JP3801040B2 - Method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP3801040B2
JP3801040B2 JP2001376273A JP2001376273A JP3801040B2 JP 3801040 B2 JP3801040 B2 JP 3801040B2 JP 2001376273 A JP2001376273 A JP 2001376273A JP 2001376273 A JP2001376273 A JP 2001376273A JP 3801040 B2 JP3801040 B2 JP 3801040B2
Authority
JP
Japan
Prior art keywords
layer
protective film
lubricating layer
film
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001376273A
Other languages
Japanese (ja)
Other versions
JP2003178426A (en
Inventor
和大 草川
秀昭 松山
徳久 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001376273A priority Critical patent/JP3801040B2/en
Publication of JP2003178426A publication Critical patent/JP2003178426A/en
Application granted granted Critical
Publication of JP3801040B2 publication Critical patent/JP3801040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク装置を構成するハードディスク磁気記録媒体の製造方法に関し、より詳細には、真空蒸着法により潤滑層を形成する磁気記録媒体の製造方法に関する。
【0002】
【従来の技術】
ハードディスク装置は、コンピューターの主要な外部記録装置であり、マルチメディアの進行とともに急速に高記録密度化・高転送速度化・小型化が進んでいる。これにともなって、ハードディスク装置主要部品である磁気記録媒体に対しても、記録密度の向上とともにトライポロジー的な機械強度の維持が要求されている。
【0003】
磁気記録媒体は、情報を磁気的に記録する部品であり、基板上に下地膜と磁性膜と保護膜とが積層され、さらに潤滑剤が塗布されている。通常、基板はAl合金よりなり、NiPメッキ層を施すことにより基板表面は保護されている。対衝撃性を向上させるために、ガラス基板が用いられている。
【0004】
情報を記録する磁性膜は、Co系の強磁性体からなり、その磁気的な特性を向上させるためにCr下地膜が挿入される。また、磁性膜を保護するために、潤滑性に優れ、摩耗し難いダイヤモンドライクカーボン(DLC)といわれる硬いカーボン系保護膜がコートされる。通常、カーボン保護膜はCr下地膜や磁性膜と同様にスパッタ法で蒸着される。
【0005】
保護膜の上に塗布される潤滑層は、パーフルオロポリエーテル(PFPE)が主に用いられる。これを溶媒で希釈し、ディッピングやスピンコートにより形成される。その潤滑層の厚さは1nmから数nm程度となっている。
【0006】
保護膜上の潤滑層は、2種の層に分けられる。一方は保護膜と結合した層(結合潤滑層)であり、他方は結合していない層(自由潤滑層)である。自由潤滑層が厚いとヘッドへ付着してヘッド浮上量に影響を与えたり、ディスク媒体とヘッドが吸着してディスクが回転しなくなったりする。また、ディスク媒体は高速で回転するため、自由潤滑層が遠心力で外周側へ移動し、磨耗し易くなる。このため、自由潤滑層を薄く、従って、結合潤滑層を厚くすることが望まれている。
【0007】
カーボン保護膜の表面を大気に晒すことなく、潤滑層を形成することによって、保護膜と結合する潤滑剤の成分を増やすことができる。その手法として、保護膜と潤滑層を真空一貫プロセスで形成する方法が報告されている。カーボン系の保護膜を作製するにはスパッタ法やプラズマCVD法が用いられ、液体である潤滑剤については真空蒸着法が用いられる。
【0008】
【発明が解決しようとする課題】
真空中で保護膜と潤滑層を連続して形成するプロセスにおいて、潤滑剤を真空蒸着する際、図5に示すように、蒸着された潤滑層の総膜厚により結合潤滑層の膜厚は決まり、潤滑層の総膜厚に対する結合潤滑層の割合を制御することができないという問題がある。
【0009】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、一定温度に加熱した基板に潤滑剤を蒸着する、もしくは蒸着させる基板を蒸着前に酸素雰囲気に暴露した状態で潤滑剤を蒸着することにより、カーボン保護膜と液体潤滑剤分子の結合率を制御するようにした磁気記録媒体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基板上に、それぞれ少なくとも1層の順次積層された磁性膜とカーボン保護膜と液体潤滑層とを有し、前記カーボン保護膜を形成した後に、前記液体潤滑層を真空中で連続形成する磁気記録媒体の製造方法において、前記液体潤滑層は、前記カーボン保護膜と結合した第1の層と、前記カーボン保護膜と結合していない第2の層とを有し、前記液体潤滑層を真空蒸着法により形成する際に、前記非磁性基板を80℃〜140℃範囲内の所定の温度で加熱しており、該所定の温度に応じて、前記液体潤滑層の総膜厚に対する、前記液体潤滑層のうちの前記第1の層の膜厚の割合を制御することを特徴とする。
【0011】
また、請求項2に記載の発明は、非磁性基板上に、それぞれ少なくとも1層の順次積層された磁性膜とカーボン保護膜と液体潤滑層とを有し、前記カーボン保護膜を形成した後に、前記液体潤滑層を真空中で連続形成する磁気記録媒体の製造方法において、前記液体潤滑層は、前記カーボン保護膜と結合した第1の層と、前記カーボン保護膜と結合していない第2の層とを有し、前記液体潤滑層の蒸着前に、前記カーボン保護膜の表面を酸素雰囲気中に一定圧力で一定時間暴露し、前記圧力および前記時間の少なくとも一方に応じて、前記液体潤滑層の総膜厚に対する、前記液体潤滑層のうちの前記第1の層の膜厚の割合を制御することを特徴とする。
【0014】
つまり、本発明は、一定温度に加熱した基板上に潤滑剤を蒸着させる、もしくは蒸着される基板を蒸着前に酸素雰囲気に暴露した状態で潤滑剤を蒸着させて、カーボン保護膜と液体潤滑剤分子の結合率を制御するようにしたものである。
【0015】
このような構成により、加熱した基板に蒸着された潤滑層は、加熱なしと比べて潤滑層の総膜厚に対する結合潤滑層の割合が高く、その割合は加熱温度によって制御できる。蒸着前に酸素雰囲気に暴露した基板に蒸着された潤滑層は、暴露なしと比べて潤滑層の総膜厚に対する結合潤滑層の割合が低く、その割合は暴露圧力・暴露時間によって制御できる。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の磁気記録媒体の製造方法によって作成された磁気記録媒体の断面図で、図中符号1は、磁気記録媒体で、この磁気記録媒体1は、非磁性基板2上に順次積層された磁性膜5とカーボン保護膜6と液体潤滑層7とを有している。非磁性基板2は、アルミ合金、ガラス、プラスチック基板など、慣用のいかなる非磁性基板でもよい。具体的なプラスチック基板としては、ポリカーボネート、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドなどから成る基板を挙げることができる。
【0017】
また、非磁性基板2は、2.5インチ、3インチ、3.3インチ、3.5インチ、5インチ、のいずれかの大きさのディスク基板であってもよく、またその形態も、ディスク状に限らず、カード状、帯状などいかなる形態でもよい。なお、ここで示した大きさは公称値であり、当該技術において汎用されているものであると理解されるべきである。
【0018】
磁性膜5は、記録層として使用できる強磁性金属を含み、具体的には、CoCrTaPt、CoCrTaPt−Cr、CoCrTaPt−SiO、CoCrTaPt−ZrO、CoCrTaPt−TiO、CoCrTaPt−Alなどを成分とする磁性膜である。
【0019】
磁性膜5の厚さは、20nm以下であり、好ましくは10〜20nmである。磁性膜を複数用いて多層構造の記録層としてもよい。
【0020】
また、磁性膜5と基板2の間に下地膜4を形成してもよい。下地膜4は、下地膜を形成する慣用のいかなる成分から形成されてもよく、特に限定されない。具体的には、Cr、Cr−W、Cr−V、Cr−Mo、Cr−Si、Ni−Al、Co−Cr、Mo、W、Ptなどから成る。下地膜の厚さは、20nm以下であり、好ましくは10〜20nmである。
【0021】
カーボン保護膜6は、記録層を形成する磁性膜をヘッドの衝撃、外界の腐食性物質などの腐食から保護する機能を有する。保護膜の厚さは8nm以下であり、好ましくは2〜8nmである。成膜方法はスパッタ法やプラズマCVD法などいかなる方法でもよい。カーボン膜質は水素添加アモルファスカーボンや窒素添加アモルファスカーボンなど慣用のいかなる成分から形成されてもよい。
【0022】
潤滑剤は、パーフルオロ・ポリエーテルであり、Z−dol,Z−tetraol,Z−dolTX,AMなど、いずれの液体潤滑剤でもよい。潤滑層の膜厚は赤外線分光法により測定し、−CF振動に伴う1270cm−1付近の吸収から求めた。結合潤滑層の膜厚は、フルオロカーボン溶剤中で超音波洗浄し自由潤滑層を除去して、赤外線分光法による同様な測定により求めた。
【0023】
潤滑剤の蒸着時に、基板を80〜140℃に加熱保持することによって、加熱なしと比べて結合潤滑層を厚く、すなわち潤滑層の総膜厚に対する結合潤滑層の割合を高くすることができた。図2は、本発明における基板温度と結合潤滑層の膜厚の関係を示す図である。
【0024】
基板温度が80℃以下であると、加熱なしと比べて結合潤滑層の膜厚はほとんど変わらず、基板温度が140℃以上であると、蒸着された潤滑剤が再蒸着させてしまう。
【0025】
また、潤滑剤の蒸着前に、基板を酸素雰囲気に暴露することによって、暴露なしと比べて結合潤滑層を薄く、すなわち潤滑層の総膜厚に対する結合潤滑層の割合を低くすることができた。図3は、本発明における酸素暴露時の圧力と結合潤滑層の膜厚の関係を示す図である。
【0026】
以下に実施例を挙げて本発明を説明するが、本発明は本実施例にのみ限定されるものではない。
【0027】
[実施例1]
図1に示すように、アルミ合金基板上2に、Ni−Pメッキ3を施し、その上にスパッタ法で20nmのCr下地層4、20nmのCo磁性層5および8nmの窒素添加アモルファスカーボン保護膜6を成膜した。さらに、以下に詳細に説明する蒸着法により液体潤滑剤(Z−dol:商品名Ausimont社)をカーボン膜上に成膜した。
【0028】
図4は、本実験に用いた成膜装置の模式図である。潤滑剤の原液を加熱するルツボ15、シャッター17と基板11から構成され、ルツボと基板の間の距離は200mmである。一定量の潤滑剤をルツボに入れ、カーボン保護膜の成膜後、真空搬送した基板に、圧力3×10−4Pa以下で液体潤滑剤を蒸着した。この際、基板は加熱され140℃に保たれていた。
【0029】
得られた磁気記録媒体の潤滑層の総膜厚と結合潤滑層の膜厚を測定したところ、総膜厚が約2nmで、結合潤滑層は約1.4nmであり、潤滑層の総膜厚に対する結合潤滑層の割合は約70%となった。基板加熱をしない従来の製造方法では、総膜厚が約2nmのとき結合潤滑層は約1.1nmで、潤滑層の総膜厚に対する結合潤滑層の割合は約55%であり、基板を140℃に加熱保持したことにより、潤滑層の総膜厚に対する結合潤滑層の割合を高くすることができた。
【0030】
[実施例2]
実施例1と同様に、アルミ合金基板2上に、Ni−Pメッキ3を施し、その上にスパッタ法で20nmのCr下地層4、20nmのCo磁性層5および8nmの窒素添加アモルファスカーボン保護膜6を成膜した。さらに、以下に詳細に説明する蒸着法により液体潤滑剤(Z−dol:商品名Ausimont社)をカーボン膜上に成膜した。
【0031】
カーボン保護膜の成膜後、真空搬送した基板を、圧力10000Paで2時間、酸素雰囲気に暴露した。このときの基板温度はRTであった。
【0032】
得られた磁気記録媒体の潤滑層の総膜厚と結合潤滑層の膜厚を測定したところ、総膜厚が約2nmで、結合潤滑層は約0.82nmであり、潤滑層の総膜厚に対する結合潤滑層の割合は約40%となった。基板加熱をしない従来の製造方法では、総膜厚が約2nmのとき結合潤滑層は約1.1nmで、潤滑層の総膜厚に対する結合潤滑層の割合は約55%であり、基板を酸素雰囲気に暴露したことにより、潤滑層の総膜厚に対する結合潤滑層の割合を低くすることができた。
【0033】
【発明の効果】
以上説明したように本発明によれば、カーボン保護膜と液体潤滑層を真空中で連続形成する製造方法において、一定温度に加熱した基板に潤滑剤を蒸着する、酸素雰囲気に暴露してから潤滑剤を蒸着することにより、カーボン保護膜と液体潤滑剤分子の結合率を制御することを特徴とする。これにより、いかなる設計の磁気記録媒体にも対応する潤滑層を形成できる。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体の製造方法によって作成された磁気記録媒体の断面図である。
【図2】本発明における基板温度と結合潤滑層の膜厚の関係を示す図である。
【図3】本発明における酸素暴露時の圧力と結合潤滑層の膜厚の関係を示す図である。
【図4】本発明で用いた成膜装置の模式図である。
【図5】従来の蒸着法における潤滑層の総膜厚と結合潤滑層の関係を示す図である。
【符号の説明】
1 磁気記録媒体
2 非磁性基板
3 めっき層
4 下地層
5 磁性層
6 カーボン保護膜
7 液体潤滑層
8 保護膜成膜室
9 潤滑層蒸着室
10 搬送室
11 基板
12 カーボンターゲット
13 直流電源
14 潤滑剤
15 ルツボ
16 ヒータ
17 シャッター
18 ガス導入部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hard disk magnetic recording medium constituting a hard disk device, and more particularly to a method for manufacturing a magnetic recording medium in which a lubricating layer is formed by a vacuum evaporation method.
[0002]
[Prior art]
The hard disk device is a main external recording device of a computer, and with the progress of multimedia, the recording density, the transfer speed, and the miniaturization are rapidly progressing. As a result, the magnetic recording medium, which is the main component of the hard disk device, is required to maintain the tribological mechanical strength as well as the recording density.
[0003]
A magnetic recording medium is a component that magnetically records information. A base film, a magnetic film, and a protective film are laminated on a substrate, and a lubricant is further applied. Usually, the substrate is made of an Al alloy, and the surface of the substrate is protected by applying a NiP plating layer. In order to improve the impact resistance, a glass substrate is used.
[0004]
The magnetic film for recording information is made of a Co-based ferromagnetic material, and a Cr underlayer is inserted in order to improve the magnetic characteristics. In addition, in order to protect the magnetic film, a hard carbon-based protective film called diamond-like carbon (DLC) which is excellent in lubricity and hardly worn is coated. Usually, the carbon protective film is deposited by sputtering in the same manner as the Cr underlayer film and the magnetic film.
[0005]
Perfluoropolyether (PFPE) is mainly used for the lubricating layer applied on the protective film. This is diluted with a solvent and formed by dipping or spin coating. The thickness of the lubricating layer is about 1 nm to several nm.
[0006]
The lubricating layer on the protective film is divided into two types. One is a layer bonded to the protective film (bonded lubricating layer), and the other is a layer not bonded (free lubricating layer). If the free lubricating layer is thick, it adheres to the head and affects the head flying height, or the disk medium and the head adsorb and the disk does not rotate. Further, since the disk medium rotates at a high speed, the free lubricating layer moves to the outer peripheral side by centrifugal force, and is easily worn. For this reason, it is desired to make the free lubricating layer thin, and hence the bonded lubricating layer thick.
[0007]
By forming the lubricating layer without exposing the surface of the carbon protective film to the atmosphere, it is possible to increase the component of the lubricant bonded to the protective film. As the technique, a method of forming a protective film and a lubricating layer by a consistent vacuum process has been reported. A sputtering method or a plasma CVD method is used to produce a carbon-based protective film, and a vacuum deposition method is used for a lubricant that is a liquid.
[0008]
[Problems to be solved by the invention]
In the process of continuously forming the protective film and the lubricating layer in vacuum, when the lubricant is vacuum-deposited, as shown in FIG. 5, the thickness of the bonded lubricating layer is determined by the total thickness of the deposited lubricating layer. There is a problem that the ratio of the bonded lubricating layer to the total thickness of the lubricating layer cannot be controlled.
[0009]
The present invention has been made in view of such problems, and its purpose is to deposit a lubricant on a substrate heated to a constant temperature, or to expose a substrate to be deposited to an oxygen atmosphere before vapor deposition. It is another object of the present invention to provide a method for manufacturing a magnetic recording medium in which the lubricant is deposited by controlling the bonding rate between the carbon protective film and the liquid lubricant molecules.
[0010]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, an invention according to claim 1, on a nonmagnetic substrate, sequentially laminated magnetic film and the carbon protective film of each of the at least one layer and a liquid lubricant layer And after forming the carbon protective film, in the method of manufacturing a magnetic recording medium in which the liquid lubricating layer is continuously formed in a vacuum, the liquid lubricating layer includes a first layer combined with the carbon protective film, A non-bonded second layer that is not bonded to the carbon protective film, and the non-magnetic substrate is heated at a predetermined temperature within a range of 80 ° C. to 140 ° C. when the liquid lubricant layer is formed by a vacuum deposition method. The ratio of the film thickness of the first layer of the liquid lubrication layer to the total film thickness of the liquid lubrication layer is controlled according to the predetermined temperature .
[0011]
The invention according to claim 2 has a magnetic film, a carbon protective film, and a liquid lubricating layer, which are sequentially laminated on a nonmagnetic substrate, respectively, and after forming the carbon protective film, In the method of manufacturing a magnetic recording medium in which the liquid lubricating layer is continuously formed in a vacuum, the liquid lubricating layer includes a first layer bonded to the carbon protective film and a second layer not bonded to the carbon protective film. Before the deposition of the liquid lubrication layer, the surface of the carbon protective film is exposed to an oxygen atmosphere at a certain pressure for a certain time, and the liquid lubrication layer according to at least one of the pressure and the time The ratio of the film thickness of the first layer of the liquid lubricant layer to the total film thickness is controlled.
[0014]
That is, according to the present invention, a lubricant is deposited on a substrate heated to a constant temperature, or a lubricant is deposited in a state where the deposited substrate is exposed to an oxygen atmosphere before deposition, so that the carbon protective film and the liquid lubricant are deposited. The molecular bond rate is controlled.
[0015]
With this configuration, the lubricating layer deposited on the heated substrate has a higher ratio of the bonded lubricating layer to the total thickness of the lubricating layer than that without heating, and the ratio can be controlled by the heating temperature. The lubricating layer deposited on the substrate exposed to an oxygen atmosphere before vapor deposition has a lower ratio of the bonded lubricating layer to the total thickness of the lubricating layer than that without exposure, and the ratio can be controlled by the exposure pressure and the exposure time.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of a magnetic recording medium produced by the method of manufacturing a magnetic recording medium of the present invention. In FIG. 1, reference numeral 1 denotes a magnetic recording medium, and this magnetic recording medium 1 is sequentially placed on a nonmagnetic substrate 2. The magnetic film 5, the carbon protective film 6, and the liquid lubricating layer 7 are laminated. The nonmagnetic substrate 2 may be any conventional nonmagnetic substrate such as an aluminum alloy, glass, or plastic substrate. Specific examples of the plastic substrate include substrates made of polycarbonate, polyolefin, polyethylene terephthalate, polyethylene naphthalate, polyimide, and the like.
[0017]
Further, the non-magnetic substrate 2 may be a disk substrate having a size of 2.5 inches, 3 inches, 3.3 inches, 3.5 inches, or 5 inches, and the form thereof is also a disk. It is not limited to a shape, and any shape such as a card shape or a belt shape may be used. In addition, it should be understood that the size shown here is a nominal value and is widely used in the art.
[0018]
The magnetic film 5 includes a ferromagnetic metal that can be used as a recording layer, and specifically includes CoCrTaPt, CoCrTaPt—Cr 2 O 3 , CoCrTaPt—SiO 2 , CoCrTaPt—ZrO 2 , CoCrTaPt—TiO 2 , CoCrTaPt—Al 2 O. 3 and the like.
[0019]
The thickness of the magnetic film 5 is 20 nm or less, preferably 10 to 20 nm. A plurality of magnetic films may be used to form a multilayered recording layer.
[0020]
Further, the base film 4 may be formed between the magnetic film 5 and the substrate 2. The base film 4 may be formed of any conventional component for forming the base film, and is not particularly limited. Specifically, it consists of Cr, Cr-W, Cr-V, Cr-Mo, Cr-Si, Ni-Al, Co-Cr, Mo, W, Pt, and the like. The thickness of the base film is 20 nm or less, preferably 10 to 20 nm.
[0021]
The carbon protective film 6 has a function of protecting the magnetic film forming the recording layer from the impact of the head and the corrosion of corrosive substances in the outside world. The thickness of the protective film is 8 nm or less, preferably 2 to 8 nm. The film forming method may be any method such as sputtering or plasma CVD. The carbon film quality may be formed from any conventional component such as hydrogenated amorphous carbon or nitrogen added amorphous carbon.
[0022]
The lubricant is perfluoropolyether and may be any liquid lubricant such as Z-dol, Z-tetraol, Z-dolTX, and AM. The film thickness of the lubricating layer was measured by infrared spectroscopy, and was determined from absorption near 1270 cm −1 due to —CF vibration. The film thickness of the bonded lubricating layer was determined by the same measurement by infrared spectroscopy after ultrasonic cleaning in a fluorocarbon solvent to remove the free lubricating layer.
[0023]
By heating and holding the substrate at 80 to 140 ° C. during vapor deposition of the lubricant, the bonded lubricating layer was thicker than that without heating, that is, the ratio of the bonded lubricating layer to the total thickness of the lubricating layer could be increased. . FIG. 2 is a diagram showing the relationship between the substrate temperature and the film thickness of the bonded lubricating layer in the present invention.
[0024]
When the substrate temperature is 80 ° C. or lower, the thickness of the bonded lubricating layer is hardly changed as compared with the case without heating, and when the substrate temperature is 140 ° C. or higher, the deposited lubricant is redeposited.
[0025]
Also, by exposing the substrate to an oxygen atmosphere before the deposition of the lubricant, the bonded lubricating layer was thinner than that without exposure, that is, the ratio of the bonded lubricating layer to the total thickness of the lubricating layer could be reduced. . FIG. 3 is a diagram showing the relationship between the pressure during exposure to oxygen and the thickness of the bonded lubricating layer in the present invention.
[0026]
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples.
[0027]
[Example 1]
As shown in FIG. 1, Ni-P plating 3 is applied on an aluminum alloy substrate 2, and a 20 nm Cr underlayer 4, a 20 nm Co magnetic layer 5 and an 8 nm nitrogen-added amorphous carbon protective film are formed thereon by sputtering. 6 was deposited. Further, a liquid lubricant (Z-dol: trade name Ausimont) was formed on the carbon film by a vapor deposition method described in detail below.
[0028]
FIG. 4 is a schematic diagram of a film forming apparatus used in this experiment. The crucible 15 for heating the lubricant stock solution, the shutter 17 and the substrate 11 are configured, and the distance between the crucible and the substrate is 200 mm. A certain amount of lubricant was put in a crucible, and after the formation of the carbon protective film, a liquid lubricant was vapor-deposited at a pressure of 3 × 10 −4 Pa or less on a substrate transported in vacuum. At this time, the substrate was heated and maintained at 140 ° C.
[0029]
When the total film thickness of the lubricating layer and the film thickness of the combined lubricating layer of the magnetic recording medium obtained were measured, the total film thickness was about 2 nm, and the combined lubricating layer was about 1.4 nm. The ratio of the bonded lubrication layer to about 70% was about 70%. In the conventional manufacturing method without heating the substrate, when the total film thickness is about 2 nm, the bonded lubricating layer is about 1.1 nm, and the ratio of the bonded lubricating layer to the total thickness of the lubricating layer is about 55%. By maintaining the temperature at 0 ° C., the ratio of the bonded lubricating layer to the total thickness of the lubricating layer could be increased.
[0030]
[Example 2]
As in Example 1, Ni—P plating 3 is applied on an aluminum alloy substrate 2, and a 20 nm Cr underlayer 4, a 20 nm Co magnetic layer 5, and an 8 nm nitrogen-added amorphous carbon protective film are formed thereon by sputtering. 6 was deposited. Further, a liquid lubricant (Z-dol: trade name Ausimont) was formed on the carbon film by a vapor deposition method described in detail below.
[0031]
After the formation of the carbon protective film, the substrate that was vacuum transferred was exposed to an oxygen atmosphere at a pressure of 10,000 Pa for 2 hours. The substrate temperature at this time was RT.
[0032]
When the total film thickness of the lubricating layer and the film thickness of the combined lubricating layer of the obtained magnetic recording medium were measured, the total film thickness was about 2 nm and the combined lubricating layer was about 0.82 nm. The ratio of the bonded lubrication layer to about 40% was about 40%. In the conventional manufacturing method without heating the substrate, the combined lubricating layer is about 1.1 nm when the total film thickness is about 2 nm, and the ratio of the combined lubricating layer to the total film thickness of the lubricating layer is about 55%. By exposing to the atmosphere, the ratio of the bonded lubricating layer to the total thickness of the lubricating layer could be lowered.
[0033]
【The invention's effect】
As described above, according to the present invention, in a manufacturing method in which a carbon protective film and a liquid lubricating layer are continuously formed in a vacuum, a lubricant is deposited on a substrate heated to a constant temperature, and then exposed to an oxygen atmosphere and then lubricated. By depositing the agent, the bonding rate between the carbon protective film and the liquid lubricant molecule is controlled. Thereby, a lubricating layer corresponding to any design of the magnetic recording medium can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a magnetic recording medium produced by a magnetic recording medium manufacturing method of the present invention.
FIG. 2 is a diagram showing a relationship between a substrate temperature and a film thickness of a bonded lubricating layer in the present invention.
FIG. 3 is a diagram showing the relationship between the pressure during exposure to oxygen and the film thickness of a bonded lubricating layer in the present invention.
FIG. 4 is a schematic view of a film forming apparatus used in the present invention.
FIG. 5 is a diagram showing the relationship between the total thickness of the lubricating layer and the bonded lubricating layer in a conventional vapor deposition method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetic recording medium 2 Nonmagnetic board | substrate 3 Plating layer 4 Underlayer 5 Magnetic layer 6 Carbon protective film 7 Liquid lubricating layer 8 Protective film deposition chamber 9 Lubricating layer vapor deposition chamber 10 Transport chamber 11 Substrate 12 Carbon target 13 DC power supply 14 Lubricant 15 Crucible 16 Heater 17 Shutter 18 Gas introduction part

Claims (2)

非磁性基板上に、それぞれ少なくとも1層の順次積層された磁性膜とカーボン保護膜と液体潤滑層とを有し、前記カーボン保護膜を形成した後に、前記液体潤滑層を真空中で連続形成する磁気記録媒体の製造方法において、
前記液体潤滑層は、前記カーボン保護膜と結合した第1の層と、前記カーボン保護膜と結合していない第2の層とを有し、
前記液体潤滑層を真空蒸着法により形成する際に、前記非磁性基板を80℃〜140℃範囲内の所定の温度で加熱しており、該所定の温度に応じて、前記液体潤滑層の総膜厚に対する、前記液体潤滑層のうちの前記第1の層の膜厚の割合を制御することを特徴とする磁気記録媒体の製造方法。
The non-magnetic substrate has at least one magnetic film, a carbon protective film, and a liquid lubricating layer that are sequentially stacked. After the carbon protective film is formed, the liquid lubricating layer is continuously formed in a vacuum. In the method of manufacturing a magnetic recording medium,
The liquid lubrication layer has a first layer bonded to the carbon protective film and a second layer not bonded to the carbon protective film,
When the liquid lubricant layer is formed by a vacuum deposition method, the non-magnetic substrate is heated at a predetermined temperature within a range of 80 ° C. to 140 ° C., and the total of the liquid lubricant layer is increased according to the predetermined temperature. A method of manufacturing a magnetic recording medium, comprising controlling a ratio of a film thickness of the first layer of the liquid lubricant layer to a film thickness .
非磁性基板上に、それぞれ少なくとも1層の順次積層された磁性膜とカーボン保護膜と液体潤滑層とを有し、前記カーボン保護膜を形成した後に、前記液体潤滑層を真空中で連続形成する磁気記録媒体の製造方法において、The non-magnetic substrate has at least one magnetic film, a carbon protective film, and a liquid lubricating layer that are sequentially stacked. After the carbon protective film is formed, the liquid lubricating layer is continuously formed in a vacuum. In the method of manufacturing a magnetic recording medium,
前記液体潤滑層は、前記カーボン保護膜と結合した第1の層と、前記カーボン保護膜と結合していない第2の層とを有し、The liquid lubrication layer has a first layer bonded to the carbon protective film and a second layer not bonded to the carbon protective film,
前記液体潤滑層の蒸着前に、前記カーボン保護膜の表面を酸素雰囲気中に一定圧力で一定時間暴露し、前記圧力および前記時間の少なくとも一方に応じて、前記液体潤滑層の総膜厚に対する、前記液体潤滑層のうちの前記第1の層の膜厚の割合を制御することを特徴とする磁気記録媒体の製造方法。Before vapor deposition of the liquid lubrication layer, the surface of the carbon protective film is exposed to an oxygen atmosphere at a constant pressure for a certain time, and according to at least one of the pressure and the time, the total film thickness of the liquid lubrication layer, A method of manufacturing a magnetic recording medium, comprising controlling a film thickness ratio of the first layer of the liquid lubricant layer.
JP2001376273A 2001-12-10 2001-12-10 Method for manufacturing magnetic recording medium Expired - Fee Related JP3801040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376273A JP3801040B2 (en) 2001-12-10 2001-12-10 Method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376273A JP3801040B2 (en) 2001-12-10 2001-12-10 Method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2003178426A JP2003178426A (en) 2003-06-27
JP3801040B2 true JP3801040B2 (en) 2006-07-26

Family

ID=19184501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376273A Expired - Fee Related JP3801040B2 (en) 2001-12-10 2001-12-10 Method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3801040B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175265B2 (en) * 2013-04-02 2017-08-02 昭和電工株式会社 Method for manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JP2003178426A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
JP2003346317A (en) Perpendicular magnetic recording medium
JP2003208710A (en) Magnetic recording medium
JP2009054239A (en) Storage medium, storage device, and manufacturing method of storage medium
JP3801040B2 (en) Method for manufacturing magnetic recording medium
JP2005092991A (en) Magnetic recording medium
JP2001084554A (en) Magnetic recording medium
JP2003346318A (en) Magnetic recording medium
JP2006286115A (en) Magnetic recording medium and its manufacturing method
JP2004022025A (en) Magnetic recording medium, its manufacturing method and magnetic storage device using the same
JP2005004899A (en) Magnetic recording medium and its manufacturing method
JP6040074B2 (en) Method for manufacturing magnetic recording medium
JP2006318535A (en) Magnetic recording medium
JP2003099917A (en) Magnetic recording medium
JP2004055060A (en) Manufacturing method of magnetic recording medium
JP2004227621A (en) Method for manufacturing magnetic recording medium and apparatus for manufacturing the same
JP2003162805A (en) Magnetic recording medium
JP2004234826A (en) Magnetic recording vehicle
US20040253484A1 (en) Magnetic recording medium
JP2003099918A (en) Magnetic recording medium
JP2004220656A (en) Magnetic recording medium
US20050003236A1 (en) Magnetic recording medium
JP2004220655A (en) Magnetic recording medium
JP2014146400A (en) Manufacturing method of magnetic recording medium
JP2003272121A (en) Magnetic recording medium
JP2008077793A (en) Method of manufacturing magnetic recording medium and magnetic recording medium obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3801040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees