JP3793947B2 - リアルタイム水分モニタを備えた排ガス微粒子質量測定装置 - Google Patents

リアルタイム水分モニタを備えた排ガス微粒子質量測定装置 Download PDF

Info

Publication number
JP3793947B2
JP3793947B2 JP2002534804A JP2002534804A JP3793947B2 JP 3793947 B2 JP3793947 B2 JP 3793947B2 JP 2002534804 A JP2002534804 A JP 2002534804A JP 2002534804 A JP2002534804 A JP 2002534804A JP 3793947 B2 JP3793947 B2 JP 3793947B2
Authority
JP
Japan
Prior art keywords
exhaust gas
mass
measuring
gas
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002534804A
Other languages
English (en)
Other versions
JP2004511769A (ja
JP2004511769A5 (ja
Inventor
ヒス,ジョーン
Original Assignee
ラプレット アンド パタシュニック カンパニー,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラプレット アンド パタシュニック カンパニー,インコーポレーテッド filed Critical ラプレット アンド パタシュニック カンパニー,インコーポレーテッド
Publication of JP2004511769A publication Critical patent/JP2004511769A/ja
Publication of JP2004511769A5 publication Critical patent/JP2004511769A5/ja
Application granted granted Critical
Publication of JP3793947B2 publication Critical patent/JP3793947B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/10Measuring moisture content, e.g. by measuring change in length of hygroscopic filament; Hygrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/225Sampling from a flowing stream of gas isokinetic, same flow rate for sample and bulk gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2264Sampling from a flowing stream of gas with dilution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
(技術分野)
本発明は、ガス水分測定に関し、より詳細には、煙道または他の排気導管中を流れる粒状物質の質量測定中に等速サンプリングのリアルタイム調整のために排ガス中の水分含量をリアルタイムで測定するために操作可能な微粒子質量測定装置に関する。
【0002】
(背景技術)
石炭燃焼施設、生ゴミ焼却炉、有害廃棄物焼却炉、コンクリートプラント、紙/パルプ処理プラント等の、固定発生源の煙道または他の排気導管中を流れる排ガスの微粒子質量測定は、粒状物質と健康への悪影響との間の関連性から重要である。世界中の様々な規制機関が、煙道からの粒子状物質の連続的な質量測定を要求している。
【0003】
微粒子質量測定のために煙道中を流れる排ガスの代表的サンプルを得るには、サンプルが等速的に得られることが一般に要求される。等速サンプルは、サンプルが微粒子質量測定装置のサンプリングノズルに入る際に、サンプルの運動エネルギーを維持することによって得られる。運動エネルギーはサンプルの質量および速度の関数である。サンプル質量は一般に一定なので、サンプルの運動エネルギーは、煙道中を流れる排ガスの速度を、ノズルを通って流れる排ガスサンプルの速度と一致させることによって維持できる。すなわち、等速サンプルは、煙道中の排ガスの速度と等しい速度で吸い込まれるサンプルである。
【0004】
煙道中を流れる排ガスの速度Vは、典型的には、煙道中を流れる排ガス中に配置されたピトー管を用い、以下の関係式に従って決定される。
V=C×(PitotDP)0.5×(T/(P×Ms))0.5 (1)
式中、
Cは、ピトー管較正定数、
PitotDPは、ピトー管前後で測定された圧力損失、
Tは、排ガスの絶対温度、
Pは、排ガスの絶対圧力、
Msは、水蒸気を含む排ガスの分子量である。
【0005】
典型的には、温度Tは、温度センサまたは熱電対を使って決定され、ピトー管前後での圧力損失PitotDPは、圧力変換器を使って決定され、絶対圧力Pは、圧力変換器を使って決定される。
【0006】
上述の温度および圧力の決定はリアルタイムで行えるのに対して、水蒸気を含む排ガスの分子量Msは、煙道中を流れる排ガスの速度Vの近似の結果として得られ、ユーザーが与えたり定めるものである。特に、排ガスの分子量Msは、ガスの乾燥分子量に基づく(例えば、二酸化炭素(CO)および酸素(O)センサを使用し、ガス組成の残りを窒素(N)と仮定し、かつ水分、すなわち、煙道中を流れる排ガス中の水蒸気の容積割合を推測して得られる)。
【0007】
サンプリングの間に、水蒸気の水分が、例えば米国環境保護庁(EPA)方法4に従って決定される。EPA方法4においては、既知容積の排ガスが排ガス流から、一連の冷却インピンジャーでの凝縮およびシリカゲル中での吸収によって取り去られる。次に、採集された水の質量を測定し、既知容積の排ガスと関連付けてガス流の水分を決定する。そのような方法に伴う欠点としては、水分がある期間にわたる平均であることおよび平均水分はサンプリングが完了して初めて決定されることである。目的は、煙道中を流れる排ガスの推定速度と排ガス速度(すなわち、測定された平均水分を用いて)との間の一致を、等速条件の達成に十分と見なされる+/−10%に維持することである。
【0008】
微粒子質量測定の間に、排ガスの等速サンプリングのリアルタイム調整のためにリアルタイムの排ガス水分測定の装置および方法に対するニーズがある。より一般的には、そのような水分測定は、規制汚染物質の質量排出速度を計算するために、排出源の質量流量および総容積流量の決定に必要である。多くの汚染物質が連続排出モニタ(CEM)により連続的に測定されるので、連続的またはリアルタイムの水分測定が望まれる。
【0009】
(発明の開示)
第1の態様においては、煙道中を流れる排ガスの微粒子の質量を測定するための微粒子質量測定装置が本発明により提供される。この装置は、煙道中を流れる排ガスの微粒子の質量を測定するための質量測定アセンブリと、煙道中を流れる排ガスの水分をリアルタイムで測定するための手段と、煙道中を流れる排ガスのリアルタイム水分量に基づき質量測定アセンブリにより測定可能な排ガスの等速サンプリングを制御するためのコントローラとを含んでいる。
【0010】
別の態様において、煙道中を流れる排ガスの微粒子の質量を測定するための方法は、排ガスの水分測定をリアルタイムで決定する段階と、排ガスのリアルタイム水分測定に基づいて排ガスの一部の等速サンプルを得る段階と、等速サンプルの微粒子の質量測定を得る段階とを含む。
【0011】
第3の態様において、水分測定モニターは、水分を含むガスの一部分の流量を決定するための第1のフローセンサと、ガスのその部分から水を除去するための乾燥器と、水を含まないガスの部分の流量を決定するための第2のフローセンサと、ガスの水分を決定するために前記第1のフローセンサおよび前記第2のフローセンサに操作可能に接続されたコントローラとを含む。
【0012】
第4の態様において、ガスの水分を測定するための方法は、ガス流の一部分の第1の流量を決定する段階と、そのガス流の部分から水分を除去する段階と、水分を含まないガス流の第2の流量を決定する段階とを含む。
【0013】
本発明としてみなされる主題は、本明細書の結論部分で特に指摘されかつ明瞭に特許請求されている。しかしながら、本発明は、そのさらなる目的および利点と共に、好適な実施形態の以下の詳細説明および添付図面を参照することにって最もよく理解できる。
【0014】
(発明を実施するための最良の形態)
図1は、本発明による、煙道14中を流れる排ガス12中の微粒子の質量を測定するための微粒子質量測定装置100を例示するものである。以下でより詳細に説明されるように、微粒子質量測定装置100は、排ガス12の水分をリアルタイムで測定し、排ガスの水分のリアルタイム測定に基づいて等速サンプリングのリアルタイム調整を排ガス12中の微粒子の質量測定中に行うためのモニタまたは手段を含んでいる。本明細書中で用いられるように、用語「リアルタイム」は、その間にサンプリングが行われる実際の時間を実質的に意味する。
【0015】
微粒子質量測定装置100は、Hiss,IIIらの米国特許第5,970,781号「煙道内直接微粒子質量測定装置および方法」、およびHis,IIIらの米国特許第6,016,688号「圧力/フロー補正を用いた煙道内直接微粒子質量測定装置および方法」に開示される微粒子質量測定装置に類似し、さらに以下でより詳細に説明される改良を含む。これらの特許の主題は、参照によりその全体が本明細書に組み込まれる。
【0016】
例えば、質量測定装置100は、煙道14内に伸縮可能ブーム18の端部または他の支持構造体に支持された質量測定アセンブリ16またはプローブを含む。質量測定アセンブリ16は、空気圧ライン20、22および電気信号ライン24を介して制御ユニット26に接続されている。空気圧ラインおよび電気信号ラインは、好ましくは、ブーム18に沿いかつこれを通って伸びる。有利には、空気圧ライン20および22は、全体的または部分的に制御可能に加熱し得る。制御ユニット26は、ブーム18の近くに、またはそこから離して設置できる。
【0017】
用語「煙道(stack)」は、微粒子含有ガスを流す任意の通路を意味するために本明細書中で広く使用される。用語「排ガス」は、任意のそのような微粒子含有ガスを示すように本明細書中で使用される。本発明は、微粒子含有ガスを排出するどのような設備にも適用可能である。そのような設備は、この業界では時々「固定排出源」と呼ばれ、石炭燃焼施設、生ゴミ焼却炉、有害廃棄物焼却炉、セメントプラント、紙/パルプ処理設備、ボイラー排気、および煙突が含まれるが、これらに限定されない。
【0018】
図1に示されるように、煙道14の壁は、典型的には外部フランジ30により規定されるポート28を含み得る。本発明の1つの実施形態によれば、滑り継手32とベアリングハウジング34が、フランジ30の外表面に取り付けられている。ポート28、滑り継手32およびベアリングハウジング34は内部通路を規定し、これを通して質量測定アセンブリ16およびブーム18を煙道14内に挿入できる。質量測定アセンブリ16およびブーム18の外径は、ポート28の外径よりも若干小さい。質量測定アセンブリ16は、回転継手またはピボット36によりブーム18の端部に取り付けられる。この継手により、質量測定アセンブリ16は、ポート28を通って煙道14内にアクセスするためにブーム18と同軸的に方向合わせができる。挿入に続いて、質量測定アセンブリ16は、図1に示されるように、排ガス12のサンプリングを容易にする方位まで継手36周りで回転される。サンプリング完了後、質量測定アセンブリ16は、ポート28を通って煙道14から容易に引き抜けるようにブーム18と共軸の方位に回転して戻すことができる。当業者により理解されるように、質量測定アセンブリ16に回転支持および動作を提供するため、様々な従来機構を用いることができる。
【0019】
ポート28により煙道14内部へのアクセスが可能になるのに対して、滑り継手32およびベアリングハウジング34により、ブーム18および付随する質量測定アセンブリ16は、様々な測定プロトコルの下で要求または要望されるように、煙道内部を横切るように移動が可能になる。質量測定アセンブリ16が煙道14内の所望の直交位置に置かれた時に、スライド式ブーム18をその位置に一時的に固定するためにクイックリリースクランプ(図示せず)を使用できる。ブーム18は、好ましくは、種々の現場条件に適応しかつ運搬が容易になるように、最大要求横断長さまで伸長可能である。
【0020】
質量測定アセンブリ16は、微粒子コレクタ40に接続された質量変換器38と、採集された排ガス12をコレクタ40へ導くための入口管42とを備える。質量測定アセンブリ16の構成要素は多くの異なる形態を取り得るが、質量変換器38は、コレクタ40に捕集された微粒子の質量の直接的かつリアルタイムの測定を提供する慣性質量測定変換器が好ましい。質量変換器38は、以下でより全面的に説明するように、クランプフリーモードで振動する中空弾性部材の形態を取るのが有利である。コレクタ40は、好ましくは、質量変換器38に取り付けたフィルタを含む。嵌入プレートまたは他の粒状物質コレクタも、採集排ガスから微粒子を捕集するのに使用できる。入口管42は、入口損失を最小限にするために、好ましくは短くかつまっすぐである。
【0021】
質量測定アセンブリ16は、総微粒子質量レベルを測定するために使用、あるいは、入口管42の上流に位置する空気力学的直径に基づき微粒子を分離するサイクロンまたはその他の装置(図示せず)と共に、技術的に周知のように、例えばPM10またはPM2.5の微粒子質量レベルの測定に用いることができる。
【0022】
輸送損失を最小にし、サンプルの完全な状態を保証するために、コレクタ40は、好ましくは、入口管42の出口近くに置かれる。コレクタ40は、好ましくは、クランプフリーモードで振動するように作られた中空弾性部材である好適な変換器の自由端に取り付けられた交換可能なフィルタカートリッジを備える。そのような振動式中空弾性部材を用いた慣性質量測定装置の構造および操作は、同一出願人による米国特許第3,926,271号および同4,391,338号、ならびに日本国特許公開公報JP2−324364号に記載されている(これらの特許および日本国特許公報は、参照によりそれらの全体が本明細書に組み込まれる)。
【0023】
例えば、質量変換器38は、好ましくは、一端がクランプ固定され、他端が自由に振動する中空管である。交換可能なフィルタカートリッジは自由端の先端に配置される。この片持ち式弾性部材は、その固有振動数で正確に振動する。電子制御回路46がその振動を感知し、正帰還を介して、損失に打ち勝つのに十分なエネルギーをシステムに加える。自動制御回路(図示せず)が、測定の間、振動を維持する。正確な電子式カウンター46が、質量と直接の関係がある周波数を測定する。
【0024】
経時的に周波数を追跡することにより質量流量が得られ、フィルタを通して測定された流量と組み合わせると、質量濃度が得られる。そのような追跡および計算は、制御ユニット26内のコンピュータ/コントローラまたはプロセッサ48によって周知のやり方で容易に達成できる。キーパッド50およびディスプレイ52、または他の入力/出力装置をコントローラ48に接続して、コントローラとのオペレータインタフェースを容易にし、質量測定装置100から提供された質量表示値を表示するようにできる。米国特許第5,970,781号には、質量変換器の現場較正用プロセスだけでなく、質量変換器を用いた質量測定法がさらに記載されている。米国特許第6,016,688号には、圧力変換器77を用いた圧力/フロー補正も記載されている。
【0025】
再度図1を参照すると、サンプリングライン20は、質量変換器38、例えば前述の中空弾性部材を、例えば煙道14外に置かれたコンデンサのような乾燥器54に接続している。少なくともサンプリングライン20の一部が、その内部での水分凝縮を防止するために加熱されるのが好ましい。乾燥器54は任意の乾燥剤56と共に水分除去に役立ち、採集されたガスが付加的な任意のフィルタ58、フローコントローラ60を通過して減圧(例えば、真空)ポンプ62を介して排出される前にこれを完全に乾燥する。乾燥器54は、コンデンサ、メンブレンタイプ乾燥器または任意のその他の装置、あるいは好ましくはそのOまたはCO含量に影響することなくガス流を乾燥させる装置の組合せとすることができる。
【0026】
運転時、排ガス12は入口管42に入り、その中を直接通り、振動部材または他の質量変換器38に取り付けられたコレクタ40に至る。採集された排ガス中の微粒子物質は、EPA方法17に記載されているように、コレクタ40により煙道温度で捕集し得る。次に、採集されたガスは、ブーム18内の加熱されたサンプリングライン20を通って乾燥器54に進み、そして一連のサンプリング過程の残りの要素を通過する。このようにして、コレクタ40に堆積される微粒子物質の質量の直接測定値が、現場において、リアルタイムで得ることができる。
【0027】
EPA方法17は、捕集されたサンプルから、結合していない水分を除去することを要求している。米国特許第6,016,688号中でより完全に記載されているように、質量測定装置100は、サンプリング前後のコレクタの均衡化だけでなく、そのような結合していない水分の煙道内バージも行う。均衡化は、安定で再現性のある熱力学的状況を、サンプリング前後のコレクタについて確立する段階を含む。断続的なサンプリング期間の間のコレクタ調整も達成し得る。
【0028】
従って、ライン22は、調整ガスをコレクタ40に選択的に供給するために、ブーム18を通って伸びて入口管42に接続する調整ガスラインとすることができる。調整ガスは、好ましくは、フィルタ68、フローコントローラ70、ガス乾燥器72、およびソレノイドバルブ74を通ってライン22までポンプ66により供給される乾燥した清浄なガスから成る。この調整ガス過程の構成要素は、従来の既製タイプの要素とし得る。そのような要素は、好ましくは、煙道14外の制御ユニット26内に設置される。
【0029】
熱交換器76または他の調整ガス温度コントローラも、調整ガスラインに付属している。図1に示されるように、熱交換器76は、好ましくは、調整ガス流が排ガス温度にあることを便利に保証するため、煙道14内に配置される。熱交換器は、アクティブ、パッシブ、あるいはアクティブとパッシブとの組合せのいずれでもよい。温度センサ44をそのようなアクティブ制御用に用い得る。熱交換器は、種々の周知の形態をとり得る。熱交換器76の上流における調整ガスラインの一部分を、熱交換器に入るガスを予熱するために、任意に加熱することができる。もし必要であれば、熱交換器76または他の温度コントローラを、調整ガス温度を任意の設定温度、例えば排ガス温度よりも高い温度に調整するために用い得る。
【0030】
フィルタ68およびガス乾燥器72は調整ガスが清浄かつ乾燥していることを保証するために役立つのに対して、フローコントローラ70は、調整ガスの流量を制御する。ソレノイドバルブ74は、ライン22への調整ガス供給の迅速なオン・オフに役立つ。使用されないときには、調整ガスはソレノイドバルブ74を通して排出される。ガス調整過程の構成要素、ならびにサンプリング過程の構成要素の起動および運転は、すべてコントローラ48により周知のやり方で制御できる。
【0031】
調整ガスは、採集された排ガスよりも大きい流量で供給されるのが有利であり、その結果、コレクタ40を調整、均衡化、圧力/フロー較正および/または調整ガスによりパージする場合に、排ガスがコレクタに到達することが防止される。すなわち、調整ガスがその比較的高い流量のために入口管42の入口に向けて逆流することにより、排ガスがチューブ42へ入ることが効果的に阻止される。
【0032】
代わりに、サンプリングライン20に沿ったフローを制御して、採集された排ガスを調整ガスで効果的に希釈できる。このアプローチは、コレクタの寿命を延ばすか、コレクタの微粒子捕集能力を高めるためにコレクタに到達する水分量を減らすか、事後調整時間を低減するために用い得る。
【0033】
調整ガスの流量が排ガスのサンプリングを妨げるほどである場合、その調整ガスは、コレクタ40を現場で均衡化させるのに用い得る。そのような均衡化は、サンプリング前にコレクタを事前調整し、サンプリング後にコレクタおよび任意の捕集微粒子を事後調整するために用いることができ、実験室での平衡化に伴なう困難および遅延を避けつつ、EPA方法17と直接比較できる結果が得られる。そのようなコレクタ調整は、断続的なサンプリング期間との間に行うことができ、これによってコレクタの供用寿命が延長される。
【0034】
調整ガスラインは、調整およびサンプリングの間、コレクタへの一定かつ安定した流量と、コレクタにおける一定の温度とを提供できる。従って、現場調整は、このようなコレクタ・質量変換器の結合状態を乱さない。
【0035】
図1の微粒子質量測定装置100は、様々なモードで稼動できる。すなわち、単一地点での連続測定、複数地点での時限的横断測定、または時間比例(断続的)サンプリング、例えば間接的連続排出モニターの較正である。連続的で中断のないサンプリングは、EPA方法17に類似した、数時間程度の比較的短時間の試験に使用される。コレクタ寿命は、微粒子物質の濃度だけでなく、その種類の関数でもあるので、期間が数日程度の試験も可能なことがある。
【0036】
コレクタ寿命は、時間の一部についてのみサンプリングすることによって延長できる。この「時間比例サンプリング」法は、コレクタ交換時間を延長し、現行の連続モニターの較正に日常的に用いることができる。例えば、装置100によるサンプリングを1時間ごとに短時間行ない、同じ期間に別の連続排出モニターにより得られた不透明度の表示値と比較する方式により、連続モニター較正のコンスタントな更新が可能になるであろう。
【0037】
ここで、微粒子質量測定装置100の典型的な操作手順を説明する。最初に、漏洩がないか装置全体を点検し、次に、コレクタ40を質量測定アセンブリ16中に装着する。次に、ブーム18の端部において同軸的に整合されたアセンブリ16を、ポート28を通して煙道14内に挿入し、調整ガスライン22を作動させて、サンプリング位置へ回転して入れる。入口管42内への調整ガスの流量により、どのような排ガス12もコレクタ40に到達できず、このコレクタの煙道内での事前調整が可能になる。この装置は安定化する。すなわち、熱交換器または他の温度コントローラにより調整ガス温度が排ガス温度まで上昇する。この事前調整により、今後の質量表示用のゼロベースラインが確立される。
【0038】
ひとたびコレクタ40を事前調整すると、ソレノイドバルブ74を作動させてコレクタ40への調整ガスの供給を遮断することによって、サンプリングを開始できる。今度は、サンプリングライン20は、入口管42を通して排ガスを引き込み、コレクタ40に微粒子物質を捕集する。
【0039】
本発明は、上述の微粒子質量測定装置のさらなる改良を目的としている。特に、質量測定装置100は、水分モニタまたは排ガス中の水分をリアルタイムで測定するための手段を含み、測定された水分は、リアルタイムで排ガスの分子量を、そしてリアルタイムで排ガス12の速度を決定するために使用される。従って、以下で説明するように、排ガスの水分を決定することにより、排ガス12中の微粒子の質量を測定する間にリアルタイムの等速サンプリングが可能になる。
【0040】
排ガス12の水分を測定するための手段は、望ましくはサンプリングライン20に組み込まれる。例えば、排ガス12中の水分を測定するための手段は、第1のフローセンサ110、乾燥器54と乾燥剤56との間に接続されている水分を含まない排ガス(乾燥排ガス)の分子量測定手段120、および第2のフローセンサ130を備えたフローコントローラ60を一般に含んでいる。乾燥排ガスを測定するための手段120は、フィルタ122、二酸化炭素(CO)センサ124、酸素(O)センサ126、および第3のフローセンサ128を一般に含んでおり、これらは直列接続されている。
【0041】
