JP2008276912A - Vertical magnetic recording medium and its manufacturing method - Google Patents

Vertical magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2008276912A
JP2008276912A JP2008088124A JP2008088124A JP2008276912A JP 2008276912 A JP2008276912 A JP 2008276912A JP 2008088124 A JP2008088124 A JP 2008088124A JP 2008088124 A JP2008088124 A JP 2008088124A JP 2008276912 A JP2008276912 A JP 2008276912A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
protective layer
medium
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088124A
Other languages
Japanese (ja)
Inventor
Masafumi Ishiyama
雅史 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Magnetics Singapore Pte Ltd
Original Assignee
Hoya Corp
Hoya Magnetics Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Magnetics Singapore Pte Ltd filed Critical Hoya Corp
Priority to JP2008088124A priority Critical patent/JP2008276912A/en
Publication of JP2008276912A publication Critical patent/JP2008276912A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical magnetic recording medium enhancing durability such as wear resistance and impact resistance and avoiding problems such as high fly write even when a film thickness of a medium protection layer is limited to ≤3 nm. <P>SOLUTION: A vertical magnetic recording disk 100 includes a base 10, a magnetic recording layer 22, and the medium protection layer 26. The medium protection layer 26 contains nitrogen (N) and carbon (C) with an atomic mass ratio (N/C) in a range from 0.050 to 0.150. In a Raman spectrum in 900 to 1,800 cm<SP>-1</SP>wave number obtained by exciting the medium protection layer 26 by argon ion laser light of wavelength 514.5 nm, from which a fluorescence is removed, the peak ratio Dh/Gh is in a range from 0.70 to 0.95, when a D peak Dh appearing in the vicinity of 1,350 cm<SP>-1</SP>and G peak Gh appearing in the vicinity of 1,520 cm<SP>-1</SP>are waveform-separated by the Gauss function. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、HDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体およびその製造方法に関する。   The present invention relates to a perpendicular magnetic recording medium mounted on an HDD (hard disk drive) or the like and a manufacturing method thereof.

近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径磁気ディスクにして、1枚あたり100GBを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには1平方インチあたり150GBitを超える情報記録密度を実現することが求められる。   Various information recording techniques have been developed with the recent increase in information processing capacity. In particular, the surface recording density of HDDs using magnetic recording technology continues to increase at an annual rate of about 100%. Recently, an information recording capacity exceeding 100 GB has been required for a 2.5-inch diameter magnetic disk used for HDDs and the like. In order to meet such a demand, per 1 inch. It is required to realize an information recording density exceeding 150 GB.

HDD等に用いられる磁気ディスクにおいて高記録密度を達成するためには、情報信号の記録を担う磁気記録層を構成する磁性結晶粒子を微細化すると共に、その層厚を低減していく必要があった。ところが、従来から商業化されている面内磁気記録方式(長手磁気記録方式、水平磁気記録方式とも呼称される)の磁気ディスクの場合、磁性結晶粒子の微細化が進展した結果、超常磁性現象により記録信号の熱的安定性が損なわれ、記録信号が消失してしまう、いわゆる熱揺らぎ現象が発生するようになり、磁気ディスクの高記録密度化への阻害要因となっていた。この阻害要因を解決するために、近年、垂直磁気記録方式の磁気ディスク(垂直磁気記録ディスク)が提案されている。   In order to achieve a high recording density in a magnetic disk used for an HDD or the like, it is necessary to refine the magnetic crystal particles constituting the magnetic recording layer for recording information signals and to reduce the layer thickness. It was. However, in the case of a magnetic disk of the in-plane magnetic recording method (also called longitudinal magnetic recording method or horizontal magnetic recording method) that has been commercialized conventionally, as a result of the progress of miniaturization of magnetic crystal grains, superparamagnetic phenomenon The thermal stability of the recording signal is impaired, and the so-called thermal fluctuation phenomenon that the recording signal disappears has occurred, which has been an impediment to increasing the recording density of the magnetic disk. In order to solve this hindrance factor, in recent years, a perpendicular magnetic recording type magnetic disk (perpendicular magnetic recording disk) has been proposed.

垂直磁気記録方式は、面内磁気記録方式の場合とは異なり、磁気記録層の磁化容易軸は基板面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は面内記録方式に比べて、熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。   Unlike the case of the in-plane magnetic recording method, the perpendicular magnetic recording method is adjusted so that the easy axis of magnetization of the magnetic recording layer is oriented in the direction perpendicular to the substrate surface. The perpendicular magnetic recording method can suppress the thermal fluctuation phenomenon as compared with the in-plane recording method, and is suitable for increasing the recording density.

また、このような情報記録密度の増加に伴い、円周方向の線記録密度(BPI:Bit Per Inch)、半径方向のトラック記録密度(TPI:Track Per Inch)のいずれも増加の一途を辿っている。さらに、磁気ディスクの磁性層と、磁気ヘッドの記録再生素子との間隙(磁気的スペーシング)を狭くしてS/N比を向上させる技術も検討されている。近年望まれる磁気ヘッドの浮上量は10nm以下である。   As the information recording density increases, both the circumferential linear recording density (BPI: Bit Per Inch) and the radial track recording density (TPI: Track Per Inch) continue to increase. Yes. Further, a technique for improving the S / N ratio by narrowing the gap (magnetic spacing) between the magnetic layer of the magnetic disk and the recording / reproducing element of the magnetic head has been studied. In recent years, the flying height of a magnetic head desired is 10 nm or less.

このような、磁気的スペーシングを小さくするための1つの技術として、磁気ヘッド素子の動作時に、ヘッド素子を発熱させ、その熱によって磁気ヘッドを熱膨張させ、ABS(The air bearing surface)方向にわずかに突出させるDFH(Dynamic Flying Height)ヘッドが提案されている。これにより、磁気ヘッドと磁気ディスクとの間隙を調節し、常に安定して狭い磁気的スペーシングで磁気ヘッドを飛行させることができる。   As one technique for reducing the magnetic spacing, the head element generates heat during the operation of the magnetic head element, and the magnetic head is thermally expanded by the heat to move in the ABS (The air bearing surface) direction. A DFH (Dynamic Flying Height) head that slightly protrudes has been proposed. As a result, the gap between the magnetic head and the magnetic disk can be adjusted, and the magnetic head can always fly stably and with a narrow magnetic spacing.

垂直磁気記録ディスクでは、磁気ヘッドが垂直磁気記録ディスクに衝突した際、磁気記録層の表面が傷つかないように保護する媒体保護層が設けられる。媒体保護層は、カーボンオーバーコート(COC)、即ち、カーボン皮膜によって高硬度な皮膜を形成する。媒体保護層には、カーボンの硬いダイヤモンドライク結合(アモルファス結合)と、柔らかいグラファイト結合とが混在しているものもある(例えば、特許文献1)。また、ダイヤモンドライク結合保護膜を、CVD(Chemical Vapour Deposition)法によって製造する技術も開示されている(例えば、特許文献2)。さらに、媒体保護層の耐久性を向上させる技術も開示されている(例えば、特許文献3)。   The perpendicular magnetic recording disk is provided with a medium protective layer that protects the surface of the magnetic recording layer from being damaged when the magnetic head collides with the perpendicular magnetic recording disk. The medium protective layer forms a high hardness film by a carbon overcoat (COC), that is, a carbon film. Some medium protective layers include a mixture of a hard diamond-like bond (amorphous bond) of carbon and a soft graphite bond (for example, Patent Document 1). Also disclosed is a technique for manufacturing a diamond-like bond protective film by a CVD (Chemical Vapor Deposition) method (for example, Patent Document 2). Furthermore, a technique for improving the durability of the medium protective layer is also disclosed (for example, Patent Document 3).

また媒体保護層の上には、磁気ヘッドが衝突した際に媒体保護層および磁気ヘッドを保護するために、潤滑層が形成される。潤滑層は、例えばパーフルオロポリエーテルを塗布して焼結することにより形成される。
特開平10−11734号公報 特開2006−114182号公報 特開2005−149553号公報
On the medium protective layer, a lubricating layer is formed to protect the medium protective layer and the magnetic head when the magnetic head collides. The lubricating layer is formed, for example, by applying perfluoropolyether and sintering.
Japanese Patent Laid-Open No. 10-11734 JP 2006-114182 A JP 2005-149553 A

上述したような例えば10nm以下の磁気的スペーシングを達成するために、垂直磁気記録ディスクの媒体保護層に対して3nm以下の薄膜化が求められている。しかし、単に媒体保護層を薄膜化すると、媒体保護層自体の耐摩耗性や耐衝撃性等の耐久性が劣化することとなる。   In order to achieve the magnetic spacing of, for example, 10 nm or less as described above, a thin film of 3 nm or less is required for the medium protective layer of the perpendicular magnetic recording disk. However, if the medium protective layer is simply made thin, durability such as wear resistance and impact resistance of the medium protective layer itself deteriorates.

従来から媒体保護層の様々な形成方法が知られているが、従来の媒体保護層は十分な耐久性を有していないため、LUL(Load Unload)方式の垂直磁気記録ディスク装置において、磁気記録ヘッドが垂直磁気記録ディスク上にロードされた時の衝撃で、垂直磁気記録ディスク上に微少なスクラッチ等が発生し、再生信号が低下する問題が起こっている。   Various methods for forming a medium protective layer are conventionally known. However, since the conventional medium protective layer does not have sufficient durability, magnetic recording is performed in a LUL (Load Unload) type perpendicular magnetic recording disk apparatus. Due to the impact when the head is loaded on the perpendicular magnetic recording disk, a slight scratch or the like is generated on the perpendicular magnetic recording disk, and the reproduction signal is lowered.

また、上述したDFHヘッドを用いた場合においても、磁気ヘッドが磁気ディスクに接触したとき、潤滑層の固着力が弱い場合には、潤滑層が磁気ヘッドに移着してしまう場合がある。すると磁気ヘッドが覆われることによってリードライトに不良を生じたり、磁気ヘッドの浮上が不安定となってハイフライライト現象を生じるおそれがある。ハイフライライト現象とは、磁気ヘッドが磁気ディスクから離れてしまったことにより書き込んだはずのデータが書き込まれていない現象であり、必ずしもハードウェアは故障していなくても読み出しエラーを生じてしまう。   Even when the above-described DFH head is used, when the magnetic head comes into contact with the magnetic disk and the adhesion of the lubricating layer is weak, the lubricating layer may be transferred to the magnetic head. As a result, the magnetic head is covered, which may cause a read / write defect, or may cause the magnetic head to become unstable and cause a high fly write phenomenon. The high fly write phenomenon is a phenomenon in which data that should have been written is not written because the magnetic head is separated from the magnetic disk, and a read error occurs even if the hardware does not necessarily fail.

上記特許文献3においても、このような媒体保護層の耐久性を向上する技術が記載されているが、上記ハイフライライトの問題や、媒体保護層膜厚を3nm以下とするための具体的な手段については言及されていない。   The above Patent Document 3 also describes a technique for improving the durability of such a medium protective layer, but specific means for reducing the problem of the high flylight and the thickness of the medium protective layer to 3 nm or less. Is not mentioned.

本発明は、従来の媒体保護層の構成が有する上記問題点に鑑みてなされたものであり、本発明の目的は、耐摩耗性や耐衝撃性等の耐久性を向上し、また、潤滑層の磁気ヘッドへの移着を防止することにより、媒体保護層の膜厚が3nm以下に制限されたとしてもハイフライライト等の諸問題を回避可能な、垂直磁気記録媒体およびその製造方法を提供することである。   The present invention has been made in view of the above-mentioned problems of the configuration of the conventional medium protective layer, and an object of the present invention is to improve durability such as wear resistance and impact resistance, and to provide a lubricating layer. The perpendicular magnetic recording medium capable of avoiding various problems such as high fly write even if the thickness of the medium protective layer is limited to 3 nm or less by preventing the transfer of the magnetic head to the magnetic head and a method for manufacturing the same are provided. That is.

上記課題を解決するために発明者らが鋭意検討したところ、媒体保護層成膜直前に磁性層を加熱処理することで、直後の媒体保護層の性質が変化すること、および、その加熱処理温度を調整することで、媒体保護層のラマンスペクトルが変化すること、ならびに、潤滑層の固着力は媒体保護層の最表面の窒素量に影響されること、および、媒体保護層の最表面の窒素と炭素の原子量比(N/C)が、表面処理層の窒素流量の変化に依存することを見出し、さらに研究を重ねることにより、本発明を完成するに到った。   As a result of extensive studies by the inventors to solve the above-mentioned problems, the property of the medium protective layer changes immediately after the magnetic layer is heat-treated immediately before the formation of the medium protective layer, and the heat treatment temperature. Adjusting the Raman spectrum of the medium protective layer, and the adhesion of the lubricating layer is affected by the amount of nitrogen on the outermost surface of the medium protective layer, and the nitrogen on the outermost surface of the medium protective layer. The present inventors have found that the atomic weight ratio (N / C) of carbon and carbon depends on the change in the nitrogen flow rate of the surface treatment layer, and further research has been completed to complete the present invention.

上記課題を解決するために、本発明のある観点によれば、基体上に磁気記録層を備え、磁気記録層上に媒体保護層を備える垂直磁気記録媒体であって、媒体保護層は、炭素を主成分とする皮膜の表層に窒素を含浸してなり、含有する窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150であり、かつ、波長514.5nmのアルゴンイオンレーザ光により媒体保護層を励起して得られる波数900cm−1〜波数1800cm−1におけるラマンスペクトルから蛍光を除いたスペクトルの1350cm−1付近に現れるDピークDh(Disordered-peaks-height)と、1520cm−1付近に現れるGピークGh(Graphite-peaks-height)とをガウス関数により波形分離したときのピーク比Dh/Ghが0.70〜0.95であることを特徴とする、垂直磁気記録媒体が提供される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a perpendicular magnetic recording medium including a magnetic recording layer on a substrate and a medium protective layer on the magnetic recording layer, wherein the medium protective layer is made of carbon. Nitrogen is impregnated into the surface layer of the film mainly containing N, the atomic weight ratio (N / C) of nitrogen (N) to carbon (C) is 0.050 to 0.150, and the wavelength is 514. appearing near 1350 cm -1 of the spectrum excluding the fluorescence from the Raman spectrum in a wave number 900 cm -1 ~ wavenumber 1800 cm -1 obtained by exciting the medium protective layer with argon ion laser light .5Nm D peak Dh (Disordered-peaks- height) and G peak Gh (Graphite-peaks-height) appearing in the vicinity of 1520 cm −1 when the waveform is separated by a Gaussian function, the peak ratio Dh / Gh is 0.70 to 0.95. A perpendicular magnetic recording medium is provided.

上記媒体保護層成膜直前に磁性層を加熱する構成により、ラマンスペクトルによるピーク比Dh/Ghを0.70〜0.95とすることができ、耐衝撃性や耐摩耗性、耐食性等の耐久性を向上することができる。また、原子量比(N/C)を0.050〜0.150とすることで、ハイフライライトの問題や磁気ヘッドとのクラッシュを回避することが可能となる。   With the configuration in which the magnetic layer is heated immediately before the formation of the medium protective layer, the peak ratio Dh / Gh by Raman spectrum can be set to 0.70 to 0.95, and durability such as impact resistance, wear resistance, and corrosion resistance can be achieved. Can be improved. Further, by setting the atomic weight ratio (N / C) to 0.050 to 0.150, it is possible to avoid the problem of high flylight and the crash with the magnetic head.

垂直磁気記録媒体は、鉄(Fe)を30〜70at%含有する反強磁性交換結合(AFC)構造で形成され、飽和磁化Msが1.2T以上である軟磁性層を磁気記録層の下に備えてもよい。軟磁性層は、スペーサ層を隔てて2層に分離され、その磁化の方向を垂直磁気記録媒体のディスク面に平行かつ互いに逆向きに構成する。このように構成された反強磁性交換結合(AFC:Antiferro-magnetic exchange coupling:以下単にAFCという。)構造は、所定温度以上の熱によって反平行に配された上下2層の反強磁性結合力が低下してしまう。本発明では、軟磁性層の成膜時に鉄を混合することで、熱に強いAFC構造を形成し、媒体保護層成膜直前の加熱を可能にした。また、飽和磁化Msは、記録媒体への書き込みやすさ、すなわちオーバーライト特性に影響を及ぼし、飽和磁化Msが大きいほどオーバーライト特性は向上する。したがって、かかる飽和磁化Msが1.2T以上となる構成により、求められるオーバーライト特性を維持することができる。   The perpendicular magnetic recording medium is formed with an antiferromagnetic exchange coupling (AFC) structure containing 30 to 70 at% of iron (Fe), and a soft magnetic layer having a saturation magnetization Ms of 1.2 T or more is provided below the magnetic recording layer. You may prepare. The soft magnetic layer is separated into two layers with a spacer layer therebetween, and the direction of magnetization is configured to be parallel to the disk surface of the perpendicular magnetic recording medium and opposite to each other. The antiferromagnetic exchange coupling (AFC) structure thus configured has an antiferromagnetic coupling force between two upper and lower layers arranged in antiparallel by heat of a predetermined temperature or more. Will fall. In the present invention, by mixing iron when forming the soft magnetic layer, a heat-resistant AFC structure is formed, and heating immediately before the formation of the medium protective layer is enabled. Further, the saturation magnetization Ms affects the ease of writing to the recording medium, that is, the overwrite characteristic, and the overwrite characteristic is improved as the saturation magnetization Ms is increased. Therefore, the required overwrite characteristic can be maintained by the configuration in which the saturation magnetization Ms is 1.2 T or more.

また、軟磁性層は、交換結合磁界Hexが40Oe以上であってもよい。上記AFC構造の結合の強さは交換結合磁界Hexに基づいて決まる。したがって、Hexが大きいほどAFCのカップリングが強いこととなり、Hexが40Oe未満であると、AFC構造としての機能を維持できなくなってしまう。   The soft magnetic layer may have an exchange coupling magnetic field Hex of 40 Oe or more. The coupling strength of the AFC structure is determined based on the exchange coupling magnetic field Hex. Therefore, the larger Hex, the stronger the coupling of AFC. If Hex is less than 40 Oe, the function as the AFC structure cannot be maintained.

磁気記録層はグラニュラー構造で形成され、磁気記録層の上に補助記録層を備えてもよい。かかる構成により、磁気記録層の磁性粒子の微細化と保磁力Hcの向上を図ることができる。したがって、磁気記録層の高密度記録性と低ノイズ性を向上することが可能である。また、磁気記録層の上に補助記録層を備えることにより、垂直磁気記録媒体に更に高熱ゆらぎ耐性を付加することができる。   The magnetic recording layer may be formed in a granular structure, and an auxiliary recording layer may be provided on the magnetic recording layer. With this configuration, it is possible to reduce the size of the magnetic particles in the magnetic recording layer and improve the coercive force Hc. Therefore, it is possible to improve the high density recording property and low noise property of the magnetic recording layer. Further, by providing the auxiliary recording layer on the magnetic recording layer, it is possible to further add high thermal fluctuation resistance to the perpendicular magnetic recording medium.

補助記録層の組成は、CoCrPtBであってもよい。これにより、垂直磁気異方性を示す薄膜を形成し、垂直磁気記録媒体の高熱ゆらぎ耐性を向上することが可能である。   The composition of the auxiliary recording layer may be CoCrPtB. Thereby, it is possible to form a thin film exhibiting perpendicular magnetic anisotropy and to improve the high thermal fluctuation resistance of the perpendicular magnetic recording medium.

上記課題を解決するために、本発明の他の観点によれば、基体上に磁気記録層を備え、磁気記録層上に炭素を主成分とする皮膜からなる媒体保護層を備える垂直磁気記録媒体の製造方法であって、磁気記録層を形成し、後に形成される媒体保護層の、波長514.5nmのアルゴンイオンレーザ光により媒体保護層を励起して得られる波数900cm−1〜波数1800cm−1におけるラマンスペクトルから蛍光を除いたスペクトルの1350cm−1付近に現れるDピークDhと、1520cm−1付近に現れるGピークGhとをガウス関数により波形分離したときのピーク比Dh/Ghが、0.70〜0.95となるように当該垂直磁気記録媒体を加熱し、媒体保護層をCVD法により成膜し、さらに、窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150となるように窒素に曝露することを特徴とする、垂直磁気記録媒体の製造方法が提供される。 In order to solve the above problems, according to another aspect of the present invention, a perpendicular magnetic recording medium comprising a magnetic recording layer on a substrate and a medium protective layer comprising a coating composed mainly of carbon on the magnetic recording layer. of a manufacturing method to form a magnetic recording layer, after the medium protective layer formed, a wavelength 514.5nm of argon ion laser beam to the medium protective layer excited obtained wavenumbers 900 cm -1 ~ wavenumber 1800 cm - and D peak Dh appearing near 1350 cm -1 of the spectrum excluding the fluorescence from the Raman spectrum in 1, the peak ratio Dh / Gh when the waveform separated by a Gaussian function and a G peak Gh appearing near 1520 cm -1, 0. The perpendicular magnetic recording medium is heated to 70 to 0.95, a medium protective layer is formed by a CVD method, and nitrogen (N) and carbon (C) are further formed. Molecular weight ratio (N / C) characterized in that the exposure to nitrogen so that 0.050 to 0.150, method of manufacturing the perpendicular magnetic recording medium is provided.

ラマンスペクトルによるピーク比Dh/Ghが0.70〜0.95、原子量比(N/C)が0.050〜0.150となるように垂直磁気記録媒体を形成することで、耐摩耗性や耐衝撃性等の耐久性を向上し、媒体保護層の膜厚が3nm以下に制限されたとしてもハイフライライト等の諸問題を回避することができる。   By forming the perpendicular magnetic recording medium so that the peak ratio Dh / Gh according to Raman spectrum is 0.70 to 0.95 and the atomic weight ratio (N / C) is 0.050 to 0.150, wear resistance and Even if the durability such as impact resistance is improved and the film thickness of the medium protective layer is limited to 3 nm or less, various problems such as high flylight can be avoided.

加熱は、110〜210℃の温度で為されてもよい。媒体保護層成膜直前に加熱処理した場合、プラズマで分解された炭素原子が高エネルギーを維持したまま基板まで到達できる。この高エネルギーを維持した炭素原子が磁性膜上の基板に成膜されることから、緻密で耐久性のある媒体保護層が成膜できる。また、磁性層を高温で加熱することにより、磁性層と媒体保護層との密着性も向上する。   Heating may be done at a temperature of 110-210 ° C. When the heat treatment is performed immediately before the formation of the medium protective layer, the carbon atoms decomposed by the plasma can reach the substrate while maintaining high energy. Since carbon atoms maintaining this high energy are formed on the substrate on the magnetic film, a dense and durable medium protective layer can be formed. In addition, the adhesion between the magnetic layer and the medium protective layer is improved by heating the magnetic layer at a high temperature.

媒体保護層を成膜した後、さらに、流量が100〜350sccmの窒素雰囲気下に曝し、媒体保護層の表面処理を行うとしてもよい。流量が100〜350sccmの窒素雰囲気下に曝すことで窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150となり、CVDで形成する媒体保護層と潤滑層との密着性と硬度が好適になる。   After the medium protective layer is formed, the medium protective layer may be subjected to surface treatment by exposure to a nitrogen atmosphere having a flow rate of 100 to 350 sccm. When exposed to a nitrogen atmosphere with a flow rate of 100 to 350 sccm, the atomic weight ratio (N / C) of nitrogen (N) and carbon (C) becomes 0.050 to 0.150, and a medium protective layer and a lubricating layer formed by CVD Adhesiveness and hardness are suitable.

さらに、末端基に水酸基を有するパーフルオロポリエーテル化合物を含有する潤滑層を形成してもよい。   Furthermore, a lubricating layer containing a perfluoropolyether compound having a hydroxyl group at the terminal group may be formed.

パーフルオロポリエーテルは、直鎖構造を備え、垂直磁気記録媒体用に適度な潤滑性能を発揮するとともに、末端基に水酸基(OH)を備えることで、媒体保護層に対して高い密着性能を発揮することができる。特に、媒体保護層の表面に窒素を含有する表面処理層を備える本発明の構成では、(N)と(OH)とが高い親和性を奏するので、高い潤滑層密着率を得ることができる。 Perfluoropolyether has a linear structure and exhibits moderate lubrication performance for perpendicular magnetic recording media, as well as high adhesion performance to the media protective layer by having a hydroxyl group (OH) at the end group. can do. In particular, in the configuration of the present invention provided with a surface treatment layer containing nitrogen on the surface of the medium protective layer, (N + ) and (OH ) have high affinity, so that a high lubricating layer adhesion rate can be obtained. it can.

以上、説明したように、本発明の垂直磁気記録媒体によれば、耐摩耗性や耐衝撃性等の耐久性を向上し、また潤滑層の磁気ヘッドへの移着を防止することにより、媒体保護層の膜厚が3nm以下に制限されたとしてもハイフライライト等の諸問題を回避することが可能となる。   As described above, according to the perpendicular magnetic recording medium of the present invention, it is possible to improve durability such as wear resistance and impact resistance and to prevent the lubricant layer from being transferred to the magnetic head. Even if the thickness of the protective layer is limited to 3 nm or less, various problems such as high flylight can be avoided.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、以下の実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Note that dimensions, materials, and other specific numerical values shown in the following embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified.

図1は、本実施形態にかかる垂直磁気記録媒体としての垂直磁気記録ディスク100の構成を説明する図である。図1に示す垂直磁気記録ディスク100は、ディスク基体10、付着層12、第一軟磁性層14a、スペーサ層14b、第二軟磁性層14c、配向制御層16、第一下地層18a、第二下地層18b、オンセット層20、第一磁気記録層22a、第二磁気記録層22b、補助記録層24、媒体保護層26、潤滑層28で構成されている。なお第一軟磁性層14a、スペーサ層14b、第二軟磁性層14cは、あわせて軟磁性層14を構成する。第一下地層18aと第二下地層18bはあわせて下地層18を構成する。第一磁気記録層22aと第二磁気記録層22bとはあわせて磁気記録層22を構成する。   FIG. 1 is a diagram for explaining the configuration of a perpendicular magnetic recording disk 100 as a perpendicular magnetic recording medium according to the present embodiment. A perpendicular magnetic recording disk 100 shown in FIG. 1 includes a disk substrate 10, an adhesion layer 12, a first soft magnetic layer 14a, a spacer layer 14b, a second soft magnetic layer 14c, an orientation control layer 16, a first underlayer 18a, and a second layer. The underlayer 18b, the onset layer 20, the first magnetic recording layer 22a, the second magnetic recording layer 22b, the auxiliary recording layer 24, the medium protective layer 26, and the lubricating layer 28 are formed. The first soft magnetic layer 14a, the spacer layer 14b, and the second soft magnetic layer 14c together constitute the soft magnetic layer 14. The first base layer 18a and the second base layer 18b together constitute the base layer 18. The first magnetic recording layer 22a and the second magnetic recording layer 22b constitute the magnetic recording layer 22 together.

まず、アモルファスのアルミノシリケートガラスをダイレクトプレスで円盤状に成型し、ガラスディスクを作成した。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体10を得た。   First, an amorphous aluminosilicate glass was formed into a disk shape by direct pressing to produce a glass disk. The glass disk was subjected to grinding, polishing, and chemical strengthening in order to obtain a smooth non-magnetic disk base 10 made of a chemically strengthened glass disk.

アルミノシリケートガラスは、平滑かつ高剛性が得られるので、磁気的スペーシング、特に、磁気ヘッドの浮上量をより安定して低減できる。また、アルミノシリケートガラスは化学強化により、高い剛性強度を得ることができる。   Since the aluminosilicate glass is smooth and has high rigidity, the magnetic spacing, particularly the flying height of the magnetic head, can be more stably reduced. Aluminosilicate glass can obtain high rigidity and strength by chemical strengthening.

得られたディスク基体10上に、真空引きを行った成膜装置を用いて、Ar雰囲気中でDCマグネトロンスパッタリング法にて、付着層12から補助記録層24まで順次成膜を行い、媒体保護層26はCVD法により成膜した。この後、潤滑層28をディップコート法により形成した。なお、均一な成膜が可能であるという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成および製造方法について詳述する。   On the disk base 10 obtained, a film forming apparatus that has been evacuated is used to sequentially form a film from the adhesion layer 12 to the auxiliary recording layer 24 in an Ar atmosphere by a DC magnetron sputtering method, thereby protecting the medium protective layer. No. 26 was formed by CVD. Thereafter, the lubricating layer 28 was formed by dip coating. Note that it is also preferable to use an in-line film forming method in that uniform film formation is possible. Hereinafter, the configuration and manufacturing method of each layer will be described in detail.

付着層12は、10nmのTi合金層となるように、Ti合金ターゲットを用いて成膜した。付着層12を形成することにより、ディスク基体10と軟磁性層14との間の付着性を向上させることができるので、軟磁性層14の剥離を防止することができる。付着層12の材料としては、例えばCrTi合金を用いることができる。実用上の観点からは付着層の膜厚は、1nm〜50nmとすることが好ましい。   The adhesion layer 12 was formed using a Ti alloy target so as to be a 10 nm Ti alloy layer. By forming the adhesion layer 12, the adhesion between the disk base 10 and the soft magnetic layer 14 can be improved, so that the soft magnetic layer 14 can be prevented from peeling off. As a material of the adhesion layer 12, for example, a CrTi alloy can be used. From the practical viewpoint, the thickness of the adhesion layer is preferably 1 nm to 50 nm.

軟磁性層14は、第一軟磁性層14aと第二軟磁性層14cの間に非磁性のスペーサ層14bを介在させることによって、AFCを備えるように構成した。これにより軟磁性層14の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化の垂直成分が極めて少なくなることで軟磁性層14から生じるノイズを低減することができる。   The soft magnetic layer 14 is configured to include AFC by interposing a nonmagnetic spacer layer 14b between the first soft magnetic layer 14a and the second soft magnetic layer 14c. As a result, the magnetization direction of the soft magnetic layer 14 can be aligned along the magnetic path (magnetic circuit) with high accuracy, and noise generated from the soft magnetic layer 14 can be reduced by extremely reducing the perpendicular component of magnetization. it can.

図2は、AFC構造による磁化特性を説明するための説明図である。かかる磁化特性を参照すると、AFC構造をとらない軟磁性層が磁界Hを印加していないとき正負いずれかの磁化状態を維持するのに対して、AFC構造を有する軟磁性層は、磁界Hを印加していないときには、第一軟磁性層14aと第二軟磁性層14cの間で磁束が(b)に示すように閉路を構成し、磁化Mが0になる。そして、いずれかの方向に磁界Hを印加すると、両軟磁性層14a、14cの磁束が(a)、(c)のように同一方向に配向する。   FIG. 2 is an explanatory diagram for explaining the magnetization characteristics of the AFC structure. Referring to such magnetization characteristics, a soft magnetic layer having no AFC structure maintains a positive or negative magnetization state when a magnetic field H is not applied, whereas a soft magnetic layer having an AFC structure has a magnetic field H applied thereto. When no voltage is applied, a magnetic flux is formed between the first soft magnetic layer 14a and the second soft magnetic layer 14c as shown in (b), and the magnetization M becomes zero. When the magnetic field H is applied in either direction, the magnetic fluxes of both soft magnetic layers 14a and 14c are oriented in the same direction as shown in (a) and (c).

上記AFC構造の結合の強さは、図2に示した交換結合磁界Hexに基づいて決まり、Hexが大きいほどAFCのカップリングが強いこととなる。かかるHexは、対応する磁気記録層22の書き込みに対する磁界に対しては磁化され、隣接する磁気記録層22の書き込みに対する磁界に対しては反応しないように設定される。Hexは、膜厚を薄くすれば大きくすることができるが、単に膜厚を薄くすると磁気ヘッドからの磁束を全て吸収できなくなってしまうので、磁気ヘッドからの磁束に応じて薄膜化する必要がある。   The coupling strength of the AFC structure is determined based on the exchange coupling magnetic field Hex shown in FIG. 2, and the larger the Hex, the stronger the coupling of AFC. The Hex is set so as to be magnetized with respect to the magnetic field for writing of the corresponding magnetic recording layer 22 and not to react with the magnetic field for writing of the adjacent magnetic recording layer 22. Hex can be increased if the film thickness is reduced. However, if the film thickness is simply reduced, it becomes impossible to absorb all the magnetic flux from the magnetic head, so it is necessary to reduce the thickness according to the magnetic flux from the magnetic head. .

また、磁界Hを印加していくにつれ、AFC構造を有する軟磁性層の磁化Mは一定の値まで増大し、飽和状態となる。このように磁化Mが飽和状態となった値を飽和磁化Msと呼ぶ。飽和磁化Msが向上することにより、記録媒体への書き込みやすさ、すなわちオーバーライト特性が向上する。かかる飽和磁化Msは、1.2T以上であることが好ましい。これにより、求められるオーバーライト特性を維持することができるからである。   Further, as the magnetic field H is applied, the magnetization M of the soft magnetic layer having the AFC structure increases to a certain value and becomes saturated. The value at which the magnetization M is in a saturated state in this way is referred to as saturation magnetization Ms. By improving the saturation magnetization Ms, the ease of writing to the recording medium, that is, the overwrite characteristic is improved. The saturation magnetization Ms is preferably 1.2T or more. This is because the required overwrite characteristic can be maintained.

なお磁性膜の磁石の強さを表す磁気モーメントは、飽和磁化Msと膜厚tの積であるMs・tで表される。従って所望の強さの磁気モーメントMs・tを得たいときに、飽和磁化Msが弱い場合には、膜厚を厚くする必要がある。しかし膜厚が厚くなると磁力線を到達させるために磁気ヘッドの磁場を強くする必要がある。このため同じ磁気モーメントMs・tを得るとしても、できるだけ高い飽和磁化Msと薄い膜厚tにすることが好ましい。   The magnetic moment representing the strength of the magnet of the magnetic film is represented by Ms · t, which is the product of the saturation magnetization Ms and the film thickness t. Therefore, when it is desired to obtain a magnetic moment Ms · t having a desired strength, if the saturation magnetization Ms is weak, it is necessary to increase the film thickness. However, as the film thickness increases, it is necessary to increase the magnetic field of the magnetic head in order to reach the lines of magnetic force. For this reason, even if the same magnetic moment Ms · t is obtained, it is preferable that the saturation magnetization Ms and the thin film thickness t be as high as possible.

このように構成されたAFC構造は、通常、所定温度以上の熱によって反平行に配された上下2層の磁化容易軸がくずれ、S/N比が低下してしまう。本実施形態では、軟磁性層の成膜時に鉄を混合することで、熱に強いAFC構造を形成し、後述する媒体保護層成膜直前の加熱を可能にする。従って、第一軟磁性層14a、第二軟磁性層14cの組成はCoCrFeBとし、スペーサ層14bの組成はRu(ルテニウム)とした。   In the AFC structure configured as described above, the easy axis of magnetization of the upper and lower layers arranged in antiparallel due to heat of a predetermined temperature or more is usually broken, and the S / N ratio is lowered. In this embodiment, iron is mixed during the formation of the soft magnetic layer to form an AFC structure that is resistant to heat, and heating immediately before the formation of the medium protective layer described later is enabled. Therefore, the composition of the first soft magnetic layer 14a and the second soft magnetic layer 14c is CoCrFeB, and the composition of the spacer layer 14b is Ru (ruthenium).

配向制御層16は、軟磁性層14を防護する作用と、下地層18の結晶粒の配向の整列を促進する作用を備える。配向制御層16としては、fcc構造を有するNiWもしくはNiCrの層とした。   The orientation control layer 16 has an action of protecting the soft magnetic layer 14 and an action of promoting alignment of crystal grains of the underlayer 18. The orientation control layer 16 is a NiW or NiCr layer having an fcc structure.

下地層18は、Ruからなる2層構造となっている。上層側の第二下地層18bを形成する際に、下層側の第一下地層18aを形成するときよりもArのガス圧を高くすることにより、結晶配向性を改善することができる。   The underlayer 18 has a two-layer structure made of Ru. When forming the upper second base layer 18b, the crystal orientation can be improved by making the Ar gas pressure higher than when forming the lower first base layer 18a.

オンセット層20は、非磁性のグラニュラー層である。下地層18のhcp結晶構造の上に非磁性のグラニュラー層を形成し、この上に第一磁気記録層22aのグラニュラー層を成長させることにより、磁性のグラニュラー層を初期段階(立ち上がり)から分離させる作用を有している。オンセット層20の組成は非磁性のCoCr−SiOとした。 The onset layer 20 is a nonmagnetic granular layer. A nonmagnetic granular layer is formed on the hcp crystal structure of the underlayer 18, and the granular layer of the first magnetic recording layer 22 a is grown thereon to separate the magnetic granular layer from the initial stage (rise). Has an effect. The composition of the onset layer 20 was nonmagnetic CoCr—SiO 2 .

磁気記録層22は、膜厚の薄い第一磁気記録層22aと、膜厚の厚い第二磁気記録層22bとから構成されている。   The magnetic recording layer 22 includes a thin first magnetic recording layer 22a and a thick second magnetic recording layer 22b.

第一磁気記録層22aは、非磁性物質の例としての酸化クロム(Cr)を含有するCoCrPtからなる硬磁性体のターゲットを用いて、2nmのCoCrPt−Crのhcp結晶構造を形成した。非磁性物質は磁性物質の周囲に偏析して粒界を形成し、磁性粒(磁性グレイン)は柱状のグラニュラー構造を形成した。この磁性粒は、オンセット層のグラニュラー構造から継続してエピタキシャル成長した。 The first magnetic recording layer 22a is a 2 nm CoCrPt—Cr 2 O 3 hcp crystal structure using a hard magnetic target made of CoCrPt containing chromium oxide (Cr 2 O 3 ) as an example of a nonmagnetic substance. Formed. The nonmagnetic material segregated around the magnetic material to form grain boundaries, and the magnetic particles (magnetic grains) formed a columnar granular structure. The magnetic grains were epitaxially grown continuously from the granular structure of the onset layer.

第二磁気記録層22bは、非磁性物質の例としての酸化チタン(TiO)を含有するCoCrPtからなる硬磁性体のターゲットを用いて、10nmのCoCrPt−TiOのhcp結晶構造を形成した。第二磁気記録層22bにおいても磁性粒はグラニュラー構造を形成した。 The second magnetic recording layer 22b was formed using a CoCrPt—TiO 2 hcp crystal structure of 10 nm using a hard magnetic target made of CoCrPt containing titanium oxide (TiO 2 ) as an example of a nonmagnetic substance. Also in the second magnetic recording layer 22b, the magnetic grains formed a granular structure.

補助記録層24は、グラニュラー磁性層の上に高い垂直磁気異方性を示す薄膜(連続層)を形成し、CGC構造(Coupled Granular Continuous)を構成するものである。これによりグラニュラー層の高密度記録性と低ノイズ性に加えて、連続膜の高熱ゆらぎ耐性を付け加えることができる。補助記録層24の組成は、CoCrPtBとした。   The auxiliary recording layer 24 forms a CGC structure (Coupled Granular Continuous) by forming a thin film (continuous layer) showing high perpendicular magnetic anisotropy on the granular magnetic layer. Thereby, in addition to the high density recording property and low noise property of the granular layer, the high thermal fluctuation resistance of the continuous film can be added. The composition of the auxiliary recording layer 24 was CoCrPtB.

媒体保護層26は、磁気ヘッドの衝撃から垂直磁気記録層を防護するための媒体保護層である。かかる媒体保護層26の形成は、補助記録層24を形成した後、当該垂直磁気記録ディスク100を予熱した直後に行われる。   The medium protective layer 26 is a medium protective layer for protecting the perpendicular magnetic recording layer from the impact of the magnetic head. The medium protective layer 26 is formed immediately after the auxiliary recording layer 24 is formed and immediately after the perpendicular magnetic recording disk 100 is preheated.

このように媒体保護層26成膜直前に磁性層を加熱処理すると直後の媒体保護層26の性質が変化する。本実施形態においては、特に、ラマンスペクトル(ダイヤモンドライク結合とグラファイトライク結合との比)が変化し、ダイヤモンドライク結合の増加に伴い媒体保護層26の耐性が向上する。かかる加熱処理は、後に形成される媒体保護層26のピーク比Dh/Ghが、0.70〜0.95となる範囲で為される。   Thus, if the magnetic layer is heat-treated immediately before the formation of the medium protective layer 26, the properties of the medium protective layer 26 immediately after it change. In the present embodiment, in particular, the Raman spectrum (ratio of diamond-like bond and graphite-like bond) changes, and the resistance of the medium protective layer 26 is improved as the diamond-like bond increases. Such heat treatment is performed in a range where the peak ratio Dh / Gh of the medium protective layer 26 to be formed later is 0.70 to 0.95.

ここで、ピーク比Dh/Ghは、波長514.5nmのアルゴンイオンレーザ光により媒体保護層を励起して得られる波数900cm−1〜波数1800cm−1におけるラマンスペクトルを測定し、蛍光によるバックグランドを直線近似で補正し、スペクトルの低波数側(1350cm−1)付近に現れるDピークDhと高波数側(1520cm−1)付近に現れるGピークGhとをガウス関数により波形分離したときのDhとGhとの比である。 Here, the peak ratio Dh / Gh is a Raman spectrum was measured at a wave number 900 cm -1 ~ wavenumber 1800 cm -1 obtained by exciting the medium protective layer by argon ion laser beam having a wavelength of 514.5 nm, the background due to fluorescence corrected by linear approximation, Dh and Gh when the waveform separated by low wave number side (1350 cm -1) D peak Dh and high frequency side which appears in the vicinity of (1520 cm -1) Gaussian function and a G peak Gh appearing near the spectrum And the ratio.

かかるDh/Ghを0.70〜0.95としたのは、Dh/Ghが0.70未満の場合、潤滑層との密着性が損なわれるおそれがあり、また、Dh/Ghが0.95以上の場合、媒体保護層の硬度が低下する場合があるからである。Dh/Ghを0.70〜0.95の範囲内とすることで、CVDを通して形成される媒体保護層と潤滑層との密着性および硬度が好適になり、十分な耐久性を得ることが可能となる。   The reason why Dh / Gh is set to 0.70 to 0.95 is that when Dh / Gh is less than 0.70, the adhesion to the lubricating layer may be impaired, and Dh / Gh is 0.95. This is because the hardness of the medium protective layer may decrease in the above case. By setting Dh / Gh within the range of 0.70 to 0.95, adhesion and hardness between the medium protective layer and the lubricating layer formed through CVD become suitable, and sufficient durability can be obtained. It becomes.

ピーク比Dh/Ghが、0.70〜0.95とするための具体的な加熱温度は、例えば、110〜210℃の温度範囲である。媒体保護層26成膜直前の磁性層成膜後の垂直磁気記録ディスク100の温度を110〜210℃としたのは、成膜温度が110℃未満の場合、炭素原子の運動エネルギーが低いため媒体保護層の緻密性が失われ、また、210℃を超える温度では、磁性層自身が拡散してしまい、磁気特性が劣化するからである。従って、110〜210℃で磁性層を加熱処理することで、緻密かつ、高硬度の媒体保護層を形成することができる。   The specific heating temperature for setting the peak ratio Dh / Gh to 0.70 to 0.95 is, for example, a temperature range of 110 to 210 ° C. The temperature of the perpendicular magnetic recording disk 100 after forming the magnetic layer immediately before forming the medium protective layer 26 is set to 110 to 210 ° C. because the kinetic energy of carbon atoms is low when the film forming temperature is less than 110 ° C. This is because the denseness of the protective layer is lost, and when the temperature exceeds 210 ° C., the magnetic layer itself diffuses and the magnetic properties deteriorate. Therefore, a dense and high-hardness medium protective layer can be formed by heat-treating the magnetic layer at 110 to 210 ° C.

上記のように媒体保護層26を成膜する直前に加熱処理を施した場合、媒体保護層26成膜の際に、プラズマによって分解された炭素原子が高エネルギーを維持したまま垂直磁気記録ディスク100まで到達、成膜されるので、緻密で耐久性のある媒体保護層26を成膜することが可能となる。また、磁性層を高温で加熱することにより、磁性層と媒体保護層との密着性も併せて向上する。   When the heat treatment is performed immediately before the medium protective layer 26 is formed as described above, the perpendicular magnetic recording disk 100 maintains the high energy of the carbon atoms decomposed by the plasma when the medium protective layer 26 is formed. Thus, the dense and durable medium protective layer 26 can be formed. Further, by heating the magnetic layer at a high temperature, the adhesion between the magnetic layer and the medium protective layer is also improved.

このような加熱処理が為された後、カーボンをプラズマCVD法により成膜し、媒体保護層26が形成される。プラズマCVDで炭化水素の媒体保護層を形成する場合、反応性ガスとして炭化水素ガスのみを用いてダイヤモンドライク結合を形成するのが望ましい。これは、他の不活性ガス(例えばAr等)や水素ガス等のキャリアガスを炭化水素ガスと混合させて用いた場合、媒体保護層中にこれらの不純ガスが取り込まれ、膜密度を低下させてしまうからである。   After such heat treatment is performed, carbon is deposited by plasma CVD, and the medium protective layer 26 is formed. When a hydrocarbon medium protective layer is formed by plasma CVD, it is desirable to form a diamond-like bond using only a hydrocarbon gas as a reactive gas. This is because when an inert gas (such as Ar) or a carrier gas such as hydrogen gas is mixed with a hydrocarbon gas, these impure gases are taken into the medium protective layer and the film density is lowered. Because it will end up.

そして、反応性ガスとしては、炭化水素(水素化炭素)、特に低級炭化水素を用いることが好ましく、さらに、直鎖低級飽和炭化水素、または直鎖低級不飽和炭化水素を用いることがより好ましい。直鎖低級飽和炭化水素としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等を用いてもよい。また、直鎖低級不飽和炭化水素としては、エチレン、プロピレン、ブチレン、アセチレン等を用いてもよい。なお、ここで言う低級とは、1分子当たりの炭素数が1〜10の炭化水素のことである。   As the reactive gas, it is preferable to use hydrocarbons (hydrogenated carbon), particularly lower hydrocarbons, and it is more preferable to use linear lower saturated hydrocarbons or linear lower unsaturated hydrocarbons. As the linear lower saturated hydrocarbon, methane, ethane, propane, butane, pentane, hexane, heptane, octane, or the like may be used. Further, as the linear lower unsaturated hydrocarbon, ethylene, propylene, butylene, acetylene or the like may be used. Here, the term “lower” refers to a hydrocarbon having 1 to 10 carbon atoms per molecule.

上記直鎖低級炭化水素を用いることが好ましいとしたのは、炭素数が増大するに従って、炭化水素をガスとして気化させ、成膜装置に供給することが困難となるうえ、プラズマ放電時の分解が困難となるからである。   The linear lower hydrocarbon is preferably used because it becomes difficult to vaporize the hydrocarbon as a gas and supply it to the film forming apparatus as the number of carbon atoms increases, and decomposition during plasma discharge It will be difficult.

また、炭素数が増大すると、形成した媒体保護層の成分に高分子の炭化水素が多く含有されやすくなり、媒体保護層の緻密性および硬度の低下を招くこととなる。さらに、環式炭化水素の場合、プラズマ放電時の分解が直鎖炭化水素に比べて困難となることも挙げられる。従って、炭化水素として、直鎖低級炭化水素を用いることが好適であり、特に、エチレンを用いることで、緻密かつ、高硬度の媒体保護層を形成することが可能となる。   In addition, when the number of carbon atoms increases, the component of the formed medium protective layer is likely to contain a large amount of high molecular hydrocarbons, leading to a decrease in the density and hardness of the medium protective layer. Furthermore, in the case of cyclic hydrocarbons, it may be difficult to decompose during plasma discharge compared to straight chain hydrocarbons. Accordingly, it is preferable to use a straight chain lower hydrocarbon as the hydrocarbon. In particular, by using ethylene, a dense and high-hardness medium protective layer can be formed.

一般にCVD法によって成膜されたカーボンは、スパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に垂直磁気記録層を防護することができる。   In general, carbon deposited by the CVD method has improved film hardness as compared with that deposited by the sputtering method, so that the perpendicular magnetic recording layer can be more effectively protected against an impact from the magnetic head.

さらに、上記CVD法により成膜した後、媒体保護層26を、流量が100〜350sccmの窒素雰囲気下に曝し、窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150となるように表面処理が行われる。ここで、N/Cが0.05〜0.15としたのは、N/Cが0.05未満の場合、ハイフライライトが頻発し記録再生課程でエラーが発生するからであり、また、0.150を超えると、クラッシュする可能性が高くなるからである。従って、N/Cを0.05〜0.15の範囲内とすることで、CVDで形成する媒体保護層と潤滑層との密着性と硬度が好適になる。   Further, after film formation by the CVD method, the medium protective layer 26 is exposed to a nitrogen atmosphere having a flow rate of 100 to 350 sccm, and the atomic weight ratio (N / C) of nitrogen (N) to carbon (C) is 0.050. The surface treatment is performed so as to be ˜0.150. Here, the reason why N / C is set to 0.05 to 0.15 is that when N / C is less than 0.05, high flylight frequently occurs and an error occurs in the recording / reproducing process. If the value exceeds .150, the possibility of a crash increases. Therefore, when N / C is in the range of 0.05 to 0.15, the adhesion and hardness between the medium protective layer and the lubricating layer formed by CVD are suitable.

ここで、窒素/炭素の原子量比(N/C)はX線光電子分光法(以下、ESCA(Electron Spectroscopy for Chemical Analysis)と称す。)を用いて測定することができる。詳細には、ESCAで測定したN1sスペクトルとC1sスペクトルの強度から窒素/炭素の原子量比を求める。   Here, the atomic weight ratio (N / C) of nitrogen / carbon can be measured using X-ray photoelectron spectroscopy (hereinafter referred to as ESCA (Electron Spectroscopy for Chemical Analysis)). Specifically, the atomic weight ratio of nitrogen / carbon is obtained from the intensities of the N1s spectrum and C1s spectrum measured by ESCA.

本実施形態において、媒体保護層26の膜厚は、1nm以上であることが好ましい。1nm未満では、媒体保護層26の被覆率が低減してしまうため磁性層の金属イオンのマイグレートを防止するのに十分でない場合があり、さらに耐摩耗性に問題が生じるおそれがある。また、CVDで形成する媒体保護層の膜厚に特に上限を設ける必要はないが、磁気的スペーシング改善を阻害しないよう、実用上3nm以下とするのが好ましい。   In the present embodiment, the thickness of the medium protective layer 26 is preferably 1 nm or more. If the thickness is less than 1 nm, the coverage of the medium protective layer 26 is reduced, so that it may not be sufficient to prevent migration of metal ions in the magnetic layer, and there may be a problem in wear resistance. In addition, although it is not necessary to provide an upper limit for the thickness of the medium protective layer formed by CVD, it is preferably 3 nm or less for practical use so as not to hinder the improvement of magnetic spacing.

さらに媒体保護層26を形成するときに−300〜−50Vのバイアス電圧を印加することが好ましい。印可電圧を−300〜−50Vとしたのは、−300V未満では、基板に過度なエネルギーが加えられアーキングが発生し、パーティクル、コンタミネーションの原因となり、また、−50Vを超える場合、バイアス印可の効果が無くなるからである。   Furthermore, it is preferable to apply a bias voltage of −300 to −50 V when forming the medium protective layer 26. The applied voltage is set to -300 to -50V. If the applied voltage is less than -300V, excessive energy is applied to the substrate to cause arcing, causing particles and contamination. If the applied voltage exceeds -50V, bias is applied. This is because the effect is lost.

そして、媒体保護層26を形成した後、超純水とイソプロアルコールで洗浄することで、垂直磁気記録ディスク100の表面品位を向上できる。   Then, after the medium protective layer 26 is formed, the surface quality of the perpendicular magnetic recording disk 100 can be improved by washing with ultrapure water and isopropyl alcohol.

上述した媒体保護層26により、従来製法では、媒体保護層を3nm以下に形成することでスクラッチ等の耐久性異常が発生し、ハイフライライトで再生信号等の劣化が生じていたものが、3nm以下であってもロードアンロード(以下、単にLULという。)耐久性等に問題が生じなくなった。   With the above-described medium protective layer 26, in the conventional manufacturing method, when the medium protective layer is formed to 3 nm or less, durability abnormalities such as scratches occur, and deterioration of the reproduction signal or the like occurs in the high flylight is 3 nm or less. Even so, there was no problem with load unload (hereinafter simply referred to as LUL) durability and the like.

潤滑層28は、PFPE(パーフルオロポリエーテル)をディップコート法により成膜した。潤滑層28の膜厚は約1nmである。この潤滑層28の作用により、垂直磁気記録ディスク100の表面に磁気ヘッドが接触しても、媒体保護層26の損傷や欠損を防止することができる。このパーフルオロポリエーテルは、直鎖構造を備え、垂直磁気記録ディスク用に適度な潤滑性能を発揮するとともに、末端基に水酸基(OH)を備えることで、媒体保護層26に対して高い密着性能を発揮することができる。特に、媒体保護層の表面に窒素を含有する表面処理層を備える本実施形態の構成では、(N)と(OH)とが高い親和性を奏するので、高い潤滑層密着率を得ることができ、好適である。 The lubricating layer 28 was formed of PFPE (perfluoropolyether) by dip coating. The film thickness of the lubricating layer 28 is about 1 nm. Due to the action of the lubricating layer 28, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording disk 100, damage or loss of the medium protective layer 26 can be prevented. This perfluoropolyether has a linear structure, exhibits an appropriate lubrication performance for a perpendicular magnetic recording disk, and has a hydroxyl group (OH) as a terminal group, thereby providing high adhesion performance to the medium protective layer 26. Can be demonstrated. In particular, in the configuration of this embodiment provided with a surface treatment layer containing nitrogen on the surface of the medium protective layer, (N + ) and (OH ) have high affinity, so that a high lubricating layer adhesion rate is obtained. This is preferable.

なお、末端基に水酸基を有するパーフルオロポリエーテル化合物としては、1分子の水酸基の数が2〜4個とするとよい。これは、2個未満では、潤滑層の密着率が低下する場合があり、また、4個を超えると、密着率が向上し過ぎる結果、潤滑性能を低下させる場合があるからである。潤滑層の膜厚は、0.5〜1.5nmの範囲内で適宜調節するとよい。これは、0.5nm未満では潤滑性能が低下する場合があり、また、1.5nmを超えると、潤滑層密着率が低下する場合があるからである。   In addition, as a perfluoropolyether compound which has a hydroxyl group in a terminal group, it is good that the number of hydroxyl groups of one molecule is 2-4. This is because if the number is less than 2, the adhesion rate of the lubricating layer may decrease, and if the number exceeds 4, the lubrication performance may be deteriorated as a result of the adhesion rate being excessively improved. The film thickness of the lubricating layer may be appropriately adjusted within the range of 0.5 to 1.5 nm. This is because if the thickness is less than 0.5 nm, the lubrication performance may be lowered, and if it exceeds 1.5 nm, the adhesion rate of the lubricating layer may be lowered.

以上のように生成された垂直磁気記録ディスク100表面の粗さは、Rmaxで2.5nm以下であることが好ましい。これは、2.5nmを超えると、磁気的スペーシング低減を阻害する場合があるからである。上記表面粗さは、日本工業規格(JIS)BO601に定められている。   The roughness of the surface of the perpendicular magnetic recording disk 100 generated as described above is preferably 2.5 nm or less in terms of Rmax. This is because if it exceeds 2.5 nm, magnetic spacing reduction may be inhibited. The surface roughness is defined in Japanese Industrial Standard (JIS) BO601.

以上の製造工程により、垂直磁気記録ディスク100が得られた。以下に、上述したパラメータの根拠を示す。   Through the above manufacturing process, the perpendicular magnetic recording disk 100 was obtained. The basis of the above parameters is shown below.

上述したように軟磁性層14におけるAFC構造は、通常、所定温度以上の熱によって反平行に配された上下2層の磁化容易軸がくずれ、S/N比が低下してしまう。しかし、軟磁性層の成膜時にFeを混合することで、熱に強いAFC構造を形成し、後述する媒体保護層成膜直前の加熱を可能にする。   As described above, in the AFC structure in the soft magnetic layer 14, the easy magnetization axes of the two upper and lower layers arranged in antiparallel due to heat of a predetermined temperature or more are usually broken, and the S / N ratio is lowered. However, by mixing Fe during the formation of the soft magnetic layer, a heat-resistant AFC structure is formed, and heating immediately before the formation of the medium protective layer described later is enabled.

図3は、Feの濃度を変化させた場合の垂直磁気記録ディスク100の基板温度と、AFCによる交換結合磁界Hexの強さとの関係を示した説明図である。かかる図3を参照すると、基板温度が所定温度を超えるとHexの強さが急峻に低下し、AFC構造としての機能を果たさなくなることがわかる。このような境界点の温度(後述するブロッキング温度)は、Feの濃度に応じて変化し、Feの濃度が高ければ高いほどその境界温度も高くなる。   FIG. 3 is an explanatory diagram showing the relationship between the substrate temperature of the perpendicular magnetic recording disk 100 when the Fe concentration is changed and the strength of the exchange coupling magnetic field Hex by AFC. Referring to FIG. 3, it can be seen that when the substrate temperature exceeds a predetermined temperature, the strength of Hex decreases sharply and does not function as an AFC structure. The temperature at such a boundary point (blocking temperature described later) varies depending on the Fe concentration, and the higher the Fe concentration, the higher the boundary temperature.

例えば、その境界温度は、Feを含有しないCoTaZrの場合約177℃となり、Feを40at%含有するFeCoTaZrの場合約197℃となり、Feを65at%含有するFeCoBCrの場合約210℃となる。この境界温度は、Feと結合する材料の組成に拘わらずある程度の規則性を有する。   For example, the boundary temperature is about 177 ° C. for CoTaZr not containing Fe, about 197 ° C. for FeCoTaZr containing 40 at% Fe, and about 210 ° C. for FeCoBCr containing 65 at% Fe. This boundary temperature has a certain degree of regularity regardless of the composition of the material that binds to Fe.

図4は、Feの濃度とブロッキング温度(境界温度)との関係を示した説明図である。図4を参照すると上述したCoTaZr、FeCoTaZr、FeCoBCrのブロッキング温度は、線形近似でき、Feの濃度を高くすると、それにほぼ比例した温度まで、当該垂直磁気記録ディスク100を加熱できることが理解できる。ここで、ブロッキング温度(Blocking Temperature)は、Hexが低下し始める温度である。   FIG. 4 is an explanatory diagram showing the relationship between the Fe concentration and the blocking temperature (boundary temperature). Referring to FIG. 4, it can be understood that the blocking temperatures of the above-described CoTaZr, FeCoTaZr, and FeCoBCr can be linearly approximated, and that the perpendicular magnetic recording disk 100 can be heated to a temperature approximately proportional to the Fe concentration. Here, the blocking temperature is a temperature at which Hex starts to decrease.

本実施形態では、軟磁性層14に30〜70at%のFeを含有することで、ブロッキング温度を約190〜215℃まで上昇させることができる。   In this embodiment, the blocking temperature can be raised to about 190 to 215 ° C. by containing 30 to 70 at% Fe in the soft magnetic layer 14.

図5は、Feの濃度と飽和磁化Msとの関係を示した説明図である。かかる図5を参照すると、軟磁性層14にFeを30〜70at%含有した場合においても、軟磁性層14は1.2T以上の飽和磁化Msを有している。また、かかる軟磁性層14にFeを65%含有したとき、飽和磁化Msのピークは最大値となる。このことから、30〜70at%のFeを含有した軟磁性層14は、十分なオーバーライト特性を備えていることがわかる。   FIG. 5 is an explanatory diagram showing the relationship between the Fe concentration and the saturation magnetization Ms. Referring to FIG. 5, even when the soft magnetic layer 14 contains 30 to 70 at% Fe, the soft magnetic layer 14 has a saturation magnetization Ms of 1.2 T or more. Further, when the soft magnetic layer 14 contains 65% Fe, the peak of the saturation magnetization Ms becomes the maximum value. This indicates that the soft magnetic layer 14 containing 30 to 70 at% Fe has sufficient overwrite characteristics.

以下に実施例と比較例を用いて、本実施形態の有効性について説明する。   The effectiveness of this embodiment will be described below using examples and comparative examples.

図6は、実施例と比較例のパラメータおよび有効性を示した説明図である。ここでは、13の実施例と8の比較例を挙げ、それぞれに対してLUL耐久性試験、ピンオンディスク試験、ハイフライライト試験を実行し、その有効性を評価している。   FIG. 6 is an explanatory diagram showing parameters and effectiveness of the example and the comparative example. Here, 13 examples and 8 comparative examples are given, and the LUL durability test, the pin-on-disk test, and the high fly light test are executed for each, and the effectiveness thereof is evaluated.

ここでは、基体10としてアモルファスガラス基板を用いた。その組成はアルミノシリケートである。ガラス基板の直径は、65mm、内径は20mm、ディスク厚は0.635mmの2.5インチ型垂直磁気記録ディスク用基板であった。ここで、得られたガラス基板の表面粗さをAFM(原子間力顕微鏡)で観察したところ、Rmaxが2.18nm、Raが0.18nmの平滑な表面であることを確認した。   Here, an amorphous glass substrate was used as the substrate 10. Its composition is aluminosilicate. The glass substrate had a diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm for a 2.5 inch type perpendicular magnetic recording disk substrate. Here, when the surface roughness of the obtained glass substrate was observed with an AFM (atomic force microscope), it was confirmed that the surface was smooth with Rmax of 2.18 nm and Ra of 0.18 nm.

次に、キャノンアネルバ社製C3040スパッタ成膜装置を用いて、基体10上に、DCマグネトロンスパッタリングで順次、付着層12、軟磁性層14、配向制御層16、下地層18、オンセット層20、磁気記録層22、補助記録層24を成膜した。成膜時の真空度は0.6Paであった。成膜に関する詳細な説明は以下の通りである。   Next, the adhesion layer 12, the soft magnetic layer 14, the orientation control layer 16, the underlayer 18, the onset layer 20, and the like are sequentially formed on the substrate 10 by DC magnetron sputtering using a C3040 sputtering film forming apparatus manufactured by Canon Anelva. A magnetic recording layer 22 and an auxiliary recording layer 24 were formed. The degree of vacuum during film formation was 0.6 Pa. A detailed description of film formation is as follows.

スパッタリングターゲットとしてPdを用い、配向制御層16上に、膜厚7nmとなるPd下地層18をスパッタリングで成膜した。成膜時の真空度は1.0Paであった。   Pd was used as a sputtering target, and a Pd underlayer 18 having a thickness of 7 nm was formed on the orientation control layer 16 by sputtering. The degree of vacuum during film formation was 1.0 Pa.

次に、スパッタリングターゲットとしてCoCrPt−TiO2(Cr:12at%、Pt:10at%、T:9at%、残部Co)合金からなるスパッタリングターゲットを用い、オンセット層20上に、CoCrPt−TiO2合金からなる15nmの磁気記録層22をスパッタリングで形成した。成膜時の真空度は3.5Paであった。 Next, CoCrPt-TiO2 as a sputtering target (Cr: 12at%, Pt: 10at%, T i O 2: 9at%, balance Co) using a sputtering target made of an alloy, on the onset layer 20, CoCrPt-TiO2 alloy A 15 nm magnetic recording layer 22 made of the above was formed by sputtering. The degree of vacuum at the time of film formation was 3.5 Pa.

そして、補助記録層24形成後の垂直磁気記録ディスク100表面を予熱した。例えば、実施例1では、垂直磁気記録ディスク100表面の温度が160℃になるように、ヒ−タ加熱方式を用いて垂直磁気記録ディスク100を加熟した。加熱時間は約5秒である。なお、垂直磁気記録ディスク100の基板温度は磁性層成膜直後にチャンバーの窓より放射温度計を用いて確認した。   Then, the surface of the perpendicular magnetic recording disk 100 after the auxiliary recording layer 24 was formed was preheated. For example, in Example 1, the perpendicular magnetic recording disk 100 was ripened using a heater heating method so that the temperature of the surface of the perpendicular magnetic recording disk 100 was 160 ° C. The heating time is about 5 seconds. The substrate temperature of the perpendicular magnetic recording disk 100 was confirmed using a radiation thermometer from the chamber window immediately after the magnetic layer was formed.

また、磁気記録層22まで形成したディスク上に、エチレンガス250sccmを導入し、真空度を1Paの圧力下で、バイアスを−300V印加させながらプラズマCVD法で媒体保護層26を形成した。媒体保護層26形成時の成膜速度は1nm/secであった。   Further, 250 sccm of ethylene gas was introduced onto the disk on which the magnetic recording layer 22 had been formed, and the medium protective layer 26 was formed by plasma CVD while applying a bias of −300 V under a pressure of 1 Pa. The film formation speed when the medium protective layer 26 was formed was 1 nm / sec.

さらに、媒体保護層26を形成後、プラズマ中に窒素ガスのみを250sccm導入して3Paの真空度に調整した圧力下で媒体保護層26を窒素雰囲気下に曝した。こうして、媒体保護層26の表面に窒素を含浸させる処理が行われた。   Further, after the medium protective layer 26 was formed, only the nitrogen gas was introduced into the plasma at 250 sccm, and the medium protective layer 26 was exposed to a nitrogen atmosphere under a pressure adjusted to a vacuum level of 3 Pa. In this way, the surface of the medium protective layer 26 was impregnated with nitrogen.

媒体保護層26まで成膜した後、当該媒体保護層26の膜厚を、透過型電子顕微鏡(TEM)による断面観察により測定した。すると、媒体保護層26の膜厚は3.0nmであった。   After film formation up to the medium protective layer 26, the film thickness of the medium protective layer 26 was measured by cross-sectional observation with a transmission electron microscope (TEM). Then, the film thickness of the medium protective layer 26 was 3.0 nm.

また、媒体保護層26を形成後、ESCAにて媒体保護層26の窒素/炭素の原子量比(N/C)を確認したところ、その値は0.107であった。かかるESCA分析の測定条件は以下の通りである。
装置: アルバックファイ社製 Quantum2000
X線励起源: Al−Kα線(1486.6eV)
X線源 20W
分析室真空度 <2×10−7 Pa
パスエネルギー 117.5eV
光電子検出角 45°
測定対象ピーク C1s、N1s
分析領域100umφ
積算回数10回
また、媒体保護層26を形成後、ラマン分光分析を行なったところ、Dh/Ghは0.80であった。
Moreover, after forming the medium protective layer 26, when the nitrogen / carbon atomic weight ratio (N / C) of the medium protective layer 26 was confirmed by ESCA, the value was 0.107. The measurement conditions for such ESCA analysis are as follows.
Apparatus: Quantum 2000 manufactured by ULVAC-PHI
X-ray excitation source: Al-Kα ray (1486.6 eV)
X-ray source 20W
Analysis room vacuum <2 × 10 −7 Pa
Pass energy 117.5eV
Photoelectron detection angle 45 °
Measurement target peak C1s, N1s
Analysis area 100umφ
The accumulated number of times was 10. Further, when the Raman spectroscopic analysis was performed after the medium protective layer 26 was formed, Dh / Gh was 0.80.

なお、ラマン分光分析は、媒体保護層26の表面に、波長が514.5nmのArイオンレーザーを照射し、900cm−1〜1800cm−1の波数帯に表れるラマン散乱によるラマンスペクトルを観察することで為された。 Incidentally, Raman spectroscopy, the surface of the medium protective layer 26, a wavelength was irradiated with Ar ion laser 514.5 nm, by observing the Raman spectrum by the Raman scattering appearing in waveband of 900cm -1 ~1800cm -1 It was done.

図7は、ラマンスペクトルのイメージを説明するための説明図である。ここでは、ラマンスペクトルの波数900cm−1から1800cm−1の範囲内において、蛍光によるバックグランドを直線近似で補正し、DピークとGピークのピーク高さの比をDh/Ghとして求めた。 FIG. 7 is an explanatory diagram for explaining an image of a Raman spectrum. Here, in the range of 1800 cm -1 wave number 900 cm -1 of the Raman spectrum, correcting the background by fluorescence in linear approximation to determine the ratio of the peak heights of the D and G-peaks as Dh / Gh.

ラマン分光分析は通常、潤滑層28塗布前に行うが、潤滑剤塗布後に測定しても構わない。潤滑剤塗布前後でラマン分光分析を行ったところ、Dh/Gh値は前後どちらにおいても全く同じ値を示しており、末端基に水酸基を有するパーフルオロポリエーテル系潤滑層のラマン分光分析への影響はないことが明らかとなった。   The Raman spectroscopic analysis is usually performed before the lubricant layer 28 is applied, but may be measured after the lubricant is applied. When Raman spectroscopic analysis was performed before and after applying the lubricant, the Dh / Gh values showed exactly the same values both before and after, and the influence of the perfluoropolyether lubricant layer having a hydroxyl group at the end group on the Raman spectroscopic analysis. It became clear that there was no.

媒体保護層26を形成後、70℃の純水中で400秒間浸漬洗浄を行い、その後、更にIPAにて400秒洗浄し、仕上げ乾燥としてIPAベーパーにて乾燥を行った。   After the medium protective layer 26 was formed, immersion cleaning was performed in pure water at 70 ° C. for 400 seconds, and further cleaning was performed with IPA for 400 seconds, followed by drying with IPA vapor as finish drying.

次に、超純水及びIPA洗浄後の媒体保護層26の上に、デップ法を用いてPFPE(パーフルオロポリエーテル)化合物からなる潤滑層28を形成した。具体的には、アウジモント社製のアルコール変性フォンプリンゼット誘導体を用いた。この化合物はPFPEの主鎖の両末端にそれぞれ1個〜2個、即ち、1分子当たり2個〜4個の水酸基を末端基に備えている。潤滑層28の膜厚は1.4nmであった。   Next, a lubricating layer 28 made of a PFPE (perfluoropolyether) compound was formed on the medium protective layer 26 that had been cleaned with ultrapure water and IPA by using a dipping method. Specifically, an alcohol-modified von purinette derivative manufactured by Augmont was used. This compound has 1 to 2 hydroxyl groups at both ends of the main chain of PFPE, that is, 2 to 4 hydroxyl groups per molecule. The film thickness of the lubricating layer 28 was 1.4 nm.

以上のように、生成された垂直磁気記録ディスク100について、表面粗さをAFMで観察したところ、Rmaxが2.30nm、Raが0.22nmの平滑な表面であることを確認した。また、グライドハイトを測定したところ3.2nmであった。磁気ヘッドの浮上量を安定的に10nm以下とする場合、垂直磁気記録ディスク100のグライドハイトは4.0nm以下とすることが望ましい。   As described above, when the surface roughness of the produced perpendicular magnetic recording disk 100 was observed with AFM, it was confirmed that the surface was smooth with Rmax of 2.30 nm and Ra of 0.22 nm. The glide height was measured and found to be 3.2 nm. When the flying height of the magnetic head is stably set to 10 nm or less, the glide height of the perpendicular magnetic recording disk 100 is desirably set to 4.0 nm or less.

このようにして得られた垂直磁気記録ディスク100の各種性能を以下のようにして評価分析した。   Various performances of the perpendicular magnetic recording disk 100 thus obtained were evaluated and analyzed as follows.

(LUL耐久性試験)
LUL耐久性試験は、5400rpmで回転する2.5インチ型HDDと、浮上量が10nmの磁気ヘッドを用いて行なった。なお、磁気ヘッドのスライダはNPAB(負圧型)スライダを用い、再生素子はDFH機構を搭載したTMR型素子を用いた。垂直磁気記録ディスク100をこのHDDに搭載し、上述の磁気ヘッドによりLUL動作を連続して行なった。
(LUL durability test)
The LUL durability test was performed using a 2.5 inch HDD rotating at 5400 rpm and a magnetic head having a flying height of 10 nm. The slider of the magnetic head was an NPAB (negative pressure type) slider, and the reproducing element was a TMR element equipped with a DFH mechanism. The perpendicular magnetic recording disk 100 was mounted on this HDD, and the LUL operation was continuously performed by the magnetic head described above.

そして、HDDが故障することなく耐久したLUL回数を測定することにより、垂直磁気記録ディスク100のLUL耐久性を評価した。また、試験環境は70C/80%RHの環境下で行った。これは通常のHDD運転環境よりも、過酷な条件であり、カーナビゲーション等の用途に使用されるHDDを想定した環境下で行うことにより、垂直磁気記録ディスク100の耐久信頼性をより的確に判断するためである。   Then, the LUL durability of the perpendicular magnetic recording disk 100 was evaluated by measuring the number of LULs that were durable without causing the HDD to fail. The test environment was 70C / 80% RH. This is a severer condition than the normal HDD operating environment, and the durability reliability of the perpendicular magnetic recording disk 100 can be judged more accurately by performing it in an environment assuming an HDD used for applications such as car navigation. It is to do.

かかるLUL耐久性試験において、実施例1〜13の垂直磁気記録ディスク100は、その故障を生じることなくLUL回数が100万回を超えた。通常、LUL耐久性試験では、故障無くLUL回数が連続して40万回を超えることが必要とされている。かかるLUL回数40万回は、通常のHDDの使用環境における10年程度の利用に匹敵する。   In the LUL durability test, the perpendicular magnetic recording disks 100 of Examples 1 to 13 exceeded the number of LULs exceeding 1 million without causing the failure. Usually, in the LUL durability test, it is necessary that the number of LULs continuously exceed 400,000 times without failure. The number of LUL times of 400,000 is comparable to that for about 10 years in a normal HDD usage environment.

(ピンオンディスク試験)
ピンオンディスク試験は次のようにして行った。即ち、媒体保護層26の耐久性及び耐磨耗性を評価するために、Al−TiCからなる直径2mmの球を15g荷重で垂直磁気記録媒体の半径22mm位置の当該媒体保護層26上に押し付けながら、この垂直磁気記録ディスク100を回転させることにより、Al−TiC球と媒体保護層26とを2m/secの速度で相対的に回転摺動させ、この摺動により媒体保護層26が破壊に至るまでの摺動回数を測定した。
(Pin-on-disk test)
The pin-on-disk test was conducted as follows. That is, in order to evaluate the durability and wear resistance of the medium protective layer 26, a medium 2 mm diameter sphere made of Al 2 O 3 —TiC is loaded with a 15 g load on the perpendicular magnetic recording medium at a radius of 22 mm. By rotating the perpendicular magnetic recording disk 100 while pressing upward, the Al 2 O 3 —TiC sphere and the medium protective layer 26 are relatively rotated and slid at a speed of 2 m / sec. The number of sliding times until the protective layer 26 was broken was measured.

このピンオンディスク試験では、媒体保護層26が破壊に至るまでの摺動回数が300回以上であれば合格とする。なお、通常磁気記録ヘッドは垂直磁気記録ディスク100に接触しないので、このピンオン試験は、実際の使用環境に比べて過酷な環境での耐久試験である。例えば、実施例1の垂直磁気記録ディスク100は、摺動回数が501回となり、他の実施例においても軒並み、300回を超える値となった。   In this pin-on-disk test, if the number of sliding times until the medium protective layer 26 is broken is 300 times or more, it is determined to pass. Since the normal magnetic recording head does not contact the perpendicular magnetic recording disk 100, this pin-on test is an endurance test in a harsh environment as compared to the actual use environment. For example, in the perpendicular magnetic recording disk 100 of Example 1, the number of sliding was 501 times, and in other examples, the value was over 300 times.

(ハイフライライト試験)
ハイフライライト試験は次のようにして行った。5400rpmで回転する2.5インチ型HDDと、浮上量が10nmの磁気ヘッドを用いる。また、磁気ヘッドのスライダはNPAB(負圧型)スライダを用い、再生素子はDFH機構を搭載したTMR型素子を用いた。垂直磁気記録ディスク100をこのHDDに搭載し、DFH機構を動作させ、ヘッド素子を発熱させた。その熱によって磁気ヘッドが熱膨張し、ABS方向に2nm突出させた状態にして、その状態で記録再生を1000時間行い、エラー障害発生の有無を調べた。その結果、実施例1〜13における1000時間の記録再生において、エラーは発生しなかった。
(High fly light test)
The high flylight test was conducted as follows. A 2.5-inch HDD rotating at 5400 rpm and a magnetic head with a flying height of 10 nm are used. The slider of the magnetic head was an NPAB (negative pressure type) slider, and the reproducing element was a TMR element equipped with a DFH mechanism. The perpendicular magnetic recording disk 100 was mounted on this HDD, the DFH mechanism was operated, and the head element was heated. With the heat, the magnetic head thermally expanded and protruded by 2 nm in the ABS direction, and recording / reproduction was performed for 1000 hours in this state to examine whether or not an error failure occurred. As a result, no error occurred in the recording / reproduction for 1000 hours in Examples 1 to 13.

上述した実施例と同様に比較例にも、それぞれ、LUL耐久性試験、ピンオンディスク試験、ハイフライライト試験を実行した。   Similar to the above-described examples, the LUL durability test, the pin-on-disk test, and the high flylight test were also performed on the comparative examples.

例えば、比較例1では、媒体保護層26に曝す窒素ガスを90sccmとしたこと以外は、実施例1と同様に垂直磁気記録ディスクを形成した。しかし、窒素導入量が少なすぎたため、ハイフライライト試験において12時間後に記録再生できない障害が発生した。   For example, in Comparative Example 1, a perpendicular magnetic recording disk was formed in the same manner as in Example 1 except that the nitrogen gas exposed to the medium protective layer 26 was 90 sccm. However, since the amount of nitrogen introduced was too small, a failure that could not be recorded and reproduced after 12 hours occurred in the high flylight test.

また、比較例2では、360sccmの窒素ガスに曝しているので、窒素導入量が多すぎ、ピンオン試験ディスク試験にて規格の300回に到達せず、さらにLUL試験にて垂直磁気記録ディスクにスクラッチが生じ30万回でクラッシュした。その他の比較例においても実施例と1または複数のパラメータを相違させ、所定範囲外とすることで、上記LUL耐久性試験、ピンオンディスク試験、ハイフライライト試験の1または複数の合格値を満たさないことが理解できる。   Further, in Comparative Example 2, since it was exposed to 360 sccm of nitrogen gas, the amount of nitrogen introduced was too large, and it did not reach the standard 300 times in the pin-on test disk test. And crashed after 300,000 times. In other comparative examples, one or more parameters are different from those of the example, and are not within a predetermined range, so that one or more acceptable values of the LUL durability test, the pin-on-disk test, and the high flylight test are not satisfied. I understand that.

図8は、実施例と比較例とのN/CおよびDh/Ghをプロットしたプロット図である。図中実線の四角で示された、N/C=0.050〜0.150およびDh/Gh=0.70〜0.95の範囲内における実施例と、範囲外の比較例とを参照して分かるように、本実施形態における垂直磁気記録ディスク100は、DFHヘッドにも適用可能であり、かつ、3nm以下の媒体保護層膜厚であっても、ハイフライライト障害を回避でき、さらに耐摩耗性、摺動特性に好適である。また、本実施形態の垂直磁気記録ディスク100は、LUL方式のHDDにも適用できることは言うまでもない。   FIG. 8 is a plot diagram in which N / C and Dh / Gh of the example and the comparative example are plotted. Refer to the examples in the range of N / C = 0.050 to 0.150 and Dh / Gh = 0.70 to 0.95 and the comparative examples outside the range, indicated by the solid line in the figure. As can be seen, the perpendicular magnetic recording disk 100 in this embodiment can be applied to a DFH head, and can prevent high fly write failure and wear resistance even when the thickness of the medium protective layer is 3 nm or less. It is suitable for property and sliding characteristics. Needless to say, the perpendicular magnetic recording disk 100 of this embodiment can also be applied to an LUL HDD.

以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、HDDなどに搭載される垂直磁気記録媒体およびその製造方法に利用可能である。   The present invention is applicable to a perpendicular magnetic recording medium mounted on an HDD or the like and a manufacturing method thereof.

本実施形態にかかる垂直磁気記録ディスクの構成を説明する図である。It is a figure explaining the structure of the perpendicular magnetic recording disk concerning this embodiment. AFC構造による磁化特性を説明するための説明図である。It is explanatory drawing for demonstrating the magnetization characteristic by an AFC structure. Feの濃度を変化させた場合の垂直磁気記録媒体の基板温度と、AFCによる交換結合磁界Hexの強さとの関係を示した説明図である。It is explanatory drawing which showed the relationship between the substrate temperature of the perpendicular magnetic recording medium at the time of changing the density | concentration of Fe, and the intensity | strength of the exchange coupling magnetic field Hex by AFC. Feの濃度とブロッキング温度との関係を示した説明図である。It is explanatory drawing which showed the relationship between the density | concentration of Fe and blocking temperature. Feの濃度と飽和磁化Msとの関係を示した説明図である。It is explanatory drawing which showed the relationship between the density | concentration of Fe, and saturation magnetization Ms. 実施例と比較例のパラメータおよび有効性を示した説明図である。It is explanatory drawing which showed the parameter and effectiveness of the Example and the comparative example. ラマンスペクトルのイメージを説明するための説明図である。It is explanatory drawing for demonstrating the image of a Raman spectrum. 実施例と比較例とのN/CおよびDh/Ghをプロットしたプロット図である。It is the plot figure which plotted N / C and Dh / Gh of an Example and a comparative example.

符号の説明Explanation of symbols

10 基体
12 付着層
14 軟磁性層
16 配向制御層
18 下地層
20 オンセット層
22 磁気記録層
24 補助記録層
26 媒体保護層
28 潤滑層
100 垂直磁気記録ディスク
DESCRIPTION OF SYMBOLS 10 Base body 12 Adhesion layer 14 Soft magnetic layer 16 Orientation control layer 18 Underlayer 20 Onset layer 22 Magnetic recording layer 24 Auxiliary recording layer 26 Medium protective layer 28 Lubricating layer 100 Perpendicular magnetic recording disk

Claims (9)

基体上に磁気記録層を備え、該磁気記録層上に媒体保護層を備える垂直磁気記録媒体であって、
前記媒体保護層は、炭素を主成分とする皮膜の表層に窒素を含浸してなり、含有する窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150であり、かつ、波長514.5nmのアルゴンイオンレーザ光により該媒体保護層を励起して得られる波数900cm−1〜波数1800cm−1におけるラマンスペクトルから蛍光を除いたスペクトルの1350cm−1付近に現れるDピークDhと1520cm−1付近に現れるGピークGhとをガウス関数により波形分離したときのピーク比Dh/Ghが0.70〜0.95であることを特徴とする、垂直磁気記録媒体。
A perpendicular magnetic recording medium comprising a magnetic recording layer on a substrate and a medium protective layer on the magnetic recording layer,
The medium protective layer is formed by impregnating nitrogen into the surface layer of a film containing carbon as a main component, and the atomic weight ratio (N / C) of nitrogen (N) to carbon (C) contained is 0.050 to 0.150. , and the and appearing near 1350 cm -1 of the spectrum excluding the fluorescence from the Raman spectrum in a wave number 900 cm -1 ~ wavenumber 1800 cm -1 obtained by exciting the said medium protective layer by argon ion laser beam having a wavelength of 514.5nm A perpendicular magnetic recording medium having a peak ratio Dh / Gh of 0.70 to 0.95 when the D peak Dh and the G peak Gh appearing in the vicinity of 1520 cm −1 are separated by a Gaussian function.
鉄(Fe)を30〜70at%含有する反強磁性交換結合(AFC)構造で形成され、飽和磁化Msが1.2T以上である軟磁性層を前記磁気記録層の下に備えることを特徴とする、請求項1に記載の垂直磁気記録媒体。   A soft magnetic layer formed of an antiferromagnetic exchange coupling (AFC) structure containing 30 to 70 at% of iron (Fe) and having a saturation magnetization Ms of 1.2 T or more is provided below the magnetic recording layer. The perpendicular magnetic recording medium according to claim 1. 前記軟磁性層は、交換結合磁界Hexが40Oe以上であることを特徴とする、請求項2に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 2, wherein the soft magnetic layer has an exchange coupling magnetic field Hex of 40 Oe or more. 前記磁気記録層はグラニュラー構造で形成され、該磁気記録層の上に補助記録層を備えることを特徴とする、請求項1に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the magnetic recording layer is formed in a granular structure, and an auxiliary recording layer is provided on the magnetic recording layer. 前記補助記録層の組成は、CoCrPtBであることを特徴とする、請求項4に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 4, wherein the composition of the auxiliary recording layer is CoCrPtB. 基体上に磁気記録層を備え、該磁気記録層上に炭素を主成分とする皮膜からなる媒体保護層を備える垂直磁気記録媒体の製造方法であって、
前記磁気記録層を形成し、
後に形成される媒体保護層の、波長514.5nmのアルゴンイオンレーザ光により該媒体保護層を励起して得られる波数900cm−1〜波数1800cm−1におけるラマンスペクトルから蛍光を除いたスペクトルの1350cm−1付近に現れるDピークDhと1520cm−1付近に現れるGピークGhとをガウス関数により波形分離したときのピーク比Dh/Ghが、0.70〜0.95となるように当該垂直磁気記録媒体を加熱し、
前記媒体保護層をCVD法により成膜し、さらに、窒素(N)と炭素(C)の原子量比(N/C)が0.050〜0.150となるように窒素に曝露することを特徴とする、垂直磁気記録媒体の製造方法。
A method for producing a perpendicular magnetic recording medium comprising a magnetic recording layer on a substrate, and a medium protective layer comprising a coating composed mainly of carbon on the magnetic recording layer,
Forming the magnetic recording layer;
After the medium protective layer formed, from the Raman spectrum in a wave number 900 cm -1 ~ wavenumber 1800 cm -1 obtained by exciting the said medium protective layer by argon ion laser beam having a wavelength 514.5nm spectral excluding the fluorescent 1350 cm - The perpendicular magnetic recording medium has a peak ratio Dh / Gh of 0.70 to 0.95 when the D peak Dh appearing near 1 and the G peak Gh appearing near 1520 cm −1 are separated by a Gaussian function. Heat the
The medium protective layer is formed by a CVD method, and further exposed to nitrogen such that the atomic weight ratio (N / C) of nitrogen (N) to carbon (C) is 0.050 to 0.150. A method for manufacturing a perpendicular magnetic recording medium.
前記加熱は、110〜210℃の温度で為されることを特徴とする、請求項6に記載の垂直磁気記録媒体の製造方法。   The method of manufacturing a perpendicular magnetic recording medium according to claim 6, wherein the heating is performed at a temperature of 110 to 210 ° C. 8. 前記媒体保護層を成膜した後、さらに、流量が100〜350sccmの窒素雰囲気下に曝し、該媒体保護層の表面処理を行うことを特徴とする、請求項6または7に記載の垂直磁気記録媒体の製造方法。   8. The perpendicular magnetic recording according to claim 6, wherein after forming the medium protective layer, the medium protective layer is further subjected to surface treatment by exposure to a nitrogen atmosphere having a flow rate of 100 to 350 sccm. A method for manufacturing a medium. さらに、末端基に水酸基を有するパーフルオロポリエーテル化合物を含有する潤滑層を形成することを特徴とする、請求項6から8のいずれか1項に記載の垂直磁気記録媒体の製造方法。   9. The method of manufacturing a perpendicular magnetic recording medium according to claim 6, further comprising forming a lubricating layer containing a perfluoropolyether compound having a hydroxyl group at a terminal group.
JP2008088124A 2007-03-30 2008-03-28 Vertical magnetic recording medium and its manufacturing method Pending JP2008276912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088124A JP2008276912A (en) 2007-03-30 2008-03-28 Vertical magnetic recording medium and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007095746 2007-03-30
JP2008088124A JP2008276912A (en) 2007-03-30 2008-03-28 Vertical magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008276912A true JP2008276912A (en) 2008-11-13

Family

ID=40054666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088124A Pending JP2008276912A (en) 2007-03-30 2008-03-28 Vertical magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008276912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038165A1 (en) * 2007-09-21 2009-03-26 Hoya Corporation Magnetic disk, and magnetic disk manufacturing method
JP2010231862A (en) * 2009-03-28 2010-10-14 Hoya Corp Method for manufacturing magnetic disk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038165A1 (en) * 2007-09-21 2009-03-26 Hoya Corporation Magnetic disk, and magnetic disk manufacturing method
JP2009076147A (en) * 2007-09-21 2009-04-09 Hoya Corp Magnetic disk and method of manufacturing magnetic disk
US8425975B2 (en) 2007-09-21 2013-04-23 Wd Media (Singapore) Pte. Ltd. Magnetic disk and magnetic disk manufacturing method
JP2010231862A (en) * 2009-03-28 2010-10-14 Hoya Corp Method for manufacturing magnetic disk

Similar Documents

Publication Publication Date Title
US8309239B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP5360894B2 (en) Method for manufacturing magnetic recording medium
US8871368B2 (en) Perpendicular magnetic recording medium and process for manufacture thereof
JP4247535B2 (en) Magnetic disk for load / unload system, method for manufacturing magnetic disk for load / unload system, and method for evaluating magnetic disk for load / unload system
JP5260510B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
US7744966B2 (en) Production process of perpendicular magnetic recording medium
JP2013182640A (en) Magnetic recording medium and method of manufacturing the same, and magnetic memory using the same
US7147943B2 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JP2008276913A (en) Vertical magnetic recording medium and its manufacturing method
US8895164B2 (en) Perpendicular magnetic recording medium
JP3755765B2 (en) Manufacturing method of magnetic disk
JP2008276912A (en) Vertical magnetic recording medium and its manufacturing method
JP2011192320A (en) Perpendicular magnetic recording medium
JP2006294220A (en) Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording/reproducing device
JP5465456B2 (en) Magnetic disk
WO2010038754A1 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
JP2006351135A (en) Magnetic disk and manufacturing method for magnetic disk
JP2008257756A (en) Method for manufacturing magnetic recording medium
JP4113787B2 (en) Magnetic disk
JP2006209965A (en) Method for manufacturing magnetic disk
JP5492453B2 (en) Method for manufacturing magnetic recording medium
JP4944471B2 (en) Magnetic disk and manufacturing method thereof
JP2004152462A (en) Magnetic recording medium and its manufacturing method
JP2006228423A (en) Magnetic disk and its manufacturing method
JP2002042329A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20100927

Free format text: JAPANESE INTERMEDIATE CODE: A7422