JP3801946B2 - Voltage flicker compensation method and apparatus - Google Patents

Voltage flicker compensation method and apparatus Download PDF

Info

Publication number
JP3801946B2
JP3801946B2 JP2002133854A JP2002133854A JP3801946B2 JP 3801946 B2 JP3801946 B2 JP 3801946B2 JP 2002133854 A JP2002133854 A JP 2002133854A JP 2002133854 A JP2002133854 A JP 2002133854A JP 3801946 B2 JP3801946 B2 JP 3801946B2
Authority
JP
Japan
Prior art keywords
value
voltage
compensation
flicker
compensation ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133854A
Other languages
Japanese (ja)
Other versions
JP2003324847A (en
Inventor
幹介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002133854A priority Critical patent/JP3801946B2/en
Publication of JP2003324847A publication Critical patent/JP2003324847A/en
Application granted granted Critical
Publication of JP3801946B2 publication Critical patent/JP3801946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統に接続された電気炉等の負荷(不安定負荷)によって発生する電圧フリッカを、サイリスタや自己消弧形素子(これらを総称して可制御スイッチ素子とも言う)からなる電力変換装置を用いて補償する電圧フリッカ補償方法および装置に関する。
【0002】
【従来の技術】
電力系統から短絡容量に相当するリアクトルを介して負荷に電力を供給する場合、負荷の連系点には負荷の無効電力変動と上記リアクトルとの積で決まる電圧変動が生じる。この電圧変動を電圧フリッカと言い、規制の対象となっている。このような電圧フリッカを補償する方式には、例えば図5に示すように、自己消弧形素子5にダイオード6を逆並列接続した電圧形インバータ7を、負荷3に並列接続する自励式補償方式と、図6に示すように、リアクトル9とサイリスタ10の直列回路と、リアクトル11とコンデンサ12の直列回路とをそれぞれ負荷3に並列接続する他励式補償方式とがある。
【0003】
自励式補償方式の詳細構成を図7に示す。
これは、電圧検出器13で検出した連系電圧と、電流検出器14で検出した負荷電流とから、負荷の無効電力正相分と無効電力逆相分を座標変換器16により演算し、調整結果により得られた(予め求められて24,25に設定されている)正相分と逆相分の補償割合を乗算する。その結果に各相電流が定格内になるよう、リミッタ演算器17で演算したゲインをさらに乗算し、その結果から座標変換器18で3相の電流指令を演算し、電流検出器14’で検出した出力電流が指令と一致するように、電流調節器19’で電圧指令を演算し、パルス生成器19により図5の自己消弧形素子5に対する点弧パルスを演算する。
【0004】
他励式補償方式の詳細構成を図8に示す。
これは、各相電流が定格内になる無効電力正相分と逆相分を演算し、リミッタにより定格内に収めるところまでは自励式補償方式と同様であるが、その後図7では座標変換器18を用いて3相の電流指令を求めているのに対し、ここでは3相電流指令値演算器18’を用いて3相の電流指令を求めるようにした点で異なっている。その先は図7と同じく上記電流指令に出力電流が一致するように、電流調節器19’で点弧角指令を演算し、パルス生成器19で点弧パルスを演算して図6のサイリスタ10を点弧制御する。
【0005】
【発明が解決しようとする課題】
電圧フリッカを補償するに当たっては、できるだけ少ない補償装置容量で補償できることがコスト的にも望ましい。また、効果的に補償するためには負荷の無効電力の正相分と逆相分の補償割合を最適に設定する必要があるが、この最適値は負荷や設置される系統によって異なるため、最適値の設定には経験が必要になると言う問題がある。
したがって、この発明の課題は、電気炉などの不安定負荷を、常時最適な補償割合で補償できるようにすることにある。
【0006】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、電力系統に接続された負荷が発生する電圧フリッカを、可制御スイッチ素子からなる電力変換装置を用いて補償するに当たり、
一定時間前のフリッカ改善評価値とその今回値との差を検出してその差が一定範囲内かどうかを判断し、一定範囲内のときは負荷の無効電力正相成分と逆相成分との補償割合を変更せずそのままにして運転を継続し、前記差が一定範囲外のときは前記補償割合を変更することを特徴とする。
この請求項1の発明においては、前記差が一定範囲外で今回値が前回値を上回るときは、前記補償割合について前回が増加のときは今回は減少とするか、または、前回が減少のときは今回は増加とし、前記差が一定範囲外で今回値が前回値を下回るときは、前記補償割合について前回が増加のときは今回も増加とするか、または、前回が減少のときは今回も減少とすることができる(請求項2の発明)。
上記請求項1または2の発明においては、前記フリッカ改善評価値は、ちらつき視感度曲線の周波数特性に合わせたバンドパスフィルタで系統電圧を抽出し、その値から一定時間における実効値を求めて得ることができる(請求項3の発明)。
【0007】
請求項4の発明では、電力系統に接続された負荷の電圧と電流から負荷の無効電力の正相成分と逆相成分とを求め、これらの各々に一定の補償割合を乗じた量にもとづき電力変換装置の可制御スイッチ素子を制御することにより、負荷が発生する電圧フリッカを補償する電圧フリッカ補償装置において、
前記負荷の電圧検出値からその一定周波数成分を抽出するバンドパスフィルタと、このバンドパスフィルタの出力から一定時間の電圧実効値を演算する実効値演算器と、この電圧実効値を積算する積分器と、その最大値を求める最大値演算器と、この最大値からフリッカ改善評価値を用いて前記補償割合を演算する補償割合演算器とを設け、その補償割合に応じて補償することを特徴とする。
この請求項4の発明においては、前記バンドパスフィルタの周波数特性を、ちらつき視感度曲線の周波数特性に合わせることができる(請求項5の発明)。
【0008】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
図示のように、これは図7に示す従来例に対し、バンドパスフィルタ20、実効値演算器21、積分器22’、最大値演算器22および補償割合演算器23を付加して構成される。フィルタ20には検出器13からの系統電圧が与えられるので、系統電圧の所定周波数成分が抽出される。このとき、フィルタ20には図2に示されるような、ちらつき視感度曲線のゲイン応答と一致する周波数特性を持たせる。
【0009】
実効値演算器21はフィルタ20の出力fBFP(t)に対し、次の数1に示す(1)式の演算式により、例えば周期100msの実効値演算を行ない、これをフリッカ評価値として用いる。
【数1】

Figure 0003801946
【0010】
演算された各相電圧の実効値は積分器22’で逐次積分され、その各相の最大値が最大値演算器22で求められる。これは、最大値に対して補償ができるようにするためである。補償割合演算器23はフリッカ評価値から上記正相分と逆相分の補償割合を演算し、これにもとづき制御を行なう。なお、各演算サイクル毎に積分器22’がクリアされる。
【0011】
図3は補償割合演算器の動作を説明するフローチャートである。
まず、ステップ▲1▼でフリッカ評価値の前回値と今回値との差(|前回値−今回値|)が、一定範囲内(<ΔV)かどうかを判断する。一定範囲内のときは補償割合を変更せず(ステップ▲2▼)、一定範囲外のときはステップ▲3▼で前回値<今回値かどうかを判断する。前回値<今回値のときはステップ▲4▼に移行し、ここで前回において正相分の補償割合を増加したか否かを判断する。判断結果がYesのときは、正相分補償割合前回値RP(N−1)をΔRだけ減らし、逆相分補償割合前回値RN(N−1)をΔRだけ増やす。つまり、正相分補償割合今回値RP(N)=RP(N−1)−ΔRとし、逆相分補償割合今回値RN(N)=RN(N−1)+ΔRとする(ステップ▲5▼)。
一方、ステップ▲4▼での判断結果がNoのときは、正相分補償割合前回値RP(N−1)をΔRだけ増やし、逆相分補償割合前回値RN(N−1)をΔRだけ減らす。つまり、正相分補償割合今回値RP(N)=RP(N−1)+ΔRとし、逆相分補償割合今回値RN(N)=RN(N−1)−ΔRとする(ステップ▲6▼)。
【0012】
上記ステップ▲3▼の判断結果が前回値<今回値でないときは(前回値>今回値のときである。前回値=今回値のときは、ステップ▲1▼のときとおなじである。)、ステップ▲7▼で前回において正相分の補償割合を増加したか否かを判断する。判断結果がYesのときはステップ▲6▼と同じく、正相分補償割合前回値RP(N−1)をΔRだけ増やし、逆相分補償割合前回値RN(N−1)をΔRだけ減らす(ステップ▲8▼)。ステップ▲7▼での判断結果がNoのときはステップ▲5▼と同じく、正相分補償割合前回値RP(N−1)をΔRだけ減らし、逆相分補償割合前回値RN(N−1)をΔRだけ増やす。
【0013】
このように、一定時間前のフリッカ改善評価値とその今回値との差を検出してその差が一定範囲内かどうかを判断し、一定範囲内のときは負荷の無効電力正相成分と逆相成分との補償割合を変更せずそのままにして運転を継続し、前記差が一定範囲外で今回値が前回値を上回るときは前回とは逆の操作をし、前記差が一定範囲外で今回値が前回値を下回るときは前回と同じ操作をすることにより、電気炉などの不安定負荷を、常時最適な補償割合で補償することが可能となる。
【0014】
【発明の効果】
この発明によれば、予め決められた補償割合で補償するのではなく、負荷の電圧変動に応じて補償するようにしたので、補償装置を設置した後に行なう調整時間を短縮することができる。また、常に最適な補償割合となることから、従来のものよりも少ない装置容量で従来と同程度の電圧フリッカ補償性能を有するので、装置コストを低減できる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す構成図である。
【図2】ちらつき視感度曲線を示す特性図である。
【図3】図1の動作を説明するためのフローチャートである。
【図4】この発明の第2の実施の形態を示す構成図である。
【図5】自励式補償方式の従来例を説明するための概要図である。
【図6】他励式補償方式の従来例を説明するための概要図である。
【図7】図5の詳細例を示す構成図である。
【図8】図6の詳細例を示す構成図である。
【符号の説明】
1…電力系統、2…短絡容量相当のインダクタンス、3…負荷、4,9,11…リアクトル、5…自己消弧素子、6…ダイオード、7…インバータ、8…直流電源、10…サイリスタ、12…コンデンサ、13…電圧検出器、14,14’…電流検出器、15…自励式補償装置、15’…他励式補償装置、16,18…座標変換器、17…リミッタ演算器、18’…3相電流指令値演算器、19…パルス生成器、19’…電流調節器、20…バンドパスフィルタ(BPF)、21…実効値演算器、22…最大値演算器、22’…積分器、23…補償割合演算器、24…逆相分補償率設定器、25…正相分補償率設定器。[0001]
BACKGROUND OF THE INVENTION
In the present invention, voltage flicker generated by a load (unstable load) such as an electric furnace connected to an electric power system is converted into electric power composed of a thyristor or a self-extinguishing element (these are also collectively referred to as a controllable switch element). The present invention relates to a voltage flicker compensation method and apparatus for compensation using a conversion device.
[0002]
[Prior art]
When power is supplied from a power system to a load via a reactor corresponding to a short-circuit capacity, a voltage fluctuation determined by a product of the reactive power fluctuation of the load and the reactor occurs at the load interconnection point. This voltage fluctuation is called voltage flicker and is subject to regulation. As a method for compensating such voltage flicker, for example, as shown in FIG. 5, a self-excited compensation method in which a voltage source inverter 7 in which a diode 6 is connected in reverse parallel to a self-extinguishing element 5 is connected in parallel to a load 3. As shown in FIG. 6, there is a separately excited compensation system in which a series circuit of a reactor 9 and a thyristor 10 and a series circuit of a reactor 11 and a capacitor 12 are connected in parallel to a load 3.
[0003]
The detailed configuration of the self-excited compensation method is shown in FIG.
The coordinate converter 16 calculates and adjusts the positive and negative reactive power components of the load from the interconnection voltage detected by the voltage detector 13 and the load current detected by the current detector 14. Multiply the compensation ratio of the positive phase and the negative phase obtained by the result (preliminarily obtained and set to 24 and 25). The result is further multiplied by the gain calculated by the limiter calculator 17 so that the current of each phase is within the rating. From the result, a three-phase current command is calculated by the coordinate converter 18 and detected by the current detector 14 ′. The voltage regulator is calculated by the current regulator 19 ′ so that the output current matches the command, and the ignition pulse for the self-extinguishing element 5 of FIG. 5 is calculated by the pulse generator 19.
[0004]
FIG. 8 shows a detailed configuration of the separately excited compensation system.
This is the same as the self-excited compensation system until the reactive power normal phase and reverse phase components within which the current of each phase is within the rating are calculated and within the rating by the limiter, but in FIG. 18 differs from the point that a three-phase current command is obtained by using a three-phase current command value calculator 18 ′. The thyristor 10 shown in FIG. 6 is then calculated by calculating the firing angle command by the current regulator 19 ′ and the firing pulse by the pulse generator 19 so that the output current matches the current command as in FIG. Is controlled to fire.
[0005]
[Problems to be solved by the invention]
In order to compensate for the voltage flicker, it is desirable in terms of cost that compensation can be performed with as little compensation device capacity as possible. In addition, in order to compensate effectively, it is necessary to optimally set the compensation ratio of the positive and negative phases of the reactive power of the load, but this optimum value differs depending on the load and the installed system, so it is optimal. There is a problem that setting the value requires experience.
Accordingly, an object of the present invention is to make it possible to always compensate an unstable load such as an electric furnace with an optimal compensation ratio.
[0006]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, when compensating for voltage flicker generated by a load connected to the power system using a power conversion device including a controllable switch element,
The difference between the flicker improvement evaluation value before a certain time and the current value is detected to determine whether the difference is within a certain range. If the difference is within the certain range, the reactive power positive and negative phase components of the load The operation is continued without changing the compensation ratio, and the compensation ratio is changed when the difference is outside a certain range.
In the first aspect of the invention, when the difference is out of a certain range and the current value exceeds the previous value, the compensation ratio is decreased when the previous time is increased, or when the previous value is decreased. If the difference is outside a certain range and the current value falls below the previous value, the compensation ratio will be increased when the previous time is increased, or this time when the previous time is decreased It can be reduced (invention of claim 2).
In the first or second aspect of the invention, the flicker improvement evaluation value is obtained by extracting a system voltage with a band-pass filter that matches the frequency characteristic of the flickering visibility curve and obtaining an effective value at a predetermined time from the value. (Invention of claim 3).
[0007]
In the invention of claim 4, the positive phase component and the negative phase component of the reactive power of the load are obtained from the voltage and current of the load connected to the power system, and the power is based on an amount obtained by multiplying each of these by a certain compensation ratio. In the voltage flicker compensation device for compensating for the voltage flicker generated by the load by controlling the controllable switch element of the converter,
A band-pass filter that extracts the constant frequency component from the voltage detection value of the load, an effective value calculator that calculates a voltage effective value for a fixed time from the output of the band-pass filter, and an integrator that integrates the voltage effective value A maximum value calculator for obtaining the maximum value, and a compensation ratio calculator for calculating the compensation ratio from the maximum value using the flicker improvement evaluation value, and compensating according to the compensation ratio To do.
In this invention of Claim 4, the frequency characteristic of the said band pass filter can be match | combined with the frequency characteristic of a flicker visibility curve (Invention of Claim 5).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention.
As shown in the figure, this is configured by adding a band pass filter 20, an effective value calculator 21, an integrator 22 ', a maximum value calculator 22 and a compensation ratio calculator 23 to the conventional example shown in FIG. . Since the system voltage from the detector 13 is given to the filter 20, a predetermined frequency component of the system voltage is extracted. At this time, the filter 20 has a frequency characteristic that matches the gain response of the flicker visibility curve as shown in FIG.
[0009]
The effective value calculator 21 calculates an effective value of, for example, a period of 100 ms with respect to the output f BFP (t) of the filter 20 by the following expression (1), and uses this as the flicker evaluation value. .
[Expression 1]
Figure 0003801946
[0010]
The calculated effective value of each phase voltage is sequentially integrated by the integrator 22 ′, and the maximum value of each phase is obtained by the maximum value calculator 22. This is to enable compensation for the maximum value. The compensation ratio calculator 23 calculates the compensation ratio for the normal phase and the reverse phase from the flicker evaluation value, and performs control based on this. The integrator 22 ′ is cleared every calculation cycle.
[0011]
FIG. 3 is a flowchart for explaining the operation of the compensation ratio calculator.
First, in step (1), it is determined whether or not the difference between the previous value and the current value of the flicker evaluation value (| previous value−current value |) is within a certain range (<ΔV). If it is within the fixed range, the compensation ratio is not changed (step {circle around (2)}). If it is outside the fixed range, it is judged at step {circle around (3)} whether the previous value <the current value. When the previous value <the current value, the process proceeds to step (4), where it is determined whether or not the compensation ratio for the positive phase has been increased in the previous time. When the determination result is Yes, the positive phase compensation ratio previous value R P (N−1) is decreased by ΔR, and the negative phase compensation ratio previous value R N (N−1) is increased by ΔR. That is, the positive phase compensation ratio current value R P (N) = R P (N−1) −ΔR, and the negative phase compensation ratio current value R N (N) = R N (N−1) + ΔR ( Step (5)).
On the other hand, when the judgment result in step (4) is No, the positive phase compensation ratio previous value R P (N−1) is increased by ΔR, and the negative phase compensation ratio previous value R N (N−1) is increased. Decrease by ΔR. That is, the positive phase compensation ratio current value R P (N) = R P (N−1) + ΔR, and the reverse phase compensation ratio current value R N (N) = R N (N−1) −ΔR ( Step (6)).
[0012]
When the determination result in step (3) is not the previous value <current value (when the previous value> current value. When the previous value = current value, the same as in step (1)). In step {circle around (7)}, it is determined whether or not the compensation ratio for the positive phase has been increased last time. When the determination result is Yes, the positive phase compensation ratio previous value R P (N−1) is increased by ΔR and the negative phase compensation ratio previous value R N (N−1) is increased by ΔR as in step (6). Decrease (step 8). When the judgment result in step (7) is No, as in step (5), the positive phase compensation ratio previous value R P (N-1) is reduced by ΔR, and the negative phase compensation ratio previous value R N (N -1) is increased by ΔR.
[0013]
In this way, the difference between the flicker improvement evaluation value before a certain time and the current value is detected to determine whether or not the difference is within a certain range. Continue operation without changing the compensation ratio with the phase component, and if the difference is outside a certain range and the current value exceeds the previous value, the operation is reversed. When the current value is lower than the previous value, the same operation as the previous value is performed, so that an unstable load such as an electric furnace can be compensated at an optimal compensation ratio at all times.
[0014]
【The invention's effect】
According to the present invention, the compensation time is not compensated at a predetermined compensation ratio, but is compensated according to the voltage fluctuation of the load. Therefore, the adjustment time to be performed after installing the compensation device can be shortened. Also, since the compensation ratio is always optimal, the voltage flicker compensation performance comparable to that of the conventional apparatus is obtained with a smaller apparatus capacity than that of the conventional apparatus, so that the apparatus cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention;
FIG. 2 is a characteristic diagram showing a flickering visibility curve.
FIG. 3 is a flowchart for explaining the operation of FIG. 1;
FIG. 4 is a block diagram showing a second embodiment of the present invention.
FIG. 5 is a schematic diagram for explaining a conventional example of a self-excited compensation method.
FIG. 6 is a schematic diagram for explaining a conventional example of a separately excited compensation system.
7 is a block diagram showing a detailed example of FIG. 5;
8 is a configuration diagram showing a detailed example of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Power system, 2 ... Inductance equivalent to short circuit capacity, 3 ... Load, 4, 9, 11 ... Reactor, 5 ... Self-extinguishing element, 6 ... Diode, 7 ... Inverter, 8 ... DC power supply, 10 ... Thyristor, 12 ... Capacitor, 13 ... Voltage detector, 14, 14 '... Current detector, 15 ... Self-excited compensator, 15' ... Other-excited compensator, 16, 18 ... Coordinate converter, 17 ... Limiter calculator, 18 '... Three-phase current command value calculator, 19 ... Pulse generator, 19 '... Current regulator, 20 ... Band pass filter (BPF), 21 ... RMS value calculator, 22 ... Maximum value calculator, 22' ... Integrator, 23: Compensation ratio calculator, 24 ... Reverse phase compensation rate setting device, 25 ... Positive phase compensation rate setting device.

Claims (5)

電力系統に接続された負荷が発生する電圧フリッカを、可制御スイッチ素子からなる電力変換装置を用いて補償するに当たり、
一定時間前のフリッカ改善評価値とその今回値との差を検出してその差が一定範囲内かどうかを判断し、一定範囲内のときは負荷の無効電力正相成分と逆相成分との補償割合を変更せずそのままにして運転を継続し、前記差が一定範囲外のときは前記補償割合を変更することを特徴とする電圧フリッカ補償方法。
In compensating for the voltage flicker generated by the load connected to the power system using a power conversion device composed of a controllable switch element,
The difference between the flicker improvement evaluation value before a certain time and the current value is detected to determine whether the difference is within a certain range. If the difference is within the certain range, the reactive power positive and negative phase components of the load A voltage flicker compensation method characterized in that the operation is continued without changing the compensation ratio, and the compensation ratio is changed when the difference is outside a certain range.
前記差が一定範囲外で今回値が前回値を上回るときは、前記補償割合について前回が増加のときは今回は減少とするか、または、前回が減少のときは今回は増加とし、前記差が一定範囲外で今回値が前回値を下回るときは、前記補償割合について前回が増加のときは今回も増加とするか、または、前回が減少のときは今回も減少とすることを特徴とする請求項1に記載の電圧フリッカ補償方法。When the difference is outside a certain range and the current value exceeds the previous value, the compensation ratio is decreased when the previous time is increased, or is increased when the previous time is decreased. When the current value falls below the previous value outside a certain range, the compensation ratio is increased when the previous time is increased, or is decreased when the previous time is decreased. Item 6. The voltage flicker compensation method according to Item 1. 前記フリッカ改善評価値は、ちらつき視感度曲線の周波数特性に合わせたバンドパスフィルタで系統電圧を抽出し、その値から一定時間における実効値を求めて得ることを特徴とする請求項1または2のいずれかに記載の電圧フリッカ補償方法。3. The flicker improvement evaluation value is obtained by extracting a system voltage with a band-pass filter that matches a frequency characteristic of a flickering visibility curve, and obtaining an effective value at a predetermined time from the value. The voltage flicker compensation method according to any one of the above. 電力系統に接続された負荷の電圧と電流から負荷の無効電力の正相成分と逆相成分とを求め、これらの各々に一定の補償割合を乗じた量にもとづき電力変換装置の可制御スイッチ素子を制御することにより、負荷が発生する電圧フリッカを補償する電圧フリッカ補償装置において、
前記負荷の電圧検出値からその一定周波数成分を抽出するバンドパスフィルタと、このバンドパスフィルタの出力から一定時間の電圧実効値を演算する実効値演算器と、この電圧実効値を積算する積分器と、その最大値を求める最大値演算器と、この最大値からフリッカ改善評価値を用いて前記補償割合を演算する補償割合演算器とを設け、その補償割合に応じて補償することを特徴とする電圧フリッカ補償装置。
A controllable switching element of a power converter based on an amount obtained by calculating a normal phase component and a negative phase component of reactive power of a load from a voltage and current of a load connected to the power system, and multiplying each of them by a certain compensation ratio In a voltage flicker compensation device that compensates for voltage flicker generated by a load by controlling
A band-pass filter that extracts the constant frequency component from the voltage detection value of the load, an effective value calculator that calculates a voltage effective value for a fixed time from the output of the band-pass filter, and an integrator that integrates the voltage effective value A maximum value calculator for obtaining the maximum value, and a compensation ratio calculator for calculating the compensation ratio from the maximum value using the flicker improvement evaluation value, and compensating according to the compensation ratio Voltage flicker compensation device.
前記バンドパスフィルタの周波数特性を、ちらつき視感度曲線の周波数特性に合わせることを特徴とする請求項4に記載の電圧フリッカ補償装置。5. The voltage flicker compensation apparatus according to claim 4, wherein the frequency characteristic of the band-pass filter is matched with the frequency characteristic of the flicker visibility curve.
JP2002133854A 2002-05-09 2002-05-09 Voltage flicker compensation method and apparatus Expired - Fee Related JP3801946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133854A JP3801946B2 (en) 2002-05-09 2002-05-09 Voltage flicker compensation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133854A JP3801946B2 (en) 2002-05-09 2002-05-09 Voltage flicker compensation method and apparatus

Publications (2)

Publication Number Publication Date
JP2003324847A JP2003324847A (en) 2003-11-14
JP3801946B2 true JP3801946B2 (en) 2006-07-26

Family

ID=29544825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133854A Expired - Fee Related JP3801946B2 (en) 2002-05-09 2002-05-09 Voltage flicker compensation method and apparatus

Country Status (1)

Country Link
JP (1) JP3801946B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805186B2 (en) * 2007-02-26 2011-11-02 財団法人電力中央研究所 Power conversion system control method and power conversion system using the control method
JP5050622B2 (en) * 2007-04-17 2012-10-17 富士電機株式会社 Voltage fluctuation compensator control method
JP5261967B2 (en) * 2007-04-17 2013-08-14 富士電機株式会社 Voltage fluctuation compensator control method
JP2009177914A (en) 2008-01-23 2009-08-06 Mitsubishi Electric Corp Flicker improvement effect evaluation system
JP2017158382A (en) * 2016-03-04 2017-09-07 株式会社日立製作所 Rotary electric machine system and method for operating rotary electric machine system
JP6237852B1 (en) * 2016-09-30 2017-11-29 ダイキン工業株式会社 Active filter control device

Also Published As

Publication number Publication date
JP2003324847A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
AU2008227057B2 (en) Motor drive using flux adjustment to control power factor
JP2766407B2 (en) Inverter control device for photovoltaic power generation
EP2697902B1 (en) System and method for fast start-up of an induction motor
KR20080050997A (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
JPH05227795A (en) Controller and control method for induction motor
JP3873972B2 (en) Power supply device and method for creating switching signal for on / off control of switching element of converter section constituting power supply device
JP3801946B2 (en) Voltage flicker compensation method and apparatus
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
US4446414A (en) Terminal voltage limit regulator for a load commutated inverter
JP2004048834A (en) Ac power unit
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JP2581459Y2 (en) Control method of voltage fluctuation suppression device
JP3041317B2 (en) DC arc furnace power supply
JPH08140268A (en) Controller of reactive power compensator
JP3217564B2 (en) Output voltage control device for power converter
JP2747804B2 (en) Power supply for playback type device
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JP2792085B2 (en) Control method of reactive power compensator
KR20230045335A (en) Apparatus and method for controlling power factor correction
JPS6148724B2 (en)
CN115441720A (en) Control method and control system of switching power supply
CN114094890A (en) Optimal dynamic PI parameter setting method for magnetic-regulating and voltage-regulating direct-current generator system
JP4258228B2 (en) Control method and control apparatus for power conversion device for fuel cell
KR101096148B1 (en) Controller for hvdc and hvdc sysem including the same
JPH08297518A (en) Reactive power compensation device for direct-current arc furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees