JP3796021B2 - Method of blowing pulverized coal from blast furnace tuyere and blowing lance - Google Patents

Method of blowing pulverized coal from blast furnace tuyere and blowing lance Download PDF

Info

Publication number
JP3796021B2
JP3796021B2 JP26916097A JP26916097A JP3796021B2 JP 3796021 B2 JP3796021 B2 JP 3796021B2 JP 26916097 A JP26916097 A JP 26916097A JP 26916097 A JP26916097 A JP 26916097A JP 3796021 B2 JP3796021 B2 JP 3796021B2
Authority
JP
Japan
Prior art keywords
pulverized coal
lance
pipe
blast furnace
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26916097A
Other languages
Japanese (ja)
Other versions
JPH1192809A (en
Inventor
守政 一田
嘉雄 奥野
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26916097A priority Critical patent/JP3796021B2/en
Publication of JPH1192809A publication Critical patent/JPH1192809A/en
Application granted granted Critical
Publication of JP3796021B2 publication Critical patent/JP3796021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉等のシャフト炉型高温反応容器に微粉炭を多量に吹き込むための微粉炭吹き込み方法および吹き込みランスに関するものである。
【0002】
【従来の技術】
従来より高炉羽口より補助燃料として微粉炭や重油を吹き込んでいる。この目的はレースウェイ内温度制御による高炉操業の安定と、コークス比の削減である。特に最近のコークス炉の劣化を考えれば、コークス比の削減は急務であり、また微粉炭とコークスの価格差を考えれば、高炉操業において多く微粉炭を使用することはコスト的にみて大きなメリットがある。
【0003】
したがって、できるだけコークスに代えて微粉炭の吹き込みを行う高炉操業法が主流となっている。このような状況下で微粉炭を如何に多く使用できるかについて多くの試みがなされているが、微粉炭は高炉内においては分解して炭素系ガスとなるため分解熱を必要とし、炉温の低下をもたらす。そこで、この熱を補償するために送風温度を上昇させねばならないがそれには限界がある。
【0004】
高微粉炭比の操業では、微粉炭の分解熱による羽口先での理論燃焼温度の低下を補償するため、送風中の空気に酸素を富化した操業を行ったり、または、微粉炭の燃焼性を向上するために微粉炭の吹き込みランスを二重管にして、例えば内管から微粉炭、外管から酸素を別々に吹き込み燃焼温度低下に対処している。
【0005】
こうした中で送風ガス中の酸素濃度を高めることなく、微粉炭燃料の燃焼効率を高レベルに維持することができる高炉における送風方法として、特開平6−235009号が開示されている。該公報によれば、「羽口から高炉内部に送風されたガスの流路を中心領域の主通路と周辺領域の副通路の2つに分割し、さらに、羽口から吹き込まれた微粉炭の流路を主通路とすることにより、主通路からの送風によって微粉炭の主たる燃焼領域である噴流を形成せしめ、副通路からの送風によって噴流を覆う。これにより、噴流の外部への微粉炭の飛散を防ぎ、微粉炭の燃焼効率を高めることができるので、微粉炭の吹き込み量を増すことが可能となる。」と記載されており、羽口内部を特殊な構造にすることによって上記効果を狙っている。
【0006】
【発明が解決しようとする課題】
しかし、上述した方法では、レースウェイ内での燃焼焦点が羽口側に近づき、レースウェイで発生した高温の還元ガスが炉周辺を上昇して炉体の損傷を促進する原因ともなり、また高炉操業の安定化を阻害する。
【0007】
例えば、図5に通常の高炉操業での高炉内における羽口先端から距離と、炉内温度の関係を酸素富化の有無によって示したが、酸素富化によって羽口直前の温度が上昇していることが判る。
このように微粉炭吹き込み操業においては、その燃焼温度の高温位置を如何に上手に調整するかが大きな課題となっていた。
【0008】
本発明は、このような従来の問題点に鑑み、微粉炭吹き込み時に酸素以外の吸熱反応を起こす別のガスを同時に吹き込むことにより、レースウェイ内の温度分布を制御することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の要旨とするところは、下記手段にある。
(1) 微粉炭の吹き込みに際して、三重管ランスを用い微粉炭を中心管内部から、酸素を中心管と中間管の間から、二酸化炭素を含むガスを外管と中間管の間から、それぞれ供給することを特徴とする高炉羽口からの微粉炭吹き込み方法。
) 微粉炭の吹き込みに際して、二重管ランスを用い微粉炭を内管内部から、酸素を内管と外管の間から、二酸化炭素を含むガスを二重管ランスの近傍に設けた別の単管ランスから、それぞれ供給することを特徴とする高炉羽口からの微粉炭吹き込み方法。
【0010】
) ()において二重管ランスの近傍に設けた別のランス先端は、二重管ランス先端より50mm以上後方へ離すことを特徴とする高炉羽口からの微粉炭吹き込み方法。
【0011】
【発明の実施の形態】
通常の微粉炭吹き込みランスの設置状態を図1に示した。
高炉炉壁1には羽口2が設けられ、羽口2の後端にブローパイプ3が連接されている。ブローパイプ3には加熱空気等のガスが供給されるようになっており、ブローパイプ3を介して羽口2から炉内4に送風される。このような送風羽口においてランス7がブローパイプ3を貫通してガス通路内に開口し、該ランス7を介して微粉炭がガス通路内に吹き込まれるように構成されており、羽口2の前方にはガスによる噴流5が形成され、さらに、炉内4に充填されたコークスが旋回しながら燃焼する領域、すなわちレースウェイ6が形成される。
【0012】
上記のような微粉炭吹き込み状況下にあって、微粉炭はランス7から吹き込まれたのち羽口2の先端を通過するまでに燃焼され、続いて、羽口2を通じて高炉内部4に吹き込まれた後は、主に噴流5の内部で燃焼される。噴流5の外部においては酸素濃度が低く、またコークスの存在量が多いため、微粉炭の燃焼量は極めて少ない。すなわち、微粉炭の燃焼が進行する主領域は、羽口2および噴流5の内部である。
したがって、燃焼効率を上昇させるため酸素を用いると早期に燃焼が進み、羽口直前での炉内温度が上昇するのは避けられない。
【0013】
そこで本発明者らはこの高温域となる燃焼焦点をいかに羽口直前からレースウェイ内部へ移行させるかについて、鋭意研究を重ねた結果、吸熱反応を起こすガス体を微粉炭吹き込みと同時に供給することにより、羽口直前での燃焼焦点を羽口直前から遠ざけることができることを見出した。
【0014】
ここで使用できるガス体として水蒸気が安価で簡単に入手できるので最も適していることが確認された。
水蒸気は炉内の炭素と反応して下記(1)式で示されるような吸熱反応を生ずる。
2 O+C→CO+H2 ・・・・(1)
【0015】
この反応が生ずると炉内の熱を奪うため炉熱が下がる。したがって、この反応が微粉炭吹き込みランスの直前で起きると燃焼焦点は羽口前方側へ移り、羽口直前での炉温上昇を避けることができる。このような微粉炭燃焼条件をもたらす方法としては種々の方法が考えられるが、本発明者らが最適と考えた方法は前記した課題を解決するための手段に記載している通りである。
【0016】
まずその1としては三重管ランス8を用いる方法があり、その実施態様としては図2(a)と(b)にそれぞれランスの断面図と側面図を示したが、三重管ランス8から微粉炭、酸素、水蒸気をそれぞれ同時に吹き込むものである。
すなわち、ランス8は外管10の内部に中間管11を挿入し、さらにその内部に中心管12を挿入した三重管構造をとり、ガス体流路を3通路としたところに特長があり、中心管内部15には微粉炭を供給し、中心管と中間管の間16には酸素を、中間管と外管の間17には水蒸気を供給できるように構成し、それぞれの通路から微粉炭の燃焼に見合う酸素量と、羽口先端直前の燃焼を抑える水蒸気量を供給するものである。
【0017】
その2としては二重管ランス9を用いる方法であり、図3(a)と(b)にそれぞれランスの断面図と側面図を示したが、微粉炭は単独で、酸素と水蒸気は混合して同時に吹き込むものである。
すなわち、ランス9は外管20の内部に内管21を挿入した二重管構造をとり、ガス体流路を2通路としたもので、内管内部25からは微粉炭を供給し、内管と外管の間26からは混合された酸素と水蒸気を微粉炭燃焼に見合い、かつ羽口先端部直前の温度上昇を抑制する量を供給する。
【0018】
その3は前記その2で説明した二重管ランスと単管ランスを用いる方法であり、図4(a)と(b)にそれぞれランスの断面図と側面図を示したが、二重管ランス9の内管内部25からは微粉炭を、内管と外管との間26からは酸素のみを供給し、水蒸気は二重管ランス9の近傍に設けた別の単管ランス30から二重管ランス先端部へ指向して供給し、二重管ランス9から放出された微粉炭と酸素の噴射流の外周を包み込み、前記したその1,その2とほぼ同様の燃焼状態をとらせるものである。
【0019】
なお、この場合図4に示したように二重管ランスの近傍に設ける別の単管ランス先端は、二重管ランス先端から後方へ距離Lとして50mm以上離すことが必要であり、かくすることにより羽口2内の送風流により、水蒸気は拡散しながら搬送される。しかし、ランス先端同士が同一位置または50mmより近すぎると、水蒸気が酸素流の片側のみを流れ、酸素流周囲への包込みが不足するため、水蒸気付加による目的が達成されず所期の効果が得られない惧れがある。
また、水蒸気は特別に用意しなくとも通常高炉においては、送風中に水蒸気の吹き込みが行われているのでその一部を用いればよく、熱バランス上通常の水蒸気吹き込み量中に含ませて考えれば高炉操業上特別の配慮を必要としない。
【0020】
以上微粉炭の羽口直前での燃焼を抑制し、燃焼焦点を羽口直前から遠ざけるのに水蒸気を用いる方法について説明したが、水蒸気の代替として二酸化炭素を含むガス体が考えられる。二酸化炭素も高炉内においては水蒸気と同様熱分解して下記(2)式で示すような吸熱反応を生ずるので燃焼の抑制には効果がある。
CO2 +C→2CO ・・・・(2)
【0021】
二酸化炭素の供給源としては、高炉操業で発生する高炉ガス(BFG)が適している。高炉ガスの組成中には30%近いCO2 ガスが含まれており、身近に入手できるので代替が容易である。
図6は微粉炭吹き込み時に水蒸気を付加した本発明の1例を示したもので、羽口先端から高炉レースウェイ内へ燃焼温度が移行していることが図から明瞭に認められる。
【0022】
【実施例】
以下本発明の効果を実際の高炉に適用した実施について以下説明する。
実施例に用いた微粉炭吹き込み用ランスの先端は何れも羽口先端から0.3m内部に入った羽口内である。
(実施例1)
本発明方法を用いて3280m3 の高炉にて図2に示したような三重管ランスを用いて微粉炭吹き込み時に水蒸気を付加した例について述べる。
微粉炭吹き込み量は160kg/t−pig(以下t−pigを単にt・pと記す)で、同時に同一ランスより酸素を15m3 /t・p吹き込み、また水蒸気も同様に6kg/t・p同一ランスより吹き込んだ。
その結果、水蒸気を付加しない時に比し燃焼焦点距離が0.3m羽口先端からレースウェイ内部方向に移行した。
【0023】
(実施例2)
本発明方法を用いて3280m3 の高炉にて図3に示したような二重管ランスを用いて微粉炭吹き込み時に水蒸気を付加した例について述べる。
微粉炭吹き込み量は170kg/t・pで、同時に同一ランスより酸素を20m3 /t・pと、これに混合した水蒸気を6kg/t・p同一ランスより吹き込んだ。
その結果、水蒸気を付加しない時に比し燃焼焦点距離が0.25m羽口先端からレースウェイ内部方向に移行した。
【0024】
(実施例3)
本発明方法を用いて3280m3 の高炉にて図4に示したような二重管ランスと水蒸気吹き込み用単管ランスを用いて微粉炭吹き込み時に水蒸気を付加した例について述べる。
微粉炭吹き込み量は150kg/t・pで、同時に同一ランスより酸素を10m3 /t・p吹き込んだ。水蒸気は別の単管ランス先端を二重管ランス先端から60mm離して後方に設置し、同ランスより5kg/t・p吹き込んだ。
その結果、水蒸気を付加しない時に比し燃焼焦点距離が0.20m羽口先端からレースウェイ内部方向に移行した。
【0025】
(実施例4)
本発明方法を用いて3280m3 の高炉にて図2に示したような三重管ランスを用いて微粉炭吹き込み時に水蒸気に代替してBFGを付加した例について述べる。
微粉炭吹き込み量は170kg/t・pで、同時に同一ランスより酸素を15m3 /t・p吹き込み、またBFGを15m3 /t・p吹き込んだ。
その結果、BFGを付加しない時に比し燃焼焦点距離が0.15m羽口先端からレースウェイ内部方向に移行した。
【0026】
【発明の効果】
本発明によれば、従来での酸素を用いた微粉炭吹き込み操業においては、微粉炭燃焼焦点が羽口直前にあり、炉体に悪影響を及ぼしていたのが、水蒸気または二酸化炭素を付加することにより、燃焼焦点をレースウェイ内部方向へ移行させることができ炉体損傷防止に役立った。また本発明は入手が簡単で価格が低廉である気体を利用できるので、その実施が容易であるため高炉操業上有益な効果をもたらす。
【図面の簡単な説明】
【図1】高炉の送風に用いられている羽口の断面を示す模式図
【図2】本発明に用いられる三重管ランスの断面を示す図
【図3】本発明に用いられる二重管ランスの断面を示す図
【図4】本発明に用いられる二重管ランスと別のランスとの配設状態を示した図
【図5】従来の微粉炭吹き込みによる燃焼焦点位置を示す図
【図6】本発明による微粉炭吹き込みによる燃焼焦点位置の移行を示す図
【符号の説明】
1 高炉炉壁
2 羽口
3 ブローパイプ
4 炉内
5 噴流
6 レースウェイ
7 ランス
8 三重管ランス
9 二重管ランス
10 外管
11 中間管
12 中心管
15 中心管内部
16 中心管と中間管の間
17 中間管と外管の間
20 外管
21 内管
25 内管内部
26 内管と外管の間
30 単管ランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulverized coal blowing method and a blowing lance for blowing a large amount of pulverized coal into a shaft furnace type high temperature reaction vessel such as a blast furnace.
[0002]
[Prior art]
Conventionally, pulverized coal and heavy oil are blown as auxiliary fuel from the blast furnace tuyere. The purpose is to stabilize the blast furnace operation by controlling the temperature in the raceway and to reduce the coke ratio. In particular, considering the recent deterioration of coke ovens, it is urgent to reduce the coke ratio. Considering the price difference between pulverized coal and coke, the use of a large amount of pulverized coal in blast furnace operation is a significant advantage in terms of cost. is there.
[0003]
Therefore, the blast furnace operation method in which pulverized coal is blown in place of coke as much as possible has become the mainstream. Many attempts have been made as to how much pulverized coal can be used under such circumstances. However, pulverized coal decomposes into a carbon-based gas in the blast furnace, and therefore requires heat of decomposition. Bring about a decline. Therefore, in order to compensate for this heat, the air blowing temperature must be increased, but there is a limit.
[0004]
In operation with high pulverized coal ratio, in order to compensate for the decrease in the theoretical combustion temperature at the tuyere due to the heat of decomposition of pulverized coal, operation with oxygen enriched in the air being blown or flammability of pulverized coal In order to improve this, the pulverized coal blowing lance is made into a double pipe, for example, pulverized coal is blown separately from the inner pipe, and oxygen is blown separately from the outer pipe to cope with the combustion temperature drop.
[0005]
Japanese Patent Laid-Open No. 6-235009 is disclosed as a blowing method in a blast furnace capable of maintaining the combustion efficiency of pulverized coal fuel at a high level without increasing the oxygen concentration in the blowing gas. According to the publication, “the flow path of the gas blown from the tuyere into the blast furnace is divided into a main passage in the central region and a sub-passage in the peripheral region, and further, the pulverized coal blown from the tuyere By using the flow path as the main passage, a jet flow that is the main combustion region of the pulverized coal is formed by blowing air from the main passage, and the jet flow is covered by blowing from the sub-passage. It is possible to prevent scattering and increase the combustion efficiency of pulverized coal, so that it is possible to increase the amount of pulverized coal blown in. " Aiming.
[0006]
[Problems to be solved by the invention]
However, in the above-described method, the combustion focus in the raceway approaches the tuyere side, and the high-temperature reducing gas generated in the raceway rises around the furnace and promotes damage to the furnace body. Impairs operational stability.
[0007]
For example, FIG. 5 shows the relationship between the distance from the tip of the tuyere in the blast furnace and the temperature in the furnace in the normal blast furnace operation depending on the presence or absence of oxygen enrichment. I know that.
Thus, in pulverized coal injection operation, how to adjust the high temperature position of the combustion temperature well has been a major issue.
[0008]
In view of such conventional problems, the present invention aims to control the temperature distribution in the raceway by simultaneously blowing another gas that causes an endothermic reaction other than oxygen when pulverized coal is blown. is there.
[0009]
[Means for Solving the Problems]
The gist of the present invention resides in the following means.
(1) When blowing pulverized coal, pulverized coal is supplied from inside the central tube, oxygen is supplied from the central tube to the intermediate tube, and carbon dioxide-containing gas is supplied from the outer tube to the intermediate tube. A method for injecting pulverized coal from a blast furnace tuyere.
( 2 ) When pulverized coal is blown, a double-pipe lance is used to provide pulverized coal from the inside of the inner pipe, oxygen from between the inner and outer pipes, and a gas containing carbon dioxide in the vicinity of the double-pipe lance. A method for blowing pulverized coal from a blast furnace tuyere, characterized in that each is supplied from a single pipe lance.
[0010]
( 3 ) A pulverized coal blowing method from a blast furnace tuyere characterized in that another lance tip provided in the vicinity of the double-pipe lance in ( 2 ) is separated from the double-pipe lance tip by 50 mm or more rearward.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The state of installation of a normal pulverized coal blowing lance is shown in FIG.
A tuyere 2 is provided on the blast furnace wall 1, and a blow pipe 3 is connected to the rear end of the tuyere 2. A gas such as heated air is supplied to the blow pipe 3 and is blown from the tuyere 2 into the furnace 4 through the blow pipe 3. In such a ventilation tuyere, the lance 7 passes through the blow pipe 3 and opens into the gas passage, and pulverized coal is blown into the gas passage through the lance 7. A gas jet 5 is formed in the front, and a region in which the coke filled in the furnace 4 burns while turning, that is, a raceway 6, is formed.
[0012]
Under the pulverized coal blowing condition as described above, the pulverized coal was burned until it passed through the tip of the tuyere 2 after being blown from the lance 7, and then blown into the blast furnace interior 4 through the tuyere 2. After that, it burns mainly inside the jet 5. Since the oxygen concentration is low outside the jet 5 and the amount of coke present is large, the combustion amount of pulverized coal is extremely small. That is, the main region where the combustion of pulverized coal proceeds is inside the tuyere 2 and the jet 5.
Therefore, when oxygen is used to increase the combustion efficiency, combustion proceeds at an early stage, and it is inevitable that the temperature in the furnace immediately before the tuyere rises.
[0013]
Therefore, as a result of intensive research on how to shift the combustion focus in the high temperature range from just before the tuyere to the inside of the raceway, the present inventors have supplied a gas body that causes an endothermic reaction simultaneously with pulverized coal injection. Thus, it was found that the combustion focus immediately before the tuyere can be kept away from just before the tuyere.
[0014]
It was confirmed that water vapor is most suitable as a gas body that can be used here because it is inexpensive and easily available.
The steam reacts with the carbon in the furnace to cause an endothermic reaction represented by the following formula (1).
H 2 O + C → CO + H 2 (1)
[0015]
When this reaction takes place, the heat in the furnace is taken away and the furnace heat falls. Therefore, if this reaction occurs immediately before the pulverized coal blowing lance, the combustion focus shifts to the front side of the tuyere, and an increase in the furnace temperature just before the tuyere can be avoided. Various methods are conceivable as a method for producing such pulverized coal combustion conditions, and the method that the present inventors considered to be optimal is as described in the means for solving the above-mentioned problems.
[0016]
First, there is a method using a triple pipe lance 8. As an embodiment, a sectional view and a side view of the lance are shown in FIGS. 2 (a) and 2 (b), respectively. , Oxygen and water vapor are blown simultaneously.
That is, the lance 8 has a triple tube structure in which an intermediate tube 11 is inserted into the outer tube 10 and a central tube 12 is inserted into the outer tube 10, and has three gas passages. The inside of the pipe 15 is supplied with pulverized coal, oxygen can be supplied between the central pipe and the intermediate pipe 16, and water vapor can be supplied between the intermediate pipe and the outer pipe 17. The amount of oxygen suitable for combustion and the amount of water vapor that suppresses combustion just before the tip of the tuyere are supplied.
[0017]
Part 2 is a method using a double-pipe lance 9. FIGS. 3 (a) and 3 (b) show a cross-sectional view and a side view of the lance, respectively. The pulverized coal is independent and oxygen and water vapor are mixed. It blows at the same time.
That is, the lance 9 has a double tube structure in which an inner tube 21 is inserted into the outer tube 20 and has two gas body passages. The inner tube 25 supplies pulverized coal to the inner tube. Between the outer pipe 26 and the outer pipe 26, an amount of mixed oxygen and water vapor is supplied to meet the pulverized coal combustion and suppress the temperature rise immediately before the tuyere tip.
[0018]
Part 3 is a method using the double-pipe lance and the single-pipe lance described in Part 2, and FIGS. 4 (a) and 4 (b) show a cross-sectional view and a side view of the lance. 9 is supplied with pulverized coal from the inner pipe inner 25, and only oxygen is supplied between the inner pipe and the outer pipe 26, and the water vapor is doubled from another single pipe lance 30 provided in the vicinity of the double pipe lance 9. It is supplied to the tip of the pipe lance, envelops the outer periphery of the pulverized coal and oxygen jet flow discharged from the double pipe lance 9, and makes the combustion state almost the same as the first and second. is there.
[0019]
In this case, as shown in FIG. 4, it is necessary to separate the other single-tube lance tip provided in the vicinity of the double-tube lance from the double-tube lance tip to the rear by a distance L of 50 mm or more. Thus, the water vapor is conveyed while being diffused by the air flow in the tuyere 2. However, if the tips of the lances are too close to each other or 50 mm, the water vapor flows only on one side of the oxygen flow and the entrapment around the oxygen flow is insufficient. There is a possibility that it cannot be obtained.
Even if steam is not specially prepared, in normal blast furnaces, steam is blown during blowing, so it is sufficient to use a part of it, and if included in the normal steam blowing amount for heat balance, No special consideration is required for blast furnace operation.
[0020]
Although the method of using water vapor to suppress the combustion of pulverized coal immediately before the tuyere and keep the combustion focus away from just before the tuyere has been described, a gas body containing carbon dioxide can be considered as an alternative to water vapor. Carbon dioxide is also thermally decomposed in the blast furnace in the same manner as water vapor and causes an endothermic reaction as shown by the following equation (2), which is effective in suppressing combustion.
CO 2 + C → 2CO (2)
[0021]
As a carbon dioxide supply source, blast furnace gas (BFG) generated in blast furnace operation is suitable. Almost 30% CO 2 gas is contained in the composition of the blast furnace gas and can be easily replaced because it is readily available.
FIG. 6 shows an example of the present invention in which water vapor is added when pulverized coal is blown, and it is clearly seen from the figure that the combustion temperature is transferred from the tip of the tuyere into the blast furnace raceway.
[0022]
【Example】
Hereinafter, an implementation in which the effect of the present invention is applied to an actual blast furnace will be described.
The tips of the pulverized coal blowing lances used in the examples are all in the tuyere that is 0.3 m from the tuyere tip.
Example 1
An example in which water vapor is added at the time of pulverized coal injection using a triple pipe lance as shown in FIG. 2 in a 3280 m 3 blast furnace using the method of the present invention will be described.
The amount of pulverized coal injection is 160 kg / t-pig (hereinafter t-pig is simply referred to as t · p), and oxygen is simultaneously injected from the same lance at 15 m 3 / t · p, and the water vapor is also the same as 6 kg / t · p. Injected from Lance.
As a result, the combustion focal length shifted from the tip of the tuyere of 0.3 m toward the inside of the raceway compared to when no water vapor was added.
[0023]
(Example 2)
An example in which water vapor is added during pulverized coal blowing using a double pipe lance as shown in FIG. 3 in a 3280 m 3 blast furnace using the method of the present invention will be described.
The amount of pulverized coal blown was 170 kg / t · p. At the same time, oxygen was blown from the same lance to 20 m 3 / t · p, and steam mixed therewith was blown from the same lance at 6 kg / t · p.
As a result, the combustion focal length shifted from the tip of the tuyere to the inside of the raceway compared to when no steam was added.
[0024]
Example 3
An example in which water vapor is added during pulverized coal injection using a double tube lance and a single tube lance for water vapor injection as shown in FIG. 4 in a 3280 m 3 blast furnace using the method of the present invention will be described.
The amount of pulverized coal was 150 kg / t · p, and oxygen was simultaneously blown at 10 m 3 / t · p from the same lance. Water vapor was placed at the rear of another single-tube lance tip 60 mm away from the double-tube lance tip, and 5 kg / t · p was blown from the lance.
As a result, the combustion focal length shifted from the tip of the tuyere at 0.20 m toward the inside of the raceway compared to when no water vapor was added.
[0025]
(Example 4)
An example in which BFG is added instead of water vapor when a pulverized coal is blown using a triple lance as shown in FIG. 2 in a 3280 m 3 blast furnace using the method of the present invention will be described.
Pulverized coal blowing amount in the 170kg / t · p, oxygen 15m 3 / t · p blowing from the same lance at the same time, also was blown 15m 3 / t · p the BFG.
As a result, the combustion focal length shifted from the tip of the 0.15 m tuyere toward the inside of the raceway as compared to when no BFG was added.
[0026]
【The invention's effect】
According to the present invention, in conventional pulverized coal blowing operation using oxygen, the pulverized coal combustion focal point is immediately before the tuyere, and the adverse effect on the furnace body is to add water vapor or carbon dioxide. As a result, the combustion focus can be shifted toward the inside of the raceway, which was useful for preventing damage to the furnace body. In addition, since the present invention can use a gas that is easily available and inexpensive, it is easy to implement and brings about a beneficial effect on blast furnace operation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross section of a tuyere used for blowing air in a blast furnace. FIG. 2 is a diagram showing a cross section of a triple pipe lance used in the present invention. FIG. 3 is a double pipe lance used in the present invention. FIG. 4 is a diagram showing a state of arrangement of a double-pipe lance used in the present invention and another lance. FIG. 5 is a diagram showing a combustion focal position by conventional pulverized coal blowing. ] Diagram showing shift of combustion focus position by pulverized coal injection according to the present invention
1 Blast furnace wall 2 Tuyere 3 Blow pipe 4 Furnace 5 Jet 6 Raceway 7 Lance 8 Triple pipe lance 9 Double pipe lance 10 Outer pipe 11 Intermediate pipe 12 Central pipe 15 Central pipe interior 16 Between the central pipe and the intermediate pipe 17 Between intermediate tube and outer tube 20 Outer tube 21 Inner tube 25 Inner tube interior 26 Between inner tube and outer tube 30 Single tube lance

Claims (3)

微粉炭の吹き込みに際して、三重管ランスを用い微粉炭を中心管内部から、酸素を中心管と中間管の間から、二酸化炭素を含むガスを外管と中間管の間から、それぞれ供給することを特徴とする高炉羽口からの微粉炭吹き込み方法。 When injecting pulverized coal, use a triple pipe lance to supply pulverized coal from inside the central tube, oxygen from between the central tube and intermediate tube, and carbon dioxide-containing gas from between the outer tube and intermediate tube. A pulverized coal injection method from the blast furnace tuyere. 微粉炭の吹き込みに際して、二重管ランスを用い微粉炭を内管内部から、酸素を内管と外管の間から、二酸化炭素を含むガスを二重管ランスの近傍に設けた別の単管ランスから、それぞれ供給することを特徴とする高炉羽口からの微粉炭吹き込み方法。 When pulverized coal is blown in, another single pipe with a double pipe lance that uses pulverized coal from the inside of the inner pipe, oxygen from between the inner pipe and the outer pipe, and a gas containing carbon dioxide in the vicinity of the double pipe lance. A method for injecting pulverized coal from a blast furnace tuyere, which is supplied from a lance. 請求項において二重管ランスの近傍に設けた別のランス先端は、二重管ランス先端より50mm以上後方へ離すことを特徴とする高炉羽口からの微粉炭吹き込み方法。The method of injecting pulverized coal from a blast furnace tuyere according to claim 2, wherein another lance tip provided in the vicinity of the double tube lance is separated from the tip of the double tube lance by 50 mm or more.
JP26916097A 1997-09-17 1997-09-17 Method of blowing pulverized coal from blast furnace tuyere and blowing lance Expired - Lifetime JP3796021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26916097A JP3796021B2 (en) 1997-09-17 1997-09-17 Method of blowing pulverized coal from blast furnace tuyere and blowing lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26916097A JP3796021B2 (en) 1997-09-17 1997-09-17 Method of blowing pulverized coal from blast furnace tuyere and blowing lance

Publications (2)

Publication Number Publication Date
JPH1192809A JPH1192809A (en) 1999-04-06
JP3796021B2 true JP3796021B2 (en) 2006-07-12

Family

ID=17468521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26916097A Expired - Lifetime JP3796021B2 (en) 1997-09-17 1997-09-17 Method of blowing pulverized coal from blast furnace tuyere and blowing lance

Country Status (1)

Country Link
JP (1) JP3796021B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518275B1 (en) * 2001-12-24 2005-09-30 주식회사 포스코 Improved heat-transfer technology at higher pulverized coal injection operation in blast furnace
JP5200618B2 (en) * 2008-03-27 2013-06-05 Jfeスチール株式会社 Blast furnace operation method
JP5824810B2 (en) * 2010-01-29 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5699832B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
IN2014DN05770A (en) 2012-01-18 2015-04-10 Mitsubishi Heavy Ind Ltd
JP2014031548A (en) 2012-08-03 2014-02-20 Mitsubishi Heavy Ind Ltd Pig iron production method and blast furnace equipment used for the same
JP6015915B2 (en) 2012-09-20 2016-10-26 三菱重工業株式会社 Blast furnace equipment
JP6015916B2 (en) 2012-09-20 2016-10-26 三菱重工業株式会社 Blast furnace equipment
DE102014216336A1 (en) 2014-08-18 2016-02-18 Küttner Holding GmbH & Co. KG Process for injecting replacement reductants into a blast furnace
CN113462832B (en) * 2021-06-04 2022-04-08 北京科技大学 Coal injection system for blast furnace ironmaking and use method

Also Published As

Publication number Publication date
JPH1192809A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
JP3796021B2 (en) Method of blowing pulverized coal from blast furnace tuyere and blowing lance
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP4074467B2 (en) Method for improving combustibility of low volatile pulverized coal in blast furnace
JP6354962B2 (en) Oxygen blast furnace operation method
JPH11241109A (en) Method for injecting pulverized fine coal and reducing gas into blast furnace
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
JP4341131B2 (en) Pulverized coal blowing burner
WO2010126171A1 (en) Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
JP4760985B2 (en) Blast furnace operation method
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JP3798322B2 (en) Oxygen-containing powder blowing method from blast furnace tuyere
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JP2009097051A (en) Lance for blowing-in dust coal for blast furnace
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JPH11209807A (en) Method for injecting pulverized fine coal from tuyere in blast furnace and injecting lance
KR20140109964A (en) Blast furnace operation method
JPH02213406A (en) Method and injecting fuel from tuyere in blast furnace
JP2994141B2 (en) How to inject powder fuel into the blast furnace
JP4044711B2 (en) Heating method of core at the time of pulverized coal injection into blast furnace
JP2627232B2 (en) Blast furnace operation method
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JPH1112613A (en) Lance for injecting pulverized fine coal into blast furnace
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term