様々なタイプのフローセンサ、例えば質量式または容積式のものが使用し得るが、好ましいフローセンサは、望ましくはオリフィスタイプ流量計であり、これはオリフィスを通しての容積流量がオリフィス前後での圧力損失および流体密度の平方根に比例するというベルヌーイの定理を使用する。適切な容積フローセンサが、Weitzらの米国特許第5,792,966号「熱的に安定な流体フロー測定装置」に記載されており、その主題全体は、参照により本明細書に組み込まれる。
【0042】
このセンサのオリフィスを通って流れるガスの容積流量は、以下の方程式から決定される:
Figure 0003793947
式中、
Q=容積流量
ΔP=オリフィス前後での圧力損失
T=フローセンサにおけるガスの絶対温度
P=フローセンサ入口におけるガスの絶対圧力
m、b=較正定数
MW=フローセンサにおけるガス分子量
【0043】
周知のように、質量流量は、フローセンサにおけるガスの密度を掛けることにより容積流量から計算できる。
Figure 0003793947
式中、
Figure 0003793947
【0044】
図2は、ガス202の流量を決定するためのフローセンサ200の現在の好ましい形態を概略的に示すものである。センサ200は、米国特許第5,792,966号に記載されるようなオリフィス204を備えている。圧力変換器208は、センサ入口206での絶対圧(P)の決定に使用され、圧力変換器210は、開口部204前後での圧力損失(ΔP)を決定する。センサ中のガスの絶対温度(T)を決定するために、熱電対212が使用できる。センサハウジング214は、乾燥排ガスフローセンサ128および130(図1)用に使用される場合には、プラスチックのような任意の適切な材料で作り得るが、煙道から引き込んだ高温で湿った排ガスを受け入れるフローセンサ110において使用される場合には、好ましくはステンレス鋼のような耐高温性かつ耐腐食性の材料で構成される。
【0045】
フローセンサ110、128および130からの圧力および温度の測定値は、コントローラ48に提供され、このコントローラは測定値から上記方程式に従って各センサの流量を計算する。これらの計算用に、フローセンサ128および130を通過する乾燥排ガスの分子量(MW)(以下、乾燥分子量Mdと呼ぶ)が、以下で方程式(5)を参照して説明されるように、二酸化炭素センサ124と酸素センサ126とから提供された測定値から導くことができる。
【0046】
フローセンサ110についての湿潤分子量Msは、乾燥分子量Mdと湿潤排ガスに含まれている水蒸気量とから(以下で、方程式4に関して説明されるように)計算される。ガスに含まれている水蒸気量は正確に知られているわけではないが、例えば、水蒸気容積比率Bws(以下、方程式8に関して説明されるような)の以前の計算を現在の比率として用いることにより、この目的のために近似できる。同様なアプローチを密度計算用に使用できる。すべての計算が実行され、すべてのセンサが数秒ごとに読み取られる。この短い期間中、ガス中の水蒸気量の変化は十分に小さく、誤差は無視し得る。
【0047】
本発明によれば、以下でより詳細に説明されるように、直列接続され乾燥器54により分離されたフローセンサ110および130のペアにより、水蒸気含有排ガス流量を水を含まない排ガス流量と比較することが可能になり、リアルタイムの水分測定が提供される。
【0048】
上記で記載されるように、排ガス速度Vは、以下の関係に従って決定される。
V=C×(PitotDP)0.5×(T/(P×Ms))0.5 (1)
式中、
Cは、ピトー管較正定数、
PitotDPは、ピトー管前後で測定された圧力損失、
Tは、排ガスの絶対温度、
Pは、排ガスの絶対圧力、
Msは、水蒸気を含む排ガスの分子量である。
【0049】
T、PitotDP、およびPをリアルタイムで得るため、装置100は、例えば、温度センサ44、ピトー管45、ピトー管45前後での圧力損失を決定する圧力変換器79、および静圧タップ142と共に煙道の静圧を測定する圧力変換器140を含み得る。絶対圧力Pは、煙道の測定静圧力に加えられた現在の大気圧に等しい。
【0050】
上でも論じたように、排ガスの総分子量の測定には、水蒸気の測定が必要とされる。以下の方法により水分がリアルタイムで効率的に決定され、水蒸気含有排ガスの分子量Msの測定値をリアルタイムで決定できる。次に、水蒸気含有排ガスの分子量は、特に発生源条件が常に変わる場合に、試験全体を通して真の等速サンプリングを維持するために用いられる。
【0051】
排ガスの湿潤分子量の測定値は、以下のように、乾燥分子量Mdの測定値と水蒸気容積含有量Bwsの測定値、の2つの成分に分割できる。
Ms=((1−Bws)×Md)+(MWwv×Bws) (4)
式中、
MWwv=水蒸気の分子量(18.0153lb/lb*モル)
【0052】
乾燥分子量Mdは、ガスセンサによりリアルタイムで決定される。例えば、乾燥分子量測定は、ガス組成の残りが窒素(N)であると仮定して、COセンサ124およびOセンサ126を読み取ってなされる。この仮定は、ほとんどの燃焼源にあてはまる。乾燥分子量Mdは、以下のように決定される。
Md=0.28×[100−(%CO+%O)]+(0.32%O)+(.44×%CO) (5)
式中、
0.28=窒素の分子量/100
0.32=酸素の分子量/100
0.44=二酸化炭素の分子量/100
【0053】
一般に、水蒸気の容積分率Bwsの測定値は、ポンプ62を使用して供給ライン20を通って排ガスの一部を引き込み、第1のフローセンサ110にその排ガスの一部を通し、第2のフローセンサ130にその排ガスの一部を通過させて乾燥させることにより決定される。任意の瞬間におけるガス流中の水蒸気の容積は、以下で方程式(6)および(7)に関してより十分に説明されるように、煙道条件における容積流量に変換されたフローセンサにより決定された流量の差から導かれる。水蒸気容積百分率Bwsは、煙道条件において総容積流量と比較した水蒸気の容積流量である。
【0054】
より詳細には、排ガスの一部をサンプリング(以下で記載されるように等速的に)および微粒子除去のために質量変換器で濾過する。次に、この排ガスの一部は、すべての水が蒸気の状態に維持されることを保証するために高温に維持したセンサ110へ輸送される。次に、排ガスは、すべての水分を除去する乾燥器54へ運ばれ、それによって露点が−20℃まで低下する。乾燥プロセスの間に、温度はほぼ常温まで低下される。
【0055】
次に、排ガスのその部分を、望ましくは平行流に分割し、乾燥分子量測定Mdを決定するために、一方の平行区間が排ガスをガスセンサ、すなわちCOセンサ124およびOセンサ126へ輸送する。次に、この区間は他方の区間と合流する。流れを分割することにより、COセンサ124およびOセンサ126を通る流れは一定に保つことができ、これが正確な測定値を得る際に役立つ。COセンサ124およびOセンサ126を通る排ガスの流れは、フローセンサ128に操作可能に接続された比例バルブ84により調節される。
【0056】
次に、乾燥された排ガスは、乾燥剤56、フィルタ58、そしてサンプリング流量の制御を行う比例バルブ135と連通した第2のフローセンサ130を通って輸送される。サンプリング流量は、サンプル入口における等速条件を維持するため、連続的に調整される。次に、ガスは真空ポンプ62を通って排出される。
【0057】
第1のフローセンサ110で測定された質量流量と第2のフローセンサ130で測定された質量流量との差を、煙道条件における水蒸気密度で割ると、以下のように、乾燥器により除去された水蒸気の容積流量Qwvが得られる。
Figure 0003793947
式中、
Figure 0003793947
【0058】
代わりに、水蒸気の容積流量Qwvを、以下のように第1および第2のフローセンサの容積流量から決定することができる。
Figure 0003793947
=第1のセンサにおける容積流量
ρ=第1のセンサにおける排ガスの密度
=第2のセンサの容積流量
ρ=第2のセンサにおける排ガスの密度
ρwvT,Pstack=煙道の温度および圧力における水蒸気密度
【0059】
煙道条件における総容積流量に対する水蒸気の容積流量の比により、水蒸気の容積割合が下記の通り得られる。
Figure 0003793947
式中、
wv=排ガス中の水分の容積流量
=第1のフローセンサにおける高温の湿潤排ガス容積流量
=第1のフローセンサにおける高温の湿潤排ガスの絶対温度
=第1のフローセンサにおける高温の湿潤排ガスの絶対圧力
Stack=煙道中の排ガスの絶対圧力
Stack=煙道中の排ガスの絶対温度
【0060】
水蒸気の容積割合Bwvが分かれば、排ガスの分子量Msは、方程式4を用いてリアルタイムで決定でき、従って排ガス速度Vは、方程式1を用いてリアルタイムで決定される。速度のリアルタイム決定は、採集される排ガスの速度を変えるように比例バルブ135を制御するためにコントローラ48により使用できる。等速流量は、排ガス中での分子量変動を補う「真の」等速サンプリングを提供するため、水分測定に基づいてリアルタイムで調整される。
【0061】
サンプリングの終わりにあたり、調整ガスを入口管42に供給するためにソレノイドバルブ74が再び起動される。調整ガス流量がより高くなることにより、排ガスがコレクタに達することが再びできなくなる。乾燥し、清浄で加熱された調整ガスは未結合水を除去し、コレクタおよび捕集微粒子の事後調整に役立つ。
【0062】
事後調整に続き、質量測定アセンブリ16はアクセス穴28を通して煙道14から引き戻され、調整ガスライン22が停止され、質量測定アセンブリ16は、好ましくは、質量測定アセンブリ16を実質的に煙道温度に維持するため、例えば断熱ブランケットを用いて煙道14外で温度安定化される。サンプリングライン20をまだ作動させたままで、次に、入口管42の内部を数回払い落とし、同じ測定装置100を用いて、サンプリング中に管内壁に沿って引っかかった可能性のあるどのような微粒子物質も捕集および測定することができる。払い落としからの質量測定値は、サンプリング中に得られた質量測定値に加えて、排ガス中の微粒子総質量のより正確な表示値とすることができる。
【0063】
調整ガスは、時間比例させた(すなわち断続的)サンプリング期間の間にコレクタを調整するために有利に使用できる。継続的で安定した調整期間の間の総質量測定値の差は、中間サンプリング期間の間に生じる質量増加の尺度となる。
【0064】
第1のフローセンサ110および第2のフローセンサ130の精度は、以下の較正を実行することによって改善できる。第2のフローセンサ130を正確であると仮定して、これは第1のセンサ110の較正および調節に使用できる。リアルタイム水分測定には、フローセンサ間の違いを計算することが必要であり、および乾燥ガスがシステムを通って流れる場合には、この違いは0に十分近いものでなければならない。
【0065】
較正手順は、フローセンサ110および130により、例えば4つの流量において測定された流量を比較することから成る。データについての線形回帰は、正確な水分測定に必要な調節をもたらす。線形回帰は、以下の方程式に従ってフローセンサ110の調節に使用できる。
Figure 0003793947
式中、
Figure 0003793947
【0066】
この手順は、以下の段階を含む。
Figure 0003793947
【0067】
Figure 0003793947
【0068】
本明細書の説明から、本発明の水分モニタが、スタンドアロン型、すなわち、質量測定アセンブリまたは装置に組み込みまたは統合されていないユニットとして構成し得ることが当業者には理解されるであろう。例えば、本発明によるスタンドアロン型水分モニタは、スタンドアロン型慣性質量測定装置のようなアセンブリないし測定装置と、または種々の規制汚染物質の測定、あるいはその他の用途において使用される連続排出モニタと共に用いることができる。
【0069】
好ましい実施形態を詳細に描写および説明してきたが、本発明の精神から逸脱することなく多様な修正、付加、代用等が行えること、従って、これらは以下の請求項において定義される本発明の範囲に含まれると見なされることが当業者には理解されるであろう。
【図面の簡単な説明】
【図1】 排ガス中の微粒子の質量測定の間に、等速サンプリングのリアルタイム調整のために排ガスの水分をリアルタイムで測定するために使用可能な微粒子質量測定装置のための本発明の1つの実施形態の概略を表わす。
【図2】 図1の測定装置での使用に適したフローセンサの概略を表わす。
【符号の説明】
12 排ガス
14 煙道
16 質量測定アセンブリ
48 コントローラ
54 乾燥器
100 微粒子質量測定装置
110 フローセンサ
208 圧力変換器
212 温度センサ

Claims (24)

  1. 煙道(14)中を流れる排ガス(12)の微粒子の質量を測定する微粒子質量測定装置(100)であって、前記装置(100)は、
    煙道中を流れる排ガスの微粒子の質量を測定する質量測定アセンブリ(16)と、
    煙道中を流れる排ガスの水分含有量をリアルタイムで測定する手段であって、排ガス流の一部分の第1の流量を決定する第1のフローセンサ(110)と、第1のフローセンサにおける絶対圧力(P)および絶対温度(T)をそれぞれ決定する圧力変換器(208)および温度センサ(212)と、排ガスの前記部分から水分を除去する乾燥器(54)と、前記排ガスの乾燥分子量Mdを測定する手段(120)と、水分を含まない排ガス流の一部分の第2の流量を決定する第2のフローセンサ(130)とを有してなる水分含有量の測定手段と、
    煙道中を流れる排ガスのリアルタイムの水分に基づき、前記質量測定アセンブリにより測定可能な排ガスの等速サンプリングを制御するコントローラ(48)とを含む微粒子質量測定装置。
  2. 前記コントローラ(48)は、等速サンプリングをリアルタイムで制御するように操作可能である請求項1に記載の微粒子質量測定装置(100)。
  3. 前記質量測定アセンブリ(16)は、微粒子質量の測定値をリアルタイムで提供し、前記水分含有量の測定手段は、前記質量測定アセンブリ(16)から伸びるサンプリングライン(20)に組み入れられてなる請求項1に記載の微粒子質量測定装置(100)。
  4. 前記第1のフローセンサ(110)および前記第2のフローセンサ(130)はそれぞれ容積フローセンサを含む請求項1に記載の微粒子質量測定装置(100)。
  5. 前記乾燥分子量の測定手段(120)は、二酸化炭素センサ(124)と酸素センサ(126)と第3のフローセンサ(128)を有してなる請求項1に記載の微粒子質量測定装置(100)。
  6. 前記コントローラ(48)は、以下の式
    V=C×(PitotDP)0.5×(T/(P×Ms))0.5
    (式中、
    Cは、ピトー管較正定数、
    PitotDPは、排ガス中のピトー管(45)の前後で測定された圧力損失、
    Tは、排ガスの絶対温度、
    Pは、排ガスの絶対圧力、
    Msは、水蒸気を含む排ガスの分子量)
    に従って、等速サンプリングのための排ガスの速度Vを決定する請求項1に記載の微粒子質量測定装置(100)。
  7. 前記排ガス分子量Msは、以下の式、
    Ms=((1−Bws)×Md)+(MWwv×Bws)
    (式中、
    MWwvは、水蒸気の分子量、
    Mdは、排ガスの測定された乾燥分子量、
    Bwsは、水蒸気の容積割合)
    に従って測定される請求項6に記載の微粒子質量測定装置(100)。
  8. 水蒸気の前記容積割合Bwsは、以下の式、
    Figure 0003793947
    (式中、
    wv=排ガス中の水分の容積流量
    =第1のフローセンサ(110)における高温の湿潤排ガスの容積流量
    =温度センサ(212)で決定された第1のフローセンサ(110)における高温の湿潤排ガスの絶対温度
    =圧力センサ(208)で決定された第1のフローセンサ(110)における高温の湿潤排ガスの絶対圧力
    Stack=煙道中の排ガスの絶対圧力
    Stack=煙道中の排ガスの絶対温度)
    に従って決定される請求項7に記載の微粒子質量測定装置(100)。
  9. 前記質量測定アセンブリ(16)は、質量変換器(38)と、該質量変換器に接続された微粒子コレクタ(40)と、採集されたガスを前記コレクタへ導くための入口管(42)とを有し、更に前記サンプリングライン(20)は、前記第2のフローセンサ(130)を有する等速フローコントローラ(60)に組み込まれてなる請求項3に記載の微粒子質量測定装置(100)。
  10. 調整ガスを前記質量測定アセンブリ(16)へ選択的に供給するための調整ガス供給ライン(22)をさらに含む請求項1に記載の微粒子質量測定装置(100)。
  11. 前記調整ガス供給ライン(22)は、ポンプ(66)と、フローコントローラ(70)と、乾燥器(72)と、切り換えバルブ(74)とを含む請求項10に記載の微粒子質量測定装置(100)。
  12. 煙道(14)を流れる排ガス(12)の微粒子の質量を測定するための方法であって、
    排ガスの水分をリアルタイムで測定する段階と、
    以下の式、
    Figure 0003793947
    (式中、
    wv=排ガス中の水分の容積流量
    =第1のフローセンサ(110)における高温の湿潤排ガスの容積流量
    =温度センサ(212)で決定された第1のフローセンサ(110)における高温の湿潤排ガスの絶対温度
    =圧力センサ(208)で決定された第1のフローセンサ(110)における高温の湿潤排ガスの絶対圧力
    Stack=煙道中の排ガスの絶対圧力
    Stack=煙道中の排ガスの絶対温度)
    に従って、排ガスの水蒸気の容積割合Bwsを決定するステップと排ガスの乾燥分子量を決定するステップを含んだ排ガスのリアルタイム水分測定に基づき排ガスの一部分の等速サンプルを得る段階と、
    等速サンプルの微粒子質量の測定値を得る段階とを含む方法。
  13. 等速サンプルを得る段階がリアルタイムである請求項12に記載の方法。
  14. 等速サンプルの微粒子質量の測定値の取得はリアルタイムである請求項13に記載の方法。
  15. 等速サンプルを得る段階は、排ガスの湿潤分子量を決定する段階を含む請求項12に記載の方法。
  16. 等速サンプルを得る段階は、排ガスの速度を決定する段階を含む請求項12に記載の方法。
  17. 排ガスの乾燥分子量を決定する段階は、排ガスの二酸化炭素および酸素の濃度を測定する段階を含む請求項12に記載の方法。
  18. 水分を測定する段階は、排ガス流の一部分の第1の流量を決定する段階と、排ガスのその部分から水を除去する段階と、水分を含まない排ガス流のその部分の第2の流量を測定する段階を含む請求項12に記載の方法。
  19. 水分を測定する段階は、前記第1の流量と前記第2の流量との差を決定する段階をさらに含む請求項18に記載の方法。
  20. 等速サンプルを取得する段階は、以下の関係、
    V=C×(PitotDP)0.5×(T/(P×Ms))0.5
    (式中、
    Cは、Cはピトー管較正定数、
    PitotDPは、排ガス中でのピトー管(45)の前後での測定圧力損失、
    Tは、排ガスの絶対温度、
    Pは、排ガスの絶対圧力、
    Msは、水蒸気を含む排ガスの分子量)
    に従って、排ガスの速度Vを決定する段階を含む請求項12に記載の方法。
  21. 排ガスの分子量Msの測定値は、以下の式、
    Ms=((1−Bws)×Md)+(MWwv×Bws)
    (式中、
    MWwvは、水蒸気の分子量、
    Mdは、排ガスの算出された乾燥分子量、
    Bwsは、水蒸気の容積割合)
    に従って決定される請求項20に記載の方法。
  22. 排ガス中の水分の容積流量Qwvは、高温の湿潤排ガスの流量と水分除去後の前記ガスの流量との差を計算することにより決定される請求項12に記載の方法。
  23. 調整ガスを質量測定アセンブリへ供給する段階をさらに含む請求項22に記載の方法。
  24. 微粒子を含んだガスの微粒子の質量を測定するための微粒子質量測定装置であって、該装置は、
    ガスの微粒子の質量を測定するための質量測定アセンブリと、
    ガスの水分含有量をリアルタイムで測定するための手段であって、該水分含有量の測定手段は、ガス流の一部分の第1の流量を決定するための第1のフローセンサと、第1のフローセンサにおける絶対圧力および絶対温度をそれぞれ決定するための圧力変換器および温度センサと、ガスの前記部分から水分を除去するための乾燥器と、前記ガスの乾燥分子量Mdを測定する手段と、水分を含まないガス流の一部分の第2の流量を決定するための第2のフローセンサとを含む微粒子質量測定装置。
JP2002534804A 2000-08-10 2001-07-13 リアルタイム水分モニタを備えた排ガス微粒子質量測定装置 Expired - Fee Related JP3793947B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/636,147 US6439027B1 (en) 2000-08-10 2000-08-10 Particulate mass measurement apparatus with real-time moisture monitor
PCT/US2001/022199 WO2002031469A1 (en) 2000-08-10 2001-07-13 Exhaust gas particulate mass measurement apparatus with real-time moisture monitor

Publications (3)

Publication Number Publication Date
JP2004511769A JP2004511769A (ja) 2004-04-15
JP2004511769A5 JP2004511769A5 (ja) 2005-02-24
JP3793947B2 true JP3793947B2 (ja) 2006-07-05

Family

ID=24550616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534804A Expired - Fee Related JP3793947B2 (ja) 2000-08-10 2001-07-13 リアルタイム水分モニタを備えた排ガス微粒子質量測定装置

Country Status (6)

Country Link
US (1) US6439027B1 (ja)
EP (1) EP1307722B1 (ja)
JP (1) JP3793947B2 (ja)
AU (1) AU2001275919A1 (ja)
DE (1) DE60106931T2 (ja)
WO (1) WO2002031469A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892584B2 (en) * 2002-11-19 2005-05-17 Rosemount Aerospace Inc. Fabricated pitot probe assembly
ES2550347T5 (es) * 2003-04-11 2022-04-07 Testo Se & Co Kgaa Procedimiento y dispositivo para la detección, caracterización y/o eliminación de partículas en suspensión
DE10324231B4 (de) * 2003-05-28 2007-06-14 Zeidler, J. Joachim Isoelektrostatische Sonde für die Entnahme von geladenen Partikeln und Ionen aus Gasströmen
US7251982B2 (en) * 2003-11-13 2007-08-07 Sensors, Inc. Apparatus for analysis of aerosols
US7111503B2 (en) * 2004-01-22 2006-09-26 Datalog Technology Inc. Sheet-form membrane sample probe, method and apparatus for fluid concentration analysis
US7947503B2 (en) 2005-06-17 2011-05-24 The United States Of America As Represented By The Department Of Health And Human Services Monitor and methods for characterizing airborne particulates
CN101162220B (zh) * 2006-10-16 2012-07-25 中国科学院武汉岩土力学研究所 填埋气体和渗滤液传输过程的监测试验系统
US7631568B2 (en) 2007-08-28 2009-12-15 Quest Technologies Particulate monitor
US7806968B2 (en) * 2007-10-16 2010-10-05 Horiba Ltd. Calibration unit for volatile particle remover
CN101798917B (zh) * 2010-03-03 2012-11-28 中国石油集团钻井工程技术研究院 多功能煤层钻井液动态污染评价装置
US8281576B2 (en) * 2010-05-12 2012-10-09 Ford Global Technologies, Llc Diesel particulate filter control
US8146352B2 (en) 2010-05-12 2012-04-03 Ford Global Technologies, Llc Diesel particulate filter control
WO2012103249A1 (en) * 2011-01-26 2012-08-02 Energy & Environmental Research Center Measurement of multimetals and total halogens in a gas stream
CA2859991A1 (en) 2011-12-20 2013-06-27 Bry Air (Asia) Pvt. Ltd. Method and device for moisture determination and control
CN102680370A (zh) * 2012-05-21 2012-09-19 常州市新港热电有限公司 煤粉浓度在线监测系统
CN104634924B (zh) * 2013-11-07 2017-01-04 中国石油化工集团公司 一种暂堵剂储层保护作用评价方法
WO2016105514A1 (en) * 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
US10830780B2 (en) 2015-01-26 2020-11-10 Biotech Institute, Llc Apparatus and methods for sample analysis and classification based on terpenes and cannabinoids in the sample
CN105158027B (zh) * 2015-08-27 2018-02-23 太原理工大学 一种沥青烟挥发物含量收集测定装置及其测定方法
EP3414545B1 (en) * 2016-02-12 2021-06-09 Leo Breton Real time fluid species mass flow meter
CN106153486A (zh) * 2016-06-23 2016-11-23 南京中能瑞华电气有限公司 一种飞灰自动测量装置
CN106885755B (zh) * 2017-01-10 2020-09-08 中国矿业大学 一种煤矿井下快速测定煤层瓦斯参数的方法与装置
DE102017008705A1 (de) 2017-09-18 2019-03-21 Technische Universität Ilmenau Vorrichtung zur Ermittlung von Quantitäten und Qualitäten von Emissionen einer Bearbeitungszone einer Fertigungsmaschine
WO2019125770A1 (en) * 2017-12-19 2019-06-27 Siemens Healthcare Diagnostics Inc. Probe apparatus, assemblies, and methods for aspirating and dispensing liquids
CN108152090A (zh) * 2018-02-07 2018-06-12 青海蓝博检测科技有限公司 一种烟尘采样装置
BE1026126B1 (nl) 2018-08-29 2019-10-16 Optyl Inrichting en werkwijze voor het opmeten van het stofgehalte van een luchtstroom
CN109211710B (zh) * 2018-09-10 2020-10-23 江苏中聚检测服务有限公司 工业废气检测系统
CN109540734B (zh) * 2019-01-09 2023-11-24 重庆工业职业技术学院 可控水分的含瓦斯煤体高压吸附/解吸试验装置及方法
CN110196205A (zh) * 2019-05-30 2019-09-03 中国矿业大学 煤粒瓦斯扩散衰减特性的测定装置及方法
CN110895231B (zh) * 2019-12-26 2022-08-19 贵州中烟工业有限责任公司 一种加热不燃烧卷烟气溶胶中水分测定方法
CN113670767B (zh) * 2021-08-17 2024-01-26 中冶赛迪技术研究中心有限公司 一种烟气湿度检测装置和方法
CN117491577B (zh) * 2023-10-10 2024-09-27 生态环境部南京环境科学研究所 一种地下水水质在线监测系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727048A (en) * 1971-05-10 1973-04-10 R Haas Chemical tracer method of and structure for determination of instantaneous and total fluid flow mass and volume
US3920422A (en) * 1971-10-18 1975-11-18 Purity Corp Pollution control apparatus and method
US3784902A (en) * 1971-12-08 1974-01-08 Ikor Inc Apparatus for sensing particulate matter
DE3224506C1 (de) 1982-07-01 1983-07-07 B.A.T. Cigaretten-Fabriken Gmbh, 2000 Hamburg Einrichtung zur Bestimmung der Anteile an kondensierbaren und unkondensierbaren Gasen bzw. Daempfen in Prozessgasstroemen
US5006227A (en) * 1989-06-26 1991-04-09 Msp Corporation Volumetric flow controller for aerosol classifier
JPH0658315B2 (ja) * 1990-07-04 1994-08-03 工業技術院長 排ガス中のダスト又はミストの粒径分布及び濃度の連続測定装置
DE4115212C2 (de) * 1991-05-10 1995-02-02 Kernforschungsz Karlsruhe Verfahren zur kontinuierlichen Bestimmung von Staubgehalten in strömenden Medien
US5332512A (en) * 1991-12-19 1994-07-26 Pacific Scientific Company Isokinetic diluter for particle measuring instrument
JP3146429B2 (ja) 1993-09-09 2001-03-19 日本鋼管株式会社 排ガス中のダスト濃度の自動測定装置
US5665902A (en) * 1994-05-10 1997-09-09 American Air Liquide, Inc. Method to analyze particle contaminants in compressed gases
DE4432714C1 (de) * 1994-09-14 1995-11-02 Deutsche Forsch Luft Raumfahrt Verfahren zur Größenbestimmung luftgetragener Wassertropfen
US5672827A (en) * 1995-06-07 1997-09-30 American Air Liquide Inc. Method for measuring the flow rate of a species contained in an exhaust gas stream of a combustion process
JPH1062404A (ja) 1996-08-23 1998-03-06 Nippon Steel Corp 燃焼排ガス中の水分濃度測定方法及びダスト採取装置
US5739413A (en) * 1996-08-23 1998-04-14 Envirotest Systems, Inc. Forced dilution system and method for emissions measurement systems
US5932795A (en) * 1997-01-22 1999-08-03 President And Fellows Of Harvard College Methods and apparatus for continuous ambient particulate mass monitoring
US5792966A (en) 1997-04-07 1998-08-11 Weitz; Mark A. Thermally stable, fluid flow measurement device
USH1757H (en) 1997-09-17 1998-11-03 Us Navy Method and apparatus for automated isokinetic sampling of combustor flue gases for continuous monitoring of hazardous metal emissions
EP1064097A1 (en) * 1998-03-17 2001-01-03 Monsanto Company Wet electrostatic filtration process and apparatus for cleaning a gas stream
US5970781A (en) 1998-05-14 1999-10-26 Rupprecht & Patashnick Company, Inc. In-stack direct particulate mass measurement apparatus and method
US6016688A (en) 1998-05-14 2000-01-25 Rupprecht & Patashnick Company, Inc. In-stack direct particulate mass measurement apparatus and method with pressure/flow compensation

Also Published As

Publication number Publication date
EP1307722B1 (en) 2004-11-03
DE60106931T2 (de) 2005-10-27
JP2004511769A (ja) 2004-04-15
WO2002031469A1 (en) 2002-04-18
EP1307722A1 (en) 2003-05-07
DE60106931D1 (de) 2004-12-09
AU2001275919A1 (en) 2002-04-22
US6439027B1 (en) 2002-08-27
WO2002031469B1 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
JP3793947B2 (ja) リアルタイム水分モニタを備えた排ガス微粒子質量測定装置
US5970781A (en) In-stack direct particulate mass measurement apparatus and method
JP2004511769A5 (ja)
US6016688A (en) In-stack direct particulate mass measurement apparatus and method with pressure/flow compensation
JP4156517B2 (ja) 希釈用空気供給量の制御方法、排気粒子のサンプリング方法
US8443648B2 (en) Controlled humidification calibration checking of continuous emissions monitoring system
CN108507918B (zh) 超低排放烟气颗粒物浓度在线监测装置及方法
US6370936B1 (en) Sampling apparatus for exhaust gas
JP2008544281A (ja) 質量速度及び面積加重平均化流体組成サンプリング装置及び質量流量計
CN107917736A (zh) 一种民用炉具烟气污染物排放现场检测系统
US20080282764A1 (en) Calibration checking for continuous emissions monitoring system
CN211784611U (zh) 一种低浓度颗粒物在线监测系统
KR102290065B1 (ko) 확산관을 구비한 베타레이방식 굴뚝 미세 먼지 측정장치
JP2002055029A (ja) 排気ガスサンプリング装置
JP2006226866A (ja) 排ガスサンプリング装置
USH1757H (en) Method and apparatus for automated isokinetic sampling of combustor flue gases for continuous monitoring of hazardous metal emissions
CN114018777B (zh) 一种高温气体内颗粒物浓度检测装置
KR100551586B1 (ko) 시료가스 고속 샘플링장치
JP3076748B2 (ja) 排ガスサンプリング装置
CN102095774A (zh) 烟气干基氧量测量方法及系统
CN109813854A (zh) 一种废气水分含量测定装置
JP2912970B2 (ja) 灰中未燃分測定装置
US6148659A (en) Gas concentration monitor having a bridge configured flow system
Lamminen Simultaneos PM10 and PM2. 5 Measurement from Stacks According to New ISO 23210 Standard
JPH0563746B2 (ja)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees