JP3798823B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3798823B2
JP3798823B2 JP30340994A JP30340994A JP3798823B2 JP 3798823 B2 JP3798823 B2 JP 3798823B2 JP 30340994 A JP30340994 A JP 30340994A JP 30340994 A JP30340994 A JP 30340994A JP 3798823 B2 JP3798823 B2 JP 3798823B2
Authority
JP
Japan
Prior art keywords
roller
oil supply
supply passage
pressure side
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30340994A
Other languages
Japanese (ja)
Other versions
JPH08159070A (en
Inventor
武和 帯谷
正典 増田
孝洋 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30340994A priority Critical patent/JP3798823B2/en
Publication of JPH08159070A publication Critical patent/JPH08159070A/en
Application granted granted Critical
Publication of JP3798823B2 publication Critical patent/JP3798823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として冷凍装置に使用するロータリー圧縮機に関する。
【0002】
【従来の技術】
従来、シリンダにシリンダ室を形成し、該シリンダ室に、駆動軸の偏心部の偏心回転に伴って公転するローラを内装すると共に、前記シリンダをフロントヘッド及びリヤヘッドで挟持したロータリー圧縮機として、例えば特開平6−58277号公報に記載されたものが知られている。
【0003】
即ち、従来のロータリー圧縮機は、図11及び図12で示したように、密閉ケーシングAに、シリンダ室B1をもつシリンダBと、該シリンダ室B1を閉鎖するようにシリンダBを挟持するフロントヘッドC及びリヤヘッドDからなる圧縮要素CFを内装して、前記シリンダ室B1にローラEを回転可能に内装すると共に、該ローラEに駆動軸Fの偏心部F1を挿嵌させて、この偏心部F1の偏心回転によって前記ローラEを前記シリンダ室B1内で偏心回転させて、吸入管Gが接続される吸入通路Hから前記シリンダ室B1内に吸入した低圧ガスを圧縮して、前記ケーシングA内に吐出するようにしている。
【0004】
また、従来のロータリー圧縮機では、図12に示すシリンダ室B1の概略図のように、前記シリンダ室B1内をブレードJにより吐出ポートKが開口する高圧室Xと前記吸入通路Hが開口する低圧室Yとに区画し、さらに、前記ローラE内周面と偏心部F1の外周面との間の摺接部に給油するために、前記ケーシングA底部に溜る高温高圧の油を駆動軸Fの主給油通路F2を介して前記摺接部に給油するようにしている。
【0005】
さらに、このローラE内周側に給油される油がケーシングA内の高圧圧力を受けていることから、ローラE内周側に給油される油を差圧により前記ローラE端面と前記フロントヘッドC及びリヤヘッドDとの間の隙間によって形成される給油通路を介して前記高圧室Xと低圧室Yとに給油することにより、前記ローラEの端面の潤滑を行いながら、前記高圧室Xと低圧室Yとを区画するローラEのシリンダ室B1内周面との摺接ポイントPにおいて、ガス漏れを防ぐためにオイルシールをするようにしている。尚、前記摺接ポイントPをオイルシールするための給油は、差圧の関係で主に前記高圧室Xに給油される油によって行われる。
【0006】
【発明が解決しようとする課題】
ところで、従来のロータリー圧縮機では、前記高圧室Xと低圧室Yとを区画するローラEのシリンダ室B1内周面との摺接ポイントPをオイルシールするために、ローラE内周側に給油される油を差圧により前記ローラE端面と前記フロントヘッドC及びリヤヘッドDとの間の隙間を介して前記高圧室Xに給油するようにしているが、前記ローラEの径方向幅が一定の長さであるため、前記ローラE内周側の油が前記高圧室X側に供給される給油通路と前記低圧室Y側に供給される給油通路とは、その長さが等しいため、高圧室X及び低圧室Yへの給油は、この高圧室X及び低圧室Yの圧力と油の圧力即ちケーシングA内の圧力との圧力差により給油量が決まることになる。
【0007】
つまり、前記高圧室Xの圧力とケーシングA内の圧力との圧力差が、前記低圧室Yの圧力とケーシングA内の圧力との圧力差よりも小さいので、前記高圧室X側への給油量が少なくなり、前記高圧室Xから前記摺接ポイントPへの給油量が不足してしまい、シール効果が得られないし、また、油の流入及び漏れを防止したい低圧室Yへの給油量が、差圧が大きいために多くなってしまい、全体として容積効率が低下する問題が生じていた。
【0008】
本発明は、上記問題に鑑みてなしたもので、その目的は、高圧室への給油を良好に行って、ローラ外周面とシリンダ室内周面との間のシール効果が良好に得られて容積効率の向上が図れるロータリー圧縮機を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、シリンダ室31に、駆動軸2の偏心部21が挿嵌され、該偏心部21の偏心回転に伴って公転する筒状ローラ5と、前記シリンダ室31を高圧室Xと低圧室Yとに画成するブレード6とを内装し、前記駆動軸2に設ける主給油通路22から前記偏心部21と前記ローラ5との間に給油するようにしたロータリー圧縮機において、前記ローラ5の径方向外方に前記ブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ室31を形成するシリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせ、前記ローラ5の端面と、該ローラ5の端面と対向する固定部材41,42,43との間に、前記主給油通路22と前記高圧室Xとを結ぶ高圧側給油通路7と、前記主給油通路22と前記低圧室Yとを結ぶ低圧側給油通路8とを形成し、前記高圧側給油通路7を形成する前記ローラ5端面に、該ローラ5の内周部に開放する切欠部52を形成して、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたのである。
【0010】
請求項記載の発明は、シリンダ室31に、駆動軸2の偏心部21が挿嵌され、該偏心部21の偏心回転に伴って公転する筒状ローラ5と、前記シリンダ室31を高圧室Xと低圧室Yとに画成するブレード6とを内装し、前記駆動軸2に設ける主給油通路22から前記偏心部21と前記ローラ5との間に給油するようにしたロータリー圧縮機において、前記ローラ5の径方向外方に前記ブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ室31を形成するシリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせ、前記ローラ5の端面と、該ローラ5の端面と対向する固定部材41,42,43との間に、前記主給油通路22と前記高圧室Xとを結ぶ高圧側給油通路7と、前記主給油通路22と前記低圧室Yとを結ぶ低圧側給油通路8とを形成し、前記高圧側給油通路7を形成する前記ローラ5端面の内外周間に、周縁の閉じた凹部53を形成して、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたのである。
【0011】
請求項記載の発明は、シリンダ室31に、駆動軸2の偏心部21が挿嵌され、該偏心部21の偏心回転に伴って公転する筒状ローラ5と、前記シリンダ室31を高圧室Xと低圧室Yとに画成するブレード6とを内装し、前記駆動軸2に設ける主給油通路22から前記偏心部21と前記ローラ5との間に給油するようにしたロータリー圧縮機において、前記ローラ5の径方向外方に前記ブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ室31を形成するシリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせ、前記ローラ5の端面と、該ローラ5の端面と対向する固定部材41,42,43との間に、前記主給油通路22と前記高圧室Xとを結ぶ高圧側給油通路7と、前記主給油通路22と前記低圧室Yとを結ぶ低圧側給油通路8とを形成し、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部と高圧室Xとを連通する方向に延びるスリット54を形成して、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたのである。
【0012】
【作用】
請求項1記載の発明では、前記ローラ5の径方向外方に前記ブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ室31を形成するシリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせたから、前記高圧室Xから前記ブレード6を介して前記低圧室Yに高圧ガスが漏れるのを阻止でき、容積効率を向上できるのである。さらに、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたから、駆動軸2の主給油通路22から汲み上げられる油を高圧室X側へ良好に供給できるので、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られるし、低圧室Yへの油の流入も軽減できるので容積効率の向上がさらに図れるのである。
【0013】
さらに、請求項記載の発明では、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部に開放する切欠部52を形成したから、この切欠部52により、前記高圧側給油通路7の通路長さを前記低圧側給油通路8の通路長さよりも短くすることができ、通路長さが短くなる分前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるので、前記高圧室X側へ良好に供給して、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減できるので容積効率の向上が図れる。
【0014】
しかも、前記ローラ5は、前記ブレード6が一体的に設けられ、このブレード6がシリンダ3で回転可能に支持されているので、前記ローラ5は自転することなく公転することから、前記ローラ5のシリンダ室31での位置が決定されるので、前記切欠部52の形成位置を容易に設定できるし、また、該切欠部52の加工も容易に行え、さらに、前記切欠部52に油を溜めておくことができるので、起動時において、液冷媒が多量に混入した油が前記主給油通路22を介して給油されてきても、前記切欠部52に溜る油により冷媒潤滑を軽減でき、それだけ信頼性を向上できる。
【0015】
請求項記載の発明は、前記高圧側給油通路7を形成するローラ5端面の内外周間に、周縁の閉じた凹部53を形成したから、この凹部53により、前記高圧側給油通路7の通路長さを前記低圧側給油通路8の通路長さよりも短くして前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくして、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減して容積効率の向上が図れる。
【0016】
しかも、前記凹部53は、自転しない前記ローラ5の端面に形成するので、凹部53形成位置を容易に設定できるし、その加工も容易にでき、さらに、前記凹部53は、前記ローラ5の内周と外周との間に形成しているので、前記凹部53を油溜とすることにより、ローラ5端面への潤滑も良好に行えるのである。
【0017】
請求項記載の発明では、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部と高圧室Xとを連通する径方向に延びるスリット54を形成したから、このスリット54により前記高圧側給油通路7の通路の通路面積が拡大され、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるのであり、前記スリット54により前記高圧室Xに積極的に給油することができ、前記ローラ5の外周面とシリンダ室31の内周面との間のシールを良好に行えるのである。
【0018】
【実施例】
参考例について、図1及び図2に基づいて説明する。図1に示す参考例は、二気筒のロータリー圧縮機であって、内方底部に油溜1aをもった密閉ケーシング1の内方上部側に、モータMを配設すると共に、このモータMの下部側に前記モータMから延びる駆動軸2で回転駆動される圧縮要素CFを配設している。
【0019】
前記駆動軸2は、軸方向に、複数の偏心部21,21を備えており、また、前記圧縮要素CFは、固定部材となるシリンダ3,3、フロントヘッド41、リヤヘッド42、ミドルプレート43から構成し、前記シリンダ3,3に、前記偏心部21,21が内部に位置する複数のシリンダ室31,31を形成し、前記ミドルプレート43は前記各シリンダ3,3間に介装している。そして、前記各シリンダ3,3の上下部位に前記フロントヘッド41とリヤヘッド42とを配設している。
【0020】
さらに、前記各シリンダ室31,31の内部には、前記駆動軸2の偏心部21,21が挿嵌されるローラ5,5を配設し、該ローラ5,5の回転により摺動するブレード6によって前記各シリンダ室31,31を高圧室Xと低圧室Yとに区画して、前記ローラ5,5の偏心回転により、該各シリンダ室31,31でシリンダ3,3の吸入通路32,32に接続する吸入管11から流入する吸入冷媒を圧縮すると共に、前記各シリンダ室31,31の高圧室Xで圧縮された圧縮ガスを前記吐出ポート33を介してケーシング1内部空間へ吐出させるようにしている。
【0021】
また、前記駆動軸2には、軸方向に延びる主給油通路22を形成しており、該主給油通路22の下端部に、前記ケーシング1底部の油溜1aに開口する油ポンプ23を設けて、前記主給油通路22に前記油溜1aの油を汲み上げて、該主給油通路22から分岐する分岐通路24,24を介して前記偏心部21と前記ローラ5との間に給油するようしている。
【0022】
しかして、参考例では、以上の二気筒ロータリー圧縮機において、前記ローラ5の端面と、該ローラ5の端面と対向する前記フロントヘッド41、リヤヘッド42、ミドルプレート43との間に、前記主給油通路22に連通する前記ローラ5の内周部と前記高圧室Xとを結ぶ高圧側給油通路7と、前記主給油通路22に連通する前記ローラ5の内周部と前記低圧室Yとを結ぶ低圧側給油通路8とを形成し、前記フロントヘッド41、リヤヘッド42、ミドルプレート43における高圧側給油通路7形成部に、ローラ5の内周部への開放のみを許す凹部44を形成して、この凹部44形成により前記高圧側給油通路7の通路長さaを前記低圧側給油通路8の通路長さbよりも短くすることにより前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたのである。
【0023】
即ち、図2に示すように、前記フロントヘッド41、リヤヘッド42、ミドルプレート43におけるシリンダ室31への対向面で、前記吐出ポート33近くで、かつ、前記ブレード6の最進出位置近くに、前記ローラ5が偏心回転する際、該ローラ5の端面が対向するか、または、ローラ5の内周側に位置する凹部44を形成するのである。
【0024】
該凹部44は、前記ローラ5が偏心回転する際、ローラ5の外周側には開口しないようしており、吐出ポート33側に向かう山なりに形成している。
【0025】
斯くすることにより、前記フロントヘッド41、リヤヘッド42、ミドルプレート43における高圧側給油通路7形成部に、ローラ5の内周部への開放のみを許す凹部44を形成したから、この凹部44により、前記高圧側給油通路7の通路長さaを前記低圧側給油通路8の通路長さbよりも短くすることができ、通路長さが短くなった分前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるので、前記高圧室X側へ良好に供給して、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減できるので容積効率の向上が図れる。
【0026】
しかも、前記フロントヘッド41、リヤヘッド42、ミドルプレート43に前記凹部44を形成するので、前記ローラ5が偏心回転する際に自転しても、このローラ5の自転に関係なく前記高圧室X側へ良好に供給できるし、また、前記凹部44に油を溜めておくことができるので、起動時において、液冷媒が多量に混入した油が前記主給油通路22を介して給油されてきても、前記凹部44に溜る油により冷媒潤滑を軽減でき、それだけ信頼性を向上できる。
【0027】
尚、前記参考例では、複数のシリンダを有する多気筒のロータリー圧縮機について述べたが、前記凹部44の形成は、1シリンダからなる一気筒ロータリー圧縮機にも適用できることを云うまでもない。また、前記凹部44は、参考例のように、前記ローラ5の両端面に対向させて形成してもよいし、一方の端面だけに対向させるように形成してもよい。
【0028】
次に第実施例について図3及び図4に基づいて説明する。第実施例は、図4に示すように、ローラ5が自転することなく揺動する揺動形の一気筒ロータリー圧縮機で、モータMを備え、圧縮要素CFを前記シリンダ3、該シリンダ3を挟持するフロントヘッド41、リヤヘッド42から構成している。
【0029】
そして、前記シリンダ3に吸入管11を接続する吸入通路32と、圧縮したガスをケーシング1内に吐出させる吐出ポート33とを形成している。
【0030】
さらに、前記シリンダ3のシリンダ室31にローラ5を内装し、該ローラ5は、該ローラ5の径方向外方に、シリンダ室31を高圧室Xと低圧室Yとに画成するブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせたのである。
【0031】
つまり、前記ブレード6を前記ローラ5の外周一部に、該ローラ5の径方向外方に向けて突出するように一体成形すると共に、前記シリンダ3における前記吸入通路32と吐出ポート33との中間内方部に円筒形の筒状保持孔36を設けて、この保持孔36に、横断面が半円形状の2つの半円柱状部材37,37から成る支持体34を、これら各半円柱状部材37,37の平坦面が相対向するように回動可能に保持して、これら各半円柱状部材37,37の平坦面の間に、一端が前記シリンダ室31側に開口される受入溝35を形成し、この受入溝35内に前記ブレード6の突出側先端部を摺動可能に挿入させる。
【0032】
尚、前記ローラ5の外周一部に前記ブレード6を設けるに際しては、前記ローラ5側に前記ブレード6の基端一部を挿入可能とした取付溝を形成し、この取付溝内に前記ブレード6の基端一部を挿入させて接着剤で接着一体化させるか或はロウ付けにより一体化させるようにしてもよいし、前記ブレード6の基端部をピン等により前記ローラ5に固定するようにしてもよい。
【0033】
また、前記支持体34は、一つの円柱状部材から形成し、この部材に前記ブレード6が摺動可能な切欠溝を形成して受入溝を形成するようにしてもよい。
【0034】
そして、前記駆動軸2の駆動に伴い前記ローラ5に設けたブレード6を、その突出先端部を前記支持体34の受入溝35内で出入させ、かつ、該支持体34の回動を伴い、揺動しながら径方向へと進退動させることにより、前記シリンダ室31の内部を高圧室Xと低圧室Yとに画成するのである。
【0035】
さらに、前記ローラ5は、内周側両端に環状の段部51,51を形成しており、この段部51,51の形成により内周面の面積を小さくして、前記偏心部21との接触面積を小さくして摺動抵抗を少なくするようにしている。そして、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部に開放する切欠部52を形成するのであって、該切欠部52は、図4に示すように、前記吐出ポート33近くで、かつ、ブレード6の根元近くに、円弧状で、前記段部51,51に連続するように形成するのである。
【0036】
従って、第実施例では、前記ローラ5の径方向外方に、ブレード6を一体的に設けたから、前記高圧室Xから前記ブレード6を介して前記低圧室Yに高圧ガスが漏れるのを阻止でき、容積効率を向上できるのである。
【0037】
しかも、前記ローラ5に切欠部52を形成したので、この切欠部52により、前記高圧側給油通路7の通路長さaを前記低圧側給油通路8の通路長さbよりも短くすることができ、通路長さが短くなった分前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるので、前記高圧室X側へ良好に供給して、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減できるのでさらに容積効率の向上が図れる。
【0038】
しかも、前記ローラ5は、前記ブレード6が一体的に設けられ、このブレード6がシリンダ3で回転可能に支持されているので、前記ローラ5は自転することなく公転することから、前記ローラ5のシリンダ室31での位置が決定され、前記切欠部52の形成位置を容易に設定できるし、また、該切欠部52の加工も容易に行えるのである。
【0039】
さらに、前記段部51,51と前記切欠部52に油を溜めておくことができるので、起動時において、液冷媒が多量に混入した油が前記主給油通路22を介して給油されてきても、前記段部51,51及び切欠部52に溜る油により冷媒潤滑を軽減でき、それだけ信頼性を向上できるのである。
【0040】
次に、第実施例について図5及び図6に基づいて説明する。第実施例は、前記第実施例と同様の揺動形ロータリー圧縮機で、基本的構成及びローラ5にブレード6が一体に形成されている点では、共通しているので、その説明は省略する。
【0041】
前記第実施例では、ローラ5の内周側に段部51,51を形成し、この段部51,51に連続するように切欠部52を形成したが、第実施例では、前記ローラ5の内周側に形成する段部51,51を利用して、前記第実施例のような切欠部を形成するようにしたもので、前記ローラ5の内周側に環状の段部51,51を形成する際、ローラ5の中心に対し、吐出ポート33側に向かって偏心させた位置を中心とした環状の段部51,51を形成することにより、該段部51,51を吐出ポート33側に偏って形成して、吐出ポート33側の段部51,51の容積を周方向反対側よりも大きくすることにより、結果的に切欠量を多くすることができるのである。
【0042】
従って、前記段部51,51の形成により、前記高圧側給油通路7の通路長さaを前記低圧側給油通路8の通路長さbよりも短くすることができ、しかも、前記低圧側給油通路8の通路長さbは、第実施例のローラ5に比べて、通路長さを長くできるのである。その結果、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりもより効果的に小さくできるので、前記高圧室X側へ良好に供給して、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も通路抵抗が大きくなるので、さらに軽減できるのである。
【0043】
しかも、第実施例においても、前記ローラ5に前記ブレード6を一体的に設けているので、前記ブレード6形成部における高圧室Xから低圧室Yへのガス漏れを阻止できながら、前記ローラ5が公転することから、前記段部51,51を変位させて形成するのも容易に行えるのである。
【0044】
さらに、前記段部51,51に油を溜めておくことができるので、起動時において、液冷媒が多量に混入した油が前記主給油通路22を介して給油されてきても、前記段部51,51及び切欠部52に溜る油により冷媒潤滑を軽減できる。
【0045】
次に、第実施例について図7及び図8に基づいて説明する。第実施例も、前記第及び第実施例と同様の揺動形ロータリー圧縮機で、基本的構成及びローラ5にブレード6が一体に形成されている点では、共通しているので、その説明は省略する。
【0046】
前記第実施例は、内周側に環状の段部51,51が形成されたローラ5の両端面で、前記高圧側給油通路7を形成する内外周間に、周縁の閉じた凹部53を形成したものであって、端面における吐出ポート33の近くに一つの凹部53を形成している。また、図8では、凹部53は、一つしか形成していないが、複数形成してもよいし、どちらか一方の端面に形成するだけでもよい。
【0047】
実施例では、前記凹部53により、前記高圧側給油通路7の全体としての通路長さを前記低圧側給油通路8の通路長さよりも短くして前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるのである。
【0048】
従って、第実施例においても、前記ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減して容積効率の向上が図れる。
【0049】
しかも、前記凹部53は、自転しない前記ローラ5の端面に形成するので、凹部53形成位置を容易に設定できるし、その加工も容易にでき、さらに、前記凹部53は、前記ローラ5の内周と外周との間の形成しているので、前記凹部53を油溜とすることにより、ローラ5端面への潤滑も良好に行えるのである。
【0050】
次に、第実施例について図9及び図10に基づいて説明する。第実施例も、前記第乃至第実施例と同様の揺動形ロータリー圧縮機で、基本的構成及びローラ5にブレード6が一体に形成されている点では、共通しているので、その説明は省略する。
【0051】
前記第実施例は、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部と高圧室Xとを連通する径方向に延びる複数のスリット54を形成したものであって、該スリット54は、吐出ポート33近くに形成されている。尚、このスリット54は、複数形成してもよいし、1本だけ形成するようにしてもよい。
【0052】
実施例では、前記スリット54により前記高圧側給油通路7の通路の通路面積が拡大され、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるのであり、前記スリット54により前記高圧室Xに積極的に給油することができ、前記ローラ5の外周面とシリンダ室31の内周面との間のシールを良好に行えるのである。
【0053】
尚、前記参考例では、固定部材であるフロントヘッド、リヤヘッド、ミドルプレートにローラ外周側には開放しない凹部を形成したが、各固定部材にローラ内周側と高圧室とを連通するようにスリットを形成するようにしてもよい。
【0054】
斯くするときは、第実施例と同様に前記高圧側給油通路の通路面積が拡大され、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくでき、シール効果を良好にできる。
【0055】
【発明の効果】
請求項1記載の発明では、前記ローラ5の径方向外方に、前記ブレード6を一体的に設けて、このブレード6の突出側先端部を、前記シリンダ室31を形成するシリンダ3に回転可能に支持する支持体34の受入溝35に受け入れさせたから、前記高圧室Xから前記ブレード6を介して前記低圧室Yに高圧ガスが漏れるのを阻止でき、容積効率を向上できるのである。さらに、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくしたから、駆動軸2の主給油通路22から汲み上げられる油を高圧室X側へ良好に供給できるので、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られるし、低圧室Yへの油の流入も軽減できるので容積効率の向上がさらに図れるのである。
【0056】
さらに、請求項記載の発明では、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部に開放する切欠部52を形成したから、この切欠部52により、前記高圧側給油通路7の通路長さを前記低圧側給油通路8の通路長さよりも短くすることができ、通路長さが短くなる分前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるので、前記高圧室X側へ良好に供給して、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減できるので容積効率の向上が図れる。
【0057】
しかも、前記ローラ5は、前記ブレード6が一体的に設けられ、このブレード6がシリンダ3で回転可能に支持されているので、前記ローラ5は自転することなく公転することから、前記ローラ5のシリンダ室31での位置が決定されるので、前記切欠部52の形成位置を容易に設定できるし、また、該切欠部52の加工も容易に行え、さらに、前記切欠部52に油を溜めておくことができるので、起動時において、液冷媒が多量に混入した油が前記主給油通路22を介して給油されてきても、前記切欠部52に溜る油により冷媒潤滑を軽減でき、それだけ信頼性を向上できる。
【0058】
請求項記載の発明では、前記高圧側給油通路7を形成するローラ5端面の内外周間に、周縁の閉じた凹部53を形成したから、この凹部53により、前記高圧側給油通路7の通路長さを前記低圧側給油通路8の通路長さよりも短くして前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくして、ローラ5の外周面とシリンダ室31の内周面との間のシール効果が良好に得られながら、前記低圧室Yへの油の流入も軽減して容積効率の向上が図れる。
【0059】
しかも、前記凹部53は、自転しない前記ローラ5の端面に形成するので、凹部53形成位置を容易に設定できるし、その加工も容易にでき、さらに、前記凹部53は、前記ローラ5の内周と外周との間に形成しているので、前記凹部53を油溜とすることにより、ローラ5端面への潤滑も良好に行えるのである。
【0060】
請求項記載の発明では、前記高圧側給油通路7を形成するローラ5端面に、該ローラ5の内周部と高圧室Xとを連通する方向に延びるスリット54を形成したから、このスリット54により前記高圧側給油通路7の通路の通路面積が拡大され、前記高圧側給油通路7の通路抵抗を、前記低圧側給油通路8の通路抵抗よりも小さくできるのであり、前記スリット54により前記高圧室Xに積極的に給油することができ、前記ローラ5の外周面とシリンダ室31の内周面との間のシールを良好に行えるのである。
【図面の簡単な説明】
【図1】本発明の参考例のロータリー圧縮機を示す圧縮機下部側の縦断面図。
【図2】同参考例のシリンダ室内部を示す概略説明図。
【図3】本発明のロータリー圧縮機の第実施例を示す圧縮機下部側の縦断面図。
【図4】同第実施例のシリンダ室内部を示す概略説明図。
【図5】本発明のロータリー圧縮機の第実施例を示す圧縮機下部側の縦断面図。
【図6】同第実施例のシリンダ室内部を示す概略説明図。
【図7】本発明のロータリー圧縮機の第実施例を示す圧縮機下部側の縦断面図。
【図8】同第実施例のシリンダ室内部を示す概略説明図。
【図9】本発明のロータリー圧縮機の第実施例を示す圧縮機下部側の縦断面図。
【図10】同第実施例のシリンダ室内部を示す概略説明図。
【図11】従来のロータリー圧縮機の下部側縦断面図。
【図12】同従来のロータリー圧縮機におけるシリンダ室内部概略説明図。
【符号の説明】
2 駆動軸 5 ローラ
21 偏心部 52 切欠部
22 主給油通路 53 凹部
3 シリンダ 54 スリット
31 シリンダ室 6 ブレード
34 支持体 7 高圧側給油通路
35 受入溝 8 低圧側給油通路
41 固定部材(フロントヘッド)
42 固定部材(リヤヘッド)
43 固定部材(ミドルプレート)
44 凹部
[0001]
[Industrial application fields]
The present invention relates to a rotary compressor mainly used for a refrigeration apparatus.
[0002]
[Prior art]
Conventionally, as a rotary compressor in which a cylinder chamber is formed in a cylinder, and a roller that revolves with an eccentric rotation of an eccentric portion of a drive shaft is provided in the cylinder chamber, and the cylinder is sandwiched between a front head and a rear head. A device described in Japanese Patent Laid-Open No. 6-58277 is known.
[0003]
That is, as shown in FIGS. 11 and 12, the conventional rotary compressor includes a cylinder B having a cylinder chamber B1 in a sealed casing A and a front head that sandwiches the cylinder B so as to close the cylinder chamber B1. A compression element CF composed of C and a rear head D is provided, and a roller E is rotatably provided in the cylinder chamber B1, and an eccentric portion F1 of a drive shaft F is inserted into the roller E, and the eccentric portion F1 is inserted. The eccentric rotation of the roller E causes the roller E to rotate eccentrically in the cylinder chamber B1 and compresses the low-pressure gas sucked into the cylinder chamber B1 from the suction passage H to which the suction pipe G is connected, into the casing A. I am trying to discharge.
[0004]
In the conventional rotary compressor, as shown in the schematic view of the cylinder chamber B1 shown in FIG. 12, the high pressure chamber X in which the discharge port K is opened by the blade J and the suction passage H is opened in the cylinder chamber B1. In order to supply oil to the sliding contact portion between the inner peripheral surface of the roller E and the outer peripheral surface of the eccentric portion F1, high-temperature and high-pressure oil accumulated at the bottom of the casing A is supplied to the drive shaft F. Oil is supplied to the sliding contact portion via the main oil supply passage F2.
[0005]
Further, since the oil supplied to the inner peripheral side of the roller E is subjected to the high pressure in the casing A, the oil supplied to the inner peripheral side of the roller E is changed by the differential pressure between the end face of the roller E and the front head C. The high pressure chamber X and the low pressure chamber are lubricated while lubricating the end face of the roller E by supplying oil to the high pressure chamber X and the low pressure chamber Y through an oil supply passage formed by a gap between the rear head D and the rear head D. In order to prevent gas leakage at the sliding contact point P with the inner circumferential surface of the cylinder chamber B1 of the roller E that divides Y, an oil seal is provided. In addition, the oil supply for oil-sealing the sliding contact point P is performed mainly by the oil supplied to the high-pressure chamber X because of the differential pressure.
[0006]
[Problems to be solved by the invention]
By the way, in the conventional rotary compressor, in order to oil-seal the sliding contact point P with the cylinder chamber B1 inner peripheral surface of the roller E that divides the high pressure chamber X and the low pressure chamber Y, oil is supplied to the inner peripheral side of the roller E. The oil to be supplied is supplied to the high-pressure chamber X through a gap between the end face of the roller E and the front head C and the rear head D by differential pressure, but the radial width of the roller E is constant. Since the length of the oil supply passage to which the oil on the inner peripheral side of the roller E is supplied to the high pressure chamber X side is equal to the length of the oil supply passage to be supplied to the low pressure chamber Y side, the high pressure chamber The amount of oil supplied to X and the low pressure chamber Y is determined by the pressure difference between the pressure in the high pressure chamber X and the low pressure chamber Y and the pressure of the oil, that is, the pressure in the casing A.
[0007]
That is, since the pressure difference between the pressure in the high pressure chamber X and the pressure in the casing A is smaller than the pressure difference between the pressure in the low pressure chamber Y and the pressure in the casing A, the amount of oil supplied to the high pressure chamber X side. The amount of oil supplied from the high-pressure chamber X to the sliding contact point P is insufficient, a sealing effect is not obtained, and the amount of oil supplied to the low-pressure chamber Y to prevent oil inflow and leakage is Since the differential pressure is large, the differential pressure increases, resulting in a problem that the volume efficiency is lowered as a whole.
[0008]
The present invention has been made in view of the above-described problems, and its purpose is to satisfactorily lubricate the high-pressure chamber and to obtain a good sealing effect between the roller outer peripheral surface and the cylinder inner peripheral surface. The object is to provide a rotary compressor capable of improving efficiency.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, the eccentric portion 21 of the drive shaft 2 is inserted into the cylinder chamber 31 and the cylindrical roller 5 revolves with the eccentric rotation of the eccentric portion 21. In a rotary compressor that includes a blade 6 defined in X and a low-pressure chamber Y and supplies oil between the eccentric portion 21 and the roller 5 from a main oil supply passage 22 provided in the drive shaft 2; The blade 6 is integrally provided on the outer side in the radial direction of the roller 5, and a receiving groove of a support body 34 that rotatably supports the protruding end portion of the blade 6 on the cylinder 3 that forms the cylinder chamber 31. 35, and the high-pressure side oil supply passage 7 connecting the main oil supply passage 22 and the high-pressure chamber X between the end surface of the roller 5 and the fixing members 41, 42, 43 facing the end surface of the roller 5. And the main oil supply passage 22 and the front Forming a low-pressure side oil supply passage 8 connecting the low-pressure chamber Y, On the end surface of the roller 5 that forms the high-pressure side oil supply passage 7, a notch 52 that opens to the inner peripheral portion of the roller 5 is formed, The passage resistance of the high pressure side oil supply passage 7 is made smaller than the passage resistance of the low pressure side oil supply passage 8.
[0010]
Claim 2 The described invention An eccentric portion 21 of the drive shaft 2 is inserted into the cylinder chamber 31, and the cylindrical roller 5 that revolves with the eccentric rotation of the eccentric portion 21, and the cylinder chamber 31 is divided into a high pressure chamber X and a low pressure chamber Y. In a rotary compressor in which a blade 6 is formed and oil is supplied between the eccentric portion 21 and the roller 5 from a main oil supply passage 22 provided in the drive shaft 2. The blade 6 is provided integrally with the front end of the blade 6 and is received in a receiving groove 35 of a support 34 that is rotatably supported by the cylinder 3 forming the cylinder chamber 31. Between the main oil supply passage 22 and the high pressure chamber X, and the main oil supply passage 22 between the end face of the roller 5 and the fixing members 41, 42, 43 facing the end face of the roller 5. Low pressure connecting the low pressure chamber Y To form an oil supply passage 8, Between the inner and outer circumferences of the end surface of the roller 5 forming the high-pressure side oil supply passage 7, a recessed portion 53 having a closed periphery is formed. Thus, the passage resistance of the high pressure side oil supply passage 7 is made smaller than the passage resistance of the low pressure side oil supply passage 8. It was.
[0011]
Claim 3 The described invention An eccentric portion 21 of the drive shaft 2 is inserted into the cylinder chamber 31, and the cylindrical roller 5 that revolves with the eccentric rotation of the eccentric portion 21, and the cylinder chamber 31 is divided into a high pressure chamber X and a low pressure chamber Y. In a rotary compressor in which a blade 6 is formed and oil is supplied between the eccentric portion 21 and the roller 5 from a main oil supply passage 22 provided in the drive shaft 2. The blade 6 is provided integrally with the front end of the blade 6 and is received in a receiving groove 35 of a support 34 that is rotatably supported by the cylinder 3 forming the cylinder chamber 31. Between the main oil supply passage 22 and the high pressure chamber X, and the main oil supply passage 22 between the end face of the roller 5 and the fixing members 41, 42, 43 facing the end face of the roller 5. Low pressure connecting the low pressure chamber Y To form an oil supply passage 8, The inner peripheral portion of the roller 5 and the high pressure chamber X are communicated with the end surface of the roller 5 forming the high pressure side oil supply passage 7. Who Shaped slit 54 extending in the direction Thus, the passage resistance of the high pressure side oil supply passage 7 is made smaller than the passage resistance of the low pressure side oil supply passage 8. It was.
[0012]
[Action]
In the first aspect of the present invention, the blade 6 is integrally provided on the outer side in the radial direction of the roller 5, and the protruding end portion of the blade 6 can be rotated to the cylinder 3 forming the cylinder chamber 31. Since it is received in the receiving groove 35 of the support 34 to be supported, the high pressure gas can be prevented from leaking from the high pressure chamber X to the low pressure chamber Y through the blade 6, and the volumetric efficiency can be improved. Further, since the passage resistance of the high-pressure side oil supply passage 7 is made smaller than the passage resistance of the low-pressure side oil supply passage 8, oil pumped up from the main oil supply passage 22 of the drive shaft 2 can be satisfactorily supplied to the high-pressure chamber X side. Therefore, a good sealing effect between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be obtained, and the inflow of oil into the low-pressure chamber Y can be reduced, so that the volumetric efficiency can be further improved.
[0013]
And claims 1 In the described invention, the notch 52 that opens to the inner peripheral portion of the roller 5 is formed on the end surface of the roller 5 that forms the high-pressure side oil supply passage 7. The passage length can be made shorter than the passage length of the low-pressure side oil supply passage 8, and the passage resistance of the high-pressure side oil supply passage 7 can be made smaller than the passage resistance of the low-pressure side oil supply passage 8. Since it can be made small, the oil is supplied to the low pressure chamber Y while being well supplied to the high pressure chamber X side and a good sealing effect between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 is obtained. Since inflow can be reduced, volumetric efficiency can be improved.
[0014]
In addition, the roller 5 is integrally provided with the blade 6, and the blade 6 is rotatably supported by the cylinder 3. Therefore, the roller 5 revolves without rotating. Since the position in the cylinder chamber 31 is determined, the formation position of the notch 52 can be easily set, the machining of the notch 52 can be easily performed, and oil can be accumulated in the notch 52. Therefore, even when oil in which a large amount of liquid refrigerant is mixed is supplied through the main oil supply passage 22 at the time of start-up, refrigerant lubrication can be reduced by the oil accumulated in the notch 52, and reliability is increased accordingly. Can be improved.
[0015]
Claim 2 In the described invention, the recessed portion 53 having a closed periphery is formed between the inner and outer periphery of the end surface of the roller 5 forming the high pressure side oil supply passage 7, so that the passage length of the high pressure side oil supply passage 7 is increased by the recessed portion 53. The passage resistance of the high pressure side oil supply passage 7 is made shorter than the passage length of the low pressure side oil supply passage 8 to be smaller than the passage resistance of the low pressure side oil supply passage 8, so that the outer peripheral surface of the roller 5 and the cylinder chamber 31 While the sealing effect between the inner peripheral surface and the inner peripheral surface can be satisfactorily obtained, the inflow of oil into the low pressure chamber Y can be reduced and the volume efficiency can be improved.
[0016]
In addition, since the concave portion 53 is formed on the end surface of the roller 5 that does not rotate, the formation position of the concave portion 53 can be easily set and processed easily. Further, the concave portion 53 has an inner periphery of the roller 5. Since the recess 53 is used as an oil reservoir, the end face of the roller 5 can be well lubricated.
[0017]
Claim 3 In the described invention, the slit 54 extending in the radial direction that connects the inner peripheral portion of the roller 5 and the high-pressure chamber X is formed on the end surface of the roller 5 that forms the high-pressure side oil supply passage 7. The passage area of the high-pressure side oil supply passage 7 is enlarged, and the passage resistance of the high-pressure side oil supply passage 7 can be made smaller than the passage resistance of the low-pressure side oil supply passage 8. Oil can be positively supplied, and the seal between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be satisfactorily performed.
[0018]
【Example】
reference An example is demonstrated based on FIG.1 and FIG.2. As shown in FIG. reference An example is a two-cylinder rotary compressor, in which a motor M is disposed on the inner upper side of a sealed casing 1 having an oil reservoir 1a at the inner bottom, and the motor is disposed on the lower side of the motor M. A compression element CF that is rotationally driven by a drive shaft 2 extending from M is disposed.
[0019]
The drive shaft 2 includes a plurality of eccentric portions 21 and 21 in the axial direction, and the compression element CF includes cylinders 3 and 3, a front head 41, a rear head 42, and a middle plate 43 that are fixing members. A plurality of cylinder chambers 31 and 31 in which the eccentric portions 21 and 21 are located are formed in the cylinders 3 and 3, and the middle plate 43 is interposed between the cylinders 3 and 3. . The front head 41 and the rear head 42 are disposed at the upper and lower portions of the cylinders 3 and 3.
[0020]
Further, rollers 5, 5 into which the eccentric parts 21, 21 of the drive shaft 2 are inserted are disposed inside the cylinder chambers 31, 31, and the blades slide by the rotation of the rollers 5, 5. 6 divides the cylinder chambers 31, 31 into a high pressure chamber X and a low pressure chamber Y, and the eccentric rotation of the rollers 5, 5 causes the suction passages 32, The refrigerant sucked in from the suction pipe 11 connected to 32 is compressed, and the compressed gas compressed in the high-pressure chamber X of each of the cylinder chambers 31, 31 is discharged to the internal space of the casing 1 through the discharge port 33. I have to.
[0021]
The drive shaft 2 is formed with a main oil supply passage 22 extending in the axial direction, and an oil pump 23 that opens to the oil reservoir 1a at the bottom of the casing 1 is provided at the lower end of the main oil supply passage 22. The oil in the oil reservoir 1a is pumped into the main oil supply passage 22 and is supplied between the eccentric portion 21 and the roller 5 via branch passages 24 and 24 branched from the main oil supply passage 22. Yes.
[0022]
But reference In the example, in the above-described two-cylinder rotary compressor, the main oil supply passage 22 is communicated between the end surface of the roller 5 and the front head 41, the rear head 42, and the middle plate 43 facing the end surface of the roller 5. The high pressure side oil supply passage 7 connecting the inner peripheral portion of the roller 5 and the high pressure chamber X, and the low pressure side oil supply passage connecting the inner peripheral portion of the roller 5 communicating with the main oil supply passage 22 and the low pressure chamber Y. 8 is formed in the front head 41, the rear head 42, and the middle plate 43 in the high pressure side oil supply passage 7 forming portion, and a recess 44 that allows only the inner periphery of the roller 5 to be opened is formed. Accordingly, the passage length a of the high-pressure side oil supply passage 7 is made shorter than the passage length b of the low-pressure side oil supply passage 8, thereby reducing the passage resistance of the high-pressure side oil supply passage 7 and the passage of the low-pressure side oil supply passage 8. Than it was smaller than the resistance.
[0023]
That is, as shown in FIG. 2, the front head 41, the rear head 42, and the middle plate 43 are opposed to the cylinder chamber 31, near the discharge port 33 and near the most advanced position of the blade 6. When the roller 5 rotates eccentrically, the end surfaces of the roller 5 face each other, or the concave portion 44 located on the inner peripheral side of the roller 5 is formed.
[0024]
The concave portion 44 is formed so as not to open on the outer peripheral side of the roller 5 when the roller 5 rotates eccentrically, and is formed in a mountain shape toward the discharge port 33 side.
[0025]
As a result, a recess 44 that allows only opening to the inner peripheral portion of the roller 5 is formed in the high pressure side oil supply passage 7 forming portion in the front head 41, the rear head 42, and the middle plate 43. The passage length a of the high-pressure side oil supply passage 7 can be made shorter than the passage length b of the low-pressure side oil supply passage 8, and the passage resistance of the high-pressure side oil supply passage 7 is reduced by the amount of the shortened passage length. Since it can be made smaller than the passage resistance of the low-pressure side oil supply passage 8, a good sealing effect is obtained between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31. However, since the inflow of oil into the low pressure chamber Y can be reduced, the volumetric efficiency can be improved.
[0026]
Moreover, since the recess 44 is formed in the front head 41, the rear head 42, and the middle plate 43, even if the roller 5 rotates eccentrically, the roller 5 moves toward the high pressure chamber X regardless of the rotation of the roller 5. Since the oil can be supplied satisfactorily and the oil can be stored in the recess 44, even when oil mixed with a large amount of liquid refrigerant is supplied through the main oil supply passage 22 at the time of start-up, Refrigerant lubrication can be reduced by the oil accumulated in the recess 44, and the reliability can be improved accordingly.
[0027]
The above reference In the example, a multi-cylinder rotary compressor having a plurality of cylinders has been described. Needless to say, the formation of the recess 44 can also be applied to a single-cylinder rotary compressor including one cylinder. The recess 44 is reference As an example, it may be formed so as to face both end faces of the roller 5, or may be formed so as to face only one end face.
[0028]
Next 1 An embodiment will be described with reference to FIGS. First 1 As shown in FIG. 4, the embodiment is a swing type single-cylinder rotary compressor in which the roller 5 swings without rotating. The motor M is provided, the compression element CF is sandwiched between the cylinder 3, and the cylinder 3 is sandwiched. The front head 41 and the rear head 42 are configured.
[0029]
A suction passage 32 for connecting the suction pipe 11 to the cylinder 3 and a discharge port 33 for discharging the compressed gas into the casing 1 are formed.
[0030]
Further, a roller 5 is housed in the cylinder chamber 31 of the cylinder 3, and the roller 5 has a blade 6 that defines the cylinder chamber 31 into a high pressure chamber X and a low pressure chamber Y outside the roller 5 in the radial direction. Provided integrally, the projecting side tip of the blade 6 is received in the receiving groove 35 of the support 34 that is rotatably supported by the cylinder 3.
[0031]
That is, the blade 6 is integrally formed on a part of the outer periphery of the roller 5 so as to protrude outward in the radial direction of the roller 5, and between the suction passage 32 and the discharge port 33 in the cylinder 3. A cylindrical cylindrical holding hole 36 is provided in the inward portion, and a support body 34 composed of two semi-columnar members 37 and 37 having a semicircular cross section is provided in the holding hole 36. A receiving groove whose one end is opened to the cylinder chamber 31 side between the flat surfaces of the semi-cylindrical members 37 and 37, which are rotatably held so that the flat surfaces of the members 37 and 37 face each other. 35 is formed, and the protruding end portion of the blade 6 is slidably inserted into the receiving groove 35.
[0032]
When the blade 6 is provided on a part of the outer periphery of the roller 5, a mounting groove is formed on the roller 5 side so that a part of the base end of the blade 6 can be inserted, and the blade 6 is inserted in the mounting groove. The base end portion of the blade 6 may be inserted and integrated with an adhesive or may be integrated by brazing, or the base end portion of the blade 6 may be fixed to the roller 5 with a pin or the like. It may be.
[0033]
In addition, the support 34 may be formed from a single cylindrical member, and a notch groove in which the blade 6 can slide is formed in this member to form a receiving groove.
[0034]
As the drive shaft 2 is driven, the blade 6 provided on the roller 5 has its projecting tip portion moved in and out of the receiving groove 35 of the support body 34, and with the rotation of the support body 34, The cylinder chamber 31 is divided into a high pressure chamber X and a low pressure chamber Y by advancing and retreating in the radial direction while swinging.
[0035]
Further, the roller 5 is formed with annular step portions 51, 51 at both ends on the inner peripheral side. By forming the step portions 51, 51, the area of the inner peripheral surface is reduced, The contact area is reduced to reduce sliding resistance. And the notch part 52 opened to the inner peripheral part of the roller 5 is formed on the end face of the roller 5 forming the high-pressure side oil supply passage 7, and the notch part 52 is, as shown in FIG. In the vicinity of the discharge port 33 and near the root of the blade 6, it is formed in an arc shape so as to be continuous with the stepped portions 51, 51.
[0036]
Therefore, the second 1 In the embodiment, since the blade 6 is integrally provided on the outer side in the radial direction of the roller 5, it is possible to prevent the high pressure gas from leaking from the high pressure chamber X to the low pressure chamber Y through the blade 6. Can be improved.
[0037]
In addition, since the notch 52 is formed in the roller 5, the notch 52 can make the passage length a of the high pressure side oil supply passage 7 shorter than the passage length b of the low pressure side oil supply passage 8. Since the passage resistance of the high-pressure side oil supply passage 7 can be made smaller than the passage resistance of the low-pressure side oil supply passage 8 as the passage length is shortened, the roller 5 is fed well to the high-pressure chamber X side. While a good sealing effect between the outer peripheral surface and the inner peripheral surface of the cylinder chamber 31 can be obtained, the inflow of oil into the low-pressure chamber Y can be reduced, so that the volume efficiency can be further improved.
[0038]
In addition, the roller 5 is integrally provided with the blade 6, and the blade 6 is rotatably supported by the cylinder 3. Therefore, the roller 5 revolves without rotating. The position in the cylinder chamber 31 is determined, the formation position of the notch 52 can be easily set, and the notch 52 can be easily processed.
[0039]
Further, since oil can be stored in the step portions 51 and 51 and the notch portion 52, even when oil mixed with a large amount of liquid refrigerant is supplied through the main oil supply passage 22 at the time of startup. The oil accumulated in the step portions 51 and 51 and the cutout portion 52 can reduce refrigerant lubrication, and can improve the reliability accordingly.
[0040]
Next 2 An embodiment will be described with reference to FIGS. First 2 The embodiment is the first 1 The swing type rotary compressor similar to the embodiment is common in that the blade 6 is formed integrally with the roller 5 and the basic configuration, and the description thereof is omitted.
[0041]
Said 1 In the embodiment, the step portions 51 and 51 are formed on the inner peripheral side of the roller 5, and the notch portion 52 is formed so as to be continuous with the step portions 51 and 51. 2 In the embodiment, the step portions 51, 51 formed on the inner peripheral side of the roller 5 are used to make the first 1 A notch portion as in the embodiment is formed, and when the annular step portions 51, 51 are formed on the inner peripheral side of the roller 5, the discharge port 33 side is directed toward the center of the roller 5. By forming the annular step portions 51 and 51 centered on the eccentric position, the step portions 51 and 51 are formed to be biased toward the discharge port 33 side, and the step portions 51 and 51 on the discharge port 33 side are formed. By making the volume larger than that on the opposite side in the circumferential direction, the amount of cutout can be increased as a result.
[0042]
Therefore, by forming the step portions 51, 51, the passage length a of the high pressure side oil supply passage 7 can be made shorter than the passage length b of the low pressure side oil supply passage 8, and the low pressure side oil supply passage can be formed. 8 passage length b is 1 Compared to the roller 5 of the embodiment, the passage length can be increased. As a result, the passage resistance of the high-pressure side oil supply passage 7 can be reduced more effectively than the passage resistance of the low-pressure side oil supply passage 8. While the sealing effect between the cylinder chamber 31 and the inner peripheral surface of the cylinder chamber 31 can be satisfactorily obtained, the inflow of oil into the low pressure chamber Y also increases the passage resistance, which can be further reduced.
[0043]
Moreover, the second 2 Also in the embodiment, since the blade 6 is provided integrally with the roller 5, the roller 5 revolves while preventing gas leakage from the high pressure chamber X to the low pressure chamber Y in the blade 6 forming portion. Therefore, the step portions 51 and 51 can be easily formed by being displaced.
[0044]
Further, since oil can be stored in the step portions 51 and 51, even when oil in which a large amount of liquid refrigerant is mixed is supplied through the main oil supply passage 22 at the time of startup, the step portion 51. , 51 and the oil accumulated in the notch 52 can reduce refrigerant lubrication.
[0045]
Next 3 An embodiment will be described with reference to FIGS. First 3 Examples are also described above. 1 And the second 2 The swing type rotary compressor similar to the embodiment is common in that the blade 6 is formed integrally with the roller 5 and the basic configuration, and the description thereof is omitted.
[0046]
Said 3 In the embodiment, a recessed portion 53 having a closed periphery is formed between the inner and outer peripheries forming the high-pressure side oil supply passage 7 on both end faces of the roller 5 having annular step portions 51, 51 formed on the inner peripheral side. In addition, one recess 53 is formed near the discharge port 33 on the end face. In FIG. 8, only one recess 53 is formed, but a plurality of recesses 53 may be formed, or only one of the end faces may be formed.
[0047]
First 3 In the embodiment, the recess 53 reduces the passage length of the high-pressure side oil supply passage 7 by making the overall passage length of the high-pressure side oil supply passage 7 shorter than the passage length of the low-pressure side oil supply passage 8. It can be made smaller than the passage resistance of the side oil supply passage 8.
[0048]
Therefore, the second 3 Also in the embodiment, while the sealing effect between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be satisfactorily obtained, the inflow of oil into the low-pressure chamber Y is reduced and the volume efficiency is improved. I can plan.
[0049]
In addition, since the concave portion 53 is formed on the end surface of the roller 5 that does not rotate, the formation position of the concave portion 53 can be easily set and processed easily. Further, the concave portion 53 has an inner periphery of the roller 5. Since the recess 53 is used as an oil reservoir, the end face of the roller 5 can be well lubricated.
[0050]
Next 4 An embodiment will be described with reference to FIGS. 9 and 10. First 4 Examples are also described above. 1 Thru 3 The swing type rotary compressor similar to the embodiment is common in that the blade 6 is formed integrally with the roller 5 and the basic configuration, and the description thereof is omitted.
[0051]
Said 4 In the embodiment, a plurality of slits 54 extending in the radial direction communicating the inner peripheral portion of the roller 5 and the high pressure chamber X are formed on the end face of the roller 5 forming the high pressure side oil supply passage 7, The slit 54 is formed near the discharge port 33. A plurality of slits 54 may be formed, or only one slit 54 may be formed.
[0052]
First 4 In the embodiment, the passage area of the passage of the high-pressure side oil supply passage 7 is enlarged by the slit 54, and the passage resistance of the high-pressure side oil supply passage 7 can be made smaller than the passage resistance of the low-pressure side oil supply passage 8. The slit 54 can positively supply oil to the high-pressure chamber X, and the seal between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be satisfactorily performed.
[0053]
The above reference In the example, the front member, the rear head, and the middle plate, which are fixing members, have recesses that do not open on the outer peripheral side of the roller. However, slits are formed in each fixing member so that the inner peripheral side of the roller communicates with the high pressure chamber It may be.
[0054]
When doing so, 4 Similarly to the embodiment, the passage area of the high pressure side oil supply passage is enlarged, the passage resistance of the high pressure side oil supply passage 7 can be made smaller than the passage resistance of the low pressure side oil supply passage 8, and the sealing effect can be improved.
[0055]
【The invention's effect】
According to the first aspect of the present invention, the blade 6 is integrally provided on the outer side in the radial direction of the roller 5, and the protruding end portion of the blade 6 can be rotated to the cylinder 3 forming the cylinder chamber 31. Therefore, the high-pressure gas can be prevented from leaking from the high-pressure chamber X to the low-pressure chamber Y through the blade 6 and the volumetric efficiency can be improved. Further, since the passage resistance of the high-pressure side oil supply passage 7 is made smaller than the passage resistance of the low-pressure side oil supply passage 8, oil pumped up from the main oil supply passage 22 of the drive shaft 2 can be satisfactorily supplied to the high-pressure chamber X side. Therefore, a good sealing effect between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be obtained, and the inflow of oil into the low-pressure chamber Y can be reduced, so that the volumetric efficiency can be further improved.
[0056]
further, Claim 1 In the described invention, the notch 52 that opens to the inner peripheral portion of the roller 5 is formed on the end surface of the roller 5 that forms the high-pressure side oil supply passage 7. The passage length can be made shorter than the passage length of the low-pressure side oil supply passage 8, and the passage resistance of the high-pressure side oil supply passage 7 can be made smaller than the passage resistance of the low-pressure side oil supply passage 8. Since it can be made small, the oil is supplied to the low pressure chamber Y while being well supplied to the high pressure chamber X side and a good sealing effect between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 is obtained. Since inflow can be reduced, volumetric efficiency can be improved.
[0057]
In addition, the roller 5 is integrally provided with the blade 6, and the blade 6 is rotatably supported by the cylinder 3. Therefore, the roller 5 revolves without rotating. Since the position in the cylinder chamber 31 is determined, the formation position of the notch 52 can be easily set, the machining of the notch 52 can be easily performed, and oil can be accumulated in the notch 52. Therefore, even when oil in which a large amount of liquid refrigerant is mixed is supplied through the main oil supply passage 22 at the time of start-up, refrigerant lubrication can be reduced by the oil accumulated in the notch 52, and reliability is increased accordingly. Can be improved.
[0058]
Claim 2 In the described invention, since the recessed portion 53 having a closed periphery is formed between the inner and outer periphery of the end surface of the roller 5 forming the high pressure side oil supply passage 7, the passage length of the high pressure side oil supply passage 7 is increased by the recessed portion 53. The passage resistance of the high pressure side oil supply passage 7 is made shorter than the passage length of the low pressure side oil supply passage 8 to be smaller than the passage resistance of the low pressure side oil supply passage 8, so that the outer peripheral surface of the roller 5 and the cylinder chamber 31 While the sealing effect between the inner peripheral surface and the inner peripheral surface can be satisfactorily obtained, the inflow of oil into the low pressure chamber Y can be reduced and the volume efficiency can be improved.
[0059]
In addition, since the concave portion 53 is formed on the end surface of the roller 5 that does not rotate, the formation position of the concave portion 53 can be easily set and processed easily. Further, the concave portion 53 has an inner periphery of the roller 5. Since the recess 53 is used as an oil reservoir, the end face of the roller 5 can be well lubricated.
[0060]
Claim 3 In the described invention, since the slit 54 extending in the direction in which the inner peripheral portion of the roller 5 communicates with the high pressure chamber X is formed on the end surface of the roller 5 forming the high pressure side oil supply passage 7, the slit 54 allows the high pressure. The passage area of the side oil supply passage 7 is enlarged, and the passage resistance of the high pressure side oil supply passage 7 can be made smaller than the passage resistance of the low pressure side oil supply passage 8. Therefore, the seal between the outer peripheral surface of the roller 5 and the inner peripheral surface of the cylinder chamber 31 can be satisfactorily performed.
[Brief description of the drawings]
FIG. 1 of the present invention Reference example The longitudinal cross-sectional view of the compressor lower part side which shows a rotary compressor.
[Figure 2] reference The schematic explanatory drawing which shows the cylinder chamber inside of an example.
FIG. 3 shows a rotary compressor according to the present invention. 1 The longitudinal cross-sectional view of the compressor lower part side which shows an Example.
Fig. 4 1 The schematic explanatory drawing which shows the cylinder chamber inside of an Example.
FIG. 5 shows the rotary compressor of the present invention. 2 The longitudinal cross-sectional view of the compressor lower part side which shows an Example.
FIG. 6 2 The schematic explanatory drawing which shows the cylinder chamber inside of an Example.
FIG. 7 shows the rotary compressor according to the present invention. 3 The longitudinal cross-sectional view of the compressor lower part side which shows an Example.
Fig. 8 3 The schematic explanatory drawing which shows the cylinder chamber inside of an Example.
FIG. 9 shows a rotary compressor of the present invention 4 The longitudinal cross-sectional view of the compressor lower part side which shows an Example.
FIG. 10 4 The schematic explanatory drawing which shows the cylinder chamber inside of an Example.
FIG. 11 is a vertical sectional view of the lower side of a conventional rotary compressor.
FIG. 12 is a schematic explanatory diagram of the inside of a cylinder chamber in the conventional rotary compressor.
[Explanation of symbols]
2 Drive shaft 5 Roller
21 Eccentric part 52 Notch
22 Main oil supply passage 53 Recess
3 cylinder 54 slit
31 Cylinder chamber 6 Blade
34 Support body 7 High-pressure side oil supply passage
35 Receiving groove 8 Low pressure side oil supply passage
41 Fixing member (front head)
42 Fixing member (rear head)
43 Fixing member (middle plate)
44 recess

Claims (3)

シリンダ室(31)に、駆動軸(2)の偏心部(21)が挿嵌され、該偏心部(21)の偏心回転に伴って公転する筒状ローラ(5)と、前記シリンダ室(31)を高圧室(X)と低圧室(Y)とに画成するブレード(6)とを内装し、前記駆動軸(2)に設ける主給油通路(22)から前記偏心部(21)と前記ローラ(5)との間に給油するようにしたロータリー圧縮機において、前記ローラ(5)の径方向外方に前記ブレード(6)を一体的に設けて、このブレード(6)の突出側先端部を、前記シリンダ室(31)を形成するシリンダ(3)に回転可能に支持する支持体(34)の受入溝(35)に受け入れさせ、
前記ローラ(5)の端面と、該ローラ(5)の端面と対向する固定部材(41,42,43)との間に、前記主給油通路(22)と前記高圧室(X)とを結ぶ高圧側給油通路(7)と、前記主給油通路(22)と前記低圧室(Y)とを結ぶ低圧側給油通路(8)とを形成し、前記高圧側給油通路(7)を形成する前記ローラ(5)端面に、該ローラ(5)の内周部に開放する切欠部(52)を形成して、前記高圧側給油通路(7)の通路抵抗を、前記低圧側給油通路(8)の通路抵抗よりも小さくしている、ロータリー圧縮機。
An eccentric portion (21) of the drive shaft (2) is inserted into the cylinder chamber (31), and the cylindrical roller (5) revolves with the eccentric rotation of the eccentric portion (21). The cylinder chamber (31) ) In the high-pressure chamber (X) and the low-pressure chamber (Y), and the eccentric portion (21) and the above-described eccentricity (21) from the main oil supply passage (22) provided in the drive shaft (2). In the rotary compressor that supplies oil to the roller (5), the blade (6) is integrally provided on the outer side in the radial direction of the roller (5), and the tip of the protruding side of the blade (6) Part is received in the receiving groove (35) of the support (34) rotatably supported by the cylinder (3) forming the cylinder chamber (31),
The main oil supply passage (22) and the high pressure chamber (X) are connected between the end face of the roller (5) and the fixing member (41, 42, 43) facing the end face of the roller (5). The high pressure side oil supply passage (7), the low pressure side oil supply passage (8) connecting the main oil supply passage (22) and the low pressure chamber (Y) are formed, and the high pressure side oil supply passage (7) is formed. A notch portion (52) that opens to the inner peripheral portion of the roller (5) is formed on the end surface of the roller (5), and the passage resistance of the high-pressure side oil supply passage (7) is reduced to the low-pressure side oil supply passage (8). A rotary compressor that is smaller than the passage resistance.
シリンダ室(31)に、駆動軸(2)の偏心部(21)が挿嵌され、該偏心部(21)の偏心回転に伴って公転する筒状ローラ(5)と、前記シリンダ室(31)を高圧室(X)と低圧室(Y)とに画成するブレード(6)とを内装し、前記駆動軸(2)に設ける主給油通路(22)から前記偏心部(21)と前記ローラ(5)との間に給油するようにしたロータリー圧縮機において、前記ローラ(5)の径方向外方に前記ブレード(6)を一体的に設けて、このブレード(6)の突出側先端部を、前記シリンダ室(31)を形成するシリンダ(3)に回転可能に支持する支持体(34)の受入溝(35)に受け入れさせ、
前記ローラ(5)の端面と、該ローラ(5)の端面と対向する固定部材(41,42,43)との間に、前記主給油通路(22)と前記高圧室(X)とを結ぶ高圧側給油通路(7)と、前記主給油通路(22)と前記低圧室(Y)とを結ぶ低圧側給油通路(8)とを形成し、前記高圧側給油通路(7)を形成する前記ローラ(5)端面の内外周間に、周縁の閉じた凹部(53)を形成して、前記高圧側給油通路(7)の通路抵抗を、前記低圧側給油通路(8)の通路抵抗よりも小さくしている、ロータリー圧縮機。
An eccentric portion (21) of the drive shaft (2) is inserted into the cylinder chamber (31), and the cylindrical roller (5) revolves with the eccentric rotation of the eccentric portion (21). The cylinder chamber (31) ) In the high-pressure chamber (X) and the low-pressure chamber (Y), and the eccentric portion (21) and the above-described eccentricity (21) from the main oil supply passage (22) provided in the drive shaft (2). In the rotary compressor that supplies oil to the roller (5), the blade (6) is integrally provided on the outer side in the radial direction of the roller (5), and the tip of the protruding side of the blade (6) Part is received in the receiving groove (35) of the support (34) rotatably supported by the cylinder (3) forming the cylinder chamber (31),
The main oil supply passage (22) and the high pressure chamber (X) are connected between the end face of the roller (5) and the fixing member (41, 42, 43) facing the end face of the roller (5). The high pressure side oil supply passage (7), the low pressure side oil supply passage (8) connecting the main oil supply passage (22) and the low pressure chamber (Y) are formed, and the high pressure side oil supply passage (7) is formed. A recess (53) having a closed periphery is formed between the inner and outer peripheries of the roller (5) end surface so that the passage resistance of the high-pressure side oil supply passage (7) is greater than the passage resistance of the low-pressure side oil supply passage (8). A small rotary compressor.
シリンダ室(31)に、駆動軸(2)の偏心部(21)が挿嵌され、該偏心部(21)の偏心回転に伴って公転する筒状ローラ(5)と、前記シリンダ室(31)を高圧室(X)と低圧室(Y)とに画成するブレード(6)とを内装し、前記駆動軸(2)に設ける主給油通路(22)から前記偏心部(21)と前記ローラ(5)との間に給油するようにしたロータリー圧縮機において、前記ローラ(5)の径方向外方に前記ブレード(6)を一体的に設けて、このブレード(6)の突出側先端部を、前記シリンダ室(31)を形成するシリンダ(3)に回転可能に支持する支持体(34)の受入溝(35)に受け入れさせ、
前記ローラ(5)の端面と、該ローラ(5)の端面と対向する固定部材(41,42,43)との間に、前記主給油通路(22)と前記高圧室(X)とを結ぶ高圧側給油通路(7)と、前記主給油通路(22)と前記低圧室(Y)とを結ぶ低圧側給油通路(8)とを形成し、前記高圧側給油通路(7)を形成する前記ローラ(5)端面に、該ローラ(5)の内周部と高圧室(X)とを連通する方向に延びるスリット(54)を形成して、前記高圧側給油通路(7)の通路抵抗を、前記低圧側給油通路(8)の通路抵抗よりも小さくしている、ロータリー圧縮機。
An eccentric portion (21) of the drive shaft (2) is inserted into the cylinder chamber (31), and the cylindrical roller (5) revolves with the eccentric rotation of the eccentric portion (21). The cylinder chamber (31) ) In the high-pressure chamber (X) and the low-pressure chamber (Y), and the eccentric portion (21) and the above-described eccentricity (21) from the main oil supply passage (22) provided in the drive shaft (2). In the rotary compressor that supplies oil to the roller (5), the blade (6) is integrally provided on the outer side in the radial direction of the roller (5), and the tip of the protruding side of the blade (6) Part is received in the receiving groove (35) of the support (34) rotatably supported by the cylinder (3) forming the cylinder chamber (31),
The main oil supply passage (22) and the high pressure chamber (X) are connected between the end face of the roller (5) and the fixing member (41, 42, 43) facing the end face of the roller (5). The high pressure side oil supply passage (7), the low pressure side oil supply passage (8) connecting the main oil supply passage (22) and the low pressure chamber (Y) are formed, and the high pressure side oil supply passage (7) is formed. A slit (54) extending in a direction communicating the inner peripheral portion of the roller (5) and the high pressure chamber (X) is formed on the end surface of the roller (5), thereby reducing the passage resistance of the high pressure side oil supply passage (7). The rotary compressor is made smaller than the passage resistance of the low-pressure side oil supply passage (8) .
JP30340994A 1994-12-07 1994-12-07 Rotary compressor Expired - Fee Related JP3798823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30340994A JP3798823B2 (en) 1994-12-07 1994-12-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30340994A JP3798823B2 (en) 1994-12-07 1994-12-07 Rotary compressor

Publications (2)

Publication Number Publication Date
JPH08159070A JPH08159070A (en) 1996-06-18
JP3798823B2 true JP3798823B2 (en) 2006-07-19

Family

ID=17920682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30340994A Expired - Fee Related JP3798823B2 (en) 1994-12-07 1994-12-07 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3798823B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556485B2 (en) 2004-12-13 2009-07-07 Daikin Industries, Ltd. Rotary compressor with reduced refrigeration gas leaks during compression while preventing seizure
JP4626635B2 (en) * 2007-09-10 2011-02-09 ダイキン工業株式会社 Fluid machinery
JP5366884B2 (en) * 2010-05-21 2013-12-11 三菱電機株式会社 Vane rotary compressor
JP5360264B2 (en) * 2012-05-30 2013-12-04 パナソニック株式会社 Rotary compressor
JP7470567B2 (en) * 2019-10-24 2024-04-18 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration cycle device
JP6704555B1 (en) * 2019-10-24 2020-06-03 日立ジョンソンコントロールズ空調株式会社 Compressor and refrigeration cycle device
JP6930576B2 (en) * 2019-12-17 2021-09-01 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JPH08159070A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
US5564917A (en) Rotary compressor with oil injection
KR100322269B1 (en) Oscillating Rotary Compressor
JP3798823B2 (en) Rotary compressor
JPH07145785A (en) Trochoid type refrigerant compressor
US5577903A (en) Rotary compressor
JPH0826865B2 (en) 2-cylinder rotary compressor
JP2019190287A (en) Compressor
JP2979721B2 (en) Scroll type fluid machine
JPH0435634B2 (en)
JP3468553B2 (en) Horizontal rotary compressor
JP3742848B2 (en) Swing compressor
JP3949840B2 (en) Scroll fluid machinery
JP5703752B2 (en) Compressor
JP3742849B2 (en) Rotary compressor
JPS5836196B2 (en) rotary compressor
JPH08210285A (en) Rotary type compressor
JPH0579481A (en) Rotary compressor
KR100234769B1 (en) Oil discharge reducing and lubricating structure for scroll compressor
JP2672626B2 (en) Rotary compressor
JPH02277991A (en) Scroll type fluid machine
JPH0739837B2 (en) Oilless compressor
JPH1113669A (en) Hydraulic pump
JPH09250482A (en) Fluid machine
JP2783371B2 (en) Rotary compressor
JPH05312169A (en) Rotary compressor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees