JP3797435B2 - 5-substituted alkoxybenzene derivatives - Google Patents

5-substituted alkoxybenzene derivatives Download PDF

Info

Publication number
JP3797435B2
JP3797435B2 JP28332594A JP28332594A JP3797435B2 JP 3797435 B2 JP3797435 B2 JP 3797435B2 JP 28332594 A JP28332594 A JP 28332594A JP 28332594 A JP28332594 A JP 28332594A JP 3797435 B2 JP3797435 B2 JP 3797435B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
substituted
carbon atoms
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28332594A
Other languages
Japanese (ja)
Other versions
JPH08143498A (en
Inventor
真治 小川
貞夫 竹原
晴義 高津
佳代子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP28332594A priority Critical patent/JP3797435B2/en
Publication of JPH08143498A publication Critical patent/JPH08143498A/en
Application granted granted Critical
Publication of JP3797435B2 publication Critical patent/JP3797435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電気光学的液晶表示材料として有用な5−置換アルコキシベンゼン誘導体である新規化合物及びそれを含有する液晶組成物に関する。
【0002】
【従来の技術】
液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型あるいはFLC(強誘電性液晶)等が知られているが、このうち現在最もよく用いられているのはTN型及びSTN型である。また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、更に単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。これらのうち、アクティブマトリックス方式によると、最も高画質の表示が可能であり、視野角が広く、高精細化及びカラー化が容易で、動画表示も可能であるので、今後の液晶表示方式の主流になると考えられている。
【0003】
このアクティブマトリックス表示方式に用いられる液晶材料としては、通常の液晶表示と同様に、種々の特性が要求されているが、特に、(1)比抵抗が高く、電圧の保持率に優れること。(2)しきい値電圧(Vth)が低いこと。(3)液晶相の温度範囲が広いこと。(4)適当な屈折率異方性(Δn)を有することの4点は重要である。
【0004】
通常、液晶表示におけるしきい値電圧は式(1)
【0005】
【数1】

Figure 0003797435
【0006】
(式中、kは比例定数を、Kは弾性定数を、Δεは誘電率異方性をそれぞれ表わす。)で表わされるが、この式からわかるようにしきい値電圧を低減するためには液晶材料の弾性定数を小さくするか、あるいは誘電率異方性を大きくする必要がある。
【0007】
誘電率異方性の大きい液晶化合物は一般にシアノ基を有するものが多く、このような化合物では、高い比抵抗値や高い電圧保持率の液晶材料を得ることを困難にさせる傾向を有する。
【0008】
そのため、しきい値電圧を低下させるためには、液晶材料の弾性定数を小さくすることが考えられる。しかしながら、弾性定数の小さい化合物は一般に2環性であり、それを添加することによって、組成物の液晶相の上限温度を大幅に低下させてしまう傾向を有するものがほとんどである。一方、3環性あるいは4環性の化合物では、それを添加することによって、組成物の液晶相の上限温度を低下させることは少ないけれども、こうした化合物ではその弾性定数が一般に大きいことが多く、その添加によってしきい値電圧は高くなってしまう傾向にあった。
【0009】
以上のように、上記の特性を兼ね備えたアクティブマトリックス用液晶組成物を得ることはかなり困難であった。
【0010】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、化学的に安定であって、添加により高い比抵抗と電圧保持率の液晶材料を容易に得ることができ、且つ液晶相の温度範囲を狭くすることなしに、そのしきい値電圧を効果的に低減させることが可能な新規化合物を提供することにある。
【0011】
また、その化合物を含有し、液晶相の温度範囲が広く、且つしきい値電圧の低い液晶組成物を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するために、一般式(I)
【0013】
【化2】
Figure 0003797435
【0014】
(式中、R1は炭素原子数1〜16のアルキル基もしくはアルコキシル基、炭素原子数2〜16のアルケニル基、炭素原子数3〜16のアルケニルオキシ基、又は炭素原子数1〜10のアルコキシル基で置換された炭素原子数1〜12のアルキル基を表わし、環A及び環Bはそれぞれ独立的にフッ素原子により置換されていてもよい1,4−フェニレン基、トランス−1,4−シクロヘキシレン基、トランス−1,3−ジオキサン−2,5−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピラジン−2,5−ジイル基又はピリダジン−3,6−ジイル基を表わし、Y1及びY2はそれぞれ独立的に単結合、−CH2CH2−、−OCH2−、−CH2O−、−(CH24−又は−C≡C−を表わし、mは0、1又は2を表わし、X1はフッ素原子又は塩素原子を表わし、R2は炭素原子数1〜16の直鎖状アルキル基又は炭素原子数3〜16の直鎖状アルケニル基を表わす。)で表わされる5−置換アルコキシベンゼン誘導体を提供する。
【0015】
本発明に係わる一般式(I)のうち、R1が炭素原子数1〜12の直鎖状アルキル基又は炭素原子数2〜12の直鎖状アルケニル基を表わし、環A及び環Bがそれぞれ独立的にフッ素原子により置換されていてもよい1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表わし、Y1及びY2がそれぞれ独立的に単結合、−CH2CH2−又は−C≡C−を表わし、R2が炭素原子数1〜12の直鎖状アルキル基又は炭素原子数3〜12の直鎖状アルケニル基を表わすことを特徴とする前記一般式(I)で表わされる化合物が好ましい。
【0016】
この中でも、R1が炭素原子数1〜7の直鎖状アルキル基又は炭素原子数2〜7の直鎖状アルケニル基を表わし、環Aがトランス−1,4−シクロヘキシレン基であり、R2は炭素原子数1〜7の直鎖状アルキル基又は炭素原子数3〜7の直鎖状アルケニル基を表わすことを特徴とする前記一般式(I)で表わされる化合物が好ましい。
【0017】
更には、環A及び環Bが共にトランス−1,4−シクロヘキシレン基であり、Y2が単結合又は−CH2CH2−を表わすことを特徴とする前記一般式(I)の化合物がより好ましい。
【0018】
更に詳細には、上記において、mが1であることが好ましく、更に、X1がフッ素原子であることが好ましく、Y1が単結合であることが好ましく、更には、R1が炭素原子数1〜7のアルキル基であることが好ましい。
【0019】
一般式(I)の化合物は以下のようにして合成することができる。即ち、一般式(II)
【0020】
【化3】
Figure 0003797435
【0021】
(式中、R1、環A、環B、Y1、Y2、X1及びmは一般式(I)におけると同じ意味を表わす。)で表わされる化合物に、一般式(III)
【0022】
【化4】
2OH (III)
(式中、R2は一般式(I)におけると同じ意味を表わす。)で表わされるアルコールを塩基存在下にフェノラートとして反応させることにより製造することができる。
【0023】
反応は非プロトン性極性溶媒中で行うことが好ましく、特にN,N−ジメチルホルムアミド(DMF)が好ましい。
塩基としてはナトリウム等のアルカリ金属、水素化ナトリウム等のアルカリ金属水素化物、ブチルリチウム等の有機金属化合物、リチウムジイソプロピルアミド(LDA)等の金属アミド、t−ブトキシカリウム等のアルコラート等を用いることができる。
【0024】
あるいは一般式(I)の化合物はまた、一般式(IV)
【0025】
【化5】
Figure 0003797435
【0026】
(式中、R1、環A、環B、X1、Y1、Y2及びmは一般式(I)におけると同じ意味を表わす。)で表わされる5−置換フルオロフェノール誘導体を、塩基存在下にアルコラートとして、これを一般式(V)
【0027】
【化6】
2W (V)
(式中、R2は一般式(I)におけると同じ意味を表わし、Wは塩素原子、臭素原子又はヨウ素原子を表わす。)で表わされるハライドと反応させることによっても得ることができる。
【0028】
ここで一般式(IV)の5−置換フルオロフェノール誘導体は、例えば一般式(II)の化合物とt−ブトキシカリウムを反応させること等により得ることができる。
【0029】
斯くして製造された一般式(I)で表わされる化合物の代表例を第1表に掲げる。
【0030】
【表1】
Figure 0003797435
【0031】
(表中、Cは結晶相を表わすが、C1及びC2はそれぞれ異なる結晶相を表わし、Iは等方性液体相を表わす。)
第1表からわかるように、一般式(I)で表わされる化合物は、化合物単独では液晶相を示さないものが多い。これは一般式(I)が、2,3−ジ置換−1,5−フェニレン基という極めて折れ曲がった構造を骨格中に有することによる。通常の液晶化合物はその中心骨格が、1,4−フェニレン基、トランス−1,4−シクロヘキシレン基に代表されるように、極めて直線性に優れた環構造から構成され、一般式(I)のような構造を有する化合物はこれまでほとんど注目されていなかった。しかしながら、一般式(I)は、液晶性こそ高くないけれども、通常の母体液晶との相溶性には非常に優れており、添加した場合の液晶相上限温度の低下もそれほど大きいものではない。しかも後述するように、その添加によって組成物のしきい値電圧を極めて効果的に低減することが可能であり、更に屈折率異方性が比較的小さい等の特徴を有している。
【0032】
従って、一般式(I)で表わされる化合物は、他のネマチック液晶化合物との混合物の状態で、特にTN型あるいはSTN型といった電界効果型表示セルの材料として、好適に使用することができる。しかも、一般式(I)で表わされる化合物は、その分子内にシアノ基やエステル結合などの強い極性基を有さないため、その添加により得られた液晶材料は容易に大きい比抵抗と高い電圧保持率を得ることできる。そのため、アクティブマトリックス駆動用液晶材料の構成成分として特に適している。
【0033】
本発明はこのように一般式(I)で表わされる化合物の少なくとも1種類をその構成成分として含有する液晶組成物をも提供するものである。
本発明の液晶組成物において、一般式(I)の化合物と混合して使用することのできるネマチック液晶化合物の好ましい代表例としては、例えば、4−置換安息香酸4−置換フェニル、4−置換シクロヘキサンカルボン酸4−置換フェニル、4−置換シクロヘキサンカルボン酸4’−置換ビフェニリル、4−(4−置換シクロヘキサンカルボニルオキシ)安息香酸4−置換フェニル、4−(4−置換シクロヘキシル)安息香酸4−置換フェニル、4−(4−置換シクロヘキシル)安息香酸4−置換シクロヘキシル、4,4’−置換ビフェニル、1−(4−置換シクロヘキシル)−4−置換ベンゼン、4,4’−置換ビシクロヘキサン、1−[2−(4−置換シクロヘキシル)エチル]−4−置換ベンゼン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、4,4”−置換ターフェニル、4−(4−置換シクロヘキシル)−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−(4−置換フェニル)−4’−置換ビシクロヘキサン、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]シクロヘキシル−4’−置換ベンゼン、4−[2−(4−置換フェニル)エチル]−4’−置換ビシクロヘキサン、1−(4−置換フェニルエチニル)−4−置換ベンゼン、1−(4−置換フェニルエチニル)−4−(4−置換シクロヘキシル)ベンゼン、2−(4−置換フェニル)−5−置換ピリミジン、2−(4’−置換ビフェニリル)−5−置換ピリミジン及び上記各化合物においてベンゼン環が側方置換基を有する化合物等を挙げることができる。
【0034】
このうちアクティブマトリックス駆動用としては4,4’−置換ビフェニル、1−(4−置換シクロヘキシル)−4−置換ベンゼン、4,4’−置換ビシクロヘキサン、1−[2−(4−置換シクロヘキシル)エチル]−4−置換ベンゼン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、4,4”−置換ターフェニル、4−(4−置換シクロヘキシル)−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−(4−置換フェニル)−4’−置換ビシクロヘキサン、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]シクロヘキシル−4’−置換ベンゼン、4−[2−(4−置換フェニル)エチル]−4’−置換ビシクロヘキサン、1−(4−置換フェニルエチニル)−4−置換ベンゼン、1−(4−置換フェニルエチニル)−4−(4−置換シクロヘキシル)ベンゼン及び上記においてベンゼン環がフッ素置換されている化合物が適している。
【0035】
一般式(I)の化合物の効果は、例えば以下の例からも明らかである。
ネマチック液晶材料として現在汎用されおり、特にアクティブマトリックス用として好適な母体液晶(B)
【0036】
【化7】
Figure 0003797435
【0037】
(式中、シクロヘキサン環はトランス配置を表わし、「%」は「重量%」を表わす。)は116.7℃以下でネマチック相を示し、その誘電率異方性(Δε)は4.7であり、これを用いて作製したセル厚6μmのTNセルのしきい値電圧(Vth)は2.14Vであった。また、その屈折率異方性(Δn)は0.090であった。
【0038】
この母体液晶(B)85重量%及び第1表中の(No.1)の化合物15重量%からなる液晶組成物(M−1)を調製したところ、そのネマチック相の上限温度は102.4℃と母体液晶(B)よりやや低くなり、そのΔεは5.7と大きくなった。この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、1.86Vと母体液晶(B)と比較して0.28Vも低減することができた。また、そのΔnは0.084と0.006小さくなった。更に、この組成物の比抵抗を測定したところ1012Ωcm以上と大きく、このセルの電圧保持率は高いものであった。
【0039】
これに対し、母体液晶(B)85重量%及び(No.1)の化合物と類似構造を有する式(R−1)
【0040】
【化8】
Figure 0003797435
【0041】
の化合物15重量%からなる液晶組成物(N−1)を調製した。(N−1)のネマチック相の上限温度は124.3℃と(M−1)に比べると高くなり、そのΔεは4.0と(M−1)より小さくなった。この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、2.25Vと母体液晶(B)より大きくなってしまい低減効果は見られなかった。また、このΔnは0.091と母体液晶(B)と同程度であった。
【0042】
次に、この母体液晶(B)85重量%及び第1表中の(No.2)の化合物15重量%からなる液晶組成物(M−2)を調製したところ、そのネマチック相の上限温度は94.5℃と母体液晶(B)より低下したが、そのΔεは5.8と大きくなった。しかも、この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、1.72Vと母体液晶(B)と比較して、約20%も低減された。また、この組成物のΔnは0.083と母体液晶(B)より0.007も小さくなった。更にこの組成物の比抵抗を測定したところ1012Ωcm以上と大きく、このセルの電圧保持率は非常に高いものであった。
【0043】
これに対し、母体液晶(B)85重量%及び(No.2)の化合物と類似構造を有する式(R−2)
【0044】
【化9】
Figure 0003797435
【0045】
の化合物15重量%からなる液晶組成物(N−2)を調製した。(N−2)のネマチック相の上限温度は109.6℃と(M−2)に比べると高くなった。また、そのΔεは4.3と(M−2)よりかなり小さくなった。同様にしてセルを作製しそのVthを測定したところ、2.16Vと(M−2)に比べるとかなり高くなった。また、このΔnは0.089と母体液晶(B)と同程度であった。
【0046】
以上の結果から、一般式(I)で表わされる化合物は、アクティブマトリックス用液晶材料として、そのしきい値電圧の低減に大きな効果を有することが明らかである。
【0047】
【実施例】
以下に本発明の実施例を示し、本発明を更に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
【0048】
なお、相転移温度の測定は温度調節ステージを備えた偏光顕微鏡及び示差走査熱量計(DSC)を併用して行った。また、化合物の構造は核磁気共鳴スペクトル(1H−NMR)、質量スペクトル(MS)等により確認した。NMRにおけるCDCl3は溶媒を表わし、sは1重線、dは2重線、tは3重線、mは多重線を表わし、また例えばttは3重の3重線を表わし、Jはカップリング定数を表わす。MSにおけるM+は親ピークを表わし、( )内の数値はそのピークの相対強度を表わす。組成物中における「%」はすべて「重量%」を表わす。
(実施例1) トランス−4−(3−アリルオキシ−4,5−ジフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン(第1表中の(No.2)の化合物)の合成
【0049】
【化10】
Figure 0003797435
【0050】
アリルアルコール4.81gのDMF40ml溶液を0℃に冷却し、カリウム−t−ブトキシド9.28gを加え、同温度で更に30分間攪拌した。これにDMF40ml及びテトラヒドロフラン(THF)20mlに溶解した4−(3,4,5−トリフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン20gを15℃で滴下し、更に室温で2時間攪拌した。水を加え、稀塩酸で中和した後、反応生成物をヘキサンで抽出した。有機層を水洗後、無水硫酸ナトリウムで脱水乾燥し、溶媒を溜去して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=9/1)を用いて精製して、トランス−4−(3−アリルオキシ−4,5−ジフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン18.9gを得た。更にエタノールから再結晶して精製し、その相転移温度を測定したところ、結晶相からの昇温時56℃で等方性液体相に転移した。
【0051】
NMR:δ=0.86〜1.36(m,18H)、δ=1.71〜1.89(m,8H)、δ=2.35(tt,1H,J=12Hz,3Hz)、δ=4.59(d,2H,J=5.4Hz)、δ=5.30(d,1H,J=8.6Hz)、δ=5.42(d,1H,J=17.2Hz)、δ=6.05(ddd,1H,J=5.4Hz,8.6Hz,17.2Hz)、δ=6.56〜6.63(m,2H)
MS:m/e=376(M+
(実施例2) トランス−4−(3−メトキシ−4,5−ジフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン(第1表中の(No.1)の化合物)の合成
【0052】
【化11】
Figure 0003797435
【0053】
ナトリウムメトキシド4.55gのDMF50ml溶液を0℃に冷却し、これにDMF40ml及びテトラヒドロフラン(THF)20mlに溶解した4−(3,4,5−トリフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン20gを15℃で滴下し、更に室温で1時間攪拌した。水を加え、稀塩酸で中和し、反応生成物をヘキサンで抽出した。有機層を水洗後、無水硫酸ナトリウムで脱水乾燥し、溶媒を溜去して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=9/1)を用いて精製して、トランス−4−(3−メトキシ−4,5−ジフルオロフェニル)−トランス−4’−プロピルビシクロヘキサン17.9gを得た。更にエタノールから再結晶して精製し、相転移温度を測定した。転移温度は第1表にまとめて示した。
(実施例3) 4−[2−(3−メトキシ−4,5−ジフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサン(第1表中の(No.3)の化合物)の合成
実施例2において4−(3,4,5−トリフルオロフェニル)−トランス−4’−プロピルビシクロヘキサンに換えて、4−[2−(3,4,5−トリフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサンを用いた以外は実施例2と同様にして、4−[2−(3−メトキシ−4,5−ジフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサンを得た。相転移温度は第1表にまとめて示した。
(実施例4) 4−[2−(3−アリルオキシ−4,5−ジフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサン(第1表中の(No.4)の化合物)の合成
実施例1において4−(3,4,5−トリフルオロフェニル)−トランス−4’−プロピルビシクロヘキサンに換えて、4−[2−(3,4,5−トリフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサンを用いた以外は実施例1と同様にして、4−[2−(3−アリルオキシ−4,5−ジフルオロフェニル)エチル]−トランス−4’−プロピルビシクロヘキサンを得た。相転移温度は第1表にまとめて示した。
(実施例5) 液晶組成物の調製(1)
特にアクティブマトリックス用として好適なフッ素系の母体液晶(B)
【0054】
【化12】
Figure 0003797435
【0055】
(式中、シクロヘキサン環はトランス配置を表わす。)を調製したところ、116.7℃以下でネマチック(N)相を示した。その物性値及びこれを用いて作製したセル厚6μmのTNセルのしきい値電圧(Vth)は以下の通りであった。
【0056】
誘電率異方性(Δε) 4.7
屈折率異方性(Δn) 0.090
しきい値電圧(Vth) 2.14V
この母体液晶(B)85重量%及び実施例2で得た(No.1)の化合物15重量%からなる液晶組成物(M−1)を調製した。この(M−1)のN相の上限温度(TN-I)及びその物性値は以下の通りであった。
【0057】
N相の上限温度(TN-I) 102.4℃
誘電率異方性(Δε) 5.7
屈折率異方性(Δn) 0.084
しきい値電圧(Vth) 1.86V
このように、N相の上限温度(TN-I)は少し低くなった。しかしながら、Δεは母体液晶(B)よりかなり増加し、この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、0.28V(約13%)も低減することができた。また、このΔnは0.084と0.006小さくなった。更に、この組成物の比抵抗を測定したところ1012Ωcm以上と大きく、このセルの電圧保持率は非常に高かった。
(比較例1)
母体液晶(B)85重量%及び(No.1)の化合物と類似構造を有する式(R−1)
【0058】
【化13】
Figure 0003797435
【0059】
の化合物15重量%からなる液晶組成物(N−1)を調製した。この(N−1)のN相の上限温度(TN-I)及びその物性値は以下の通りであった。
N相の上限温度(TN-I) 124.3℃
誘電率異方性(Δε) 4.0
屈折率異方性(Δn) 0.091
しきい値電圧(Vth) 2.25V
このようにN相の上限温度(TN-I)は(M−1)より高くなったが、そのΔεは(M−1)より小さくなった。この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、2.25Vと母体液晶(B)より大きくなってしまい、(M−1)と比較すると0.39Vも高くなった。また、このΔnは0.091と母体液晶(B)とほとんど変わらない値であった
(実施例6) 液晶組成物の調製(2)
母体液晶(B)85重量%及び実施例1で得た(No.2)の化合物15重量%からなる液晶組成物(M−2)を調製した。この(M−2)のN相の上限温度(TN-I)及びその物性値は以下の通りであった。
【0060】
N相の上限温度(TN-I) 94.5℃
誘電率異方性(Δε) 5.8
屈折率異方性(Δn) 0.083
しきい値電圧(Vth) 1.72V
このようにN相の上限温度(TN-I)は母体液晶(B)より若干低下したものの、Δεが大きくなり、この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、1.72Vと母体液晶(B)と比較して、0.42Vも低減することができた。また、このΔnは0.083と母体液晶(B)よりも0.007も低減することができた。更に、この組成物の比抵抗を測定したところ1012Ωcm以上と大きく、このセルの電圧保持率は高いものであった。
(比較例2)
母体液晶(B)85重量%及び(No.2)の化合物と類似構造を有する式(R−2)
【0061】
【化14】
Figure 0003797435
【0062】
の化合物15重量%からなる液晶組成物(N−2)を調製した。この(N−2)のN相の上限温度(TN-I)及びその物性値は以下の通りであった。
N相の上限温度(TN-I) 109.6℃
誘電率異方性(Δε) 4.3
屈折率異方性(Δn) 0.089
しきい値電圧(Vth) 2.16V
このようにN相の上限温度(TN-I)は(M−2)より高くなった。しかしながら、そのΔεは(M−2)よりかなり低く、この組成物を用いて同様にしてセルを作製し、そのVthを測定したところ、2.16Vであり、母体液晶(B)より高くなり、(M−2)と比較すると0.44Vも高くなった。また、このΔnは母体液晶(B)と同程度であった。
【0063】
【発明の効果】
本発明の一般式(I)で表わされる化合物は、実施例に示したように工業的にも極めて容易に製造でき、熱、光、水等に対し、化学的に安定であり、ネマチック液晶として現在汎用されている母体液晶との相溶性にも優れている。しかも、母体液晶に少量添加することにより、得られた組成物のネマチック液晶温度範囲をそれほど低下させることなく、それを用いた液晶セルのしきい値電圧(Vth)を効果的に低減することが可能である。また、分子内に強い極性基が存在せず、容易に大きい比抵抗と高い電圧保持率を得ることができる。従って、液晶相の温度範囲が広く、且つ低電圧駆動が要求される各種液晶表示素子、特にアクティブマトリックス駆動用の液晶材料として非常に有用である。[0001]
[Industrial application fields]
The present invention relates to a novel compound which is a 5-substituted alkoxybenzene derivative useful as an electro-optical liquid crystal display material and a liquid crystal composition containing the compound.
[0002]
[Prior art]
Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, etc., including watches and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), or FLC (ferroelectric liquid crystal). Among them, the TN type and the STN type are most frequently used at present. As a driving method, the conventional static driving to the multiplex driving have become common, and the simple matrix method and recently the active matrix method have been put into practical use. Among these, the active matrix method can display the highest image quality, has a wide viewing angle, can easily achieve high definition and color, and can display moving images. It is thought to be.
[0003]
As a liquid crystal material used in this active matrix display system, various characteristics are required as in the case of a normal liquid crystal display. In particular, (1) high specific resistance and excellent voltage holding ratio. (2) The threshold voltage (V th ) is low. (3) The temperature range of the liquid crystal phase is wide. (4) The four points of having an appropriate refractive index anisotropy (Δn) are important.
[0004]
Usually, the threshold voltage in the liquid crystal display is expressed by equation (1).
[0005]
[Expression 1]
Figure 0003797435
[0006]
Where k is a proportional constant, K is an elastic constant, and Δε is a dielectric anisotropy. As can be seen from this formula, a liquid crystal material is used to reduce the threshold voltage. Therefore, it is necessary to reduce the elastic constant or increase the dielectric anisotropy.
[0007]
Many liquid crystal compounds having a large dielectric anisotropy generally have a cyano group, and such compounds tend to make it difficult to obtain a liquid crystal material having a high specific resistance value and a high voltage holding ratio.
[0008]
Therefore, in order to lower the threshold voltage, it is conceivable to reduce the elastic constant of the liquid crystal material. However, compounds having a small elastic constant are generally bicyclic, and most of them have a tendency to greatly reduce the upper limit temperature of the liquid crystal phase of the composition when added. On the other hand, tricyclic or tetracyclic compounds rarely reduce the maximum temperature of the liquid crystal phase of the composition when added, but such compounds generally have a large elastic constant, The threshold voltage tends to increase with the addition.
[0009]
As described above, it has been quite difficult to obtain a liquid crystal composition for active matrix having the above characteristics.
[0010]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that it is chemically stable, and a liquid crystal material having high specific resistance and voltage holding ratio can be easily obtained by addition, and without reducing the temperature range of the liquid crystal phase. An object of the present invention is to provide a novel compound capable of effectively reducing the threshold voltage.
[0011]
Another object of the present invention is to provide a liquid crystal composition containing the compound, having a wide liquid crystal phase temperature range, and a low threshold voltage.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a compound represented by the general formula (I)
[0013]
[Chemical 2]
Figure 0003797435
[0014]
(In the formula, R 1 is an alkyl or alkoxyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, an alkenyloxy group having 3 to 16 carbon atoms, or an alkoxyl having 1 to 10 carbon atoms. Represents an alkyl group having 1 to 12 carbon atoms substituted with a group, and ring A and ring B are each independently a 1,4-phenylene group or trans-1,4-cyclohexyl group which may be substituted with a fluorine atom. Silene group, trans-1,3-dioxane-2,5-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group or pyridazine-3,6 -Diyl group, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, — (CH 2 ) 4 — or —C≡C— Where m is 0, 1 or 2 represents, X 1 represents a fluorine atom or a chlorine atom, R 2 is represented by represents.) A linear alkyl group or linear alkenyl group having a carbon number of 3 to 16 1 to 16 carbon atoms 5-substituted alkoxybenzene derivatives are provided.
[0015]
In the general formula (I) according to the present invention, R 1 represents a linear alkyl group having 1 to 12 carbon atoms or a linear alkenyl group having 2 to 12 carbon atoms, and ring A and ring B are each represented by Independently represents a 1,4-phenylene group or trans-1,4-cyclohexylene group optionally substituted by a fluorine atom, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —; Or -C≡C-, wherein R 2 represents a linear alkyl group having 1 to 12 carbon atoms or a linear alkenyl group having 3 to 12 carbon atoms, The compound represented by these is preferable.
[0016]
Among them, R 1 represents a linear alkyl group having 1 to 7 carbon atoms or a linear alkenyl group having 2 to 7 carbon atoms, ring A is a trans-1,4-cyclohexylene group, R 2 is preferably a straight-chain alkyl group having 1 to 7 carbon atoms or a straight-chain alkenyl group having 3 to 7 carbon atoms, wherein the compound represented by the general formula (I) is preferable.
[0017]
Further, the compound of the above general formula (I) is characterized in that both ring A and ring B are trans-1,4-cyclohexylene groups, and Y 2 represents a single bond or —CH 2 CH 2 —. More preferred.
[0018]
More specifically, in the above, m is preferably 1, more preferably X 1 is a fluorine atom, Y 1 is preferably a single bond, and R 1 is the number of carbon atoms. It is preferably 1 to 7 alkyl groups.
[0019]
The compound of general formula (I) can be synthesized as follows. That is, the general formula (II)
[0020]
[Chemical 3]
Figure 0003797435
[0021]
(Wherein R 1 , ring A, ring B, Y 1 , Y 2 , X 1 and m have the same meaning as in general formula (I)), the compound represented by general formula (III)
[0022]
[Formula 4]
R 2 OH (III)
(Wherein R 2 represents the same meaning as in formula (I)) and can be produced by reacting as a phenolate in the presence of a base.
[0023]
The reaction is preferably carried out in an aprotic polar solvent, particularly N, N-dimethylformamide (DMF).
As the base, an alkali metal such as sodium, an alkali metal hydride such as sodium hydride, an organic metal compound such as butyl lithium, a metal amide such as lithium diisopropylamide (LDA), an alcoholate such as t-butoxy potassium, etc. may be used. it can.
[0024]
Alternatively, the compound of general formula (I) may also be represented by general formula (IV)
[0025]
[Chemical formula 5]
Figure 0003797435
[0026]
(Wherein R 1 , ring A, ring B, X 1 , Y 1 , Y 2 and m have the same meaning as in general formula (I)), a 5-substituted fluorophenol derivative represented by a base The alcoholate below is represented by the general formula (V)
[0027]
[Chemical 6]
R 2 W (V)
(Wherein R 2 represents the same meaning as in the general formula (I), and W represents a chlorine atom, a bromine atom or an iodine atom).
[0028]
Here, the 5-substituted fluorophenol derivative of the general formula (IV) can be obtained, for example, by reacting the compound of the general formula (II) with t-butoxy potassium.
[0029]
Representative examples of the compounds represented by the general formula (I) thus produced are listed in Table 1.
[0030]
[Table 1]
Figure 0003797435
[0031]
(In the table, C represents a crystalline phase, C 1 and C 2 represent different crystalline phases, and I represents an isotropic liquid phase.)
As can be seen from Table 1, many of the compounds represented by formula (I) do not exhibit a liquid crystal phase when used alone. This is because the general formula (I) has a very bent structure of 2,3-disubstituted-1,5-phenylene group in the skeleton. An ordinary liquid crystal compound has a ring structure having a very excellent linearity such that its central skeleton is represented by a 1,4-phenylene group and a trans-1,4-cyclohexylene group. Until now, little attention has been paid to compounds having such a structure. However, although the general formula (I) is not high in liquid crystallinity, it is very excellent in compatibility with a normal base liquid crystal, and the drop in the upper limit temperature of the liquid crystal phase when added is not so great. In addition, as will be described later, the addition can significantly reduce the threshold voltage of the composition, and further has features such as relatively low refractive index anisotropy.
[0032]
Therefore, the compound represented by the general formula (I) can be suitably used as a material for a field effect display cell such as a TN type or STN type in a mixture with other nematic liquid crystal compounds. Moreover, since the compound represented by the general formula (I) does not have a strong polar group such as a cyano group or an ester bond in the molecule, the liquid crystal material obtained by the addition easily has a large specific resistance and a high voltage. Retention can be obtained. Therefore, it is particularly suitable as a constituent component of the active matrix driving liquid crystal material.
[0033]
The present invention also provides a liquid crystal composition containing at least one compound represented by the general formula (I) as a constituent component.
In the liquid crystal composition of the present invention, preferred representative examples of the nematic liquid crystal compound that can be used by mixing with the compound of the general formula (I) include, for example, 4-substituted phenyl benzoate, 4-substituted phenyl, and 4-substituted cyclohexane. Carboxylic acid 4-substituted phenyl, 4-substituted cyclohexanecarboxylic acid 4′-substituted biphenylyl, 4- (4-substituted cyclohexanecarbonyloxy) benzoic acid 4-substituted phenyl, 4- (4-substituted cyclohexyl) benzoic acid 4-substituted phenyl 4- (4-substituted cyclohexyl) benzoic acid 4-substituted cyclohexyl, 4,4′-substituted biphenyl, 1- (4-substituted cyclohexyl) -4-substituted benzene, 4,4′-substituted bicyclohexane, 1- [ 2- (4-substituted cyclohexyl) ethyl] -4-substituted benzene, 1- (4-substituted cyclohexyl) -2- 4-Substituted cyclohexyl) ethane, 4,4 "-substituted terphenyl, 4- (4-substituted cyclohexyl) -4'-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] -4'-substituted biphenyl 4- (4-substituted phenyl) -4′-substituted bicyclohexane, 4- [2- (4-substituted cyclohexyl) ethyl] -4′-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] Cyclohexyl-4′-substituted benzene, 4- [2- (4-substituted phenyl) ethyl] -4′-substituted bicyclohexane, 1- (4-substituted phenylethynyl) -4-substituted benzene, 1- (4-substituted Phenylethynyl) -4- (4-substituted cyclohexyl) benzene, 2- (4-substituted phenyl) -5-substituted pyrimidine, 2- (4′-substituted biphenylyl) -5-substituted pyrimidine Benzene ring in fine above compounds can be exemplified compounds having a lateral substituent.
[0034]
Among these, for active matrix driving, 4,4′-substituted biphenyl, 1- (4-substituted cyclohexyl) -4-substituted benzene, 4,4′-substituted bicyclohexane, 1- [2- (4-substituted cyclohexyl) Ethyl] -4-substituted benzene, 1- (4-substituted cyclohexyl) -2- (4-substituted cyclohexyl) ethane, 4,4 "-substituted terphenyl, 4- (4-substituted cyclohexyl) -4'-substituted biphenyl 4- [2- (4-substituted cyclohexyl) ethyl] -4′-substituted biphenyl, 4- (4-substituted phenyl) -4′-substituted bicyclohexane, 4- [2- (4-substituted cyclohexyl) ethyl] -4'-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] cyclohexyl-4'-substituted benzene, 4- [2- (4-substituted phenyl) ethyl] -4'-substituted bicyclohexane, 1- (4-substituted phenylethynyl) -4-substituted benzene, 1- (4-substituted phenylethynyl) -4- (4-substituted cyclohexyl) benzene and the above, the benzene ring is substituted with fluorine Suitable compounds are suitable.
[0035]
The effect of the compound of the general formula (I) is apparent from, for example, the following examples.
A matrix liquid crystal (B) that is currently widely used as a nematic liquid crystal material and is particularly suitable for use in an active matrix
[0036]
[Chemical 7]
Figure 0003797435
[0037]
(Wherein the cyclohexane ring represents a trans configuration and “%” represents “% by weight”) indicates a nematic phase at 116.7 ° C. or less, and its dielectric anisotropy (Δε) is 4.7. The threshold voltage (V th ) of a TN cell having a cell thickness of 6 μm produced using this was 2.14V. The refractive index anisotropy (Δn) was 0.090.
[0038]
A liquid crystal composition (M-1) comprising 85% by weight of the base liquid crystal (B) and 15% by weight of the compound (No. 1) in Table 1 was prepared. The upper limit temperature of the nematic phase was 102.4. The temperature was slightly lower than that of the base liquid crystal (B), and the Δε was as large as 5.7. A cell was prepared in the same manner using this composition, and its V th was measured. As a result, it was 1.86 V, which was 0.28 V lower than that of the base liquid crystal (B). In addition, the Δn became 0.084 and 0.006 smaller. Furthermore, when the specific resistance of this composition was measured, it was as large as 10 12 Ωcm or more, and the voltage holding ratio of this cell was high.
[0039]
On the other hand, the formula (R-1) having a structure similar to that of the compound of 85% by weight of the base liquid crystal (B) and (No. 1)
[0040]
[Chemical 8]
Figure 0003797435
[0041]
A liquid crystal composition (N-1) comprising 15% by weight of the above compound was prepared. The upper limit temperature of the nematic phase of (N-1) was 124.3 ° C., which was higher than that of (M-1), and its Δε was 4.0, which was lower than that of (M-1). A cell was prepared in the same manner using this composition, and its V th was measured. As a result, it was 2.25 V, which was larger than the base liquid crystal (B), and no reduction effect was observed. Further, this Δn was 0.091, which was similar to that of the base liquid crystal (B).
[0042]
Next, when a liquid crystal composition (M-2) comprising 85% by weight of the base liquid crystal (B) and 15% by weight of the compound (No. 2) in Table 1 was prepared, the maximum temperature of the nematic phase was Although it was 94.5 ° C., which was lower than that of the base liquid crystal (B), the Δε was as large as 5.8. Moreover, when a cell was prepared in the same manner using this composition and its Vth was measured, it was reduced by about 20% compared to 1.72 V, which was the base liquid crystal (B). Further, Δn of this composition was 0.083, which was 0.007 smaller than that of the base liquid crystal (B). Furthermore, when the specific resistance of this composition was measured, it was as large as 10 12 Ωcm or more, and the voltage holding ratio of this cell was very high.
[0043]
In contrast, the formula (R-2) having a structure similar to that of the compound of 85% by weight of the base liquid crystal (B) and (No. 2)
[0044]
[Chemical 9]
Figure 0003797435
[0045]
A liquid crystal composition (N-2) comprising 15% by weight of the above compound was prepared. The upper limit temperature of the nematic phase of (N-2) was 109.6 ° C., which was higher than that of (M-2). The Δε was 4.3, which was considerably smaller than (M−2). Similarly, when a cell was prepared and its V th was measured, it was considerably higher than 2.16 V and (M-2). Further, this Δn was 0.089, which was similar to that of the base liquid crystal (B).
[0046]
From the above results, it is clear that the compound represented by the general formula (I) has a great effect on reducing the threshold voltage as a liquid crystal material for an active matrix.
[0047]
【Example】
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
[0048]
The phase transition temperature was measured using a polarizing microscope equipped with a temperature control stage and a differential scanning calorimeter (DSC). Further, the structure of the compound was confirmed by nuclear magnetic resonance spectrum ( 1 H-NMR), mass spectrum (MS) and the like. In NMR, CDCl 3 represents a solvent, s represents a single line, d represents a double line, t represents a triple line, m represents a multiple line, and for example, tt represents a triple triple line, and J represents a cup. Represents a ring constant. M + in MS represents the parent peak, and the numerical value in () represents the relative intensity of the peak. All “%” in the composition represents “% by weight”.
Example 1 Synthesis of trans-4- (3-allyloxy-4,5-difluorophenyl) -trans-4′-propylbicyclohexane (compound (No. 2) in Table 1)
[Chemical Formula 10]
Figure 0003797435
[0050]
A solution of 4.81 g of allyl alcohol in 40 ml of DMF was cooled to 0 ° C., 9.28 g of potassium tert-butoxide was added, and the mixture was further stirred at the same temperature for 30 minutes. To this, 20 g of 4- (3,4,5-trifluorophenyl) -trans-4′-propylbicyclohexane dissolved in 40 ml of DMF and 20 ml of tetrahydrofuran (THF) was added dropwise at 15 ° C., and the mixture was further stirred at room temperature for 2 hours. After adding water and neutralizing with dilute hydrochloric acid, the reaction product was extracted with hexane. The organic layer was washed with water, dehydrated and dried over anhydrous sodium sulfate, the solvent was distilled off, and the resulting crude product was purified using silica gel column chromatography (hexane / toluene = 9/1) to obtain trans-4. 18.9 g of-(3-allyloxy-4,5-difluorophenyl) -trans-4'-propylbicyclohexane was obtained. Furthermore, it was purified by recrystallization from ethanol, and its phase transition temperature was measured. As a result, the crystal phase was transformed into an isotropic liquid phase at 56 ° C. when the temperature was raised.
[0051]
NMR: δ = 0.86 to 1.36 (m, 18H), δ = 1.71 to 1.89 (m, 8H), δ = 2.35 (tt, 1H, J = 12 Hz, 3 Hz), δ = 4.59 (d, 2H, J = 5.4 Hz), δ = 5.30 (d, 1H, J = 8.6 Hz), δ = 5.42 (d, 1H, J = 17.2 Hz), δ = 6.05 (ddd, 1H, J = 5.4 Hz, 8.6 Hz, 17.2 Hz), δ = 6.56 to 6.63 (m, 2H)
MS: m / e = 376 (M + )
Example 2 Synthesis of trans-4- (3-methoxy-4,5-difluorophenyl) -trans-4′-propylbicyclohexane (the compound of (No. 1) in Table 1)
Embedded image
Figure 0003797435
[0053]
A solution of 4.55 g of sodium methoxide in 50 ml of DMF was cooled to 0 ° C., and 4- (3,4,5-trifluorophenyl) -trans-4′-propylbicyclohexane dissolved in 40 ml of DMF and 20 ml of tetrahydrofuran (THF) was added thereto. 20g was dripped at 15 degreeC, and also it stirred at room temperature for 1 hour. Water was added, neutralized with dilute hydrochloric acid, and the reaction product was extracted with hexane. The organic layer was washed with water, dehydrated and dried over anhydrous sodium sulfate, the solvent was distilled off, and the resulting crude product was purified using silica gel column chromatography (hexane / toluene = 9/1) to obtain trans-4. 17.9 g of-(3-methoxy-4,5-difluorophenyl) -trans-4'-propylbicyclohexane was obtained. Furthermore, it refine | purified by recrystallizing from ethanol and measured the phase transition temperature. The transition temperatures are summarized in Table 1.
Example 3 Synthesis of 4- [2- (3-methoxy-4,5-difluorophenyl) ethyl] -trans-4′-propylbicyclohexane (compound (No. 3) in Table 1) Instead of 4- (3,4,5-trifluorophenyl) -trans-4′-propylbicyclohexane in Example 2, 4- [2- (3,4,5-trifluorophenyl) ethyl] -trans- 4- [2- (3-Methoxy-4,5-difluorophenyl) ethyl] -trans-4'-propylbicyclohexane was obtained in the same manner as in Example 2 except that 4'-propylbicyclohexane was used. . The phase transition temperatures are summarized in Table 1.
Example 4 Synthesis of 4- [2- (3-allyloxy-4,5-difluorophenyl) ethyl] -trans-4′-propylbicyclohexane (the compound of (No. 4) in Table 1) Instead of 4- (3,4,5-trifluorophenyl) -trans-4′-propylbicyclohexane in Example 1, 4- [2- (3,4,5-trifluorophenyl) ethyl] -trans- 4- [2- (3-Allyloxy-4,5-difluorophenyl) ethyl] -trans-4'-propylbicyclohexane was obtained in the same manner as in Example 1 except that 4'-propylbicyclohexane was used. . The phase transition temperatures are summarized in Table 1.
(Example 5) Preparation of liquid crystal composition (1)
Fluorine-based matrix liquid crystal (B) particularly suitable for active matrix use
[0054]
Embedded image
Figure 0003797435
[0055]
(In the formula, the cyclohexane ring represents a trans configuration.) When prepared, the nematic (N) phase was exhibited at 116.7 ° C. or lower. The physical property values and the threshold voltage (V th ) of a TN cell having a cell thickness of 6 μm fabricated using the physical property values were as follows.
[0056]
Dielectric Anisotropy (Δε) 4.7
Refractive index anisotropy (Δn) 0.090
Threshold voltage (V th ) 2.14V
A liquid crystal composition (M-1) comprising 85% by weight of the base liquid crystal (B) and 15% by weight of the compound (No. 1) obtained in Example 2 was prepared. The upper limit temperature (T NI ) of N phase of (M-1) and its physical properties were as follows.
[0057]
N phase upper limit temperature (T NI ) 102.4 ° C
Dielectric anisotropy (Δε) 5.7
Refractive index anisotropy (Δn) 0.084
Threshold voltage (V th ) 1.86V
Thus, the upper limit temperature (T NI ) of the N phase was slightly lowered. However, Δε is significantly higher than that of the base liquid crystal (B), and when a cell is prepared in the same manner using this composition and its Vth is measured, 0.28V (about 13%) can be reduced. It was. Further, this Δn was 0.084, which was smaller than 0.006. Furthermore, when the specific resistance of this composition was measured, it was as large as 10 12 Ωcm or more, and the voltage holding ratio of this cell was very high.
(Comparative Example 1)
Formula (R-1) having a structure similar to that of the compound of the base liquid crystal (B) 85% by weight and (No. 1)
[0058]
Embedded image
Figure 0003797435
[0059]
A liquid crystal composition (N-1) comprising 15% by weight of the above compound was prepared. The upper limit temperature (T NI ) and physical properties of the N phase of (N-1) were as follows.
N phase upper limit temperature (T NI ) 124.3 ° C
Dielectric Anisotropy (Δε) 4.0
Refractive index anisotropy (Δn) 0.091
Threshold voltage (V th ) 2.25V
As described above, the upper limit temperature (T NI ) of the N phase was higher than (M−1), but its Δ∈ was lower than (M−1). A cell was prepared in the same manner using this composition, and its V th was measured. As a result, it was 2.25 V, which was larger than the base liquid crystal (B), which was 0.39 V higher than (M-1). became. Further, this Δn was 0.091, which was almost the same value as the base liquid crystal (B) (Example 6) Preparation of liquid crystal composition (2)
A liquid crystal composition (M-2) comprising 85% by weight of the base liquid crystal (B) and 15% by weight of the compound (No. 2) obtained in Example 1 was prepared. The upper limit temperature (T NI ) and physical properties of the N phase of (M-2) were as follows.
[0060]
N phase upper limit temperature (T NI ) 94.5 ℃
Dielectric anisotropy (Δε) 5.8
Refractive index anisotropy (Δn) 0.083
Threshold voltage (V th ) 1.72V
Thus, although the upper limit temperature (T NI ) of the N phase was slightly lower than that of the base liquid crystal (B), Δε increased, and a cell was similarly prepared using this composition, and its V th was measured. Compared with 1.72 V and the base liquid crystal (B), 0.42 V could be reduced. In addition, Δn was 0.083, which was 0.007 lower than that of the base liquid crystal (B). Furthermore, when the specific resistance of this composition was measured, it was as large as 10 12 Ωcm or more, and the voltage holding ratio of this cell was high.
(Comparative Example 2)
Formula (R-2) having a structure similar to that of the compound of the base liquid crystal (B) 85% by weight and (No. 2)
[0061]
Embedded image
Figure 0003797435
[0062]
A liquid crystal composition (N-2) comprising 15% by weight of the above compound was prepared. The upper limit temperature (T NI ) and physical properties of the N phase of (N-2) were as follows.
N phase upper limit temperature (T NI ) 109.6 ° C
Dielectric anisotropy (Δε) 4.3
Refractive index anisotropy (Δn) 0.089
Threshold voltage (V th ) 2.16V
Thus, the upper limit temperature (T NI ) of the N phase was higher than (M-2). However, its Δε is considerably lower than (M-2), and when a cell was prepared in the same manner using this composition and its V th was measured, it was 2.16 V, which was higher than that of the base liquid crystal (B). , (M-2) was 0.44V higher. Further, this Δn was comparable to that of the base liquid crystal (B).
[0063]
【The invention's effect】
The compounds represented by the general formula (I) of the present invention can be produced very easily industrially as shown in the Examples, are chemically stable to heat, light, water, etc., and are nematic liquid crystals. It is also excellent in compatibility with currently used base liquid crystals. Moreover, by adding a small amount to the base liquid crystal, the threshold voltage (V th ) of the liquid crystal cell using it can be effectively reduced without significantly reducing the nematic liquid crystal temperature range of the obtained composition. Is possible. Moreover, there is no strong polar group in the molecule, and a large specific resistance and a high voltage holding ratio can be easily obtained. Therefore, the liquid crystal phase has a wide temperature range and is very useful as various liquid crystal display elements that are required to be driven at a low voltage, particularly as a liquid crystal material for active matrix driving.

Claims (9)

一般式(I)
Figure 0003797435
(式中、R1は炭素原子数1〜16のアルキル基もしくはアルコキシル基、炭素原子数2〜16のアルケニル基、炭素原子数3〜16のアルケニルオキシ基、又は炭素原子数1〜10のアルコキシル基で置換された炭素原子数1〜12のアルキル基を表わし、環A及び環Bはそれぞれ独立的にフッ素原子により置換されていてもよい1,4−フェニレン基、トランス−1,4−シクロヘキシレン基、トランス−1,3−ジオキサン−2,5−ジイル基、ピリジン−2,5−ジイル基又はピリミジン−2,5−ジイル基を表わし、Y1及びY2はそれぞれ独立的に単結合、−CH2CH2−、−OCH2−、−CH2O−、−(CH24−又は−C≡C−を表わし、mは0、1又は2を表わし、X1はフッ素原子又は塩素原子を表わし、R2は炭素原子数1〜16の直鎖状アルキル基又は炭素原子数3〜16の直鎖状アルケニル基を表わす。)で表わされる化合物。
Formula (I)
Figure 0003797435
(In the formula, R 1 is an alkyl or alkoxyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, an alkenyloxy group having 3 to 16 carbon atoms, or an alkoxyl having 1 to 10 carbon atoms. Represents an alkyl group having 1 to 12 carbon atoms substituted with a group, and ring A and ring B are each independently a 1,4-phenylene group or trans-1,4-cyclohexyl group which may be substituted with a fluorine atom. Represents a silene group, trans-1,3-dioxane-2,5-diyl group, pyridine-2,5-diyl group or pyrimidine-2,5-diyl group, and Y 1 and Y 2 are each independently a single bond , —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, — (CH 2 ) 4 — or —C≡C—, m represents 0, 1 or 2, and X 1 represents a fluorine atom or Represents a chlorine atom, R2 is charcoal Represents a linear alkyl group or linear alkenyl group having a carbon number of 3 to 16 having the number of atoms of 1-16.) The compound represented by the.
1が炭素原子数1〜12の直鎖状アルキル基又は炭素原子数2〜12の直鎖状アルケニル基を表わし、環A及び環Bがそれぞれ独立的にフッ素原子により置換されていてもよい1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表わし、Y1及びY2がそれぞれ独立的に単結合、−CH2CH2−又は−C≡C−を表わし、R2が炭素原子数1〜12の直鎖状アルキル基又は炭素原子数3〜12の直鎖状アルケニル基を表わすことを特徴とする請求項1記載の一般式(I)で表わされる化合物。R 1 represents a linear alkyl group having 1 to 12 carbon atoms or a linear alkenyl group having 2 to 12 carbon atoms, and ring A and ring B may each independently be substituted with a fluorine atom. 1,4-phenylene group or trans-1,4-cyclohexylene group, Y 1 and Y 2 each independently represent a single bond, —CH 2 CH 2 — or —C≡C—, and R 2 represents carbon The compound represented by the general formula (I) according to claim 1, which represents a linear alkyl group having 1 to 12 atoms or a linear alkenyl group having 3 to 12 carbon atoms. 1が炭素原子数1〜7の直鎖状アルキル基又は炭素原子数2〜7の直鎖状アルケニル基を表わし、環Aがトランス−1,4−シクロヘキシレン基であり、R2は炭素原子数1〜7の直鎖状アルキル基又は炭素原子数3〜7の直鎖状アルケニル基を表わすことを特徴とする請求項2記載の一般式(I)で表わされる化合物。R 1 represents a linear alkyl group having 1 to 7 carbon atoms or a linear alkenyl group having 2 to 7 carbon atoms, ring A is a trans-1,4-cyclohexylene group, and R 2 is carbon The compound represented by the general formula (I) according to claim 2, which represents a linear alkyl group having 1 to 7 atoms or a linear alkenyl group having 3 to 7 carbon atoms. 環A及び環Bが共にトランス−1,4−シクロヘキシレン基を表わし、Y2が単結合又は−CH2CH2−を表わすことを特徴とする請求項3記載の一般式(I)で表わされる化合物。Ring A and ring B both represent a trans-1,4-cyclohexylene group, and Y 2 represents a single bond or —CH 2 CH 2 —. Compound. mが1であることを特徴とする請求項2、3又は4記載の一般式(I)で表わされる化合物。  5. The compound represented by the general formula (I) according to claim 2, 3 or 4, wherein m is 1. 1が単結合であることを特徴とする請求項3、4又は5記載の一般式(I)で表わされる化合物。The compound represented by formula (I) according to claim 3, 4 or 5, wherein Y 1 is a single bond. 1がフッ素原子であることを特徴とする請求項3、4、5又は6記載の一般式(I)で表わされる化合物。Compound represented by the claims 3, 4, 5 or 6 general formulas described X 1 is characterized in that it is a fluorine atom (I). 1が炭素原子数1〜7のアルキル基であることを特徴とする請求項3、4、5、6又は7記載の一般式(I)で表わされる化合物。Compound represented by the claims 3, 4, 5, 6 or 7, wherein in formula R 1 is characterized in that an alkyl group having a carbon number of 1 to 7 (I). 請求項1乃至8記載の一般式(I)で表わされる化合物を含有する液晶組成物。  A liquid crystal composition containing the compound represented by formula (I) according to claim 1.
JP28332594A 1994-11-17 1994-11-17 5-substituted alkoxybenzene derivatives Expired - Fee Related JP3797435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28332594A JP3797435B2 (en) 1994-11-17 1994-11-17 5-substituted alkoxybenzene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28332594A JP3797435B2 (en) 1994-11-17 1994-11-17 5-substituted alkoxybenzene derivatives

Publications (2)

Publication Number Publication Date
JPH08143498A JPH08143498A (en) 1996-06-04
JP3797435B2 true JP3797435B2 (en) 2006-07-19

Family

ID=17664014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28332594A Expired - Fee Related JP3797435B2 (en) 1994-11-17 1994-11-17 5-substituted alkoxybenzene derivatives

Country Status (1)

Country Link
JP (1) JP3797435B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087543A (en) 1996-09-17 1998-04-07 Chisso Corp Alkoxybenzene derivative, liquid crystal composition, and liquid crystal display element
DE10145567B4 (en) * 2000-10-12 2017-06-08 Merck Patent Gmbh Liquid crystalline medium
US8129002B2 (en) 2003-08-25 2012-03-06 Merck Patent Gmbh Compounds for use in liquid crystal media
EP1658351B1 (en) 2003-08-25 2009-10-28 MERCK PATENT GmbH Mesogenic compounds, medium for electro-optical displays and electro-optical display

Also Published As

Publication number Publication date
JPH08143498A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
JPH02180840A (en) Novel liquid crystal compound having high anisotropy of refractive index
JPH0673041A (en) Tetrahydrofuran derivative
JP3797435B2 (en) 5-substituted alkoxybenzene derivatives
JP3716436B2 (en) 5-substituted alkylbenzene derivatives
JP4193077B2 (en) 1,3-phenylene derivatives
JP4385202B2 (en) Phenyldecahydronaphthalene derivative
JP3632772B2 (en) 4-alkenyloxy-3,5-difluorobenzene derivatives
JPH1143450A (en) New alkenylbiphenyl derivative
JPH06256339A (en) Chroman derivative
JP3797433B2 (en) Benzyl (5-substituted phenyl) ether derivatives
JP4366737B2 (en) Fluorine-substituted 4- (3-alkenyl) benzoic acid and its phenyl ester derivative and liquid crystal composition containing the same
JP4151115B2 (en) Optically active compound
JP3673873B2 (en) Biphenyl derivatives
JP3797436B2 (en) Optically active compound
JP3668990B2 (en) 3-substituted phenylacetylene derivatives
JP3360329B2 (en) 3-fluoroalkylbenzene derivative
JP4239242B2 (en) Phenylnaphthalene derivative
JP3506257B2 (en) Difluorocyclopropane derivative
JP3668991B2 (en) Alkylbenzene derivatives
JP3433756B2 (en) Difluorocyclopropane derivative
JP3642345B2 (en) (Fluoroalkenyl) benzene derivatives
JP3613806B2 (en) Phenylbicyclohexane derivative
JPH09291048A (en) Cyclohexane derivative
JPH0656718A (en) Fluorocyclohexane derivative
JP3574871B2 (en) Trifluorocyclopropane derivative and liquid crystal composition containing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees