JP2004022025A - Magnetic recording medium, its manufacturing method and magnetic storage device using the same - Google Patents

Magnetic recording medium, its manufacturing method and magnetic storage device using the same Download PDF

Info

Publication number
JP2004022025A
JP2004022025A JP2002172758A JP2002172758A JP2004022025A JP 2004022025 A JP2004022025 A JP 2004022025A JP 2002172758 A JP2002172758 A JP 2002172758A JP 2002172758 A JP2002172758 A JP 2002172758A JP 2004022025 A JP2004022025 A JP 2004022025A
Authority
JP
Japan
Prior art keywords
magnetic
protective film
recording medium
film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172758A
Other languages
Japanese (ja)
Inventor
Toshinori Ono
大野 俊典
Yuichi Kokado
小角 雄一
Hiroyuki Matsumoto
松本 浩之
Kouji Tani
谷 弘詞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002172758A priority Critical patent/JP2004022025A/en
Publication of JP2004022025A publication Critical patent/JP2004022025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium wherein a high sliding resistance is provided by mitigating the internal stress of the DLC protective film layer of a magnetic recording medium, and increasing an adhesive force with a magnetic film, its manufacturing method, and a magnetic recording medium using the same. <P>SOLUTION: When a protective film 7 for protecting the magnetic film 6 of a magnetic recording medium is made of diamond-like carbon (DLC) mainly containing carbon, a multilayer stacked film structure is made in which the DLC layer of high hardness and the DLC layer of low hardness are stacked alternately at a film thickness cycle of 0.3 to 1.5 nm. Preferably, a multilayer film is formed in which the DLC layer of a large nitrogen content and the DLC layer of a small nitrogen content are stacked alternately at a film thickness cycle of 0.3 to 1.5 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体及びその製造方法とそれを用いた磁気ディスク装置に係り、特に、優れた信頼性を有し、高密度に磁気記録が可能な磁気記録媒体及びその製造方法とコンピュータの補助記憶装置に用いられる磁気ディスク装置に関する。
【0002】
【従来の技術】
大型コンピュータ、ワークステーション、パーソナルコンピュータ等の記憶装置に用いられる磁気ディスク装置は年々その重要性が高まり、大容量小型化へと発展を遂げている。
【0003】
磁気ディスク装置の大容量小型化には高密度化が不可欠であり、これを実現するための技術としては磁気ディスク上を浮上する磁気ヘッドと磁気記録媒体の磁気記録層との間の距離を小さくするということが挙げられる。
【0004】
従来より、スパッタリングによる成膜技術を用いて作製される磁気記録媒体には、磁性膜を磁気ヘッドによる摺動から保護する目的で保護膜が設けられている。そして、この保護膜を薄膜化することと、保護膜表面と磁気ヘッドとの間の距離を小さくすることが磁気記録層と磁気ヘッドとの間の距離をより小さくする為の最も有効な手段である。
【0005】
この保護膜には、DCスパッタリング、RFスパッタリング(例えば特開平5−174369号公報)、CVD(例えば特開平4−90125号公報)で作製されるカーボン膜が最も一般的に用いられており、より強度に優れた保護膜を得るために膜中に窒素原子や水素原子等を混入させる方法(例えば特開昭62−246129号公報)が一般的に採用されてきた。
【0006】
近年では、磁気ヘッドと磁気記録媒体の摩擦を低減する目的で保護膜の上にはパーフルオロポリエーテル液体潤滑剤を用いるのが一般的である。
【0007】
このカーボン保護膜を薄膜化する一般的方法としては、イオンビームデポジション(IBD)やケミカルベーパーデポジション(CVD)を用いてダイヤモンドライクカーボン(DLC)にすることが挙げられる。DLC膜は、一般的にスパッタリングによって成膜されたカーボン膜より硬度が大きく強度的に優れている。
【0008】
これらDLCは一般的に磁性膜の形成された基板に負の電圧を印加して主に炭化水素のプラスイオンを基板に引き寄せ堆積させることによって得られる。ところがこの場合、磁性膜上に堆積したDLC膜は内部応力が大きく、また、磁性膜との密着性が希薄であるため磁気ヘッドの衝突により破壊されてしまうという問題が付きまとう。
【0009】
このDLC膜の生産性や摺動耐力向上に対しては、さまざまな試みがなされている。例えば、特開平6−84168号公報では磁性膜上にC:N保護膜を付与し、さらにその上にDLC膜を重ねている。また、特開平11−175960号公報ではDLC膜形成の後半から終盤にかけて窒素を添加する試みがなされている。しかしながら、これらの手法で得られたDLC保護膜では膜厚3nm以下と言う極薄膜領域では十分な摺動耐力が得られない。
【0010】
さらに言及すると、DLCは一般的に薄膜中の炭素原子と水素原子の結合力が強く、また、そのネットワークはスパッタリングにより供されるカーボン保護膜と比較して連続性が高い。そのため膜中や膜表面の官能基が少なく保護膜上に付与するパーフルオロポリエーテル潤滑剤との結合力が弱いという問題がある。
【0011】
上記磁気記録媒体を用いた磁気記録装置の性能指標の一つとしてデータの転送速度が上げられる。この転送速度はデータのアクセス時間に大きく依存している。アクセス時間はシーク時間と回転待ち時間からなり、磁気記録媒体の回転速度を上げることで回転待ち時間を短くすることがデータ転送速度の向上につながる。
【0012】
ところが磁気記録媒体の回転速度を上げると磁気記録媒体のDLC保護膜上にある液体潤滑剤に遠心力が働き、上記のごとく結合力が弱いという問題点の結果、液体潤滑剤は磁気記録媒体の外周部に追いやられ、ついには磁気記録媒体から振り切られてしまう(以下回転飛散と呼ぶ)。この結果、磁気記録媒体上の潤滑剤が減少してしまい磁気記録媒体と磁気ヘッドの摩擦力の増加、クラッシュという結果に至ってしまう問題があった。
【0013】
これを防止するために、DLC保護膜に各種の表面処理を施し結合力を増加する試みがなされている。例えば、特開昭62−150526号公報、特開昭63−2117号公報では表面にプラズマ処理を施している。また、例えば、特開平4−6624号公報では表面に紫外線処理、水処理、オゾン処理などを施している。
【0014】
また、例えば、特開昭63−2117号公報、特開昭63−2117号公報、特開平9−305960号公報、特開平8−225791号公報、特開平7−210850号公報、特開平5−174354号公報等も上記と同様の類であり、これらはすべて保護膜形成後にその表面に何らかの処理を施すものである。
【0015】
ところが、これらの方法は表面全面を均一に処理することが難しく、作業が一工程増えるばかりか潤滑剤の付着力も不十分であるという問題があった。
【0016】
【発明が解決しようとする課題】
したがって、本発明は上記従来の問題点を解消するためになされたものであり、その第1の目的は、DLC保護膜層の内部応力を緩和し磁性層との密着力を強化すること、さらには保護膜層と液体潤滑剤の化学的結合力を増し高速回転下でも回転飛散による液体潤滑剤の減少を起こさないことで耐摺動性に優れた磁気記録媒体の製造方法を提供することにある。
【0017】
また、第2の目的は、第1の目的を達成できる磁気記録媒体の製造方法により供される磁気記録媒体を提供することにあり、第3の目的は、前記第1の目的を達成した磁気記録媒体を用いて高速回転と高い信頼性を両立するのに適した磁気記憶装置を提供することにある。
【0018】
【課題を解決するための手段】
上記課題を解決するために、本発明では、主として次のような構成を採用する。すなわち、本発明の磁気記録媒体は、非磁性基板上に少なくとも下地層を介して磁性膜と保護膜とを順次成膜して成る磁気記録媒体であって、前記保護膜を、炭素を主成分とするダイヤモンドライクカーボン(DLC)から成る硬度の高い層と低い層とを交互に周期的に、望ましくは0.3〜1.5nmの周期で積層した多層膜で構成したことを特徴とする。そしてさらに望ましくは、上記保護膜を、窒素含有量の多いDLC層と少ないDLC層とを交互に膜厚0.3〜1.5nmの周期で積層した多層膜で構成したことを特徴とする。
【0019】
このDLC保護膜を、硬度の高い層と低い層とを交互に積層して多層膜とすることで内部応力の増加が抑止され磁性膜に対して密着性の高い、また、緻密で耐食性の優れた、ひいては耐摺動性の高い膜にすることができる。
【0020】
また、窒素含有量の多いDLC層と少ないDLC層と交互に積層することで、さらに耐摺動性を増すことができ、窒素含有量の多いDLC層を最表面にすることで潤滑材との結合性に優れた保護膜とすることができる。
【0021】
本発明の磁気記録媒体の製造方法は、非磁性基板上に少なくとも下地層を介して磁性膜及び保護膜を順次形成する工程を有する磁気記録媒体の製造方法であって、前記保護膜の形成工程を、イオンビームデポジション法もしくはケミカルベーパーデポジション法で成膜する炭素を主成分とするダイヤモンドライクカーボン(DLC)保護膜の形成工程で構成すると共に、前記保護膜の形成工程においては前記基板へバイアス電圧を周期的に印加、不印加とすることを特徴とする。
【0022】
前記イオンビームデポジション法もしくはケミカルベーパーデポジション法で保護膜を成膜する際には炭化水素ガスを用いるが、この時、窒素又は亜酸化窒素カ゛スを添加することでDLC膜中に窒素原子を含有させることができる。また、Ne、Ar、Kr、Xeの内の少なくとも一つをキャリアガスとして用いても良い。
【0023】
本発明の磁気記憶装置は、前述の磁気記録媒体と、この磁気記録媒体を駆動する駆動部と、記録部と再生部とを有する磁気ヘッドと、この磁気ヘッドとの間で信号授受を行なう記録再生信号処理部とを備えたことを特徴とする。
【0024】
【発明の実施の形態】
まず、本発明の構成と機能並びに作用についての概略を以下に説明する。
本発明の磁気記録媒体は、例えば予めCr系等の下地膜が形成された基板上に磁性膜とこれを保護する炭素(カーボン)を主成分とする保護膜及び少なくとも一つの官能基を有するパーフルオロポリエーテルの潤滑膜とを順次設けた磁気記録媒体であって、前記保護膜を炭素を主成分とするダイヤモンドライクカーボン(DLC)で構成するが、この保護膜は硬度の高い(DLC)層と低い(DLC)層を交互に膜厚周期0.3〜1.5nmで積層した多層膜とする。
【0025】
また、このDLC積層膜では、窒素含有量の多い層と少ない層を交互に膜厚周期0.3〜1.5nmで積層した多層膜とする。
【0026】
上記手法により供される磁気記録媒体は、内部応力の増加が抑止され磁性膜との密着性の高い、また、緻密で耐食性の優れた、ひいては耐摺動性の高い媒体にすることができる。さらに、このDLC積層保護膜においては、窒素含有量の多い層を最表面にすることで潤滑剤との結合性に優れた媒体にすることができる。
【0027】
【実施例】
以下、図面にしたがって本発明の一実施例を詳細に説明する。
<実施例1>
図1(a)は本発明の磁気記録媒体の断面を模式的に示したものであり、1は非磁性基板、2はNiTaシード層、3はCr合金下地層、4はCo合金下部磁性層、5はRu反強磁性結合誘発層、6はCo合金上部磁性層、7はDLC積層保護膜、8は潤滑層をそれぞれ示している。また、図1(b)はDLC積層保護膜7の積層周期を模式的に示した拡大図である。
【0028】
図2は磁気記録媒体の磁性層上にDLC積層保護膜を形成する成膜装置の概要を模式的に示した説明図である。なお、非磁性基板上に磁性層を形成するまでの工程は、以下に示すような通常の製造方法に従って行ったので製造装置の図面は省略する。
【0029】
まず、用いるソーダライムガラス基板1(外径84mm、内径25mm、厚さ1.27mm)の洗浄を十分に行った。これを約1.3×10−5Pa以下(1.0×10−7Torr)まで排気された真空槽内に導入した。
【0030】
最初にシード層形成室に搬送しAr雰囲気約0.8Pa(6mTorr)の条件下でDCマグネトロンスパッタリング法によりNi−37.5at% Taシード層2を25nm形成した。次に真空槽内の加熱室に搬送し、IRヒータ(赤外線ヒータ)により基板温度を280℃に加熱した。
【0031】
続いて下地層形成室に搬送し、Ar雰囲気約0.8Pa(6mTorr)の条件下でDCマグネトロンスパッタリング法によりCr−15at%Ti−4at%B合金下地層3を10nm成膜した。
【0032】
続いて第一磁性層形成室に搬送し、Ar雰囲気約0.9Pa(7mTorr)の条件下でDCマグネトロンスパッタリング法により、Co−15at%Cr−5at%Pt合金層4を5nm形成した。
【0033】
続いて反強磁性結合誘発層形成室に搬送しAr雰囲気約0.8Pa(6mTorr)の条件下でDCマグネトロンスパッタリング法によりRu層5を0.5nm形成した。
【0034】
さらに磁気記録層形成室に搬送し、Ar雰囲気約0.9Pa(7mTorr)の条件下でDCマグネトロンスパッタリング法により、Co−20at%Cr−14at%Pt−5at%B合金からなる磁気記録層6を20nm形成した。この磁気記録層6まで形成した基板を用い、以下に述べる本発明に関わるカーボンを主成分とするDLC積層保護膜7を形成した。
【0035】
前記基板1としては、ソーダライムガラスの他に、化学強化したアルミノシリケート、Ni−Pを無電解めっきしたAl−Mg合金基板、シリコン、硼珪酸ガラス等からなるセラミックス、または、ガラスグレージングを施したセラミックス等からなる非磁性の剛体基板等を用いることができる。
【0036】
シード層2は、ソーダライムガラスからのアルカリ金属の電気化学的溶出を防ぐために設けてあるもので、厚さは任意である。また、特に用いる必要がなければ省略することもできる。
【0037】
下地層3は、その上に形成する磁性層の結晶配向性を制御する下地膜として用いられる。下地層としては、磁性膜と結晶整合性の良い(100)配向させることも可能な不規則固溶体を形成する非磁性のCr−V、Cr−Ti、Cr−Mo、Cr−Si、Cr−Mo−Ti合金等のCr基合金の薄膜を用いることもできる。スパッタで用いる放電用のガスに0.5体積%から50体積%の窒素を同時に添加して下地層を形成すると下地層の結晶粒が微細化した。その結果、連続して形成する磁性層の結晶粒も微細化し、媒体ノイズを低減できた。
【0038】
磁性層4及び6としては、上述した合金だけでなく、Coを主成分とし、保磁力を高めるためにPtを含有し、さらに媒体ノイズを低減するためCr、Ta、SiO2、Nb等を添加した多元の合金系を用いることができる。特にTa、Nb、V、Tiを添加するとターゲットの融点が下がり、Crを含有した磁性膜の組成分離が進行し易くなり好ましかった。
【0039】
Pt、NiあるいはMnを添加したCo基合金系では、磁気異方性エネルギの低下が他の添加元素に比べて少なく実用的である。具体的には、Co−Cr−Pt−Bの他に、Co−Cr−Pt−Ta、Co−Cr−Pt−SiO、Co−Cr−Pt−Mn、Co−Cr−Nb−Pt、Co−Cr−V−Pt、Co−Cr−Ti−Pt、Co−Cr−Nb−Ta−Pt、Co−Pt−Ni−SiO等の合金を用いることができる。
【0040】
強磁性の部分を占めるCo合金層の組成に関し、Crの固溶限は5〜10at%、Taの固溶限は約2at%であると考えられ、これらの固溶限を超えてCo合金磁性層を形成することにより、磁性層における磁気的な分離が進行し、媒体ノイズが低減する。
【0041】
また、反強磁性結合誘発層に用いたRu層5は、その膜厚が0.2〜0.6nmの範囲で第一磁性層4と磁気記録層6を反強磁性結合できることが確認できた。
【0042】
磁性層6まで積層した基板1を真空槽内から出すことなく、図2に示す保護膜形成室21に搬送した。この保護膜形成室21は、熱フィラメント22とアノード23からなるイオンガンからなる。そして、これらは基板1の両サイドに左右対称に設けてあり、両面同時にあるいは時間差をおいて交互に成膜できる構成となっている。この保護膜形成室21をターボモレキュラポンプ24で排気しながら、アノード後方のガス導入口25からArガスを5sccm(Standard Cubic centimeter per minutes)とエチレン(C)ガスを50sccmマスフローコントローラを介して導入した。この時の圧力はバラトロンゲージで約0.5Pa(3.5mTorr)であった。
【0043】
次いで、基板の両サイドに位置したイオンガンの熱フィラメント22に30A、アノード23に直流+90Vを印加しプラズマを誘引した。更に電位がグランドG及びアノード電位から絶縁されたアルミニウム合金からなる不図示の電極を基板端面に接触させ基板へバイアス電圧を印加できる構造とした。
【0044】
基板1へのバイアス印加は、最初の0.3secは0V、続く0.3secは−110Vとし、この0.6secを1サイクルとして5回繰り返した。この時のアノード電流はバイアス電圧0Vの時0.55A、バイアス電圧−110Vの時0.65A、基板のバイアス電流はバイアス電圧0Vの時25mA、バイアス電圧−110Vの時55mAであった。また、フィラメント22から発せられるエミッション電流は計算上0.5Aであった。
【0045】
このイオンビームデポジション法(IBD)により、Co−Cr−Pt−B 合金磁性層6の上に炭素を主成分とし水素を含有するDLC保護膜7を2.7nm形成した。このときの膜の堆積速度はバイアス電圧0Vの時0.8nm/s、バイアス電圧−110Vの時1.0nm/sであった。すなわち、DLC積層の膜厚周期は0.54nm、交互に10層(7a、7bで表示)である。
【0046】
上述した手法により磁気ディスクを複数枚作製し、DLC積層保護膜7の上に周知の方法でフルオロカーボン系の潤滑剤層8を設けた。この厚みはフーリエトランスファー赤外分光分析装置(FT−IR)で定量したところ1.8nmであった。このようにして作成された磁気ディスクを磁気ディスク装置に組み込み磁気ヘッドの浮上チェックに関する信頼性試験を行った。
【0047】
信頼性試験には、潤滑剤層8まで設けた磁気ディスクを、磁気ヘッドのロード/アンロード機構を備えた周知の評価装置に装着し試験を行う手法を用いた。10枚の磁気ディスクを回転数15000r.p.mでシークを伴うロード/アンロード試験を50,000回行った。この試験は、円板外周部(R40mmより外側)から磁気ヘッドをランプロードし、浮上量10nmで内周部(R19mm)までシークした後、再び外周部より磁気ヘッドをアンロードするものである。
【0048】
この試験の結果、用いた10枚の磁気ディスクは全てクラッシュすることなく終了することができた。
【0049】
さらに、試験後の磁気ディスクの潤滑層厚みをFT−IRで測定したところ1.5nm と17%減少していることが確認できた。この原因としては、15000r.p.mと言う高速回転のため遠心力により潤滑剤が円板外周部に追いやられ、ついには円板上からその一部が振り切られてしまったためと思われる。
【0050】
これらのサンプルを試験後、顕微鏡観察したところ10枚中2枚にスクラッチ痕が確認された。この結果、本発明による磁気記録媒体は潤滑剤との結合力に若干の機能不足があるものの保護膜の厚さが2.7nmと極めて薄い状態であっても耐摺動信頼性が十分であることが証明された。以上の評価結果は、サンプルNo.1として表1に示した。
【0051】
〈比較例1〉
DLC積層保護膜7を設ける際に、バイアス電圧を常時0Vとしたことを除いては上記サンプルNo.1と同一の方法で作製し、サンプルNo.2とした。この場合の保護膜7の膜厚は2.7nm、このときの膜の堆積速度は0.8nm/sであった。このサンプルNo.2についても上記サンプルNo.1と同様に信頼性試験を行い、その結果を表1に示した。
【0052】
用いた10枚の試験磁気ディスク中3枚が摺動し50,000回の試験を終了できなかった。また、残りの7枚は50,000回の試験は終了できたものの、その後の顕微鏡観察で7枚全ての表面にスクラッチ痕が確認された。
【0053】
さらに、試験後の磁気ディスクの潤滑層厚みをFT−IRで測定したところ1.2nm と33%減少していることが確認できた。この結果、No.2のサンプルは摺動信頼性が十分ではなく、潤滑剤との結合力も不足していることが確認できた。
【0054】
〈比較例2〉
DLC積層保護膜7を設ける際にバイアス電圧を常時‐110Vとしたことを除いては上記サンプルNo.1と同一の方法でサンプルNo.3を作製した。保護膜7の膜厚は2.7nm、このときの膜の堆積速度は1.0nm/sであった。
このサンプルNo.3についても上記サンプルNo.1と同様に信頼性試験を行い、その結果を表1に示した。
【0055】
用いた10枚の試験磁気ディスク中5枚が摺動し50,000回の試験を終了できなかった。また、残りの5枚は50,000回の試験は終了できたものの、その後の顕微鏡観察で5枚全ての表面にスクラッチ痕が確認された。
【0056】
さらに試験後の磁気ディスクの潤滑層厚みをFT−IRで測定したところ0.9nm と半分に減少していることが確認できた。この結果、No.3のサンプルは摺動信頼性が十分ではなく、潤滑剤との結合力も不足していることが確認できた。
【0057】
〈比較例3〉
DLC層積層保護膜7を設ける際にバイアス印加、不印加の時間を変化させ、積層周期を0.2nmから2.7nmまで変化させたサンプルNo.4、5、6、7、8を作製し、これらのサンプルについても上記サンプルNo.1と同様の手法で評価した。積層周期及び評価結果は表1に示す。
【0058】
この結果、サンプルNo.4の積層周期0.2nm、及びサンプルNo.8の2.7nmでは十分な耐摺動信頼性が得られずサンプルNo.5の0.3nm〜サンプルNo.7の1.35nmにおいては、サンプルNo.2及び3に比べて耐摺動信頼性が向上していることが確認できた。
【0059】
〈実施例2〉
実施例1と同様の手法で磁気記録層6まで設けたサンプルを用いて本発明にかかわる以下に述べるサンプルを作製評価した。
【0060】
磁気記録層6まで設けたサンプルを真空槽内から出すことなく、図2に示す保護膜形成室21に搬送した。この保護膜形成室21は、熱フィラメント22とアノード23からなるイオンガンからなる。
【0061】
この保護膜形成室21をターボモレキュラポンプ24で排気しながら、アノード23の後方のガス導入口25から亜酸化窒素ガス(NO)を20sccm(Standard Cubic centimeter per minutes)とエチレン(C)ガスを50sccmマスフローコントローラを介して導入した。この時の圧力はバラトロンゲージで約0.65Pa(5mTorr)であった。
【0062】
次いで、基板1の両サイドに位置したイオンガンの熱フィラメント22に30A、アノード23に直流+90Vを印加しプラズマを誘引した。更に電位がグランドG及びアノード電位から絶縁されたアルミニウム合金からなる不図示の電極を基板端面に接触させ基板へバイアス電圧を印加できる構造とした。
【0063】
基板1へのバイアス印加は、最初の0.3secは0V、続く0.3secは−110Vとし、この0.6secを1サイクルとして6回繰り返し、さらに0.3sec0Vを付け加えた。
【0064】
この時のアノード電流は、バイアス電圧0Vの時0.50A、バイアス電圧−110Vの時0.60A、基板のバイアス電流は、バイアス電圧0Vの時22mA、バイアス電圧−110Vの時51mAであった。
【0065】
また、フィラメント22から発せられるエミッション電流は計算上0.5Aであった。このイオンビームデポジション法(IBD)により、Co−Cr−Pt−B 合金磁性層6の上に炭素を主成分とし窒素と水素とを含有するDLC積層保護膜7を2.7nm形成した。このときの膜の堆積速度は、バイアス電圧0Vの時0.6nm/s、バイアス電圧−110Vの時0.8nm/sであった。すなわち、積層周期は0.42nm、交互に13層積層した。
【0066】
上述した手法により磁気ディスクを複数枚作製し、DLC積層保護膜7上にフルオロカーボン系の潤滑剤層8を設けた。潤滑層8の厚みはフーリエトランスファー赤外分光分析装置(FT−IR)で定量したところ1.8nmであった。その後、これらの磁気ディスクを磁気ディスク装置に組み込み、実施例1と同様の方法で磁気ヘッドの浮上チェックについて信頼性試験を行った。
【0067】
信頼性試験には潤滑層8まで設けた磁気ディスクを磁気ヘッドのロード/アンロード機構を備えた周知の評価装置に装着し試験を行う手法を用いた。10枚の磁気ディスクを回転数15000r.p.mでシークを伴うロードアンロード試験を50,000回行った。
【0068】
この試験は、円板外周部(R40mmより外側)から磁気ヘッドをランプロードし、浮上量10nmで内周部(R19mm)までシークした後、再び外周部よりヘッドをアンロードするものである。
【0069】
この試験の結果を表1にサンプルNo.9として示した。用いた10枚は全てクラッシュすることなく終了することができた。さらに試験後の磁気ディスクの潤滑層8の厚みをFT−IRで測定したところ1.7nm とほとんど減少していないことが確認できた。これらのサンプルを試験後、顕微鏡観察したところ10枚全てのサンプルにおいてスクラッチ紺は確認できなかった。
【0070】
この結果、本発明による磁気記録媒体は潤滑剤との結合力が十分であり保護膜の厚さが2.7nmと極めて薄い状態であっても耐摺動信頼性が十分であることが証明された。
【0071】
〈比較例4〉
DLC積層保護膜7を設ける際に、バイアス電圧を常時0Vとしたことを除いては実施例2のサンプルNo.9と同一の方法でサンプルNo.10の磁気ディスクを作製した。保護膜7の膜厚は2.7nm、このときの膜の堆積速度は0.6nm/sであった。このサンプルを実施例1のサンプルNo.1と同様の方法で信頼性試験を行った。その結果を表1に示した。
【0072】
試験に用いた10枚の磁気ディスク中の3枚が摺動し50,000回の試験を終了できなかった。また、残りの7枚は50,000回の試験は終了できたものの、その後の顕微鏡観察で7枚中5枚の表面にスクラッチ痕が確認された。
【0073】
さらに試験後のディスクの潤滑層8の厚みをFT−IRで測定したところ1.7nm とほとんど減少していないことが確認できた。この結果、No.10のサンプルは潤滑剤との結合力は十分なものの耐摺動信頼性においては性能が不足していることが確認できた。
【0074】
〈比較例5〉
DLC積層保護膜7を設ける際に、バイアス電圧を常時‐110Vとしたことを除いては実施例2のサンプルNo.9と同一の方法でサンプルNo.11の磁気ディスクを作製した。保護膜7の膜厚は2.7nm、このときの膜の堆積速度は0.8nm/sであった。
【0075】
このサンプルを実施例1のサンプルNo.1と同様の方法で信頼性試験を行った。その結果を表1に示した。試験に用いた10枚の磁気ディスク中の4枚が摺動し50,000回の試験を終了できなかった。また、残りの6枚は50,000回の試験は終了できたものの、その後の顕微鏡観察で6枚中3枚の表面にスクラッチ痕が確認された。
【0076】
さらに試験後の磁気ディスクの潤滑層8の厚みをFT−IRで測定したところ1.6nmに減少していることが確認できた。この結果、No.11のサンプルは摺動信頼性が十分ではなく、潤滑剤との結合力も若干不足していることが確認できた。
【0077】
〈比較例6〉
DLC積層保護膜7を設ける際に、バイアス印加、不印加の時間を変化させ、積層周期を0.2nmから2.7nmまで変化させたサンプルNo.12、13、14、15、16を作製し、実施例1と同様の手法で評価した。積層周期及び評価結果を表1に示す。
【0078】
この結果、サンプルNo.12の積層周期0.2nm及びサンプルNo.16の2.7nmでは十分な耐摺動信頼性が得られず、サンプルNo.13の0.3〜サンプルNo.15の1.35nmにおいては、サンプルNo.10及び11に比べて耐摺動信頼性が向上していることが確認できた。
【0079】
さらに、本発明により供される磁気記録媒体のDLC積層保護膜8の物理的、化学的性質の解明を試みた。具体的には膜中水素量及び窒素量の定量、薄膜硬度の測定を行った。以下にその手法と結果を説明する。
【0080】
DLC積層保護膜8中の水素量の定量にはHFS(Hydrogen Forward scattering)を用いた。測定装置は、神戸製鋼所製の高分解能RBS分析装置HRBS500(商品名)を用い、ビームエネルギー480KeV、イオン種N2+、散乱角30度、ビーム入射角は試料法線に対し70度、試料電流約1.5nA、ビーム照射量約310nC、測定エネルギ範囲60〜95KeVとした。
【0081】
上記測定条件により窒素イオンにより反跳された水素イオンを磁場型検出器により検出した。また、水素の含まれていない既知のサンプルをバックグランドとして用いた。各サンプルの膜中水素量は表1に示す。
【0082】
実施例1のサンプルNo.1は、No.2とNo.3の水素濃度の中間的値を示しており、確かにNo.2とNo.3の積層が実現できていることが分かった。No.4は、No.2に近い値を示した。No.5及び6は、No.1とほぼ同等、No.7、8はNo.1より少なかった。
【0083】
亜酸化窒素を添加したシリーズNo.9からNo.16も同様の傾向を示す結果となった。窒素量の定量にはXPS(X−ray photoelectron spectroscopy)を用いた。測定装置はPHI社製のCuantumn2000(商品名)を用い、励起源にAlKα1を用い、とりだし角度24°でN1s、C1sスペクトルから定量した。
【0084】
サンプルNo.9〜16までの積層保護膜7中の窒素量の値を表1に示す。サンプルNo.9は、No.10と11の中間の値を示す。No.9の作製方法からして窒素の多い層と少ない層が交互に積層されていると考えられ、最表面はNo.10と同等程度のN量だということは容易に類推できる。No.13、14、15も同様である。No.12、16はそれぞれNo.10、11に近い値を示した。
【0085】
硬度測定にはナノインスツルメンツ社製の薄膜微小硬度測定装置(ナノインデンター)を用いた。曲率半径0.1μmのバーコビッチ型ダイヤモンド圧子を用い、押し込み深さ一定モードで測定を行い、押し込み深さ4nmでの値を用いた。
【0086】
結果を表1に示す。サンプルNo.1、5、6、7はサンプルNo.2と3の中間的な値を示した。サンプルNo.9、13、14、15も同様にサンプルNo.10と11の中間の値を示した。
【0087】
上記のDLC積層保護膜7の物理的,化学的性質の解明結果及び信頼性試験の結果と潤滑残存量を総合的に解釈すると、サンプルNo.3、11のごとく膜中に水素量を含有し硬度の大きな膜は、密着性に問題があるため磁気ヘッドの衝突により衝撃が加わると破壊されてしまい3nm以下の薄さが要求される磁気記録媒体の保護膜としては適していない。サンプルNo.2、10では硬度が不充分でやはり3nm以下の薄さが要求される磁気記録媒体の保護膜としては適していない。
【0088】
ところがこれら2種類の層を本発明にかかわる手法で積層した場合に特に優れた信頼性を示し、3nm以下の薄さが要求される磁気記録媒体の保護膜として有用であることが理解できる。さらには、保護膜中に窒素を添加することで信頼性及び潤滑剤との結合力が向上するが、本発明の手法により最表面の窒素量を多くすることで、潤滑剤との結合力をさらに強化し、円板回転による潤滑剤の飛散を抑止でき3nm以下の磁気記録媒体の保護膜としてさらに高性能な保護膜が得られることが判明した。
【0089】
【表1】

Figure 2004022025
【発明の効果】
以上詳述したように、本発明により内部応力の増加が抑止され磁性層との密着性の高い、また緻密で耐食性の優れた、ひいては耐摺動性の高い保護膜を有する優れた磁気記録媒体を実現すると云う所期の目的を達成することができた。さらに、窒素含有量の多い層を最表面にすることで潤滑剤との結合性に優れた媒体にすることができる。
【図面の簡単な説明】
【図1】本発明の実施実施例に係る磁気記録媒体の断面模式図である。
【図2】保護膜形成室の概略図である。
【符号の説明】
1…非磁性基板、
2…NiTaシード層、
3…Cr合金下地層、
4…Co合金下部磁性層、
5…Ru反強磁性結合誘発層、
6…Co合金上部磁性層、
7…保護膜層、
8…潤滑層、
21…保護膜形成室、
22…熱フィラメント、
23…アノード、
24…ターボポンプ、
25…ガス導入口。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium, a method of manufacturing the same, and a magnetic disk drive using the same, and in particular, a magnetic recording medium having excellent reliability and capable of high-density magnetic recording, a method of manufacturing the same, and a computer. The present invention relates to a magnetic disk device used for an auxiliary storage device.
[0002]
[Prior art]
The importance of magnetic disk devices used for storage devices such as large computers, workstations, personal computers, etc. has been increasing year by year and has been reduced to large capacity and small size.
[0003]
High-density recording is indispensable for large-capacity and small-size magnetic disk drives. To achieve this, the distance between the magnetic head flying above the magnetic disk and the magnetic recording layer of the magnetic recording medium must be reduced. To do that.
[0004]
2. Description of the Related Art Conventionally, a magnetic recording medium manufactured by using a film forming technique by sputtering is provided with a protective film for the purpose of protecting a magnetic film from sliding by a magnetic head. Making the protective film thinner and reducing the distance between the surface of the protective film and the magnetic head are the most effective means for further reducing the distance between the magnetic recording layer and the magnetic head. is there.
[0005]
As the protective film, a carbon film produced by DC sputtering, RF sputtering (for example, JP-A-5-174369), and CVD (for example, JP-A-4-90125) is most commonly used. In order to obtain a protective film having excellent strength, a method of mixing nitrogen atoms, hydrogen atoms, and the like into the film (for example, Japanese Patent Application Laid-Open No. 62-246129) has been generally adopted.
[0006]
In recent years, a perfluoropolyether liquid lubricant is generally used on a protective film for the purpose of reducing friction between a magnetic head and a magnetic recording medium.
[0007]
As a general method for thinning the carbon protective film, diamond-like carbon (DLC) can be used by using ion beam deposition (IBD) or chemical vapor deposition (CVD). The DLC film generally has higher hardness and superior strength than a carbon film formed by sputtering.
[0008]
These DLCs are generally obtained by applying a negative voltage to a substrate on which a magnetic film is formed to attract and deposit mainly hydrocarbon positive ions on the substrate. However, in this case, there is a problem that the DLC film deposited on the magnetic film has a large internal stress and has a low adhesion to the magnetic film, so that the DLC film is destroyed by the collision of the magnetic head.
[0009]
Various attempts have been made to improve the productivity and sliding resistance of the DLC film. For example, in JP-A-6-84168, a C: N protective film is provided on a magnetic film, and a DLC film is further laminated thereon. In Japanese Patent Application Laid-Open No. 11-175960, an attempt is made to add nitrogen from the latter half of the formation of the DLC film to the final stage. However, in the DLC protective film obtained by these methods, a sufficient sliding strength cannot be obtained in an extremely thin film region having a film thickness of 3 nm or less.
[0010]
More specifically, DLC generally has a strong bond between carbon atoms and hydrogen atoms in a thin film, and its network has higher continuity than a carbon protective film provided by sputtering. Therefore, there is a problem that the number of functional groups in the film or on the film surface is small, and the bonding force with a perfluoropolyether lubricant provided on the protective film is weak.
[0011]
One of the performance indexes of the magnetic recording device using the magnetic recording medium is a data transfer speed. This transfer speed largely depends on the data access time. The access time includes a seek time and a rotation waiting time, and shortening the rotation waiting time by increasing the rotation speed of the magnetic recording medium leads to an improvement in the data transfer speed.
[0012]
However, when the rotational speed of the magnetic recording medium is increased, a centrifugal force acts on the liquid lubricant on the DLC protective film of the magnetic recording medium, and as a result of the problem that the bonding force is weak as described above, the liquid lubricant is It is repelled by the outer peripheral portion and eventually shakes off from the magnetic recording medium (hereinafter referred to as “rotational scattering”). As a result, the amount of the lubricant on the magnetic recording medium is reduced, resulting in a problem that the frictional force between the magnetic recording medium and the magnetic head is increased and a crash occurs.
[0013]
In order to prevent this, attempts have been made to increase the bonding force by performing various surface treatments on the DLC protective film. For example, in JP-A-62-150526 and JP-A-63-2117, the surface is subjected to plasma treatment. In addition, for example, in Japanese Patent Application Laid-Open No. Hei 4-6624, the surface is subjected to ultraviolet treatment, water treatment, ozone treatment and the like.
[0014]
Further, for example, JP-A-63-2117, JP-A-63-2117, JP-A-9-305960, JP-A-8-225791, JP-A-7-210850, JP-A-5-210850 174,354 and the like are similar to the above, and all of them apply some treatment to the surface after forming the protective film.
[0015]
However, these methods have a problem that it is difficult to uniformly treat the entire surface, which increases the number of operations by one step and also has an insufficient adhesive force of the lubricant.
[0016]
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and a first object of the present invention is to relieve the internal stress of the DLC protective film layer and enhance the adhesion to the magnetic layer. Aims to provide a method of manufacturing a magnetic recording medium having excellent sliding resistance by increasing the chemical bonding force between the protective film layer and the liquid lubricant and preventing the liquid lubricant from being reduced due to rotation scattering even under high-speed rotation. is there.
[0017]
A second object is to provide a magnetic recording medium provided by a method for manufacturing a magnetic recording medium that can achieve the first object, and a third object is to provide a magnetic recording medium that achieves the first object. An object of the present invention is to provide a magnetic storage device suitable for achieving both high-speed rotation and high reliability by using a recording medium.
[0018]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly employs the following configuration. That is, the magnetic recording medium of the present invention is a magnetic recording medium in which a magnetic film and a protective film are sequentially formed on a non-magnetic substrate with at least an underlayer interposed therebetween, wherein the protective film is mainly composed of carbon. A high-hardness layer and a low-hardness layer made of diamond-like carbon (DLC) are alternately and periodically stacked, preferably with a cycle of 0.3 to 1.5 nm. More preferably, the protective film is formed of a multilayer film in which DLC layers having a high nitrogen content and DLC layers having a low nitrogen content are alternately stacked with a period of 0.3 to 1.5 nm in film thickness.
[0019]
The DLC protective film is formed by alternately laminating a layer having a high hardness and a layer having a low hardness to form a multilayer film, whereby an increase in internal stress is suppressed, and the DLC protective film has high adhesion to the magnetic film, and is dense and has excellent corrosion resistance. In addition, a film having high sliding resistance can be obtained.
[0020]
In addition, by alternately stacking the DLC layer having a high nitrogen content and the DLC layer having a low nitrogen content, the sliding resistance can be further increased. A protective film having excellent bonding properties can be obtained.
[0021]
The method for manufacturing a magnetic recording medium according to the present invention is a method for manufacturing a magnetic recording medium, comprising a step of sequentially forming a magnetic film and a protective film on a non-magnetic substrate with at least an underlayer interposed therebetween. Is formed in a step of forming a diamond-like carbon (DLC) protective film containing carbon as a main component and formed by an ion beam deposition method or a chemical vapor deposition method, and the substrate is formed in the protective film forming step. It is characterized in that a bias voltage is periodically applied and not applied.
[0022]
When a protective film is formed by the ion beam deposition method or the chemical vapor deposition method, a hydrocarbon gas is used. At this time, nitrogen atoms are added to the DLC film by adding nitrogen or nitrous oxide gas. It can be contained. Further, at least one of Ne, Ar, Kr, and Xe may be used as a carrier gas.
[0023]
A magnetic storage device according to the present invention includes a magnetic head having the above-described magnetic recording medium, a driving unit that drives the magnetic recording medium, a recording unit and a reproducing unit, and a recording / receiving unit that exchanges signals with the magnetic head. A reproduction signal processing unit.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
First, an outline of the configuration, function, and operation of the present invention will be described below.
The magnetic recording medium according to the present invention is, for example, a magnetic film, a protective film mainly composed of carbon (carbon) for protecting the magnetic film, and a protective film having at least one functional group on a substrate on which a base film of Cr or the like is formed in advance. A magnetic recording medium provided with a fluoropolyether lubricating film in sequence, wherein the protective film is composed of diamond-like carbon (DLC) containing carbon as a main component, and the protective film has a high hardness (DLC) layer. And a low (DLC) layer are alternately stacked at a film thickness cycle of 0.3 to 1.5 nm.
[0025]
Further, this DLC laminated film is a multilayer film in which layers having a high nitrogen content and layers having a low nitrogen content are alternately laminated with a film thickness cycle of 0.3 to 1.5 nm.
[0026]
The magnetic recording medium provided by the above method can suppress the increase in internal stress and have high adhesion to the magnetic film, and can be a medium that is dense, has excellent corrosion resistance, and has high sliding resistance. Further, in this DLC laminated protective film, by setting the layer having a high nitrogen content as the outermost surface, it is possible to obtain a medium excellent in bonding with a lubricant.
[0027]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
<Example 1>
FIG. 1 (a) schematically shows a cross section of a magnetic recording medium of the present invention, wherein 1 is a non-magnetic substrate, 2 is a NiTa seed layer, 3 is a Cr alloy underlayer, and 4 is a Co alloy lower magnetic layer. Numeral 5 denotes a Ru antiferromagnetic coupling inducing layer, 6 denotes a Co alloy upper magnetic layer, 7 denotes a DLC laminated protective film, and 8 denotes a lubricating layer. FIG. 1B is an enlarged view schematically showing the lamination cycle of the DLC laminated protective film 7.
[0028]
FIG. 2 is an explanatory diagram schematically showing an outline of a film forming apparatus for forming a DLC laminated protective film on a magnetic layer of a magnetic recording medium. The steps up to the formation of the magnetic layer on the non-magnetic substrate were performed in accordance with a normal manufacturing method as described below, and the drawings of the manufacturing apparatus are omitted.
[0029]
First, the soda lime glass substrate 1 (outer diameter 84 mm, inner diameter 25 mm, thickness 1.27 mm) was sufficiently washed. This is about 1.3 × 10 -5 Pa or less (1.0 × 10 -7 (Torr).
[0030]
First, the wafer was transported to a seed layer forming chamber, and a Ni-37.5 at% Ta seed layer 2 was formed to a thickness of 25 nm by DC magnetron sputtering under the condition of about 0.8 Pa (6 mTorr) in an Ar atmosphere. Next, the substrate was transported to a heating chamber in a vacuum chamber, and the substrate was heated to 280 ° C. by an IR heater (infrared heater).
[0031]
Subsequently, the substrate was transported to a base layer forming chamber, and a Cr-15 at% Ti-4 at% B alloy base layer 3 was formed to a thickness of 10 nm by a DC magnetron sputtering method under an Ar atmosphere of about 0.8 Pa (6 mTorr).
[0032]
Subsequently, the substrate was transported to the first magnetic layer forming chamber, and a Co-15 at% Cr-5 at% Pt alloy layer 4 was formed to a thickness of 5 nm by a DC magnetron sputtering method under an Ar atmosphere of about 0.9 Pa (7 mTorr).
[0033]
Subsequently, the substrate was transported to an antiferromagnetic coupling induction layer formation chamber, and a Ru layer 5 was formed to a thickness of 0.5 nm by a DC magnetron sputtering method under an Ar atmosphere of about 0.8 Pa (6 mTorr).
[0034]
Further, the magnetic recording layer 6 made of a Co-20 at% Cr-14 at% Pt-5 at% B alloy is transferred by a DC magnetron sputtering method under a condition of about 0.9 Pa (7 mTorr) in an Ar atmosphere to form a magnetic recording layer 6. 20 nm was formed. Using the substrate formed up to the magnetic recording layer 6, a DLC laminated protective film 7 containing carbon as a main component according to the present invention described below was formed.
[0035]
As the substrate 1, besides soda-lime glass, chemically strengthened aluminosilicate, Ni-P electroless plated Al-Mg alloy substrate, silicon, ceramics made of borosilicate glass or the like, or glass glazing was applied. A non-magnetic rigid substrate made of ceramics or the like can be used.
[0036]
The seed layer 2 is provided to prevent electrochemical elution of the alkali metal from the soda lime glass, and may have any thickness. In addition, if it is not necessary to use it, it can be omitted.
[0037]
The underlayer 3 is used as an underlayer for controlling the crystal orientation of the magnetic layer formed thereon. As the underlayer, nonmagnetic Cr-V, Cr-Ti, Cr-Mo, Cr-Si, Cr-Mo that form an irregular solid solution that can be oriented (100) with good crystal matching with the magnetic film. -A thin film of a Cr-based alloy such as a Ti alloy can also be used. When 0.5% to 50% by volume of nitrogen was simultaneously added to a discharge gas used for sputtering to form an underlayer, crystal grains of the underlayer were refined. As a result, the crystal grains of the magnetic layer formed continuously were also refined, and the medium noise could be reduced.
[0038]
The magnetic layers 4 and 6 include not only the alloys described above but also Co as a main component, Pt for increasing coercive force, and Cr, Ta, SiO2, Nb, etc. for reducing medium noise. Multiple alloy systems can be used. In particular, the addition of Ta, Nb, V, and Ti is preferable because the melting point of the target decreases and the composition separation of the Cr-containing magnetic film easily proceeds.
[0039]
In a Co-based alloy to which Pt, Ni or Mn is added, the decrease in magnetic anisotropy energy is small compared to other added elements, and is practical. Specifically, in addition to Co-Cr-Pt-B, Co-Cr-Pt-Ta, Co-Cr-Pt-SiO 2 , Co-Cr-Pt-Mn, Co-Cr-Nb-Pt, Co-Cr-V-Pt, Co-Cr-Ti-Pt, Co-Cr-Nb-Ta-Pt, Co-Pt-Ni-SiO 2 Etc. can be used.
[0040]
Regarding the composition of the Co alloy layer occupying the ferromagnetic portion, it is considered that the solid solubility limit of Cr is 5 to 10 at% and the solid solubility limit of Ta is about 2 at%. By forming the layer, magnetic separation in the magnetic layer progresses, and the medium noise is reduced.
[0041]
In addition, it was confirmed that the Ru layer 5 used as the antiferromagnetic coupling inducing layer can antiferromagnetically couple the first magnetic layer 4 and the magnetic recording layer 6 when the film thickness is in the range of 0.2 to 0.6 nm. .
[0042]
The substrate 1 stacked up to the magnetic layer 6 was transported to the protective film forming chamber 21 shown in FIG. 2 without being taken out of the vacuum chamber. The protective film forming chamber 21 is formed of an ion gun including a hot filament 22 and an anode 23. These are provided symmetrically on both sides of the substrate 1 so that both sides can be formed simultaneously or alternately with a time difference. While evacuating the protective film forming chamber 21 with a turbo molecular pump 24, Ar gas is supplied at 5 sccm (Standard Cubic centimeter per minute) and ethylene (C) through a gas inlet 25 behind the anode. 2 H 4 ) Gas was introduced via a 50 sccm mass flow controller. The pressure at this time was about 0.5 Pa (3.5 mTorr) with a Baratron gauge.
[0043]
Next, 30 A was applied to the hot filament 22 of the ion gun located on both sides of the substrate and +90 V DC was applied to the anode 23 to induce plasma. Further, an electrode (not shown) made of an aluminum alloy having a potential insulated from the ground G and the anode potential is brought into contact with an end face of the substrate to apply a bias voltage to the substrate.
[0044]
The bias was applied to the substrate 1 at 0 V for the first 0.3 sec, and at -110 V for the next 0.3 sec. The cycle was repeated 5 times with 0.6 sec as one cycle. At this time, the anode current was 0.55 A at a bias voltage of 0 V, 0.65 A at a bias voltage of −110 V, and the bias current of the substrate was 25 mA at a bias voltage of 0 V and 55 mA at a bias voltage of −110 V. The emission current generated from the filament 22 was calculated to be 0.5 A.
[0045]
By this ion beam deposition method (IBD), a 2.7 nm thick DLC protective film 7 containing carbon as a main component and containing hydrogen was formed on the Co—Cr—Pt—B alloy magnetic layer 6. At this time, the deposition rate of the film was 0.8 nm / s when the bias voltage was 0 V, and 1.0 nm / s when the bias voltage was −110 V. That is, the film thickness cycle of the DLC stack is 0.54 nm, and 10 layers (indicated by 7a and 7b) are alternately formed.
[0046]
A plurality of magnetic disks were manufactured by the above-described method, and a fluorocarbon-based lubricant layer 8 was provided on the DLC laminated protective film 7 by a known method. The thickness was determined by a Fourier transfer infrared spectrometer (FT-IR) to be 1.8 nm. The magnetic disk prepared as described above was incorporated into a magnetic disk device, and a reliability test on a flying check of the magnetic head was performed.
[0047]
For the reliability test, a method was used in which the magnetic disk provided with the lubricant layer 8 was mounted on a well-known evaluation device having a magnetic head load / unload mechanism, and the test was performed. Ten magnetic disks were rotated at 15,000 rpm. p. 50,000 load / unload tests with seek at m. In this test, the magnetic head is ramp-loaded from the outer periphery of the disk (outside of R40 mm), seeks to the inner periphery (R19 mm) at a flying height of 10 nm, and then unloads the magnetic head from the outer periphery again.
[0048]
As a result of this test, all of the ten magnetic disks used could be completed without crash.
[0049]
Further, when the lubricating layer thickness of the magnetic disk after the test was measured by FT-IR, it was confirmed that the thickness was 1.5 nm, a decrease of 17%. This is because 15000 r. p. It is considered that the lubricant was driven to the outer periphery of the disk by the centrifugal force due to the high-speed rotation of m, and a part of the lubricant was finally shaken off from the disk.
[0050]
After microscopic observation of these samples, scratch marks were confirmed on 2 out of 10 samples. As a result, although the magnetic recording medium according to the present invention has a slight lack of function in the bonding force with the lubricant, the anti-sliding reliability is sufficient even when the protective film is as thin as 2.7 nm. It was proved. The above evaluation results are shown in Sample No. 1 is shown in Table 1.
[0051]
<Comparative Example 1>
Except that the bias voltage was always 0 V when the DLC laminated protective film 7 was provided, the above sample Nos. Sample No. 1 was prepared in the same manner as Sample No. 1. And 2. In this case, the thickness of the protective film 7 was 2.7 nm, and the deposition rate of the film at this time was 0.8 nm / s. This sample No. The sample No. 2 described above also A reliability test was performed in the same manner as in No. 1 and the results are shown in Table 1.
[0052]
Three of the ten test magnetic disks used slid, and 50,000 tests could not be completed. In addition, although the remaining seven sheets completed the test 50,000 times, scratches were confirmed on the surfaces of all seven sheets by microscopic observation thereafter.
[0053]
Furthermore, when the thickness of the lubricating layer of the magnetic disk after the test was measured by FT-IR, it was confirmed that the thickness was 1.2 nm, a decrease of 33%. As a result, no. It was confirmed that the sample No. 2 did not have sufficient sliding reliability and lacked the bonding force with the lubricant.
[0054]
<Comparative Example 2>
Except that the bias voltage was always -110 V when the DLC laminated protective film 7 was provided, the above sample No. Sample No. 1 in the same manner as Sample No. 1. 3 was produced. The thickness of the protective film 7 was 2.7 nm, and the deposition rate of the film at this time was 1.0 nm / s.
This sample No. Sample No. 3 was also used for sample No. A reliability test was performed in the same manner as in No. 1 and the results are shown in Table 1.
[0055]
Five of the ten test magnetic disks used slided, and the test could not be completed 50,000 times. In addition, although the test was completed 50,000 times for the remaining five sheets, scratch marks were confirmed on the surfaces of all five sheets by microscopic observation thereafter.
[0056]
Further, when the thickness of the lubricating layer of the magnetic disk after the test was measured by FT-IR, it was confirmed that the thickness was reduced to half, that is, 0.9 nm. As a result, no. It was confirmed that the sample No. 3 did not have sufficient sliding reliability and had insufficient bonding force with the lubricant.
[0057]
<Comparative Example 3>
In the sample No. 1 in which the bias application and non-application times were changed when the DLC layer laminated protective film 7 was provided, and the lamination cycle was varied from 0.2 nm to 2.7 nm. 4, 5, 6, 7, and 8 were prepared. The evaluation was performed in the same manner as in Example 1. Table 1 shows the lamination cycle and the evaluation results.
[0058]
As a result, the sample No. 4 and a lamination period of 0.2 nm, In the case of Sample No. 8, 2.7 nm could not provide sufficient sliding reliability. No. 5 from 0.3 nm to Sample No. 5 7 at 1.35 nm, sample no. It was confirmed that the sliding reliability was improved as compared with 2 and 3.
[0059]
<Example 2>
Using the samples provided up to the magnetic recording layer 6 in the same manner as in Example 1, the following samples according to the present invention were produced and evaluated.
[0060]
The sample provided up to the magnetic recording layer 6 was transported to the protective film forming chamber 21 shown in FIG. 2 without being taken out of the vacuum chamber. The protective film forming chamber 21 is formed of an ion gun including a hot filament 22 and an anode 23.
[0061]
While evacuating the protective film forming chamber 21 with a turbo molecular pump 24, a nitrous oxide gas (N 2 O) with 20 sccm (Standard Cubic centimeter per minutes) and ethylene (C 2 H 4 ) Gas was introduced via a 50 sccm mass flow controller. The pressure at this time was about 0.65 Pa (5 mTorr) using a Baratron gauge.
[0062]
Next, 30 A was applied to the hot filament 22 of the ion gun located on both sides of the substrate 1 and +90 V DC was applied to the anode 23 to induce plasma. Further, an electrode (not shown) made of an aluminum alloy having a potential insulated from the ground G and the anode potential is brought into contact with an end face of the substrate to apply a bias voltage to the substrate.
[0063]
The bias was applied to the substrate 1 at 0 V for the first 0.3 sec, and at -110 V for the next 0.3 sec. This cycle of 0.6 sec was repeated six times, and 0.3 V 0 V was further added.
[0064]
At this time, the anode current was 0.50 A at a bias voltage of 0 V, 0.60 A at a bias voltage of −110 V, and the bias current of the substrate was 22 mA at a bias voltage of 0 V and 51 mA at a bias voltage of −110 V.
[0065]
The emission current generated from the filament 22 was calculated to be 0.5 A. By this ion beam deposition method (IBD), a DLC laminated protective film 7 containing carbon as a main component and containing nitrogen and hydrogen was formed on the Co—Cr—Pt—B alloy magnetic layer 6 to a thickness of 2.7 nm. At this time, the deposition rate of the film was 0.6 nm / s when the bias voltage was 0 V, and 0.8 nm / s when the bias voltage was −110 V. That is, the lamination cycle was 0.42 nm, and 13 layers were alternately laminated.
[0066]
A plurality of magnetic disks were manufactured by the above-described method, and a fluorocarbon-based lubricant layer 8 was provided on the DLC laminated protective film 7. The thickness of the lubricating layer 8 was 1.8 nm as determined by Fourier transfer infrared spectroscopy (FT-IR). Thereafter, these magnetic disks were assembled in a magnetic disk device, and a reliability test was performed on the flying check of the magnetic head in the same manner as in Example 1.
[0067]
For the reliability test, a method was used in which a magnetic disk provided with the lubricating layer 8 was mounted on a well-known evaluation device equipped with a magnetic head load / unload mechanism, and the test was performed. Ten magnetic disks were rotated at 15,000 rpm. p. The load / unload test with seek was performed 50,000 times at m.
[0068]
In this test, the magnetic head is ramp-loaded from the outer periphery of the disk (outside of R40 mm), seeks to the inner periphery (R19 mm) at a flying height of 10 nm, and then unloads the head from the outer periphery again.
[0069]
Table 1 shows the results of this test. 9 is shown. All of the ten cards used could be completed without crashing. Further, when the thickness of the lubricating layer 8 of the magnetic disk after the test was measured by FT-IR, it was confirmed that the thickness was almost not reduced to 1.7 nm. After these samples were examined, microscopic observation revealed that no scratch dark blue was observed in all ten samples.
[0070]
As a result, it has been proved that the magnetic recording medium according to the present invention has a sufficient bonding force with the lubricant, and has a sufficient sliding reliability even when the protective film has a very thin thickness of 2.7 nm. Was.
[0071]
<Comparative Example 4>
Except that the bias voltage was always 0 V when the DLC laminated protective film 7 was provided, the sample Nos. Sample No. 9 in the same manner as Sample No. 9. Ten magnetic disks were produced. The thickness of the protective film 7 was 2.7 nm, and the deposition rate of the film at this time was 0.6 nm / s. This sample was designated as Sample No. 1 of Example 1. A reliability test was performed in the same manner as in Example 1. The results are shown in Table 1.
[0072]
Three of the ten magnetic disks used in the test slid, and 50,000 tests could not be completed. In addition, although the test was completed 50,000 times for the remaining seven sheets, scratch marks were confirmed on the surfaces of five of the seven sheets by microscopic observation thereafter.
[0073]
Further, when the thickness of the lubricating layer 8 of the disk after the test was measured by FT-IR, it was confirmed that the thickness was hardly reduced to 1.7 nm. As a result, no. It was confirmed that the sample No. 10 had sufficient bonding force with the lubricant, but lacked the performance in sliding reliability.
[0074]
<Comparative Example 5>
Except that the bias voltage was always -110 V when the DLC laminated protective film 7 was provided, the sample Nos. Sample No. 9 in the same manner as Sample No. 9. Eleven magnetic disks were produced. The thickness of the protective film 7 was 2.7 nm, and the deposition rate of the film at this time was 0.8 nm / s.
[0075]
This sample was designated as Sample No. 1 of Example 1. A reliability test was performed in the same manner as in Example 1. The results are shown in Table 1. Four of the ten magnetic disks used in the test slid, and the test could not be completed 50,000 times. In addition, although the test was completed 50,000 times for the remaining six sheets, scratch marks were confirmed on the surfaces of three of the six sheets by microscopic observation thereafter.
[0076]
Further, when the thickness of the lubricating layer 8 of the magnetic disk after the test was measured by FT-IR, it was confirmed that the thickness was reduced to 1.6 nm. As a result, no. It was confirmed that the sample No. 11 did not have sufficient sliding reliability, and the bonding force with the lubricant was slightly insufficient.
[0077]
<Comparative Example 6>
When the DLC laminated protective film 7 was provided, the time of bias application and non-application of the bias were varied to change the lamination cycle from 0.2 nm to 2.7 nm. 12, 13, 14, 15, and 16 were produced and evaluated in the same manner as in Example 1. Table 1 shows the lamination cycle and the evaluation results.
[0078]
As a result, the sample No. No. 12 with a lamination period of 0.2 nm and sample No. In the case of Sample No. 16 at 2.7 nm, sufficient sliding reliability was not obtained. 13 No. 13 to Sample No. 13 15 at 1.35 nm, sample no. It was confirmed that the sliding reliability was improved as compared with 10 and 11.
[0079]
Further, an attempt was made to clarify the physical and chemical properties of the DLC laminated protective film 8 of the magnetic recording medium provided by the present invention. Specifically, the amounts of hydrogen and nitrogen in the film were quantified, and the hardness of the thin film was measured. The method and results are described below.
[0080]
HFS (Hydrogen Forward scattering) was used to determine the amount of hydrogen in the DLC laminated protective film 8. The measuring device used was a high resolution RBS analyzer HRBS500 (trade name) manufactured by Kobe Steel, with a beam energy of 480 KeV and an ion species of N. 2+ The scattering angle was 30 degrees, the beam incident angle was 70 degrees with respect to the sample normal, the sample current was about 1.5 nA, the beam irradiation amount was about 310 nC, and the measurement energy range was 60 to 95 KeV.
[0081]
Hydrogen ions recoiled by nitrogen ions under the above measurement conditions were detected by a magnetic field type detector. A known sample containing no hydrogen was used as a background. Table 1 shows the amount of hydrogen in the film of each sample.
[0082]
In the sample No. of Example 1, No. 1 is No. 2 and No. 3 shows an intermediate value of the hydrogen concentration. 2 and No. It was found that the lamination of No. 3 was realized. No. No. 4 is No. It showed a value close to 2. No. Nos. 5 and 6 are Nos. Almost equivalent to No. 1, Nos. 7 and 8 are Nos. Less than one.
[0083]
Series No. to which nitrous oxide was added. 9 to No. 9 16 also showed the same tendency. XPS (X-ray photoelectron spectroscopy) was used for quantification of the amount of nitrogen. The measurement apparatus was Cuantum 2000 (trade name) manufactured by PHI, and AlKα1 was used as an excitation source.
[0084]
Sample No. Table 1 shows the values of the nitrogen amount in the laminated protective film 7 from 9 to 16. Sample No. No. 9 is No. Shows an intermediate value between 10 and 11. No. According to the manufacturing method of No. 9, it is considered that layers with a large amount of nitrogen and layers with a small amount of nitrogen are alternately laminated. It can easily be inferred that the N amount is about the same as 10. No. The same applies to 13, 14, and 15. No. Nos. 12 and 16 are No. Values close to 10 and 11 were shown.
[0085]
For measuring the hardness, a thin film micro hardness measuring device (Nano Indenter) manufactured by Nano Instruments was used. Using a Berkovich diamond indenter having a curvature radius of 0.1 μm, measurement was performed in a constant indentation depth mode, and the value at an indentation depth of 4 nm was used.
[0086]
Table 1 shows the results. Sample No. Sample Nos. 1, 5, 6, and 7 are sample Nos. An intermediate value between 2 and 3 was shown. Sample No. Similarly, sample Nos. 9, 13, 14, and 15 are sample Nos. Values between 10 and 11 were shown.
[0087]
Comprehensively interpreting the results of elucidating the physical and chemical properties of the DLC laminated protective film 7 and the results of the reliability test and the amount of residual lubrication, the sample No. Films having a large amount of hydrogen and containing a large amount of hydrogen, such as 3 and 11, have a problem in adhesion and are destroyed by an impact due to the collision of a magnetic head, and are required to have a thickness of 3 nm or less. It is not suitable as a protective film for media. Sample No. In the case of 2,10, the hardness is insufficient, and it is not suitable as a protective film of a magnetic recording medium which also requires a thickness of 3 nm or less.
[0088]
However, when these two types of layers are stacked by the method according to the present invention, particularly excellent reliability is exhibited, and it can be understood that the two types of layers are useful as a protective film of a magnetic recording medium requiring a thickness of 3 nm or less. Furthermore, by adding nitrogen to the protective film, the reliability and the bonding force with the lubricant are improved, but by increasing the amount of nitrogen on the outermost surface by the method of the present invention, the bonding force with the lubricant is improved. It has been found that the reinforcement is further strengthened and the scattering of the lubricant due to the rotation of the disk can be suppressed, so that a higher-performance protective film can be obtained as a protective film for a magnetic recording medium of 3 nm or less.
[0089]
[Table 1]
Figure 2004022025
【The invention's effect】
As described in detail above, according to the present invention, an increase in internal stress is suppressed, and an excellent magnetic recording medium having a protective film having high adhesion to a magnetic layer, high density, excellent corrosion resistance, and high sliding resistance. The intended purpose of realizing was achieved. Further, by making the layer having a high nitrogen content the outermost surface, a medium having excellent bonding properties with the lubricant can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a magnetic recording medium according to an embodiment of the present invention.
FIG. 2 is a schematic view of a protective film forming chamber.
[Explanation of symbols]
1. Non-magnetic substrate,
2. NiTa seed layer,
3 ... Cr alloy base layer,
4: Co alloy lower magnetic layer,
5 ... Ru antiferromagnetic coupling inducing layer,
6 ... Co alloy upper magnetic layer,
7 ... protective film layer,
8 ... lubrication layer
21 ... Protective film forming chamber
22 ... hot filament,
23 ... Anode,
24 ... turbo pump,
25 ... Gas inlet.

Claims (6)

非磁性基板上に少なくとも下地層を介して磁性膜と保護膜とを順次成膜して成る磁気記録媒体であって、前記保護膜を、炭素を主成分とするダイヤモンドライクカーボンから成る硬度の高い層と低い層とでそれぞれ交互に周期的に積層した多層膜で構成したことを特徴とする磁気記録媒体。A magnetic recording medium in which a magnetic film and a protective film are sequentially formed on a non-magnetic substrate via at least an underlayer, wherein the protective film is made of diamond-like carbon having carbon as a main component and having high hardness. A magnetic recording medium comprising a multilayer film in which layers and low layers are alternately and periodically stacked. 硬度の高い層と低い層とでそれぞれ交互に積層された前記ダイヤモンドライクカーボンから成る保護膜の積層膜厚周期を0.3nm〜1.5nmとしたことを特徴とする請求項1に記載の磁気記録媒体。2. The magnetic layer according to claim 1, wherein a layer thickness cycle of the diamond-like carbon protective film alternately stacked with a layer having a high hardness and a layer having a low hardness is 0.3 nm to 1.5 nm. recoding media. 上記保護膜を、窒素含有量の多いダイヤモンドライクカーボン層と少ないダイヤモンドライクカーボン層とを交互に膜厚周期0.3〜1.5nmで積層した多層膜で構成したことを特徴とする請求項1もしくは2記載の磁気記録媒体。2. The protective film according to claim 1, wherein the protective film is a multilayer film in which diamond-like carbon layers having a high nitrogen content and diamond-like carbon layers having a low nitrogen content are alternately stacked with a film thickness cycle of 0.3 to 1.5 nm. Or the magnetic recording medium according to 2. 非磁性基板上に少なくとも下地層を介して磁性膜及び保護膜を順次形成する工程を有する磁気記録媒体の製造方法であって、前記保護膜の形成工程を、少なくとも炭化水素ガスを用いたイオンビームデポジション法もしくはケミカルベーパーデポジション法で成膜する炭素を主成分とするダイヤモンドライクカーボン保護膜の形成工程で構成すると共に、前記保護膜の形成工程においては前記非磁性基板へバイアス電圧を周期的に印加、不印加とすることを特徴とする磁気記録媒体の製造方法。What is claimed is: 1. A method for manufacturing a magnetic recording medium, comprising: forming a magnetic film and a protective film on a non-magnetic substrate with at least an underlayer interposed therebetween, wherein the forming of the protective film comprises an ion beam using at least a hydrocarbon gas. A diamond-like carbon protective film mainly composed of carbon formed by a deposition method or a chemical vapor deposition method is formed, and a bias voltage is periodically applied to the non-magnetic substrate in the protective film forming step. A method for producing a magnetic recording medium, wherein a voltage is applied to the magnetic recording medium. 非磁性基板上に少なくとも下地層を介して磁性膜及び保護膜を順次形成する工程を有する磁気記録媒体の製造方法であって、前記保護膜の形成工程を、少なくとも炭化水素ガスとこれに加えて窒素ガスまたは亜酸化窒素ガスを用いたイオンビームデポジション法もしくはケミカルべーパデポジション法で成膜する炭素を主成分とし窒素を含むダイヤモンドライクカーボン保護膜の形成工程で構成すると共に、前記保護膜の形成工程においては前記非磁性基板へバイアス電圧を周期的に印加、不印加とすることを特徴とする磁気記録媒体の製造方法。What is claimed is: 1. A method for manufacturing a magnetic recording medium, comprising: forming a magnetic film and a protective film on a non-magnetic substrate with at least an underlayer interposed therebetween, wherein the forming of the protective film comprises the steps of: Forming a diamond-like carbon protective film containing nitrogen as a main component and containing nitrogen as a main component by using an ion beam deposition method or a chemical vapor deposition method using a nitrogen gas or a nitrous oxide gas, and forming the protective film. In the method, a method of manufacturing a magnetic recording medium is characterized in that a bias voltage is periodically applied to the non-magnetic substrate and not applied. 磁気記録媒体と、磁気記録媒体を駆動する駆動部と、記録部と再生部とを有する磁気ヘッドと、磁気ヘッドとの間で信号授受を行なう記録再生信号処理部とを具備する磁気記憶装置であって、前記磁気記録媒体を請求項1乃至3の何れか一つに記載の磁気記録媒体で構成したことを特徴とする磁気記憶装置。A magnetic storage device comprising: a magnetic recording medium; a driving unit that drives the magnetic recording medium; a magnetic head having a recording unit and a reproducing unit; and a recording / reproducing signal processing unit that transmits and receives signals to and from the magnetic head. A magnetic storage device comprising the magnetic recording medium according to any one of claims 1 to 3.
JP2002172758A 2002-06-13 2002-06-13 Magnetic recording medium, its manufacturing method and magnetic storage device using the same Pending JP2004022025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172758A JP2004022025A (en) 2002-06-13 2002-06-13 Magnetic recording medium, its manufacturing method and magnetic storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172758A JP2004022025A (en) 2002-06-13 2002-06-13 Magnetic recording medium, its manufacturing method and magnetic storage device using the same

Publications (1)

Publication Number Publication Date
JP2004022025A true JP2004022025A (en) 2004-01-22

Family

ID=31172231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172758A Pending JP2004022025A (en) 2002-06-13 2002-06-13 Magnetic recording medium, its manufacturing method and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JP2004022025A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351135A (en) * 2005-06-17 2006-12-28 Hoya Corp Magnetic disk and manufacturing method for magnetic disk
JP2007119920A (en) * 2005-10-28 2007-05-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Diamond-like carbon film
KR100762791B1 (en) * 2006-07-13 2007-10-09 마노자동차(주) Step device for automobile
JP2012082477A (en) * 2010-10-12 2012-04-26 Jtekt Corp Dlc-coated member
JPWO2013005726A1 (en) * 2011-07-01 2015-02-23 太陽化学工業株式会社 Primer composition, structure comprising primer layer comprising the composition, and method for producing the structure
JP2017160899A (en) * 2016-03-08 2017-09-14 儀徴亜新科双環活塞環有限公司 Diamond-like carbon-coating layer for piston ring surface, piston ring and manufacturing process
JP2018145455A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Abrasion resistant material, and manufacturing method for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351135A (en) * 2005-06-17 2006-12-28 Hoya Corp Magnetic disk and manufacturing method for magnetic disk
JP2007119920A (en) * 2005-10-28 2007-05-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Diamond-like carbon film
KR100762791B1 (en) * 2006-07-13 2007-10-09 마노자동차(주) Step device for automobile
JP2012082477A (en) * 2010-10-12 2012-04-26 Jtekt Corp Dlc-coated member
JPWO2013005726A1 (en) * 2011-07-01 2015-02-23 太陽化学工業株式会社 Primer composition, structure comprising primer layer comprising the composition, and method for producing the structure
JP2017160899A (en) * 2016-03-08 2017-09-14 儀徴亜新科双環活塞環有限公司 Diamond-like carbon-coating layer for piston ring surface, piston ring and manufacturing process
JP2018145455A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Abrasion resistant material, and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP5360894B2 (en) Method for manufacturing magnetic recording medium
JP5103005B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS61267929A (en) Magnetic recording medium
US8043734B2 (en) Oxidized conformal capping layer
US7147943B2 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JP2004022025A (en) Magnetic recording medium, its manufacturing method and magnetic storage device using the same
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JP3965404B2 (en) Magnetic recording medium and method for manufacturing the same
JP4199913B2 (en) Method for manufacturing magnetic recording medium
JP3755765B2 (en) Manufacturing method of magnetic disk
JPH05143972A (en) Metal thin film magnetic recording medium and its production
US20100019168A1 (en) Two-zone ion beam carbon deposition
JPH05225556A (en) Magnetic recording disk provided with improved protective film
US20060153975A1 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JP2009093710A (en) Method of manufacturing magnetic recording medium and magnetic recording medium
JP2004152462A (en) Magnetic recording medium and its manufacturing method
JP2008276912A (en) Vertical magnetic recording medium and its manufacturing method
JP2002203312A (en) Magnetic recording medium, its manufacturing method and device, and magnetic recording/reproducing device
US20100021769A1 (en) method to improve corrosion performance of exchange coupled granular perpendicular media
JP2004234746A (en) Manufacturing method of perpendicular magnetic recording medium
JP4113787B2 (en) Magnetic disk
JP2003123231A (en) Magnetic recording medium and method of manufacturing the same, and magnetic memory device using the same
JPH10334442A (en) Magnetic recording medium
JPH09180182A (en) Production of magnetic recording medium
JPH0554372A (en) Metallic thin film type magnetic recording medium