JP2005104804A - Artificial aggregate - Google Patents

Artificial aggregate Download PDF

Info

Publication number
JP2005104804A
JP2005104804A JP2003344014A JP2003344014A JP2005104804A JP 2005104804 A JP2005104804 A JP 2005104804A JP 2003344014 A JP2003344014 A JP 2003344014A JP 2003344014 A JP2003344014 A JP 2003344014A JP 2005104804 A JP2005104804 A JP 2005104804A
Authority
JP
Japan
Prior art keywords
ash
coal
firing
aluminum
artificial aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344014A
Other languages
Japanese (ja)
Other versions
JP4405225B2 (en
Inventor
Toshio Imai
敏夫 今井
Yasuhisa Taguma
靖久 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003344014A priority Critical patent/JP4405225B2/en
Publication of JP2005104804A publication Critical patent/JP2005104804A/en
Application granted granted Critical
Publication of JP4405225B2 publication Critical patent/JP4405225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the lowering of the yield of good quality product by decreasing the wear of a molded/granulated material in the course of firing, widening a firing temperature range by the control of a liquid forming rate and adding aluminum ash to retard a liquid phase forming rate and prolonging the burning time of unburned carbon contained in coal ash to reduce the residual quantity of the unburned carbon to become a foaming source at a high temperature in a method of manufacturing artificial aggregate using coal ash having large variation of chemical/physical performance. <P>SOLUTION: The artificial aggregate is formed by heating and firing a molded body comprising coal ash, aluminum ash, cement and water. The coal ash is flyash discharged from a coal-fired powder plant and/or clinker ash. The artificial aggregate has a formulation of 27.5-62.5 pts.wt. SiO<SB>2</SB>, 35-55 pts.wt. Al<SB>2</SB>O<SB>3</SB>and 2.5-17.5 pts.wt. CaO as a chemical composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、コンクリートを形成するために用いられる人工骨材、路盤材としての人工骨材に関し、詳しくはアルミ灰を含む人工骨材に関する。   The present invention relates to an artificial aggregate used for forming concrete and an artificial aggregate as a roadbed material, and more particularly to an artificial aggregate containing aluminum ash.

この発明は、コンクリートを形成するために用いられる人工骨材、路盤材としての人工骨材に関し、石炭灰の有効利用に資するとともにその処分が社会的にも問題視されている微粉状のアルミ灰を有効利用し得るようにした人工骨材を提供する。微粉炭を燃料とする火力発電所では、年間400万トン以上もの石炭灰が副生する。火力発電所のボイラー等で石炭を燃料として燃焼させると産業廃棄物として多量のフライアッシュが発生する。そのうちの約半分が、セメントコンクリート等の建設、土木分野、窯業分野で有効利用されている。しかし、フライアッシュの発生量は、年々確実に増加している。環境保全、資源の有効活用の立場からも、フライアッシュの有効利用が更に促進されることが望まれる。 TECHNICAL FIELD The present invention relates to an artificial aggregate used for forming concrete and an artificial aggregate as a roadbed material, and contributes to the effective use of coal ash and its disposal is considered as a problem socially. It is possible to provide an artificial aggregate that can be used effectively. At thermal power plants that use pulverized coal as fuel, over 4 million tons of coal ash are produced as a by-product. When coal is burned as fuel in a boiler of a thermal power plant, a large amount of fly ash is generated as industrial waste. About half of them are effectively used in the construction of cement concrete, civil engineering, and ceramics. However, the amount of fly ash generated is steadily increasing year by year. From the standpoint of environmental conservation and effective use of resources, it is desirable that the effective use of fly ash be further promoted.

一方、フライアッシュをコンクリート骨材として用いる試みは種々なされているが実用化に至っているものは極めて少ない。その原因は、フライアッシュの持つ化学的物理的性状のバラツキが大であるため骨材を高収率で製造出来ないことにある。 On the other hand, there have been various attempts to use fly ash as a concrete aggregate, but very few have been put into practical use. The cause is that the aggregate cannot be produced in high yield because of the large variation in chemical and physical properties of fly ash.

この石炭灰を主原料とした人工骨材の製造方法にも様々なものがあるが、天然の砕石を代替できる程度に低吸水性でありかつ高強度の高品質の人工骨材を得るために、造粒・焼成法が一般的に採用される。造粒・焼成法による人工骨材の製造は、石炭灰に水及び成分調製材を添加・混合し、パン型ペレタイザーなどにより造粒成形する。その後ロータリーキルン中で最高温度1100〜1500℃の温度で焼成されて緻密化が達せられ、焼成型の人工骨材を得る。 There are various methods for producing artificial aggregates using coal ash as the main raw material, but in order to obtain high-quality artificial aggregates with low water absorption and high strength that can replace natural crushed stones. A granulation / firing method is generally employed. Manufacture of artificial aggregates by granulation / firing method involves adding and mixing water and component preparation materials to coal ash and granulating and molding with a pan-type pelletizer. Thereafter, it is fired at a maximum temperature of 1100 to 1500 ° C. in a rotary kiln to achieve densification, and a fired artificial aggregate is obtained.

上記の方法によって、多くの企業とその研究開発者らが量産技術の確立を試みてきたが、未だその実現には至っていない。その主たる理由は、火力発電装置の燃料として用いた石炭の種類、燃焼条件などの相違により、副生する石炭灰の物理的、化学的性質が変動し、その影響を排除した人工骨材の量産が実現していないからである。 Although many companies and their research and development have tried to establish mass production technology by the above method, it has not yet been realized. The main reason for this is that the physical and chemical properties of coal ash produced as a by-product fluctuate due to differences in the types of coal used as fuel for thermal power generation equipment and combustion conditions, etc. This is because is not realized.

詳しくは、この性質の変動は、製造工程での次のような問題の原因となっている。
1. 成形・造粒物が、ロータリーキルン内で転動しながら焼成される過程で、磨り減ることで微粉が生成する。この微粉が成形・造粒物とともにそのまま高温帯に移動してくると、成形・造粒物の溶融付着を助長し、その結果製品収率が低下してしまう。
2. 成形・造粒物中、未燃焼の炭質物の含有が過剰であると、緻密化と同時に発泡が起こるため、高密度の人工骨材を得ることができない。
3. 石炭灰の化学組成が異なると、良品質の人工骨材を得る焼成温度及びその幅も変化する。特にアルカリ金属及びアルカリ土類金属の含有が過剰となると、焼成温度幅の縮小が顕著となり、緻密化の不足、溶融付着の助長により製品収率が低下してしまう。
Specifically, this variation in properties causes the following problems in the manufacturing process.
1. During the process in which the molded and granulated product is fired while rolling in a rotary kiln, fine powder is produced by polishing. If this fine powder moves to the high temperature zone as it is together with the molded / granulated product, it promotes the melt adhesion of the molded / granulated product, and as a result, the product yield decreases.
2. If the unburned carbonaceous material is excessively contained in the molded / granulated product, foaming occurs simultaneously with densification, so that a high-density artificial bone cannot be obtained.
3. When the chemical composition of coal ash is different, the firing temperature and the width of obtaining good quality artificial aggregates also change. In particular, when the content of alkali metal and alkaline earth metal is excessive, the firing temperature range is significantly reduced, resulting in a decrease in product yield due to insufficient densification and promotion of melt adhesion.

上記の1の問題に対しては、石炭灰を成形・造粒する際に水及びセメントを添加して、セメントの水和反応生成物により成形・造粒物の磨り減りを改善する技術がある。ところが、成形・造粒物の磨り減りを改善できる程度にセメントを添加すると、セメントの主成分がCaOであるため、成形・造粒物のアルカリ金属及びアルカリ土類金属の総量が過剰となってしまう。その結果上記の3の問題の原因となってしまう。
すなわち、焼成過程で成形・造粒物が最も緻密化してから後、液相の形成速度が著しく速くなることより、わずかな温度の上昇、滞留時間の増加が溶融付着を促進し製品回収率が低下してしまう。
To solve the above problem 1, there is a technique for adding water and cement when molding and granulating coal ash to improve the abrasion of the molded and granulated product by the hydration reaction product of cement. . However, when cement is added to such an extent that the wear of the molded / granulated product can be improved, the main component of the cement is CaO, so the total amount of alkali metal and alkaline earth metal in the molded / granulated product becomes excessive. End up. As a result, the above three problems are caused.
That is, after the compacted and granulated material is most densified during the firing process, the liquid phase formation rate becomes remarkably faster, so a slight increase in temperature and increase in residence time promotes melt adhesion and increases product recovery. It will decline.

上記の3の問題に対しては、特開平10−251048号公報に開示されるような技術がある。
特開平10−251048号同技術は、フライアッシュと融点1500℃以上のシリカ−アルミナ含有微粉末とを混合し、該混合物を造粒した後、焼成することを特徴とする人工骨材の製造方法に関するものである。同技術を用いれば、本発明の解決課題のひとつである焼成温度幅の拡大が達せられるものの、成形・造粒物の磨り減りの問題については解決することができない。また、融点1500℃以上のシリカ−アルミナ含有微粉末を購入することは、製造コストが増加する。
For the above three problems, there is a technique as disclosed in JP-A-10-251048.
Japanese Patent Application Laid-Open No. 10-251048 discloses a method for producing an artificial bone material, which comprises mixing fly ash and fine powder containing silica-alumina having a melting point of 1500 ° C. or more, granulating the mixture, and firing the mixture. It is about. If this technique is used, the expansion of the firing temperature range, which is one of the problems to be solved by the present invention, can be achieved, but the problem of wear of the molded / granulated product cannot be solved. In addition, purchasing a silica-alumina-containing fine powder having a melting point of 1500 ° C. or higher increases the production cost.

一方、アルミ灰を人工骨材の原料として利用するとする技術には、特開平11−314950号公報に記載されるものがある。
特開平11−314950号しかしながら、同技術は種々の微粉状の無機質残滓物をガラスで固化して骨材とするとしているものであって、上記問題点を解決するに至らず、セメントを構成要件とするものでもない。
On the other hand, there is a technique described in JP-A-11-314950 that uses aluminum ash as a raw material for artificial aggregate.
However, this technique is intended to solidify various finely divided inorganic residues with glass to form an aggregate, and does not solve the above problems, and cement is a constituent requirement. It is not something to do.

本発明の課題は、以上のような状況に鑑み、化学的・物理的性状のばらつきの大きな石炭灰を主原料とする人工骨材の製造方法にあって、焼成途上の成形・造粒物の磨り減りの軽減と、液相形成速度の制御による焼成温度範囲の拡大というふたつの課題を解決し、併せて、アルミ灰の添加により液相形成速度を遅らせ、石炭灰中に含まれる未燃炭素の燃焼時間をより長くし、これにより、高温での発泡源となる未燃炭素の残留量を低減させ、良品歩留まりの低下を解決するにある。 In view of the situation as described above, an object of the present invention is a method for producing an artificial aggregate using coal ash having a large variation in chemical and physical properties as a main raw material. Unsolved carbon contained in coal ash is solved by reducing the wear and extending the firing temperature range by controlling the liquid phase formation rate, and at the same time, slowing the liquid phase formation rate by adding aluminum ash. In this case, the combustion time is further increased, thereby reducing the residual amount of unburned carbon that becomes a foaming source at a high temperature and solving the decrease in the yield of non-defective products.

上記の課題の解決のために本願第一の発明は、石炭灰、アルミ灰、セメント、水からなる成形物を加熱焼成してなることを特徴とする人工骨材(請求項1)。
第2の発明は、石炭灰が、石炭火力発電所から排出されるフライアッシュ及び/又はクリンカーアッシュであり、人工骨材が化学組成として、SiO2で27.5〜62.5重量部、Al2O3で35〜55重量部、CaOで2.5〜17.5重量部の配合組成を有することを特徴とする請求項1記載の人工骨材(請求項2)。第3の発明は、アルミ灰が酸素を含有する雰囲気条件下であらかじめ加熱処理されることを特徴とする請求項1及び2記載の人工骨材(請求項3)。第4の発明は、アルミ灰が酸素を含有する雰囲気条件下であらかじめ粉砕されていることを特徴とする請求項1、2及び3記載の人工骨材(請求項4)である。
In order to solve the above problems, the first invention of the present application is an artificial aggregate obtained by heating and firing a molded article made of coal ash, aluminum ash, cement, and water (Claim 1).
In the second invention, the coal ash is fly ash and / or clinker ash discharged from a coal-fired power plant, and the artificial aggregate has a chemical composition of 27.5 to 62.5 parts by weight of SiO2 and Al2O3. The artificial bone material according to claim 1, which has a blending composition of 35 to 55 parts by weight and 2.5 to 17.5 parts by weight of CaO (claim 2). According to a third aspect of the present invention, there is provided the artificial bone material according to claims 1 and 2, wherein the aluminum ash is preliminarily heat-treated under an atmosphere condition containing oxygen (invention 3). A fourth invention is the artificial bone material according to claims 1, 2, and 3 (invention 4), wherein the aluminum ash is pulverized in advance under an atmosphere condition containing oxygen.

本発明によれば、有効な処理策が望まれている石炭灰及びアルミ灰の両者の再資源化が可能となるばかりでなく、従来石炭灰を主原料とする人工骨材の量産技術の課題であった焼成途上の成形・造粒物の磨り減りを極端に減少させ、液相形成速度の制御による焼成温度範囲の拡大させ、化学的・物理的性状のばらつきの大なる石炭灰を原料として高収量で安定的に造粒・焼成による人工骨材を提供するものである。本骨材は、公共事業推進上で欠くことができないコンクリート等用骨材の安定供給にも資するものである。 According to the present invention, it is possible not only to recycle both coal ash and aluminum ash for which an effective treatment measure is desired, but also a problem of mass production technology for artificial aggregates using conventional coal ash as a main raw material. As a raw material, coal ash with a large variation in chemical and physical properties is greatly reduced by greatly reducing the wear and tear of molded and granulated products during firing, and expanding the firing temperature range by controlling the liquid phase formation rate. It provides artificial aggregates by granulation and firing stably with high yield. This aggregate also contributes to the stable supply of aggregates for concrete, etc., which are indispensable for promoting public works.

以下に本願発明の実施するための最良の形態について説明する。焼成産物中のSiO2とAl2O3とCaOの組成は、SiO2の含有率が27.5〜62.5重量部、Al2O3の含有率が35〜55重量部、CaOの含有率が2.5〜17.5重量部となるように、石炭火力発電工程において副生する石炭灰、アルミ精錬工程で副生するアルミ灰、セメント及び必要に応じてベントナイト、粘土などの成形補助材を混合して調合原料とする。CaOが2.5重量部を下回ると液相形成速度が極度に低下しすぎ高密度化温度が上昇し、熱量原単位の増加につながるため好ましくない。逆にCaOが17.5重量部を超えるとアルミ灰により高融点成分の添加をもってしても、焼成温度幅の拡大は達成されない。Al2O3が35重量部を下回ると、焼成産物の化学組成がSiO2-Al2O3-CaO系の三元状態図中クリストバライト、ムライト及びアノーサイトの境界部である共晶線またはクリストバライト、アノーサイト及びウォラストナイトの境界部である共晶線付近に位置するようになり、液相形成速度の制御がしづらくなる。逆に55重量部を超えると液相形成速度が極度に低下しすぎ高密度化温度が上昇し、熱量原単位の増加につながるため好ましくない。 The best mode for carrying out the present invention will be described below. The composition of SiO2, Al2O3 and CaO in the baked product is that the SiO2 content is 27.5-62.5 parts by weight, the Al2O3 content is 35-55 parts by weight, and the CaO content is 2.5-17. Mixing ingredients such as coal ash produced as a by-product in the coal-fired power generation process, aluminum ash produced as a by-product in the aluminum refining process, cement, and, if necessary, bentonite and clay, so as to be 5 parts by weight To do. If CaO is less than 2.5 parts by weight, the liquid phase formation rate is extremely lowered and the densification temperature rises, leading to an increase in the calorific value, which is not preferable. On the other hand, when CaO exceeds 17.5 parts by weight, expansion of the firing temperature range is not achieved even with addition of a high melting point component by aluminum ash. When the Al2O3 content is less than 35 parts by weight, the chemical composition of the calcined product is the eutectic line or cristobalite, anorsite and wollastonite which is the boundary between cristobalite, mullite and anorthite in the ternary phase diagram of the SiO2-Al2O3-CaO system It becomes located in the vicinity of the eutectic line that is the boundary portion of the liquid crystal, making it difficult to control the liquid phase formation rate. On the other hand, if the amount exceeds 55 parts by weight, the liquid phase formation rate is extremely lowered and the densification temperature rises, leading to an increase in the calorific value, which is not preferable.

石炭灰には集塵器で捕集されるフライアッシュのほかクリンカーアッシュも用いることができる。石炭灰中の未燃焼炭質物の濃度としては、8重量%未満であることが好ましい。アルミ灰は、アルミニウム溶解工場及び灰処理工場の各工程で発生するアルミニウムドロス、サイクロンで回収される残灰、バグフィルタで捕集される集塵灰などを用いることができる。セメントには、普通ポルトランドセメントのほか、混合セメント、エコセメントなど、水との反応により水和鉱物を生成するものを用いることができる。 In addition to fly ash collected by a dust collector, clinker ash can be used as coal ash. The concentration of the unburned carbonaceous material in the coal ash is preferably less than 8% by weight. As aluminum ash, aluminum dross generated in each process of an aluminum melting factory and an ash treatment factory, residual ash collected by a cyclone, dust collection ash collected by a bag filter, or the like can be used. As the cement, ordinary Portland cement, mixed cement, eco-cement, or the like that generates a hydrated mineral by reaction with water can be used.

一般にアルミ灰には、金属アルミニウム、窒化アルミニウムなどが含まれており、これが水と接触すると、爆発したり水素、メタン、アンモニアなどのガスを発生したりする。金属アルミニウム、窒化アルミニウムなどの含有率の低いアルミ灰は、何ら前処理を施すことなく、他の原料と混合することができる。いっぽう金属アルミニウム、窒化アルミニウムなどが問題となるレベルで含有されるアルミ灰は、混合に先立って、アルミ灰中の金属アルミニウム及び窒化アルミニウムを酸化または分解させるように前処理を行う必要がある。酸化または分解は、アルミ灰を酸素を含有する雰囲気条件下で加熱するかまたは粉砕するかの手段により行うことができる。また、アルミ灰の添加により液相形成速度を遅らせることができるものであるから、石炭灰中に含まれる未燃炭素の燃焼時間をより長くする効果もある。これにより、高温での発泡源となる未燃炭素の残留量が低減されるため、発泡不良による良品歩留まりの低下をも抑制できる。 In general, aluminum ash contains metallic aluminum, aluminum nitride, and the like, and when this comes into contact with water, it explodes or generates gas such as hydrogen, methane, and ammonia. Aluminum ash having a low content such as metallic aluminum and aluminum nitride can be mixed with other raw materials without any pretreatment. On the other hand, aluminum ash containing metal aluminum, aluminum nitride or the like at a level that causes a problem needs to be pretreated prior to mixing so that the metal aluminum and aluminum nitride in the aluminum ash are oxidized or decomposed. Oxidation or decomposition can be performed by means of heating or pulverizing the aluminum ash under atmospheric conditions containing oxygen. Moreover, since the liquid phase formation rate can be delayed by the addition of aluminum ash, there is also an effect of increasing the combustion time of unburned carbon contained in the coal ash. Thereby, since the residual amount of unburned carbon that becomes a foaming source at a high temperature is reduced, it is possible to suppress a decrease in non-defective product yield due to poor foaming.

上記調合原料を、パン型造粒機、押出し式造粒機等の造粒機を使い、水分を添加しながら造粒し、5〜20mm程度の粒度(粒度分布では、5〜13mmが約50%)の造粒体に成形する。造粒機にもよるが、造粒体の粒度の調整は、造粒機に組み込まれた調整機構の操作で規制した後、必要があれば造粒後に篩い分けするなどして粒度調整を行うことができる。 The above blended raw material is granulated while adding water using a granulator such as a bread granulator or an extrusion granulator, and a particle size of about 5 to 20 mm (5 to 13 mm is about 50 in the particle size distribution). %) Granulated body. Although it depends on the granulator, the particle size of the granulated material is adjusted by adjusting the operation of the adjusting mechanism incorporated in the granulator, and if necessary, the particle size is adjusted by sieving after granulation. be able to.

調合原料中のセメントは成形体に強度を付与する目的で添加混合されるが、成形時に添加される水とセメントとの水和反応鉱物の生成により強固な成形体となる。成形後、自然な状態で養生することもできるが、蒸気養生などの手段により強度発現を促進させることもできる。これにより、焼成過程における、成形体の磨り減りを軽減することができる。 Cement in the blended raw material is added and mixed for the purpose of imparting strength to the molded body, but becomes a strong molded body due to the formation of a hydration reaction mineral between water and cement added during molding. After molding, it can be cured in a natural state, but strength development can also be promoted by means such as steam curing. Thereby, the abrasion of a molded object in a baking process can be reduced.

前記工程で成形されたセメントで硬化した造粒体をロータリーキルンにより、焼成温度1100〜1400℃にて焼成してコンクリート等用人工骨材を製造する。なお、焼成時間は、60〜120分間程度が必要であり、その焼成温度によって最適な焼成時間とする。また、必要があれば焼成により得られた人工骨材を篩にかけ、骨材として好ましくない粒度のものを除去することができる。 The granulated body hardened with cement formed in the above step is fired at a firing temperature of 1100 to 1400 ° C. by a rotary kiln to produce an artificial aggregate for concrete or the like. The firing time needs to be about 60 to 120 minutes, and the optimum firing time is set according to the firing temperature. Further, if necessary, an artificial aggregate obtained by firing can be sieved to remove an undesirable particle size as an aggregate.

石炭火力発電所の集塵器で捕集されたフライアッシュ70重量部、アルミドロス残灰25重量部、普通ポルトランドセメント5重量部とを混合して調合原料とした。この調合原料100重量部に対し、水30重量部を注入、混練して造粒基体を形成した上、パン型造粒機で直径5〜20mm程度の造粒体を成形した。これを屋内の貯蔵ヤードにて、約2週間自然養生することでセメント水和鉱物の生成を行わせるとともに、造粒体の強度の増進を図った。尚、実施例で使用したアルミドロス残灰の化学組成は、金属アルミ=6.1%、AlN=14.2%、Al2O3=55%、SiO2=5.5%、Fe2O3=1.4%、MgO=9.3%、CaO=1.1%、Na2O=0.9%、K2O=0.9%及びSO3=0.4%であった。 70 parts by weight of fly ash collected by a dust collector at a coal-fired power plant, 25 parts by weight of aluminum dross residual ash, and 5 parts by weight of ordinary Portland cement were mixed to obtain a blended raw material. 30 parts by weight of water was injected and kneaded to 100 parts by weight of this blended raw material to form a granulated substrate, and a granulated body having a diameter of about 5 to 20 mm was formed with a bread granulator. This was naturally cured in an indoor storage yard for about two weeks to generate cement hydrated minerals and to increase the strength of the granulated body. The chemical composition of the aluminum dross residual ash used in the examples is as follows: metal aluminum = 6.1%, AlN = 14.2%, Al2O3 = 55%, SiO2 = 5.5%, Fe2O3 = 1.4%, MgO = 9.3%, CaO = 1.1%, Na2O = 0.9%, K2O = 0.9% and SO3 = 0.4%.

焼成設備には、内径450mm、長さ8.34mの重油を燃料とする直接加熱方式のロータリーキルンを使用した。このロータリーキルンに前記造粒体を1時間に約65kgの割合で供給し、最高温度1240℃、キルン内滞留時間約90分の条件で焼成し、粒度分布で70〜80%のものが直径10〜15mm程度となる人工骨材を得た。
得られた人工骨材の絶乾比重は2.02、24時間吸水率も0.5%程度であり、普通骨材を代替できる程度に高品質のものであった。
A direct heating type rotary kiln using heavy oil having an inner diameter of 450 mm and a length of 8.34 m as a fuel was used for the firing equipment. The granulated material is supplied to the rotary kiln at a rate of about 65 kg per hour, fired at a maximum temperature of 1240 ° C. and a residence time in the kiln of about 90 minutes, and a particle size distribution of 70 to 80% has a diameter of 10 to 10%. An artificial aggregate having a size of about 15 mm was obtained.
The obtained artificial aggregate had an absolute dry specific gravity of 2.02 and a 24-hour water absorption rate of about 0.5%, so that it was of a high quality to replace ordinary aggregate.

コンクリートを形成するために用いられる人工骨材、路盤材としての人工骨材に関し、石炭灰の有効利用に資するとともにその処分が社会的にも問題視されている微粉状のアルミ灰を有効利用し得るようにした人工骨材を提供する。 Concerning artificial aggregates used to form concrete and artificial aggregates as roadbed materials, it contributes to the effective use of coal ash and effectively uses finely powdered aluminum ash, whose disposal is regarded as a social problem. Provided is an artificial aggregate obtained.

Claims (4)

石炭灰、アルミ灰、セメント及び水からなる成形物を加熱焼成してなることを特徴とする人工骨材。 An artificial aggregate obtained by heating and firing a molded product made of coal ash, aluminum ash, cement and water. 石炭灰が、石炭火力発電所から排出されるフライアッシュ及び/又はクリンカーアッシュであり、人工骨材が化学組成として、SiO2で27.5〜62.5重量部、Al2O3で35〜55重量部、CaOで2.5〜17.5重量部の配合組成を有することを特徴とする請求項1記載の人工骨材。 The coal ash is fly ash and / or clinker ash discharged from a coal-fired power plant, and the artificial aggregate has a chemical composition of 27.5 to 62.5 parts by weight of SiO2, 35 to 55 parts by weight of Al2O3, The artificial bone material according to claim 1, which has a composition of 2.5 to 17.5 parts by weight of CaO. アルミ灰が酸素を含有する雰囲気条件下であらかじめ加熱処理されることを特徴とする請求項1及び2記載の人工骨材。 The artificial bone material according to claim 1 or 2, wherein the aluminum ash is heat-treated in advance under an atmosphere condition containing oxygen. アルミ灰が酸素を含有する雰囲気条件下であらかじめ粉砕されていることを特徴とする請求項1、2及び3記載の人工骨材。 The artificial bone according to claim 1, 2, and 3, wherein the aluminum ash is pulverized in advance under an atmospheric condition containing oxygen.
JP2003344014A 2003-10-02 2003-10-02 Manufacturing method of artificial aggregate Expired - Fee Related JP4405225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344014A JP4405225B2 (en) 2003-10-02 2003-10-02 Manufacturing method of artificial aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344014A JP4405225B2 (en) 2003-10-02 2003-10-02 Manufacturing method of artificial aggregate

Publications (2)

Publication Number Publication Date
JP2005104804A true JP2005104804A (en) 2005-04-21
JP4405225B2 JP4405225B2 (en) 2010-01-27

Family

ID=34537775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344014A Expired - Fee Related JP4405225B2 (en) 2003-10-02 2003-10-02 Manufacturing method of artificial aggregate

Country Status (1)

Country Link
JP (1) JP4405225B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535288A (en) * 2006-04-28 2009-10-01 セラグリーン カンパニー リミテッド Method for producing artificial lightweight aggregate containing bottom ash
JP2015168590A (en) * 2014-03-05 2015-09-28 住友大阪セメント株式会社 manufacturing method of cement clinker, cement clinker and cement
JP2018012973A (en) * 2016-07-21 2018-01-25 中国電力株式会社 Production method of coal ash granulated material and improvement method of sea bed
JP2018051475A (en) * 2016-09-29 2018-04-05 太平洋セメント株式会社 Production method of coal ash granular material
CN115215592A (en) * 2022-06-29 2022-10-21 广东至道先进土木工程材料技术研究有限公司 Refractory concrete and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2192695A1 (en) * 1995-04-13 1996-10-17 Masatoshi Aoyama Polyester composition and films produced therefrom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535288A (en) * 2006-04-28 2009-10-01 セラグリーン カンパニー リミテッド Method for producing artificial lightweight aggregate containing bottom ash
JP2015168590A (en) * 2014-03-05 2015-09-28 住友大阪セメント株式会社 manufacturing method of cement clinker, cement clinker and cement
JP2018012973A (en) * 2016-07-21 2018-01-25 中国電力株式会社 Production method of coal ash granulated material and improvement method of sea bed
JP2018051475A (en) * 2016-09-29 2018-04-05 太平洋セメント株式会社 Production method of coal ash granular material
CN115215592A (en) * 2022-06-29 2022-10-21 广东至道先进土木工程材料技术研究有限公司 Refractory concrete and preparation method thereof
CN115215592B (en) * 2022-06-29 2023-09-08 广东至道先进土木工程材料技术研究有限公司 Refractory concrete and preparation method thereof

Also Published As

Publication number Publication date
JP4405225B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
KR101482530B1 (en) Cement clinker and cement
EP0188371B1 (en) Artificial lightweight aggregate
JP4405225B2 (en) Manufacturing method of artificial aggregate
JP2000119050A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000143307A (en) Method for producing artificial aggregate and artificial aggregate produced by the same method
JPH0977543A (en) Artificial lightweight aggregate and its production
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JPH11116299A (en) Artificial lightweight aggregate and its production
JP2001253740A (en) Artificial aggregate and its production process
KR100392933B1 (en) Composition for lightweight aggregate
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JPH08301641A (en) Production of artificial lightweight aggregate
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
KR20000040829A (en) Method for producing fly ash brick
JP3624033B2 (en) Artificial lightweight aggregate
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP6766544B2 (en) Silica calcined product for cement mixing and its manufacturing method, cement composition and its manufacturing method
RU2479518C1 (en) Crude mixture for producing light aggregate for concrete (penozol)
KR20030011757A (en) method for manufacturing composition for lightweight aggregate
JPH0977530A (en) Vitreous hardened body and its production
JPS6321244A (en) Artificial lightweight aggregate
JP3204104B2 (en) Manufacturing method of artificial lightweight aggregate
JPH1179809A (en) Production of artificial lightweight aggregate using coal ash and artificial lightweight aggregate obtained by the production
JP2005263601A (en) Waste-recycling ceramic product and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees