JP3800467B2 - Method for producing stone by melting waste - Google Patents

Method for producing stone by melting waste Download PDF

Info

Publication number
JP3800467B2
JP3800467B2 JP23319598A JP23319598A JP3800467B2 JP 3800467 B2 JP3800467 B2 JP 3800467B2 JP 23319598 A JP23319598 A JP 23319598A JP 23319598 A JP23319598 A JP 23319598A JP 3800467 B2 JP3800467 B2 JP 3800467B2
Authority
JP
Japan
Prior art keywords
waste
gypsum
silica
mass
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23319598A
Other languages
Japanese (ja)
Other versions
JP2000072557A (en
Inventor
正人 川口
澄夫 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP23319598A priority Critical patent/JP3800467B2/en
Publication of JP2000072557A publication Critical patent/JP2000072557A/en
Application granted granted Critical
Publication of JP3800467B2 publication Critical patent/JP3800467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B32/00Artificial stone not provided for in other groups of this subclass
    • C04B32/005Artificial stone obtained by melting at least part of the composition, e.g. metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物の溶融処理による石材の製造方法に関し、特にシリカ系廃棄物を原料とする石材の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
環境保全に対する関心の増加にともなって、建設系廃棄物や産業系廃棄物のリサイクル焼却処分は廃棄物の減容化及び有害な有機物の削減、腐敗物質の発生抑制に効果が高く、我が国の廃棄物処理においては必須なプロセスとし活用が高まっている。例えば、一般廃棄物すなわち都市ゴミや下水道スラッジ、製紙スラッジ、食品スラッジなどの多くの廃棄物が焼却処理され、安全に処分されている。
こうした焼却処分後には焼却灰が発生するが、この焼却灰には時として重金属などが含有されている場合もあり、有効利用には限界があった。
また、焼却灰以外の建設汚泥などについても有効活用が進んでいない。
こうした状況を改善すべく、様々な検討が進められおり、その中で、シリカ系廃棄物の利用はスラグ化(溶融処理)を通して進める方向性になりつつある。
その理由の一つは、平成5年に環境庁が告示した土壌環境基準が非常に厳しい溶出規制値を採用しており、従来のセメント固化では達成できない場合が多いためである。
セメント混合処理による固化などに比較してコストが高いスラグ化に移行せざるを得ないのは、シリカ系廃棄物を高温で溶融することによって、有害物が含有されている場合であってもそれを溶出しにくい状態にできるためである。
【0003】
ところで、シリカ系廃棄物のスラグ化に際して問題となるのがコストである。
主要コストは廃棄物を溶融温度以上までに上げるための熱エネルギー源と、溶融炉の建設費である。
溶融温度を低下させる方法として、石灰石や生石灰なとのCaO成分を添加してスラグの塩基度を上昇させることによって実現する方法があったが、石灰石等資源の無駄使いとなり、処理に関わるコストも増加するという問題があった。
また、廃棄物の種類によってはスラグ化に際してガスが発生する場合があり、スラグ溶融体の粘度が高い場合には、冷却後のスラグ中に多量の気泡が残存することになる。多量に気泡が残存すると、固化したスラグ製品の用途によっては利用に支障を来す可能性があるほか、減容化率も大幅に低下してしまう。
以上のように、従来の処理方法では強引に加熱して溶融するのみであり、多大なエネルギーを消費しているにも拘わらず溶融物は気泡を含む不均質な材料ができるのみであった。よって、▲1▼.シリカ系廃棄物のスラグ化処理に当たっては対象物の溶融温度を低コストで低下させる必要があり、また、▲2▼.溶融体の粘性を低下させて緻密なスラグを形成させる必要があった。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく種々検討・研究を行い、下記構成の本発明をなすに至った。
(1)石炭灰、製紙スラッジ、建設汚泥などのシリカ系廃棄物に、石膏又は亜硫酸石膏あるいはそれらの含有廃棄物を添加して溶融し、かつその添加量は溶融試料中のシリカ質量に対してCaO換算で10〜150質量%となる量にして添加し、その後、冷却・硬化して石材となすことを特徴とする廃棄物の溶融処理による石材の製造方法。
(2)石炭灰、製紙スラッジ、建設汚泥などのシリカ系廃棄物に、石膏又は亜硫酸石膏あるいはそれらの含有廃棄物とセメント、生石灰等の固化材を添加して溶融し、かつその添加量は溶融試料中のシリカ質量に対してCaO換算で10〜150質量%となる量を添加し、その後、冷却・硬化して石材となすことを特徴とする廃棄物の溶融処理による石材の製造方法。
(3)石膏又は亜硫酸石膏あるいはそれらの含有廃棄物の添加量は、溶融試料中のシリカ質量に対して、CaO換算として、シリカ系廃棄物中に含有されるCa成分との総和量で30〜150質量%であることを特徴とする前項(1)ないし(2)のいずれか1項に記載の廃棄物の溶融処理による石材の製造方法。
【0005】
【発明の実施の形態】
本発明の実施の形態について説明する。
本発明では、シリカやアルミナなど、土などと同等の成分からなる廃棄物(例えば、石灰石、製紙スラッジ焼却灰、都市ゴミ焼却灰、建設汚泥など)を溶融処理して人造石や人造石パネルを製造するに当たって、製造品の品質向上と製造コストを低減するために溶融物質の粘度の低下と気泡の低減並びに溶融温度の低下を目的として、石膏、亜硫酸石膏又はそれらの含有物を主成分とする化合物をシリカ系廃棄物に混合し、溶融処理する。
すなわち、▲1▼.シリカ系廃棄物に石膏、亜硫酸石膏又はそれらの含有廃棄物(例えば、脱硫石膏や石膏ポード屑など)を、溶融試料中のシリカに対してCaO換算で10〜150質量%となるように添加して溶融する。この過程を経ることにより、溶融状態のシリカ系廃棄物の粘度を低下できるため、発生ガスによる残留気泡を溶融物中からほとんど除去できる。
▲2▼.シリカ系廃棄物に石膏、亜硫酸石膏又はそれらの含有廃棄物(例えば、脱硫石膏や石膏ポード屑など)を、溶融試料中のシリカに対してCaO換算で10〜150質量%、及びセメントや石灰などの固化材を添加・混合して固化し、続いて混合固化物を溶融する。この過程を経ることにより、▲1▼.の効果が得られるほかに、シリカ系廃棄物と石膏、亜硫酸石膏又はそれらの含有廃棄物(例えば、脱硫石膏や石膏ポード屑など)とがムラなく混合された状態で、溶融処理されるため、溶融温度に達する時間が短く、かつ均質な溶融物及び硬化物(石材)が得られる。
なお、添加する脱硫石膏等中及びシリカ系廃棄物等中のCa成分の総和量を、CaO換算で、溶融スラグ中のシリカ質量に対して10〜150質量%とすることが好ましい。150質量%を越える量とすると、溶融中のガス発生量が大きくなり、減容化が大きく損なわれるほか硬化物(スラグ)の強度の低下等のためその用途も大きく制限される。また、30質量%未満量であると融点の上昇と粘性の増加が発生し、安定した溶融物が得られなくなる。
よって、脱硫石膏等の添加量は、CaO換算で石炭灰中のシリカ質量に対して10〜150質量%が好ましい。
【0006】
本発明の実施の形態を実施例により説明する。
焼却処理施設では、SOxガスの処理に伴って、多量の脱硫石膏が排出されている。この脱硫石膏は石膏ポードの原料などに有効利用されているが、この利用にも限界があり、新たな利用方法が必要となっている。建設産業から発生する石膏ポード屑も同様である。また、廃棄物の焼却などにおいて発生する脱硫石膏を有効利用する必要があった。
【0007】
【実施例】
シリカ系廃棄物である石炭灰(フライアッシュ)に各種割合で排煙脱硫石膏を添加し、加熱溶融した。
溶融条件は、1500℃で30分間保持した。
溶融時における溶融体の粘度は、図1に示す方法で確認した。すなわち、長さ8cmの高融点耐火平板Pの一端側に1gの溶融対象物(試料)Tを置き、その一端側部分の下面に高さ5mmの高融点耐火性棒Hを挿設し、傾斜状態で加熱溶融した。
加熱によって溶融した試料Tは傾斜勾配にしたがって流下するが、その流動長さLは、溶融時の粘度が低ければ長くなり、粘度が高ければ短くなる。
冷却後に溶融した試料Tの流動長さLを測定し、溶融混合材の粘度を簡易的に把握した。
試験結果を図2に示した。
図中、A材は石灰石を、B材は脱硫石膏を、石炭灰中に添加した試料である。
溶融材料の流動長さは酸化カルシウム(CaO)とシリカ(SiO:二酸化珪素)との比率である塩基度の増加によって大きくなっている。そして、その傾向は、添加剤としてA材のみ、B材のみ、A材とB材の混合物を使用しても同じ結果となっている。
以上のように、排煙脱硫石膏は溶融処理における塩基度調整材として使用できるが、その可能添加率には限界がある。すなわち、脱硫石膏をCaO換算で石炭灰中のシリカ質量に対して多くの量を添加すると、溶融中のガス発生量が大きくなり、減容化が大きく損なわれるほか、スラグの用途も大きく制限されるようになってしまう。
ガスは低沸点成分、炭酸ガスなどの溶融スラグ中に固溶できない成分と考えられるが、物質は特定できていない。このため、脱硫石膏の添加率は石膏、亜硫酸石膏換算で5〜100質量%の範囲が好ましい。特に好ましくは、気泡の発生しない5〜60質量%である。
【0008】
石炭灰を溶融処理する場合、粒子の飛散を防止するために、固形化(ブリケット化)が前提となる。
石炭灰の固形化にはセメントや石灰が用いられるが、ここに排煙脱硫石膏を添加すると強度増加効果が得られる。一定強度を得るためにはセメントなどの固化材必要量を低減できるので、コスト面から見ても排煙脱硫石膏の添加は有用性が高い。
排煙脱硫石膏は高温でも分解しにくい性質を持っているが、溶融時の条件によっては亜硫酸ガスや硫化水素などを発生する可能性もある。そこで、溶融過程でのガスの発生量を分析した。その結果、脱硫石膏添加の石炭灰を1500℃で溶融した場合、分解ガス中の硫黄質量は元試料中に含有される硫黄質量の5%以下であることが確認できた。
以上の結果から、添加した脱硫石膏は石炭灰の溶融温度と粘度を有効に低下させ、溶融物中に安定的に存在し続けることが判った。
【0009】
【発明の効果】
以上のとおり、本発明によれば、
シリカ系廃棄物に、石膏、亜硫酸石膏又はそれらの含有廃棄物を添加して溶融することにより、容易に優良な石材を製造することができる。
廃棄物試料の減容化も達成され、かつ気泡量も少なく、高強度な硬化物石材を製造することができる。
よって、廃棄物である石膏ボード屑等の石膏、亜硫酸石膏又はそれらの含有廃棄物を石材製造に有利に利用することができる。
【図面の簡単な説明】
【図1】石炭灰に脱硫石膏にを添加して1500℃で溶融した時の粘度(流動長さ)の測定法を示す説明図。
【図2】石炭灰に脱硫石膏を添加して1500℃で溶融した時の溶融材料の塩基度(CaO/SiO)と流動長さの関係を示すグラフ図。
【符号の説明】
T:溶融対象物(溶融試料),H:高融点耐火性棒,L:溶融体の流動長さ,
P:高融点耐火平板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing stone by melting waste, and more particularly to a method for producing stone using silica-based waste as a raw material.
[0002]
[Prior art and problems to be solved by the invention]
With increasing interest in environmental conservation, recycling and incineration of construction and industrial waste is highly effective in reducing the volume of waste, reducing harmful organic substances, and reducing the generation of spoilage substances. Utilization is increasing as an essential process in material processing. For example, many wastes such as general waste, that is, municipal waste, sewer sludge, paper sludge, food sludge, etc. are incinerated and safely disposed of.
Incineration ash is generated after such incineration, but this incineration ash sometimes contains heavy metals and the like, and its effective use is limited.
In addition, construction sludge other than incinerated ash has not been effectively used.
In order to improve such a situation, various investigations are underway, and among them, the use of silica-based waste is becoming a direction to proceed through slagging (melting treatment).
One reason for this is that the soil environment standards announced by the Environment Agency in 1993 employ very strict elution control values, which are often not achieved by conventional cement solidification.
The reason for shifting to slag, which is more expensive than solidification by cement mixing treatment, is that even if harmful substances are contained by melting silica-based waste at a high temperature. This is because it can be made difficult to elute.
[0003]
By the way, the cost becomes a problem when slagging silica-based waste.
The main costs are the heat energy source to raise the waste to above the melting temperature and the construction cost of the melting furnace.
As a method for lowering the melting temperature, there was a method realized by increasing the basicity of slag by adding a CaO component such as limestone or quicklime, but it was a waste of resources such as limestone, and the cost related to processing There was a problem of increasing.
Further, depending on the type of waste, gas may be generated during slag formation. When the viscosity of the slag melt is high, a large amount of bubbles remain in the slag after cooling. If a large amount of bubbles remain, depending on the use of the solidified slag product, there is a possibility that it will hinder the use, and the volume reduction rate will be greatly reduced.
As described above, in the conventional processing method, only the heat is forcibly heated and melted, and despite the fact that a great amount of energy is consumed, the melt can only produce a heterogeneous material containing bubbles. Therefore, (1). In the slag processing of silica waste, it is necessary to lower the melting temperature of the object at low cost, and (2). It was necessary to reduce the viscosity of the melt to form a dense slag.
[0004]
[Means for Solving the Problems]
The present inventors have conducted various studies and studies to solve the above-mentioned problems, and have come to achieve the present invention having the following configuration.
(1) Coal ash, paper sludge, the silica-based waste such as construction sludge, by adding gypsum or calcium sulfite or containing waste thereof melts, and the addition amount thereof to the silica mass of molten sample A method for producing a stone material by melting waste, characterized in that it is added in an amount of 10 to 150 mass% in terms of CaO , and then cooled and hardened to form a stone material.
(2) Add gypsum or sulfite gypsum or waste containing them to solid waste such as coal ash, paper sludge, construction sludge, etc., and add solidification material such as cement and quicklime, and the amount added is dissolved. A method for producing a stone by melting waste, characterized in that an amount of 10 to 150% by mass in terms of CaO is added to the silica mass in a fused sample , and then cooled and hardened to form a stone.
(3) 30 the sum of the added amount of gypsum or calcium sulfite or containing waste thereof, the silica mass of molten sample, as calculated as CaO, and Ca O ingredient contained in the silica-based waste The method for producing a stone material by melting the waste according to any one of (1) to (2) above, wherein the method is ˜150 mass%.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
In the present invention, waste made of the same component as soil, such as silica and alumina (for example, limestone, paper sludge incineration ash, municipal waste incineration ash, construction sludge, etc.) is melt-treated to produce artificial stone or artificial stone panels. In manufacturing, in order to improve the quality of manufactured products and reduce manufacturing costs, the main component is gypsum, sulfite gypsum, or their contents for the purpose of reducing the viscosity of molten materials, reducing bubbles, and lowering the melting temperature. The compound is mixed with silica waste and melt processed.
That is, (1). Add gypsum, sulfite gypsum, or wastes containing them (for example, desulfurized gypsum and gypsum pod waste) to silica-based waste so that the silica content in the molten sample is 10 to 150% by mass in terms of CaO. Melt. By passing through this process, the viscosity of the silica-based waste in the molten state can be reduced, so that residual bubbles due to the generated gas can be almost removed from the melt.
(2). Gypsum, sulfite gypsum or waste containing them (for example, desulfurized gypsum and gypsum pod waste) in silica-based waste, 10 to 150 mass% in terms of CaO with respect to silica in the molten sample, cement, lime, etc. The solidified material is added and mixed to solidify, and then the mixed solidified material is melted. By going through this process, (1). In addition, the silica-based waste and gypsum, sulfite gypsum or waste containing them (for example, desulfurized gypsum and gypsum pod waste) are melt-processed in an evenly mixed state. The time to reach the melting temperature is short, and a homogeneous melt and cured product (stone) are obtained.
In addition, it is preferable to make the total amount of Ca component in desulfurization gypsum etc. to add and silica-type waste etc. into 10-150 mass% with respect to the silica mass in molten slag in CaO conversion. If the amount exceeds 150% by mass, the amount of gas generated during melting becomes large, the volume reduction is greatly impaired, and the use is also greatly limited due to a decrease in the strength of the cured product (slag). On the other hand, when the amount is less than 30% by mass, the melting point increases and the viscosity increases, and a stable melt cannot be obtained.
Therefore, the addition amount of desulfurized gypsum and the like is preferably 10 to 150 mass% with respect to the silica mass in the coal ash in terms of CaO.
[0006]
The embodiment of the present invention will be described with reference to examples.
In the incineration facility, a large amount of desulfurized gypsum is discharged with the processing of the SOx gas. This desulfurized gypsum is effectively used as a raw material for gypsum pods, but there is a limit to its use and a new method of use is required. The same applies to gypsum pod waste generated from the construction industry. In addition, it is necessary to effectively use desulfurized gypsum generated in incineration of waste.
[0007]
【Example】
Flue gas desulfurization gypsum was added to silica ash (fly ash) in various proportions and melted by heating.
Melting conditions were maintained at 1500 ° C. for 30 minutes.
The viscosity of the melt at the time of melting was confirmed by the method shown in FIG. That is, 1 g of an object to be melted (sample) T is placed on one end side of a high-melting point refractory flat plate P having a length of 8 cm, and a high-melting point refractory rod H having a height of 5 mm is inserted on the lower surface of the one end side portion. It was heated and melted in the state.
The sample T melted by heating flows down according to the gradient, but the flow length L becomes longer when the viscosity at the time of melting is lower and becomes shorter when the viscosity is higher.
The flow length L of the sample T melted after cooling was measured, and the viscosity of the molten mixed material was simply grasped.
The test results are shown in FIG.
In the figure, material A is a sample in which limestone is added, and material B is desulfurized gypsum added to coal ash.
The flow length of the molten material is increased by the increase in basicity, which is the ratio of calcium oxide (CaO) and silica (SiO 2 : silicon dioxide). And the tendency is the same result, even if it uses only A material, only B material, and the mixture of A material and B material as an additive.
As described above, flue gas desulfurization gypsum can be used as a basicity adjusting material in the melting process, but its possible addition rate is limited. In other words, if a large amount of desulfurized gypsum is added to the silica mass in the coal ash in terms of CaO, the amount of gas generated during melting increases, volume reduction is greatly impaired, and the use of slag is greatly limited. It will become like.
Gas is considered to be a low-boiling component, a component that cannot be dissolved in molten slag such as carbon dioxide, but the substance has not been specified. For this reason, the addition rate of desulfurized gypsum is preferably in the range of 5 to 100% by mass in terms of gypsum and sulfite gypsum. Particularly preferably, it is 5 to 60% by mass in which no bubbles are generated.
[0008]
When the coal ash is melt-processed, solidification (briquetting) is a prerequisite for preventing particle scattering.
Cement and lime are used to solidify the coal ash, but adding flue gas desulfurization gypsum here can increase the strength. The addition of flue gas desulfurization gypsum is highly useful from the viewpoint of cost because the necessary amount of solidifying material such as cement can be reduced to obtain a certain strength.
Although flue gas desulfurization gypsum has the property of not easily decomposing even at high temperatures, it may generate sulfurous acid gas or hydrogen sulfide depending on the melting conditions. Therefore, the amount of gas generated during the melting process was analyzed. As a result, when desulfurized gypsum-added coal ash was melted at 1500 ° C., it was confirmed that the sulfur mass in the cracked gas was 5% or less of the sulfur mass contained in the original sample.
From the above results, it was found that the added desulfurized gypsum effectively reduced the melting temperature and viscosity of coal ash and continued to exist stably in the melt.
[0009]
【The invention's effect】
As described above, according to the present invention,
By adding gypsum, sulfite gypsum, or waste containing them to silica-based waste and melting it, an excellent stone can be easily produced.
Volume reduction of the waste sample is also achieved, and the amount of bubbles is small, and a high-strength hardened stone can be produced.
Therefore, gypsum such as gypsum board waste that is waste, sulfite gypsum, or waste containing them can be advantageously used for the production of stone.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a method for measuring viscosity (flow length) when desulfurized gypsum is added to coal ash and melted at 1500 ° C. FIG.
FIG. 2 is a graph showing the relationship between the basicity (CaO / SiO 2 ) of molten material and the flow length when desulfurized gypsum is added to coal ash and melted at 1500 ° C.
[Explanation of symbols]
T: object to be melted (molten sample), H: high melting point refractory rod, L: flow length of melt,
P: High melting point refractory flat plate

Claims (3)

石炭灰、製紙スラッジ、建設汚泥などのシリカ系廃棄物に、石膏又は亜硫酸石膏あるいはそれらの含有廃棄物を添加して溶融し、かつその添加量は溶融試料中のシリカ質量に対してCaO換算で10〜150質量%となる量にして添加し、その後、冷却・硬化して石材となすことを特徴とする廃棄物の溶融処理による石材の製造方法。 Coal ash, paper sludge, the silica-based waste such as construction sludge, by adding gypsum or calcium sulfite or containing waste thereof melts, and the addition amount thereof is calculated as CaO the silica mass of molten sample A method for producing a stone by melting waste, characterized in that it is added in an amount of 10 to 150% by mass , and then cooled and hardened to form a stone. 石炭灰、製紙スラッジ、建設汚泥などのシリカ系廃棄物に、石膏又は亜硫酸石膏あるいはそれらの含有廃棄物とセメント、生石灰等の固化材を添加して溶融し、かつその添加量は溶融試料中のシリカ質量に対してCaO換算で10〜150質量%となる量を添加し、その後、冷却・硬化して石材となすことを特徴とする廃棄物の溶融処理による石材の製造方法。 Coal ash, paper sludge, the silica-based waste such as construction sludge, gypsum or calcium sulfite or containing waste thereof and cement with the addition of solidifying material such as quicklime melted, and added amount of molten sample thereof A method for producing a stone by melting waste, characterized in that an amount of 10 to 150% by mass in terms of CaO is added to the silica mass of the product, and then cooled and hardened to form a stone. 石膏又は亜硫酸石膏あるいはそれらの含有廃棄物の添加量は、溶融試料中のシリカ質量に対して、CaO換算として、シリカ系廃棄物中に含有されるCa成分との総和量で30〜150質量%であることを特徴とする請求項1ないし2のいずれか1項に記載の廃棄物の溶融処理による石材の製造方法。Amount of gypsum or calcium sulfite or containing waste thereof, the silica mass of molten sample, as calculated as CaO, 30 to 150 mass in total amount of Ca O ingredient contained in the silica-based waste The method for producing a stone material by melting the waste according to any one of claims 1 to 2 , characterized in that the percentage is%.
JP23319598A 1998-08-19 1998-08-19 Method for producing stone by melting waste Expired - Fee Related JP3800467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23319598A JP3800467B2 (en) 1998-08-19 1998-08-19 Method for producing stone by melting waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23319598A JP3800467B2 (en) 1998-08-19 1998-08-19 Method for producing stone by melting waste

Publications (2)

Publication Number Publication Date
JP2000072557A JP2000072557A (en) 2000-03-07
JP3800467B2 true JP3800467B2 (en) 2006-07-26

Family

ID=16951246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23319598A Expired - Fee Related JP3800467B2 (en) 1998-08-19 1998-08-19 Method for producing stone by melting waste

Country Status (1)

Country Link
JP (1) JP3800467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526678A (en) * 2005-01-07 2008-07-24 ウォン パーク、ジョング Method for producing recycled hardened body using waste gypsum

Also Published As

Publication number Publication date
JP2000072557A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
RU2070548C1 (en) Method of burning wastes from whatever origin containing toxic substances, and burned product
US6250235B1 (en) Method and product for improved fossil fuel combustion
AU728391B2 (en) Environmentally stable products derived from the remediation of contaminated sediments and soils
AU728355B2 (en) Process for preparing environmentally stable products by the remediation of contaminated sediments and soils
CA1064977A (en) Stabilization of sludge slurries
KR20000029043A (en) Method of solidifying steel-making slag and material produced by the method
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
CA2062637A1 (en) Method and apparatus for recovering useful products from waste streams
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP3800467B2 (en) Method for producing stone by melting waste
CN1164849A (en) Method for manufacturing cement clinker in stationary burning reactor
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JP2000350977A (en) Method for solidifying granular steel-making slag
CN111926192A (en) Method for treating stainless steel dedusting ash by submerged arc furnace process
JP4510330B2 (en) Melting method and slag manufacturing method
JP2005104804A (en) Artificial aggregate
JP2002097060A (en) Method for manufacturing sulfur material
JPH11139854A (en) Admixture for mortar or concrete and mortar or concrete
JP2002097059A (en) Sulfur binder and sulfur civil engineering and construction material
JP4579063B2 (en) Method for producing conglomerate-like artificial rock
JPS6115759B2 (en)
KR100488142B1 (en) Stabilization of Waste Incineration Using Lime Desulfurization Slag
KR20040099671A (en) A solidification agent to treat solidification/stabilization of ash
JP4436153B2 (en) Blast furnace slag reformer and its reforming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees