JP5261967B2 - Voltage fluctuation compensator control method - Google Patents

Voltage fluctuation compensator control method Download PDF

Info

Publication number
JP5261967B2
JP5261967B2 JP2007107780A JP2007107780A JP5261967B2 JP 5261967 B2 JP5261967 B2 JP 5261967B2 JP 2007107780 A JP2007107780 A JP 2007107780A JP 2007107780 A JP2007107780 A JP 2007107780A JP 5261967 B2 JP5261967 B2 JP 5261967B2
Authority
JP
Japan
Prior art keywords
current
compensation
voltage
phase
voltage fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007107780A
Other languages
Japanese (ja)
Other versions
JP2008271634A (en
Inventor
明夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007107780A priority Critical patent/JP5261967B2/en
Publication of JP2008271634A publication Critical patent/JP2008271634A/en
Application granted granted Critical
Publication of JP5261967B2 publication Critical patent/JP5261967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

この発明は、電圧変動補償装置の制御方式に関する。   The present invention relates to a control method for a voltage fluctuation compensator.

この種の電圧変動補償装置として、例えば特許文献1に開示されている図8に示すものがある。
これは、電圧変動補償装置が電圧変動を補償するために出力する無効電流iQ,逆相電流iN,高調波電流iHのそれぞれに補償ゲインKQ,KN,KHを乗じて補償を行なうものである。ここに、KQ,KHは固定とし、KNは逆相電流の大きさに反比例させるようにしている。
As this type of voltage fluctuation compensation device, for example, there is one shown in FIG.
This compensates by multiplying each of the reactive current iQ, the negative phase current iN, and the harmonic current iH output by the voltage fluctuation compensator to compensate for the voltage fluctuation by the compensation gains KQ, KN, and KH. Here, KQ and KH are fixed, and KN is inversely proportional to the magnitude of the reverse phase current.

特開平06−233464号公報Japanese Patent Laid-Open No. 06-233464

しかしながら、上記のような方式では、逆相電流が過大な場合においても無効電流,高調波電流を優先して補償できるものの、アーク炉のように炉の操業状態や溶解する材料等により、負荷としてのアーク炉が発生する無効電流,逆相電流,高調波電流の発生比率が大幅に異なる場合には、無効電流,高調波電流を優先しても電圧変動やフリッカが最小になるとは限らず、その結果、電圧変動が大きくなり電圧変動規制値やフリッカ規制値を満足できなくなる場合が生じる。そのため、電圧変動規制値やフリッカ規制値を満足させるべく、装置容量を大きくしなければならないという問題が発生する。   However, with the above method, even if the reverse phase current is excessive, reactive current and harmonic current can be preferentially compensated. However, as in the arc furnace, depending on the operation state of the furnace and the material to be melted, it can be used as a load. If the generation ratio of reactive current, reverse phase current, and harmonic current generated by the arc furnace is significantly different, voltage fluctuation and flicker are not necessarily minimized even if priority is given to reactive current and harmonic current. As a result, the voltage fluctuation increases, and the voltage fluctuation regulation value and the flicker regulation value may not be satisfied. Therefore, there arises a problem that the device capacity must be increased in order to satisfy the voltage fluctuation regulation value and the flicker regulation value.

したがって、この発明の課題は、特に装置容量を大きくすることなく、電圧変動やフリッカを最小となるようにすることにある。   Accordingly, an object of the present invention is to minimize voltage fluctuation and flicker without particularly increasing the device capacity.

このような課題を解決するため、請求項1の発明では、負荷電流から分離した無効電流、逆相電流および高調波電流を合成して得た合成(補償)電流値に補償ゲインを乗じ、補償電流指令値を生成する。このとき、現在の補償ゲインで補償した場合と、補償ゲインを変えて補償した場合の模擬電力系統の電圧変動を演算し、この演算値が小さい方の補償ゲインを、次回の補償ゲインとする操作を繰り返すことにより、電圧変動の最も小さくなる最適な補償ゲインを求める。
In order to solve such a problem, in the invention of claim 1, the combined (compensated) current value obtained by combining the reactive current, the negative phase current and the harmonic current separated from the load current is multiplied by the compensation gain to compensate. A current command value is generated. At this time, calculate the voltage fluctuation of the simulated power system when compensating with the current compensation gain and when compensating by changing the compensation gain, and use the smaller compensation gain as the next compensation gain. Is repeated to obtain the optimum compensation gain with the smallest voltage fluctuation .

請求項2の発明では、負荷電流から分離した無効電流,逆相電流および高調波電流のそれぞれに個別の補償ゲインを乗じ、補償電流指令を生成する。このとき、各電流成分に、例えば無効電流,逆相電流,高調波電流の順で優先順位を付け、1番優先順位の高い無効電流の補償ゲインを、請求項1の発明と同様の手法で求める。この場合、他の電流成分の補償ゲインは固定にしておく。無効電流の補償ゲインが或る程度まで収束したら(変化しなくなったら)、無効電流の補償ゲインを収束した値に固定し、2番目の優先順位の逆相電流について、無効電流と同様の手法でその最適な補償ゲインを求める。逆相電流の補償ゲインが或る程度まで収束したら(変化しなくなったら)、逆相電流の補償ゲインを収束した値に固定し、3番目の優先順位の高調波電流について、無効電流と同様の手法でその最適な補償ゲインを求める。高調波電流の補償ゲインが或る程度まで収束したら(変化しなくなったら)、高調波電流の補償ゲインを収束した値に固定する。これを繰り返すことにより、最適な補償ゲインを求める。   In the invention of claim 2, the compensation current command is generated by multiplying each of the reactive current, the negative phase current and the harmonic current separated from the load current by the individual compensation gain. At this time, priorities are assigned to the current components in the order of, for example, the reactive current, the negative phase current, and the harmonic current, and the compensation gain of the reactive current having the highest priority is obtained in the same manner as in the invention of claim 1. Ask. In this case, the compensation gain of other current components is fixed. When the reactive current compensation gain converges to a certain level (when it no longer changes), the reactive current compensation gain is fixed to a converged value, and the second-phase reversed-phase current is applied in the same manner as the reactive current. The optimum compensation gain is obtained. When the compensation gain of the negative phase current converges to a certain level (when it does not change), the compensation gain of the negative phase current is fixed to the converged value, and the third priority harmonic current is the same as the reactive current. The optimum compensation gain is obtained by a technique. When the harmonic current compensation gain converges to a certain level (when it no longer changes), the harmonic current compensation gain is fixed to a converged value. By repeating this, an optimum compensation gain is obtained.

上記請求項1または2の発明においては、前記電圧変動の代わりにフリッカ値(ΔV10)を演算し、このフリッカ値が最も小さくなるような補償ゲインを求めることができる(請求項3の発明)。   In the invention of claim 1 or 2, a flicker value (ΔV10) is calculated instead of the voltage fluctuation, and a compensation gain that minimizes the flicker value can be obtained (invention of claim 3).

この発明によれば、負荷の状態によらず最適な補償電流比率で電圧変動を補償できるため、従来より電圧変動を小さく抑えることができる。その結果、装置容量を従来より小さくしても同等の性能を確保でき、装置の小型化,低価格化が可能となる。   According to the present invention, the voltage fluctuation can be compensated with the optimum compensation current ratio regardless of the state of the load, so that the voltage fluctuation can be suppressed to be smaller than the conventional one. As a result, even if the device capacity is made smaller than before, the same performance can be ensured, and the device can be reduced in size and price.

図1はこの発明の実施の形態を示すブロック図、図2は電圧変動補償装置を備えた一般的な系統構成図である。
図2に示すように、電圧変動補償装置1(INV)は、連系インピーダンスLを介して系統2(Vs)と連系し、負荷3を流れる負荷電流ILに含まれる無効電流,逆相電流および高調波電流を補償する補償電流ICを出力することにより、受電点Aの電圧変動を補償する。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a general system configuration diagram including a voltage fluctuation compensating device.
As shown in FIG. 2, the voltage fluctuation compensator 1 (INV) is linked to the grid 2 (Vs) via the linkage impedance L and is included in the load current IL flowing through the load 3. Then, by outputting a compensation current IC that compensates the harmonic current, the voltage fluctuation at the power receiving point A is compensated.

図示されない検出器にて検出される負荷電流ILの各相成分をIa,Ib,Icとし、これを正相成分と逆相成分とに分離して表現すると、数1の(1)式のようになる。この(1)式のIpは正相成分電流波高値、Inは逆相成分電流波高値、φPは正相成分電流位相差、φNは逆相成分電流位相差、ωは系統の基本角周波数をそれぞれ示す。   When each phase component of the load current IL detected by a detector (not shown) is Ia, Ib, and Ic and expressed separately as a positive phase component and a negative phase component, the following equation (1) is obtained. become. In this equation (1), Ip is the positive phase component current peak value, In is the negative phase component current peak value, φP is the positive phase component current phase difference, φN is the negative phase component current phase difference, and ω is the basic angular frequency of the system. Each is shown.

Figure 0005261967
Figure 0005261967

上記(1)式で示される各相電流成分に対し、図1の三相/二相変換器11、正相ベクトル演算器12および逆相ベクトル演算器13では、それぞれ数2〜数4の(2)〜(4)式のような変換行列による変換が行なわれ、α,β軸成分Iα,Iβ、正相電流のd,q軸成分Idp,Iqp、逆相電流のd,q軸成分Idn,Iqnがそれぞれ求められる。   In the three-phase / two-phase converter 11, the normal phase vector calculator 12, and the negative phase vector calculator 13 of FIG. 2) to (4) are converted using a conversion matrix, and α and β axis components Iα and Iβ, positive phase current d, q axis components Idp and Iqp, and negative phase current d and q axis components Idn. , Iqn are respectively obtained.

Figure 0005261967
Figure 0005261967

Figure 0005261967
Figure 0005261967

Figure 0005261967
Figure 0005261967

ここで、上記(1)式を(2)式に代入すると、数5の(5)式が得られる。

Figure 0005261967
Here, when the above equation (1) is substituted into the equation (2), the equation (5) of Formula 5 is obtained.
Figure 0005261967

(5)式を(3)式に代入すると、数6の(6)式が得られる。

Figure 0005261967
By substituting equation (5) into equation (3), equation (6) in equation 6 is obtained.
Figure 0005261967

また、(5)式を(6)式に代入すると、数7の(7)式が得られる。

Figure 0005261967
Further, when Expression (5) is substituted into Expression (6), Expression (7) of Expression 7 is obtained.
Figure 0005261967

上記(6),(7)式のように三相電流または電圧に正相分と逆相分が存在するとき、正相ベクトル演算器12の出力には逆相分が、また逆相ベクトル演算器13の出力には正相分が、それぞれ系統の2倍の周波数リプルとして含まれることが分かる。半周期移動平均フィルタ14ではこの2倍の周波数リプルを除去し、正相d軸(有効)電流,正相q軸(無効)電流の直流分Idp1,Iqp1、逆相d軸(有効)電流,逆相q軸(無効)電流の直流分Idn1,Iqn1を求める。   When the three-phase current or voltage has a normal phase component and a negative phase component as in the above equations (6) and (7), the output of the normal phase vector calculator 12 includes the negative phase component and the negative phase vector calculation. It can be seen that the output of the unit 13 includes the positive phase component as a frequency ripple that is twice that of the system. The half-period moving average filter 14 removes the double frequency ripple, and the DC phase Idp1, Iqp1 of the positive-phase d-axis (effective) current, the positive-phase q-axis (invalid) current, the negative-phase d-axis (effective) current, DC components Idn1 and Iqn1 of the negative phase q-axis (reactive) current are obtained.

求めた各電流を正相逆ベクトル演算器(逆相ベクトル演算器13と同じ演算を行なう)15a,15b、逆相逆ベクトル演算器16(正相ベクトル演算器12と同じ演算を行なう)を用いて再度交流量に変換する。演算器15aの出力は変換器17aにて二相/三相変換された後、負荷電流ILから減算することにより、高調波電流補償指令Ih*となる。同様に、逆相逆ベクトル演算器16の出力は変換器17bにて二相/三相変換された後、逆相電流補償指令In*となり、正相逆ベクトル演算器15bの出力は変換器17cにて二相/三相変換された後、無効電流補償指令Ip*となる。
そして、これらIp*,In*およびIh*の合計値(合成値)I*を求め、これに対して以下のような操作を行なう。
Each of the obtained currents is used with a normal-phase reverse vector calculator (the same calculation as that of the negative-phase vector calculator 13) 15a and 15b and a negative-phase reverse vector calculator 16 (the same calculation as that of the positive-phase vector calculator 12). To convert it back to AC. The output of the arithmetic unit 15a is subjected to two-phase / three-phase conversion by the converter 17a, and is then subtracted from the load current IL to become a harmonic current compensation command Ih * . Similarly, the output of the negative-phase reverse vector calculator 16 is two-phase / three-phase converted by the converter 17b, and then becomes the negative-phase current compensation command In * . The output of the positive-phase reverse vector calculator 15b is the converter 17c. After the two-phase / three-phase conversion at, the reactive current compensation command Ip * is obtained.
And these Ip *, an In * and Ih * total value sought (composite value) I *, performs the following operations with respect thereto.

図1は第1の補償方式を示し、ここでは先ず補償ゲインKALLに初期値を与え(KALL=初期値)、このKALLとKALL−ΔK(補償ゲイン変化分)とKALL+ΔK(補償ゲイン変化分)を上記I*に乗じた電流指令値で補償した場合の、各電圧変動ΔVを求める。この電圧変動ΔVを求めるに当たっては、各乗算器18a〜18cの出力から負荷電流ILを減じた値に、電力系統を模擬したインピーダンス(模擬系統19a〜19c)を乗じて得るようにしている。電圧変動ΔVの各演算結果から、KALLの初期値が最も小さくなる補償ゲインに置き換える。この操作を繰り返すことにより、電圧変動がより小さくなる補償ゲインKALLに収束していく。これにより、補償ゲインを最適化することができ、系統の電圧変動を効果的に補償できるようになる。 FIG. 1 shows a first compensation method, in which an initial value is first given to the compensation gain KALL (KALL = initial value), and KALL, KALL−ΔK (amount of change in compensation gain) and KALL + ΔK (amount of change in compensation gain). Each voltage fluctuation ΔV is obtained when compensation is performed with the current command value multiplied by the above I * . In obtaining this voltage fluctuation ΔV, the value obtained by subtracting the load current IL from the output of each multiplier 18a to 18c is multiplied by the impedance (simulated systems 19a to 19c) simulating the power system. From each calculation result of the voltage fluctuation ΔV, it is replaced with a compensation gain that minimizes the initial value of KALL. By repeating this operation, the voltage gain converges to the compensation gain KALL that becomes smaller. As a result, the compensation gain can be optimized, and the voltage fluctuation of the system can be effectively compensated.

図3に第2の補償方式を示す。図4〜6は、図3の補償ゲイン演算器の具体例を示す構成図である。なお、図3の21a〜21cは係数器、30は補償ゲイン演算器、図4〜6の18a〜18cは乗算器、19a〜19cは模擬系統(インピーダンス)、20は最小値選択器である。
図3では、先ず、無効電流補償ゲインKQ、逆相電流補償ゲインKN、高調波電流補償ゲインKHにそれぞれ初期値を与え、演算器30で演算する補償ゲインの順番を、ここでは例えばKQ,KN,KHの順とする。
FIG. 3 shows a second compensation method. 4 to 6 are configuration diagrams showing specific examples of the compensation gain calculator of FIG. 3, 21a to 21c are coefficient units, 30 is a compensation gain calculator, 18a to 18c are multipliers, 19a to 19c are simulation systems (impedances), and 20 is a minimum value selector.
In FIG. 3, first, initial values are respectively given to the reactive current compensation gain KQ, the negative phase current compensation gain KN, and the harmonic current compensation gain KH, and the order of the compensation gains calculated by the calculator 30 is, for example, KQ, KN here. , KH in this order.

優先順位の1番高い無効電流の補償ゲインKQについて、図4ではKQ=初期値,KQ−ΔK(補償ゲイン変化分),KQ+ΔKを無効電流補償指令Ip*に乗じた指令Ip2*から負荷電流ILを減じた値に対し、逆相電流補償指令In1*と高調波電流補償指令Ih1*とを加算した電流指令で補償した場合の、各電圧変動ΔVを求める。その求め方は図1の場合と同様なので、説明は省略する。電圧変動ΔVの各演算結果から、KQの初期値を電圧変動ΔVが最も小さくなる補償ゲインに置き換える。この際、逆相電流はKN=初期値、高調波電流もKH=初期値にそれぞれ固定しておく。この操作を繰り返すことにより、電圧変動がより小さくなる補償ゲインKQに収束していく。KQが或る程度収束したら(変化しなくなったら)、収束した値に固定する。 For the compensation gain KQ of the reactive current with the highest priority in FIG. 4, the load current IL is derived from the command Ip2 * obtained by multiplying the reactive current compensation command Ip * by KQ = initial value, KQ−ΔK (compensation gain change amount) and KQ + ΔK. the value obtained by subtracting the contrary, in the case of compensating a current command obtained by adding the negative sequence current compensation command In1 * and the harmonic current compensation command Ih1 *, obtain each voltage variation [Delta] V. The calculation method is the same as in FIG. From each calculation result of the voltage fluctuation ΔV, the initial value of KQ is replaced with a compensation gain that minimizes the voltage fluctuation ΔV. At this time, the reverse phase current is fixed at KN = initial value, and the harmonic current is fixed at KH = initial value. By repeating this operation, the voltage fluctuation converges to a compensation gain KQ that becomes smaller. When KQ converges to some extent (no longer changing), it is fixed at the converged value.

次に、図5ではゲインKQを上記の収束値に固定したままで、逆相電流補償ゲインKNについて、KN=初期値,KN−ΔK(補償ゲイン変化分),KN+ΔKを逆相電流補償指令In*に乗じた指令In2*から負荷電流ILを減じた値に対し、無効電流補償指令Ip1*と高調波電流補償指令Ih1*とを加算した電流指令で補償した場合の、各電圧変動ΔVを図1の場合と同様にして求める。電圧変動ΔVの各演算結果から、KNの初期値を電圧変動ΔVが最も小さくなる補償ゲインに置き換える。この際、高調波電流はKH=初期値で固定しておく。この操作を繰り返すことにより、電圧変動がより小さくなる補償ゲインKNに収束していく。KNが或る程度収束したら(変化しなくなったら)、収束した値に固定する。 Next, in FIG. 5, with the gain KQ fixed to the convergence value, for the negative phase current compensation gain KN, KN = initial value, KN−ΔK (compensation gain change amount), and KN + ΔK are set as the negative phase current compensation command In. * to the value obtained by subtracting the load current IL from the command In2 * multiplied to, in the case of compensating a current command obtained by adding the reactive current compensation command Ip1 * and the harmonic current compensation command Ih1 *, Fig each voltage variation ΔV Obtained in the same manner as in the case of 1. From each calculation result of the voltage fluctuation ΔV, the initial value of KN is replaced with a compensation gain that minimizes the voltage fluctuation ΔV. At this time, the harmonic current is fixed at KH = initial value. By repeating this operation, the voltage gain converges to a compensation gain KN that becomes smaller. When KN converges to some extent (no longer changing), it is fixed at the converged value.

さらに、図6ではKQ,KNを上記の収束値に固定したままで、高調波電流補償ゲインKHについて、KH=初期値,KH−ΔK(補償ゲイン変化分),KH+ΔKを高調波電流補償指令Ih*に乗じた指令Ih2*から負荷電流ILを減じた値に対し、無効電流補償指令Ip1*と逆相電流補償指令In1*とを加算した電流指令で補償した場合の、各電圧変動ΔVを図1の場合と同様にして求める。電圧変動ΔVの各演算結果から、KNの初期値を電圧変動ΔVが最も小さくなる補償ゲインに置き換える。KHが或る程度収束したら(変化しなくなったら)、収束した値に固定する。 Further, in FIG. 6, KH = initial value, KH−ΔK (compensation gain change amount), and KH + ΔK are set as the harmonic current compensation command Ih with respect to the harmonic current compensation gain KH while KQ and KN are fixed to the convergence values. * to the value obtained by subtracting the load current IL from the command Ih2 * multiplied to, in the case of compensation with reactive current compensation command Ip1 * anti-phase current compensation command In1 * and current command obtained by adding, Fig each voltage variation ΔV Obtained in the same manner as in the case of 1. From each calculation result of the voltage fluctuation ΔV, the initial value of KN is replaced with a compensation gain that minimizes the voltage fluctuation ΔV. When KH converges to some extent (no longer changing), it is fixed at the converged value.

なお、KQ,KN,KHの最適値演算は、KHが収束した時点で終了しても良く、KQ,KN,KHの収束値を初期値として繰り返しても良い。
以上により、補償ゲインを最適化でき、系統の電圧変動を効果的に補償することが可能となる。
The optimum value calculation of KQ, KN, and KH may be terminated when KH has converged, or the convergence values of KQ, KN, and KH may be repeated as initial values.
As described above, the compensation gain can be optimized, and the voltage fluctuation of the system can be effectively compensated.

図7はこの発明のさらに別の実施形態を示すブロック図である。
同図からも明らかなように、図1に示すものに対しΔV10演算器22a〜22cを付加して構成される。ここに、ΔV10は一般にフリッカ値と呼ばれ、電圧変動率にちらつき視感度係数anを乗じて求められる。ここでは、模擬系統(インピーダンス)19a〜19cの出力にちらつき視感度係数anを乗じて、ΔV10を求めるようにしている。
FIG. 7 is a block diagram showing still another embodiment of the present invention.
As can be seen from the figure, ΔV10 calculators 22a to 22c are added to the configuration shown in FIG. Here, ΔV10 is generally referred to as a flicker value, and is obtained by multiplying the voltage variation rate by the visibility coefficient an. Here, ΔV10 is obtained by multiplying the outputs of the simulated systems (impedances) 19a to 19c by the flickering visibility coefficient an.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 図1の電圧変動補償装置が適用されるシステム構成図1 is a system configuration diagram to which the voltage fluctuation compensator of FIG. 1 is applied. この発明の別の実施の形態を示すブロック図The block diagram which shows another embodiment of this invention 図3の補償ゲイン演算器の第1の具体例を示す構成図The block diagram which shows the 1st specific example of the compensation gain calculator of FIG. 図3の補償ゲイン演算器の第2の具体例を示す構成図The block diagram which shows the 2nd specific example of the compensation gain calculator of FIG. 図3の補償ゲイン演算器の第3の具体例を示す構成図The block diagram which shows the 3rd specific example of the compensation gain calculator of FIG. この発明のさらに別の実施の形態を示すブロック図The block diagram which shows another embodiment of this invention 従来例を示すブロック図Block diagram showing a conventional example

符号の説明Explanation of symbols

1…電圧変動補償装置、2…系統、3…負荷、11…三相/二相変換器、12…正相ベクトル演算器、13…逆相ベクトル演算器、14…半周期移動平均フィルタ、15a,15b…正相逆ベクトル演算器、16…逆相逆ベクトル演算器、17a〜17c…二相/三相変換器、18a〜18c…乗算器、19a〜19c…模擬系統(インピーダンス)、20…最小値選択器、21a〜21c…係数器、22a〜22c…ΔV10(フリッカ値)演算器、30…補償ゲイン演算器、A…受電点。   DESCRIPTION OF SYMBOLS 1 ... Voltage fluctuation compensation apparatus, 2 ... System | strain, 3 ... Load, 11 ... Three-phase / two-phase converter, 12 ... Normal phase vector calculator, 13 ... Reverse phase vector calculator, 14 ... Half-cycle moving average filter, 15a , 15b ... normal phase reverse vector calculator, 16 ... reverse phase reverse vector calculator, 17a to 17c ... two-phase / three-phase converter, 18a-18c ... multiplier, 19a-19c ... simulated system (impedance), 20 ... Minimum value selector, 21a to 21c... Coefficient unit, 22a to 22c... ΔV10 (flicker value) calculator, 30... Compensation gain calculator, A.

Claims (3)

系統に連系された負荷が発生する無効電流,逆相電流および高調波電流を補償することにより電圧変動を補償する電圧変動補償装置において、
負荷が発生する無効電流,逆相電流および高調波電流に対し、電圧変動補償装置が出力する補償電流の比率を変化させ、この変化させた補償比率で模擬電力系統の受電点の電圧変動を演算し、この演算により求められた電圧変動が最も小さくなる補償比率を選択し、この選択された補償比率で電圧変動補償を行なうことを特徴とする電圧補償装置の制御方式。
In a voltage fluctuation compensator that compensates for voltage fluctuations by compensating reactive currents, negative-phase currents, and harmonic currents generated by loads connected to the grid,
Reactive current load occurs, to reverse-phase current and harmonic current, by changing the ratio of the compensation current output by the voltage fluctuation compensation device, calculating the voltage variation of the receiving point of the simulated power system in this variation is compensated ratio was and the control method of the voltage compensation device, wherein a voltage variation found by this calculation and select the smallest compensation ratio, performs a voltage variation compensation in the selected compensation ratio.
前記無効電流,逆相電流および高調波電流の補償比率を個別に変化させることを特徴とする請求項1に記載の電圧補償装置の制御方式。   2. The voltage compensation device control method according to claim 1, wherein compensation ratios of the reactive current, the negative phase current and the harmonic current are individually changed. 前記電圧変動に代えて受電点のフリッカ値が最も小さくなるように、前記補償比率を変化させることを特徴とする請求項1または2に記載の電圧補償装置の制御方式。   3. The voltage compensation device control method according to claim 1, wherein the compensation ratio is changed so that a flicker value at a power receiving point is minimized instead of the voltage fluctuation.
JP2007107780A 2007-04-17 2007-04-17 Voltage fluctuation compensator control method Active JP5261967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107780A JP5261967B2 (en) 2007-04-17 2007-04-17 Voltage fluctuation compensator control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107780A JP5261967B2 (en) 2007-04-17 2007-04-17 Voltage fluctuation compensator control method

Publications (2)

Publication Number Publication Date
JP2008271634A JP2008271634A (en) 2008-11-06
JP5261967B2 true JP5261967B2 (en) 2013-08-14

Family

ID=40050443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107780A Active JP5261967B2 (en) 2007-04-17 2007-04-17 Voltage fluctuation compensator control method

Country Status (1)

Country Link
JP (1) JP5261967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505839A (en) * 2014-12-19 2015-04-08 思源清能电气电子有限公司 Networking system of dynamic voltage restorer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452330B2 (en) * 2010-04-12 2014-03-26 株式会社日立製作所 Power converter
JP5537235B2 (en) * 2010-04-13 2014-07-02 株式会社日立製作所 Power converter
CN115441452B (en) * 2022-09-22 2023-07-18 费莱(浙江)科技有限公司 Dynamic compensation method and system based on harmonic separation detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424408B2 (en) * 1995-10-13 2003-07-07 株式会社日立製作所 Power system analyzer
JPH10243561A (en) * 1997-02-25 1998-09-11 Meidensha Corp Flicker suppressor
JP2001157363A (en) * 1999-09-06 2001-06-08 Fuji Electric Co Ltd Apparatus and method of controlling electric power system voltage
JP3801946B2 (en) * 2002-05-09 2006-07-26 富士電機システムズ株式会社 Voltage flicker compensation method and apparatus
JP4531636B2 (en) * 2005-06-13 2010-08-25 東芝三菱電機産業システム株式会社 Flicker suppression effect simulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505839A (en) * 2014-12-19 2015-04-08 思源清能电气电子有限公司 Networking system of dynamic voltage restorer

Also Published As

Publication number Publication date
JP2008271634A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US20060215429A1 (en) Power inverter system and method of correcting supply voltage of the same
CN105429484B (en) PWM rectifier prediction power control method and system based on any period delay
JP5742980B1 (en) Power converter control method
JP6686562B2 (en) Power converter controller
JP2008306805A (en) Power conversion device
JP5261967B2 (en) Voltage fluctuation compensator control method
JP5192258B2 (en) Clamp type power converter
JP2013110884A (en) Reactive power compensation device and control method for the same
KR102557010B1 (en) System for resolving current imbalance and improving power factor by using regeneration of 3-phase unbalanced load current
JP2001286150A (en) Power-converter unit
AU2012317885A1 (en) Power converter control method
JP2793327B2 (en) Reactive power compensator
JP5147624B2 (en) Inverter device
RU2395893C2 (en) Method for application of conversion circuit and device for realisation of this method
JP4218835B2 (en) Apparatus and method for compensating voltage imbalance in distribution system
JP5293072B2 (en) AC-AC direct conversion device
JP5050622B2 (en) Voltage fluctuation compensator control method
CN116545019A (en) Virtual synchronous generator control method based on improved three-vector prediction model
JP4996131B2 (en) Single-phase inverter control method
AU2021436898B2 (en) Power conversion device and control device
EP3514942B1 (en) Power supply system
JP4649940B2 (en) CONVERTER CONTROL METHOD AND CONVERTER CONTROL DEVICE
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
RU2677628C1 (en) Three-phase reactive power compensator
JP2009195059A (en) Power conversion method and power conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250