD法で順次結晶成長する。このとき、GaAlAs系DBRミラーは、それぞれの光学膜厚が発振波長の四分の一波長であるGa0.9Al0.1AsとGa0.2Al0.8Asを、交互に繰り返し積層したものであり、波長850nm帯の面発光レーザでは、この材料の組み合わせの場合には繰り返し数は基板側のDBRミラーでは約20程度、また基板と反対側のDBRミラーでは約30程度とするのが一般的である。次いで、基板表面から選択的にプロトンをイオン注入することにより、電流狭窄のための高抵抗領域410を形成する。次いで、p側電極401の形成、基板の裏面研磨、n側電極409の形成を順次行った後に、裏面を選択的にエッチングすることにより光取り出し用の開孔を作製する。
【0006】
以上のような手順で作製した面発光レーザを、いわゆるジャンクションダウン型でヒートシンクに実装すると、いわゆるジャンクションアップ型で実装した場合と比べると、発熱源となる活性層とヒートシンクとの距離を大幅に短くなるので、素子の熱抵抗を小さくすることが可能である。素子の熱抵抗が小さくなると、電流注入時の活性層の温度上昇が小さくなるので、高温動作・高出力動作が可能となる。
【0007】
【発明が解決しようとする課題】
上記のように、ジャンクションダウン型の実装により、ジャンクションアップ型と比べて素子の熱抵抗を低減することが可能となる。しかしながら、従来例のように基板が発振波長に対して不透明な場合において、レーザ光を取り出すための開孔を裏面に形成すると、開孔がない素子をジャンクションダウン型で実装した場合ほど、素子の熱抵抗を低減することはできない。これは、基板に設けた開孔により、熱源となる発光部からレーザ光が素子外部に出射される光出射面までの半導体層の厚さが約2.5〜3μmと非常に薄くなるために、熱源から基板側に広がりながらヒートシンクへと放熱する経路での放熱効果が低減してしまうためである。
【0008】
このように、発振波長に対して基板が透明で裏面に開孔を設けることなくジャンクションダウン型実装が可能な面発光レーザと比べると、発振波長に対して基板が不透明なために裏面に開孔を設けないとジャンクションダウン型実装ができない面発光レーザにおいては、ジャンクションダウン実装型による熱抵抗の改善による光出力特性や温度特性などの素子特性改善が少ないという問題があった。本発明は、上記の課題を解決するためになされたもので、発振波長に対して基板が不透明で、基板裏面から開孔を設けてレーザ光を取り出す構造の面発光レーザにおいて、従来よりも素子の熱抵抗が低減され、高温・高出力動作に優れた素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に係る発明では、基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、前記活性層と光出射面との間に設けられた半導体層の合計の厚さが8μm以上である垂直共振器型面発光半導体レーザを提供する。
このような構成の面発光レーザを、ジャンクションダウン型でヒートシンクに実装したとき、活性層と光出射面との間の半導体層の厚さが十分に厚いために、電流注入時に活性層すなわち発光部で発生した熱に対する、基板側に広がりながらヒートシンクへと放熱する経路での放熱効果が改善され、素子の熱抵抗を従来よりも低減することが可能となる。素子の熱抵抗の低減にともない、光出力特性と温度特性が改善される。
なお、活性層と光出射面との間の半導体層の厚さが十分に厚く、8μm以上にすれば、上述の効果が期待できるが、その上限は13μm以下が望ましい。その理由は、厚さ13μm以上で素子の熱抵抗はほとんど一定になり、これ以上厚くしても素子特性はほとんど変化しないからである。
【0010】
次に請求項2に係る発明では、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間に、厚さが5μm以上の半導体層を設けることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
なお、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間の半導体層の厚さを、5μm以上にすれば、素子の熱抵抗を低減できるが、その上限は10μm以下が望ましい。
【0011】
次に、請求項3に係る発明では、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に、厚さが5μm以上の半導体層を設けることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
なお、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に設けられた半導体層の厚さも、5μm以上が好ましいが、10μm以下が望ましい。
【0012】
次に、請求項4に係る発明では、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に設けられた半導体層の、合計の厚さを5μm以上とすることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
【0014】
次に、請求項5に係る発明では、前記基板がGaAsであり、前記活性層にIn1-x(Ga1-yAly)xP系材料が用いられ、発振波長が620〜690nmである面発光レーザを提供する。
活性層にIn1-x(Ga1-yAly)xP系材料を用いた発振波長が620〜690nmの赤色面発光レーザでは、温度上昇に伴う利得の低下が非常に顕著であることから、素子の熱抵抗を低減したことによる素子特性の改善はいっそう顕著となる。
【0015】
次に、請求項6に係る発明では、前記基板がGaAsであり、前記活性層から前記光出射面との間に設けられた半導体層に、Ga1-zAlzAs系材料またはIn1-x(Ga1-yAly)xP系材料を用いた面発光レーザを提供する。
Ga1-zAlzAs系材料またはIn1-x(Ga1-yAly)xP系材料は、GaAs基板に格子整合させることができるため、結晶品質を低下させることなく十分な膜厚の半導体層を積層することが可能である。
【0016】
次に、請求項7に係る発明では、前記活性層から前記光出射面との間に設けられた半導体層のうち、基板に最も近い半導体層がIn1-x(Ga1-yAly)xP系材料である面発光を提供する。
裏面に開孔を設けることにより、露出され素子外部と接触する半導体層をIn1-x(Ga1-yAly)xP系材料とすることで、Ga1-zAlzAs系材料を用いた場合と比べて、外部からの水分の吸収を抑制することが可能となり、信頼性の高い面発光レーザが実現できる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
(第1の実施形態)
本発明の第1の実施形態は、活性層にInGaAlP系量子井戸構造を用いた、発光波長が約660nmの面発光レーザである。
図1は、本実施形態に係わる面発光レーザの概略構成を示す断面図である。
【0019】
以下、本実施形態に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板110の一主面上に、n型InGaP層109、n型GaAlAs層108、n型GaAlAs系DBRミラー107、n型InGaAlPクラッド層106、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層105、p型InGaAlPクラッド層104、p型GaAlAs系DBRミラー103、p型GaAsコンタクト層102を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域112を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極101を形成し、その後に、n型GaAs基板110の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面の電流狭窄部と同心で直径80μmの円形領域を除いた領域に、n側電極111を形成する。最後に、n側電極111が形成されなかった領域をエッチングすることにより、レーザ光を取り出すための孔を作製し、図1のような面発光レーザが完成する。このとき、開孔部を形成するエッチングは、レジストをマスクとした塩素系RIE(Reactive Ion Etching)を用いた約100μmのドライエッチングと、硫酸系エッチャントによるウエットエッチングを用いて行った。p型InGaP層109は、硫酸系エッチャントによりGaAsをエッチングするときの、エッチングストップ層として機能させることができる。また、GaAlAs系DBRミラーは、それぞれの光学膜厚が発振波長の四分の一波長であるGa0.5Al0.5AsとGa0.05Al0.95Asを、交互に繰り返し積層した構造とし、繰り返し数は、基板側のn型DBRミラーでは30、基板と反対側のDBRミラーでは50.5とした。さらに、n型DBRミラー107とn型GaAs基板の間に設けたGaAlAs層108においては、Al組成を0.7、膜厚を約6.5μmとし、p型InGaP層109においては膜厚を約0.5μmとした。n側DBRミラー107の厚さは約3μmであることから、活性層からレーザ光出射面までの半導体層の合計の膜厚は約10μmとなる。なお、InGaP層109は、すでに述べたエッチングストップ層として機能するだけではなく、素子外部からの水分の吸収を抑制して、長期信頼性の高い素子を実現するのに有効な保護層としての働きもしている。また、n型InGaAlPクラッド層106、InGaAlP系MQW活性層105、およびp型InGaAlPクラッド層の合計の厚さは約0.2μmであるが、より厳密には共振器の共振波長が660nmとなるように調整されている。
【0020】
以上のようにして作製された図1の面発光レーザは、p側電極101がヒートシンクに接触するように、ジャンクションダウン型で実装して、外部から電流を注入して動作させる。このとき、活性層から光出射面までの半導体層の厚さが約10μmと、十分な厚さが確保されているため、発光部で発生した熱は、発光部から直接ヒートシンクへ熱が流れる経路に加えて、発光部から基板側へ広がりながら熱が流れる経路でも放熱させることが可能となる。その結果、一般的なジャンクションアップ型構造の場合よりも素子の熱抵抗が低減されるのみならず、裏面開孔を設けたジャンクションダウン型で図5の従来例のような構成と比べても熱抵抗はさらに低減される。
【0021】
裏面開孔を設けた面発光レーザをジャンクションダウン型で実装した場合の素子の熱抵抗は、活性層から光出射面までの半導体層の厚さに強く依存する。図1の実施形態と概略同一構成の面発光レーザに関して、n型GaAlAs層108の厚さを変化させたときの熱抵抗を、シミュレーションにより算出した結果をグラフに示したのが図2である。ここでは、素子の電流狭窄径が、5,10,15,20μmの4種類の場合について示してある。なお、グラフの横軸は、n型GaAlAs層108の厚さではなく、活性層から光出射面までの合計の半導体層の厚さ(t)としている。図2を見るとわかるように、tの増加とともに熱抵抗は減少するが、素子の電流狭窄径がいずれの場合においても、tが8μmくらいまではtの増加に対して熱抵抗が急速に減少し、tが8μmを超えるとほぼ一定値に落ち着くことがわかる。したがって、活性層から光出射面までの合計の半導体層の厚さは8μm以上とすれば良いことになる。
この図2から、活性層から光出射面までの合計の半導体層の厚さは8μm以上例えば40μm以上であっても理論的には良いが、必要以上に厚くすると、結晶成長時間が長くなるだけでなく結晶品質の低下も懸念されるので、熱抵抗がほぼ一定となる13μm以下が望ましい。
【0022】
(第2の実施形態)
本発明の第2の実施形態も、第1の実施形態と同様に、活性層にInGaAlP系量子井戸構造を用いた、発振波長が約660nmの面発光レーザである。
図3は、本実施形態に係わる面発光レーザの概略構成を示す断面図である。
【0023】
以下、本実施形態に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板209の一主面上に、n型InGaP層208、n型GaAlAs系DBRミラー207、n型InGaAlPクラッド層206、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層205、p型InGaAlPクラッド層204、p型GaAlAs系DBRミラー203、p型GaAsコンタクト層202を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域211を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極201を形成し、その後に、n型GaAs基板209の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面の電流狭窄部と同心で直径80μmの円形領域を除いた領域に、n側電極210を形成する。最後に、n側電極210が形成されなかった領域をエッチングすることにより、レーザ光を取り出すための孔を作製し、図2のような面発光レーザが完成する。
【0024】
この第2の実施形態を、第1の実施形態とを比較すると、n型InGaAlPクラッド層206の厚さを約6.5μmと非常に厚くしていることと、第1の実施形態におけるn型GaAlAs層108に相当する半導体層がないことを除けば、ほぼ同一の構成となっている。また、第1の実施形態と同様に活性層から光出射面までの半導体層の厚さは約10μmとなっており、ジャンクションダウン型で実装した場合に、素子の熱抵抗を十分に低減される。さらに、上記のような構成の第2の実施形態においては、共振器長が約6.6μmと第1の実施形態と比べると長くなることにより、高次の横モードに対する光の回折損失が大きくなるため、基本横モードでレーザしやすくなるという副次的な効果も期待することができる。
【0025】
(参考例)
以下参考例として、第1および第2の実施形態と同様に、活性層にInGaAlP系量子井戸構造を用いた、発振波長が約660nmの面発光レーザを示す。
図4は、本参考例に係わる面発光レーザの概略構成を示す断面図である。
【0026】
以下、本参考例に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板308の一主面上に、n型GaAlAs系DBRミラー307、n型InGaAlPクラッド層306、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層305、p型InGaAlPクラッド層304、p型GaAlAs系DBRミラー303、p型GaAsコンタクト層302を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域311を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極301を形成し、その後に、n型GaAs基板308の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面にスパッタ法を用いてAlN層310を堆積する。最後に、開孔部以外の領域のAlN層310をエッチング除去した後に、n側電極309を形成して、図4のような構造の面発光レーザが完成する。
以上のようにして作製された図4の面発光レーザは、p側電極301がヒートシンクに接触するように、ジャンクションダウン型で実装して、外部から電流を注入して動作させる。このとき、レーザ光を取り出すための開孔部には、熱伝導率の高いAlN層が設けてあるため、発光部で発生した熱は、発光部から直接ヒートシンクへ熱が流れる経路に加えて、発光部から基板側へ広がりながら熱が流れる経路でも放熱させることが可能となる。その結果、一般的なジャンクションアップ型構造の場合よりも素子の熱抵抗が低減されるのみならず、裏面開孔を設けたジャンクションダウン型で図5の従来例のような構成と比べても熱抵抗はさらに低減される。ここでは、開孔部にもうける熱伝導率の高い層として、AlNを用いたが、GaN、SiC、ダイヤモンドなどの材料を用いても同様な効果が得られることは言うまでもない。
GaN、AlN、SiC、ダイヤモンドなどの半導体材料は、GaAs、In 1-x ( Ga 1-y Al y ) x P、Ga 1-z Al z Asなどの半導体材料と比べ、熱伝導率が非常に高い材料であるため、放熱効果の改善が顕著であり、さらに素子特性が改善される。
【0027】
【発明の効果】
以上詳細に説明したように、発振波長に対して基板が不透明で、基板裏面から開孔を設けてレーザ光を取り出す構造の面発光レーザにおいて、本発明の面発光レーザを、ヒートシンクにジャンクションダウン型で実装することにより、素子の熱抵抗を大幅に低減することが可能である。その結果、素子の最大光出力および最高連続発振温度が従来よりも向上させることができる。
【図面の簡単な説明】
【図1】 第1の実施形態に係わる垂直共振器型面発光半導体レーザの概略構成を示す断面図。
【図2】 熱抵抗の、活性層からレーザ光出射面までの半導体層厚さ依存性。
【図3】 第2の実施形態に係わる垂直共振器型面発光半導体レーザの素子用面の概略構成図。
【図4】 参考例に係わる垂直共振器型面発光半導体レーザの素子用面の概略構成図。
【図5】 従来構造の垂直共振器型面発光半導体レーザの概略構成を示す断面図。
【符号の説明】
101,201,301,401・・・p側電極
102,202,302,402・・・p型GaAsコンタクト層
103,203,303,403・・・p型GaAlAs系DBRミラー
104,204,304,404・・・p型InGaAlPクラッド層
105,205,305,405・・・InGaAlP系MQW活性層
106,206,306,406・・・n型InGaAlPクラッド層
107,207,307,407・・・nGaAlAs系DBRミラー
108・・・n型GaAlAs層
109,208・・・n型InGaP層
110,209,308,408・・・n型GaAs基板
111,210,309,409・・・n側電極
112,211,311,410・・・高抵抗領域
310・・・AlN層
Claims (7)
- 基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、前記活性層と光出射面との間に設けられた半導体層の合計の厚さが8μm以上であることを特徴とする垂直共振器型面発光半導体レーザ。
- 前記活性層と前記第1の分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層の厚さが5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。
- 前記第1の分布ブラッグ反射型半導体多層膜反射鏡と前記光出射面の間に設けられた半導体層の厚さが5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。
- 前記活性層と前記第1の分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層の厚さと、前記第1の分布ブラッグ反射型半導体多層膜反射鏡と前記光出射面の間に設けられた半導体層の厚さの合計が5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。
- 前記基板がGaAsであり、前記活性層にIn1-x(Ga1-yAly)xP系材料が用いられ、発振波長が620〜690nmであることを特徴とする請求項1から4のいずれかに記載の垂直共振器型面発光半導体レーザ。
- 前記基板がGaAsであり、前記活性層から前記光出射面との間に設けられた半導体層が、Ga1-zAlzAs系材料またはIn1-x(Ga1-yAly)xP系材料であることを特徴とする請求項1から4のいずれかに記載の垂直共振器型面発光半導体レーザ。
- 前記活性層から前記光出射面との間に設けられた半導体層のうち、基板に最も近い半導体層がIn1-x(Ga1-yAly)xP系材料であることを特徴とする、請求項1から4のいずれかに記載の垂直共振器型面発光半導体レーザ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239146A JP3802465B2 (ja) | 2002-08-20 | 2002-08-20 | 垂直共振器型面発光半導体レーザ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239146A JP3802465B2 (ja) | 2002-08-20 | 2002-08-20 | 垂直共振器型面発光半導体レーザ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004079833A JP2004079833A (ja) | 2004-03-11 |
JP3802465B2 true JP3802465B2 (ja) | 2006-07-26 |
Family
ID=32022326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002239146A Expired - Lifetime JP3802465B2 (ja) | 2002-08-20 | 2002-08-20 | 垂直共振器型面発光半導体レーザ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3802465B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105106A (ja) * | 2007-10-22 | 2009-05-14 | Hitachi Ltd | 光送受信モジュール |
JP5644695B2 (ja) * | 2011-06-22 | 2014-12-24 | 株式会社デンソー | 面発光レーザ素子 |
US11652333B2 (en) | 2017-11-30 | 2023-05-16 | Sony Semiconductor Solutions Corporation | Surface-emitting semiconductor laser |
TW202135340A (zh) * | 2020-02-18 | 2021-09-16 | 日商索尼半導體解決方案公司 | 發光裝置及發光裝置之製造方法 |
-
2002
- 2002-08-20 JP JP2002239146A patent/JP3802465B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004079833A (ja) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4352337B2 (ja) | 半導体レーザおよび半導体レーザ装置 | |
US7869483B2 (en) | Surface emitting laser | |
US6611543B2 (en) | Vertical-cavity surface-emitting laser with metal mirror and method of fabrication of same | |
US4956844A (en) | Two-dimensional surface-emitting laser array | |
JP2002353563A (ja) | 半導体発光素子およびその製法 | |
JP2009065048A (ja) | 半導体発光素子およびその製造方法 | |
WO2018168430A1 (ja) | 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム | |
JP2012526375A (ja) | 大出力パワー用の横結合を持つdfbレーザダイオード | |
US6594297B1 (en) | Laser apparatus in which surface-emitting semiconductor is excited with semiconduct laser element and high-order oscillation modes are suppressed | |
JP4295776B2 (ja) | 半導体レーザ装置及びその製造方法 | |
US6782019B2 (en) | VCSEL with heat-spreading layer | |
JP2003086895A (ja) | 垂直共振器型半導体発光素子 | |
JP4224981B2 (ja) | 面発光半導体レーザ素子およびその製造方法 | |
JP3802465B2 (ja) | 垂直共振器型面発光半導体レーザ | |
US7843984B2 (en) | Semiconductor laser device | |
US4514896A (en) | Method of forming current confinement channels in semiconductor devices | |
JPH09307190A (ja) | AlInGaN系半導体発光素子および半導体発光装置 | |
JPH10284800A (ja) | 半導体発光素子およびその製造方法 | |
US4447905A (en) | Current confinement in semiconductor light emitting devices | |
JP2010050199A (ja) | 半導体レーザ | |
JP2007049088A (ja) | 高出力赤色半導体レーザ | |
JPH10294533A (ja) | 窒化物化合物半導体レーザ及びその製造方法 | |
JP2013179210A (ja) | アレイ型半導体レーザ装置およびその製造方法 | |
KR102103515B1 (ko) | 레이저 다이오드 구조 및 제조 방법 | |
JP2002198613A (ja) | 突起状構造を有する半導体素子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060427 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3802465 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |