JP3791443B2 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP3791443B2
JP3791443B2 JP2002096519A JP2002096519A JP3791443B2 JP 3791443 B2 JP3791443 B2 JP 3791443B2 JP 2002096519 A JP2002096519 A JP 2002096519A JP 2002096519 A JP2002096519 A JP 2002096519A JP 3791443 B2 JP3791443 B2 JP 3791443B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
pipe length
detecting
discharge temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002096519A
Other languages
English (en)
Other versions
JP2003294294A (ja
Inventor
宜正 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002096519A priority Critical patent/JP3791443B2/ja
Publication of JP2003294294A publication Critical patent/JP2003294294A/ja
Application granted granted Critical
Publication of JP3791443B2 publication Critical patent/JP3791443B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、室内機と室外機を接続配管で接続した、分離型の空気調和機の制御に関する。
【0002】
【従来の技術】
従来分離型の空気調和機において電動膨張弁によって冷凍サイクルの冷媒循環量を制御する方法としては、例えば特許第2921254号公報を挙げることができる。
【0003】
この従来例においては、蒸発温度と凝縮温度と圧縮機単体の傾斜特性線により、モリエル線図上から目標吐出温度を設定し、圧縮機の吐出温度が目標吐出温度になるよう電動膨張弁によって冷媒循環量を制御することで、冷媒の過熱度を制御している。
【0004】
また特開平12−292013号公報においては、蒸発温度や圧縮機への吸入冷媒温度によって目標吐出温度を補正することで、冷媒の過熱度の上昇を抑え、蒸発器の乾きすぎを防止するといった技術も公開されている。
【0005】
【発明が解決しようとする課題】
ところで、近年省エネルギや快適性といった観点から、圧縮機の回転数が大きく変化するインバータを搭載した分離型の空気調和機が多く普及している。また設置自由度の拡大という観点から接続可能な配管長に関しても、より短く、より長くまで接続できるよう要求されている。
【0006】
しかしながらこのような空気調和機においては、インバータにより冷媒循環量が大きく変化し、更に接続配管長も大きく変化するため、図6に示す冷媒循環量と配管長の圧損関係のように、冷房運転時に蒸発器の圧力と圧縮機の吸入側圧力との圧力差(以後圧損という)も大きく変化する。
【0007】
その結果図7に示すモリエル線図のように、蒸発温度と凝縮温度だけで目標吐出温度を設定しても接続配管の圧損影響で圧縮機の吸入点は図中のB点やC点のように変動し、吸入側の冷媒過熱度を適正過熱度に保つことが困難であった。
【0008】
一般に圧縮機の吸入側の冷媒過熱度が適正過熱度(一般的に5K前後)に保たれていれば、圧縮機の運転効率が高くなり省エネ運転が可能となる。
【0009】
しかし冷媒過熱度が大きくなりすぎると、蒸発器が乾き室内機から結露水が飛散するといった問題が生じやすくなる。一方吸入冷媒が湿り過ぎる(冷媒過熱度が全くとれていない)と、液バックといった圧縮機の信頼性低下問題が生じやすくなる。
【0010】
また室内機の蒸発温度と圧縮機の吸入温度で目標吐出温度を補正し、冷媒の過熱度を抑制しようとしても、運転条件(例えば圧縮機回転数)の変化により接続配管での圧損が変われば、十分な抑制を行うことができない。更に施工条件(配管長)が変わると圧損変化により冷媒の過熱度も変わる。
【0011】
そこで、スイッチ等で施工者が確実に実配管長を設定する必要があり、製品コストが上がる、施工時間が長くなるといった課題が生じる。
【0012】
そこで本発明は、斯かる点に鑑みてなされたものであり、その目的は、冷房運転時に様々な運転条件下や施工条件下でも圧縮機の吸入圧力の飽和温度を高精度で推定することにより吸入側の冷媒過熱度を適正過熱度に制御し、運転効率を高め、室内機の結露を防止するとともに圧縮機の信頼性を高めることができる安価な空気調和機を提供するものである。
【0013】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の空気調和機は、容量可変形圧縮機と室外熱交換器と弁開度を制御可能な電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する室内機と、前記室外機と前記室内機を接続する接続配管を有する空気調和機において、前記接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記第1の温度検出手段により検出された蒸発温度と前記記憶手段に記憶されている配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えたものである。
【0014】
このように、蒸発温度に圧損を考慮することで運転条件が変化しても圧縮機の吸入圧力の飽和温度を高精度に推定することができ、その高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し吐出温度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0015】
【発明の実施の形態】
上記課題を解決するために、請求項1に記載の本発明は、容量可変形圧縮機と室外熱交換器と弁開度を制御可能な電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する室内機と、前記室外機と前記室内機を接続する接続配管を有する空気調和機において、前記接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記第1の温度検出手段により検出された蒸発温度と前記記憶手段に記憶されている配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えたものである。
【0016】
このように、蒸発温度に圧損を考慮することで運転条件が変化しても圧縮機の吸入圧力の飽和温度を高精度に推定することができ、その高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し吐出温度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0017】
また、請求項2記載の本発明は、容量可変形圧縮機と室外熱交換器と弁開度を制御可能な複数の電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する複数の室内機とを接続配管により並列に接続したマルチタイプの空気調和機において、前記各室内機への各接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記各室内機の前記第1の温度検出手段により検出された各蒸発温度と前記記憶手段に記憶されている各接続配管の配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えたものである。
【0018】
このように、マルチタイプの空気調和機においても、蒸発温度に圧損を考慮することで運転条件が変化しても圧縮機の吸入圧力の飽和温度を高精度に推定することができ、高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し吐出温度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0019】
また請求項3記載の本発明は、圧縮機の吸入温度を検出する第4の温度検出手段と、前記第4の温度検出手段により検出された吸入温度と第1の推定手段で推定された吸入圧力の飽和温度から前記圧縮機の吸入冷媒過熱度を推定する第2の推定手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0020】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異なる場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。この結果、推定された吸入圧力の飽和温度が修正され、これに伴い目標吐出温度も修正されるため、運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0021】
また請求項4記載の本発明は、室内熱交換器のガス側配管のガス温度を検出する第5の温度検出手段と、前記第5の温度検出手段により検出されたガス温度と第1の温度検出手段により検出された蒸発温度に基づき室内冷媒過熱度を検出する室内冷媒過熱度検出手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記室内冷媒過熱度検出手段により検出された室内冷媒過熱度が所定範囲から外れた場合に予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0022】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異る場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。この結果目標吐出温度が修正され、室内冷媒過熱度も修正されるため、運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0023】
また請求項5記載の本発明は、第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定値となるよう電動膨張弁の開度を制御する膨張弁制御手段を備えたものである。
【0024】
このように高精度に推定された吸入圧力の飽和温度を使って吸入冷媒過熱度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0025】
また請求項6記載の本発明は、第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲内にあり、かつ第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0026】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異なる場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。この結果、推定された吸入圧力の飽和温度が修正され、これに伴い運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0027】
また請求項7記載の本発明は、配管長修正手段により修正された配管長が所定配管長から外れた場合、据付配管長が適切ではない旨を使用者に知らせる異常検出手段を備えたものである。
【0028】
このように、実際に据付られている配管長が適正配管長から逸脱され、システムの運転に不具合が生じやすい場合に使用者にその旨を知らせることができ、この結果システムの重大な損傷等を間逃れることができる。
【0029】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0030】
(実施の形態1)
図1は、本発明の実施の形態1を示す構成図であり、室外機1と室内機2が接続配管8により接続され、冷凍サイクルを形成している。
【0031】
図1において、室外機1にはインバータ駆動の容量可変形圧縮機3(以下単に圧縮機と称す)と室外熱交換器5と冷暖房切換用の四方弁4とが設けられる一方、室内機2には室内熱交換器7が設けられている。また、室外機1の液側主管には、例えばステッピングモータ等により弁開度を制御可能な電動膨張弁6が介装されている。
【0032】
上記構成の冷凍サイクルにおいて、冷房時、圧縮機3から吐出された冷媒は、四方弁4より室外熱交換器5へと流れて、ここで室外空気と熱交換して凝縮液化し、次に電動膨張弁6を通過することにより減圧されて冷媒は蒸発しやすい状態となり、接続配管8の液側配管を通って室内熱交換器7へと流れて室内空気と熱交換して蒸発した後、接続配管8のガス側配管を通って再び圧縮機3に吸入される。また、圧縮機3の回転数は、室内機2からの要求能力に応じて決定される(本発明と直接関係しないため、説明は省略する)。
【0033】
次に、圧縮機3の吸入圧力の飽和温度を推定する方法について説明する。
【0034】
まず第1の推定手段(マイクロコンピュータ)は室内熱交換器温度センサ11により得られた蒸発温度Teから圧損相当温度△Tを減ずることにより吸入圧力の飽和温度Twsを推定する。
【0035】
ここで冷凍サイクル内を流れる冷媒循環量は圧縮機3の回転数Rにほぼ比例することから、式(2)に示す圧縮機3の回転数Rと記憶手段(メモリ装置)に記憶されている接続配管8の長さH(例えば10m)から圧損相当温度△Tを推定する。
Tws=Te−△T・・・・・式(1)
△T=a×R×H+b・・・・式(2) a、bは定数
このように、圧損相当温度を高精度で推定することで、吸入圧力の飽和温度も高精度で推定できる。ここで圧損相当温度△Tの推定精度を更に高めるため、回転数Rの2乗等を使って推定してもよい。
【0036】
(実施の形態2)
また図2は本発明の実施の形態2であるマルチタイプの空気調和機を示す構成図である。マルチタイプの場合、第1の推定手段(マイクロコンピュータ)は記憶手段に記憶されている各配管長Hから平均配管長Hr[=(Ha+Hb)/2]を算出し、圧縮機3の平均回転数Rr(=R/2)を算出するとともに、前記平均配管長Hrと前記平均回転数Rrから式(2)より1室当たりの平均圧損相当温度△Trを算出する。
【0037】
そして各室内機2の蒸発温度Teから平均蒸発温度Ter[=(Tea+Teb)/2)]を算出し、前記平均蒸発温度Terと前記平均圧損相当温度△Trから式(1)より吸入圧力の飽和温度Twsを推定する。このようにマルチタイプの空気調和機においては、平均配管長を用いて平均圧損相当温度を推定するため、全体圧損相当温度を高精度に推定でき、その結果吸入圧力の飽和温度も高精度で推定できる。
【0038】
次に吸入冷媒過熱度を間接的に制御する吐出温度制御について説明する。まず圧縮機3の圧縮原理はポリトロープ圧縮であることから、ポリトロープ圧縮の温度近似式を用いて適正過熱度SHmでの吐出温度が計算できる。そこで目標吐出温度算出手段(マイクロコンピュータ)は室外熱交換器温度センサ10により検出された凝縮温度Tcと第1の推定手段により推定された圧縮機の吸入圧力の飽和温度Twsから式(3)の温度近似式を用いて圧縮機3の目標吐出温度Tdmを算出する。
Tdm=c×Tc+d×Tws+e・・・式(3)
c、d,eは定数
更に膨張弁制御手段(マイクロコンピュータ)は、吐出温度センサ9により検出された吐出温度Tdと前記目標吐出温度Tdmとの偏差DTに基づいて、電動膨張弁6の操作開度△Kを算出し、例えば60秒毎に電動膨張弁6を制御する。
DT=Td−Tdm ・・・式(4)
△K=f×DT ・・・式(5) fは定数
このように、高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し、フィードバック制御を行うため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度SHmに制御することができる。
【0039】
ここで目標吐出温度Tdmの算出に凝縮温度Tcを用いたが、更に精度を高めるため外気温等による補正を加えてもよい。
【0040】
また電動膨張弁6の操作開度△Kの算出方法に偏差DTを用いたが、PID制御やファジー制御といった制御方法を用いても同様の効果が得られる。
【0041】
次に実際に据付られている実配管長と記憶手段に記憶されている配管長が大きく異なる場合の冷凍サイクル挙動について説明する。
【0042】
図7は上記吐出温度制御を行った場合のモリエル線図を示している。
【0043】
図7において太線で書かれたサイクルは実際に据付られている実配管長と記憶手段に記憶されている配管長が等しい時の冷凍サイクルを示している。ここから実配管長Htが配管長Hよりも短くなると、実際の吸入圧力は推定された吸入圧力A点(図中の●)よりも高いB点(図中の●)となり、実際の吸入冷媒過熱度は適正過熱度SHmよりも大きくなる。
【0044】
この結果、運転効率が低下したり室内機から結露水が飛散するといった問題が生じやすくなる。逆に実配管長Htが配管長Hよりも長くなると、実際の吸入圧力は推定された吸入圧力A点(図中の●)よりも低いC点(図中の●)となり、実際の吸入冷媒過熱度は適正過熱度SHmよりも小さくなる。この結果、運転効率が低下したり液バックといった圧縮機の信頼性低下問題が生じやすくなる。
【0045】
そこで、実際に据付られている実配管長Htと記憶手段に記憶されている配管長Hが大きく異なる場合の吐出温度制御について図3の吐出温度制御の一例を示すフローチャートを用いて説明する。
【0046】
まずステップS1では配管長Hを初期値10mに設定するとともに、カウンタMとNを0にセットする。ステップS2では制御間隔(60秒)をカウントするタイマをリセットし、ステップS3でタイマをスタートさせる。
【0047】
ステップS4では蒸発温度Teと凝縮温度Tcと吐出温度Tdと圧縮機回転数Rと吸入温度センサ12により吸入温度Tsを読み込む。ステップS5では第1の推定手段により吸入圧力の飽和温度Twsを推定し、ステップS6では目標吐出温度算出手段により目標吐出温度Tdmを算出し、スッテプS7では第2の推定手段により式(6)を用いて吸入冷媒過熱度SHsを推定する。
SHs=Ts−Tws・・・式(6)
ステップS8では配管長修正手段により吐出温度Tdが目標吐出温度Tdmに対し±g ℃以内(例えば1℃以内)に入っているか判断し、Tdm±g ℃に入っていれば、ステップS9に進む。
【0048】
一方ステップS8にて吐出温度TdがTdm±g ℃以内に入っていなければ、ステップS27、S16、S17、S18と進み、吐出温度Tdが目標吐出温度Tdmになるよう膨張弁制御手段により膨張弁6の開度操作を行う。ステップS19ではタイマが60秒経過するのを待ってから、再びステップS2に戻りフィードバック制御を行う。
【0049】
またステップS9においては、吸入冷媒過熱度SHsが適正過熱度SHm+hK(例えば3K)を超えているか判断し、超えている場合は実配管長Htが配管長Hよりも短いとみなし、ステップS10にて短いと判断された回数をカウントするカウンタMをプラス1するのと同時に長いと判断された回数をカウントするカウンタNを0にセットする。
【0050】
ステップS11ではカウンタMがα以上かを判断し、カウンタMがα以上であればα回(例えば10回)連続で吸入冷媒過熱度SHsが適正過熱度SHm+hKを超えているため、本当に実配管長Htが配管長Hよりも短いと判断し、ステップS12にて配管長Hをi m(例えば5m)短く修正する。
【0051】
ここで吐出温度Tdは圧縮機3の熱容量の影響で、蒸発温度Teや凝縮温度Tcが安定していてもすぐには安定しないため、α回連続でという条件を入れることで、冷凍サイクルが不安定な時の誤判定を防止することができる。
【0052】
ステップS13、S14では修正された配管長Hを用いて吸入圧力の飽和温度Twsおよび目標吐出温度Tdmを再計算し修正する。ステップS15ではカウンタMをリセットした後、ステップS16、S17、S18へと進み、吐出温度Tdが修正された目標吐出温度Tdmになるよう膨張弁6の開度操作を行う。
【0053】
またステップS9にて吸入冷媒過熱度SHsが適正過熱度SHm+hKを超えていない場合は、ステップS20にて吸入冷媒過熱度SHsが適正過熱度SHm−h Kを下回っているか判断し、下回っている場合は実配管長Htが配管長Hよりも長いとみなし、同様にα回連続したらステップS23、S24、S25、S26にて配管長Hと吸入圧力の飽和温度Twsおよび目標吐出温度Tdmを修正し、カウンタNを0にセットする。
【0054】
一方ステップS20にて吸入冷媒過熱度SHsが適正過熱度SHm−h K以上であれば実配管長Htは配管長Hにほぼ近いとみなし、配管長Hは修正せずに制御を行う。
【0055】
上記のように配管長Hの修正を繰り返すことにより配管長Hは実配管長Htへと次第に近づいていく。その結果、図7に示す圧縮機3の吸入点は、B点(図中の●)またはC点(図中の●)からB’点 (図中の〇)またはC’点(図中の〇)へと近づいていき、施工条件が変化しても実際の吸入冷媒過熱度を適正過熱度SHm近傍へと修正することができる。
【0056】
また前記実施の形態においては吐出温度Tdが目標吐出温度Tdmに対し±g℃以内にある場合、吸入冷媒過熱度SHsを用いて配管長Hの修正を判断したが、室内機2にて検出された冷媒過熱度を用いても同様の効果が得られる。
【0057】
この場合は室内熱交換器7のガス側配管に設けられた室内ガス温度センサ13により検出されたガス温度Tgと蒸発温度Teから式(7)を用いて室内冷媒過熱度SHiを算出する。
SHi=Tg−Te・・・式(7)
そして配管長修正手段は吸入冷媒過熱度SHsの変わりに、室内冷媒過熱度SHiの値を用いて配管長Hの修正を判断する。なおフローチャートは図3とほぼ同じため、省略する。
【0058】
またマルチタイプの空気調和機の場合、ステップS12またはS23にて修正される各配管長はi/2となる{Hr=Hr±i=[(Ha±i/2)+(Hb±i/2)]/2}。またマルチタイプの空気調和機の場合は、全体冷媒循環量の制御と同時に各室内機への個別冷媒循環量も制御する必要がある。
【0059】
そこで、ステップS17にて各運転機の電動膨張弁6の操作開度△K(全運転機同じ)を算出した後、前記操作開度△Kを付加した全電動膨張弁6の合計開度[Σ(現在開度+△K)]を算出し、前記合計開度を保ちながら各室内冷媒過熱度SHin(n=a号機またはb号機)が同じ値になるよう各電動膨張弁6の開度を新開度に補正し(a号機の新開度+b号機の新開度=合計開度)、ステップS18にて各電動膨張弁6の開度を新開度に操作することで、全体冷媒循環量の制御と各室内機への個別冷媒循環量の制御を同時に行うことができる。この点については種々の制御が提案されて公知であるのでフローチャートからは省略する。
【0060】
また上述したように吸入圧力の飽和温度が高精度に推定できるため、吸入冷媒過熱度を直接制御する吸入過熱度制御も可能になる。図4は第2の推定手段により推定された吸入冷媒過熱度SHsが適正過熱度SHmになるように吸入過熱度制御を行った場合のモリエル線図を示している。
【0061】
図4において太線で書かれたサイクルは実際に据付られている実配管長と記憶手段に記憶されている配管長が等しい時の冷凍サイクルを示している。
【0062】
ここから実配管長Htが配管長Hよりも短くなると、実際の吸入圧力は推定された吸入圧力A点(図中の●)よりも高いD点(図中の●)となり、実際の吸入冷媒過熱度は適正過熱度SHmよりも小さくなる。この結果、運転効率が低下したり液バックといった圧縮機の信頼性低下問題が生じやすくなる。
【0063】
逆に実配管長Htが配管長Hよりも長くなると、実際の吸入圧力は推定された吸入圧力A点(図中の●)よりも低いE点(図中の●)となり、実際の吸入冷媒過熱度は適正過熱度SHmよりも大きくなる。この結果、運転効率が低下するといった問題が生じやすくなる。
【0064】
そこで、実際に据付られている実配管長Htと記憶手段に記憶されている配管長Hが大きく異なる場合の吸入過熱度制御について図5の吸入過熱度制御の一例を示すフローチャートを用いて説明する。ステップS1からS7については図3のフローチャートと同じため省略する。
【0065】
ステップS30では配管長修正手段により吸入冷媒過熱度SHsが適正過熱度SHmに対し±j K以内(例えば1K以内)に入っているか判断され、SHm±j Kに入っていれば、ステップS31に進む。一方ステップS30にて吸入冷媒過熱度SHsがSHm±j K以内に入っていなければ、ステップS27、S33、S34、S18と進み、吸入冷媒過熱度SHsが適正過熱度SHmになるよう膨張弁制御手段により膨張弁6の開度操作を行う。ステップS19ではタイマが60秒経過するのを待ってから、再びステップS2に戻りフィードバック制御を行う。
【0066】
またステップS31においては、吐出温度Tdが目標吐出温度Tdm−k ℃(例えば3℃)よりも低いか判断し、低い場合は実配管長Htが配管長Hよりも短いとみなし、ステップS10にて短いと判断された回数をカウントするカウンタMをプラス1するのと同時に、長いと判断された回数をカウントするカウンタNを0にセットする。
【0067】
ステップS11ではカウンタMがα以上かを判断し、カウンタMがα以上であればα回(例えば10回)連続で吸入冷媒過熱度SHsが適正過熱度SHm+hKを超えているため、本当に実配管長Htが配管長Hよりも短いと判断し、ステップS12にて配管長Hをi m(例えば5m)短く修正する。ステップS13、S32では修正された配管長Hを用いて吸入圧力の飽和温度Twsおよび吸入冷媒過熱度SHsを再計算し修正する。
【0068】
S15ではカウンタMをリセットした後、ステップS33、S34、S18へと進み、修正された吸入冷媒過熱度SHsが適正過熱度SHmになるよう膨張弁6の開度操作を行う。
【0069】
またステップS31にて吐出温度Tdが目標吐出温度Tdm−k Kよりも低くない場合は、ステップS35にて吐出温度Tdが目標吐出温度Tdm+k Kよりも高いか判断し、高い場合は実配管長Htが配管長Hよりも長いとみなし、同様にα回連続したらステップS23、S24、S36、S26にて配管長Hと吸入圧力の飽和温度Twsおよび吸入冷媒過熱度SHsを修正し、カウンタNを0にセットする。
【0070】
一方ステップS35にて吐出温度Tdが目標吐出温度Tdm+k K以下であれば実配管長Htは配管長Hにほぼ近いとみなし、配管長Hは修正せずに制御を行う。
【0071】
上記のように配管長Hの修正を繰り返すことにより配管長Hは実配管長Htへと次第に近づいていく。その結果、図4に示す圧縮機3の吸入点はD点(図中の●)またはE点(図中の●)からD’点 (図中の〇)またはE’点(図中の〇)へと近づいていき、施工条件が変化しても実際の吸入冷媒過熱度を適正過熱度SHm近傍へと修正することができる。
【0072】
また実際に据付られる配管長には、圧縮機3のオイルと冷媒の比率やオイルの戻り具合といった圧縮機の信頼性等を加味し最小配管長Hminおよび最大配管長Hmaxが規定される。
【0073】
一方上述したように配管長修正手段により実配管長Htが推測できる。そこで異常検出手段(マイクロコンピュータ)は、配管長修正手段により修正された配管長Hが、前記最小配管長Hminから最大配管長Hmaxまでの適正配管長内であるか判断し、前記適正配管長内から外れた場合に室内機2に設けられているLEDランプ20(図示せず)を用いて据付配管長が適切ではない旨を表示する。これにより据付配管長が適切ではない旨を施工者や使用者に知らせることができ、配管施工の修正を促すことができる。
【0074】
ここで前記LEDランプ20の他にブザーによる音やリモコン等に表示しても、据付配管長が適切ではない旨を知らせることができる。このように、実際に据付られている配管長が適正配管長から逸脱され、システムの運転に不具合が生じやすい場合に、配管施工の修正を促すことでシステムの重大な損傷等を間逃れることができる。
【0075】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0076】
請求項1に記載の本発明は、容量可変形圧縮機と室外熱交換器と弁開度を制御可能な電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する室内機と、前記室外機と前記室内機を接続する接続配管を有する空気調和機において、前記接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記第1の温度検出手段により検出された蒸発温度と前記記憶手段に記憶されている配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えたものである。
【0077】
このように、蒸発温度に圧損相当温度を考慮することで運転条件が変化しても圧縮機の吸入圧力の飽和温度を高精度に推定することができ、その高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し吐出温度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0078】
これにより運転効率が良くなり省エネ運転が可能となるとともに、蒸発器が乾き室内機から結露水が飛散するといった問題や液バックといった圧縮機の信頼性低下問題を回避することができる。
【0079】
また、請求項2記載の本発明は、容量可変形圧縮機と室外熱交換器と弁開度を制御可能な複数の電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する複数の室内機とを接続配管により並列に接続したマルチタイプの空気調和機において、前記各室内機への各接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記各室内機の前記第1の温度検出手段により検出された各蒸発温度と前記記憶手段に記憶されている各接続配管の配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えたものである。
【0080】
このように、マルチタイプの空気調和機においても、蒸発温度に圧損相当温度を考慮することで運転条件が変化しても圧縮機への吸入圧力の飽和温度を高精度に推定することができ、高精度に推定された吸入圧力の飽和温度を使って目標吐出温度を算出し吐出温度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0081】
これにより運転効率が良くなり省エネ運転が可能となるとともに、蒸発器が乾き室内機から結露水が飛散するといった問題や液バックといった圧縮機の信頼性低下問題を回避することができる。
【0082】
また請求項3記載の本発明は、圧縮機の吸入温度を検出する第4の温度検出手段と、前記第4の温度検出手段により検出された吸入温度と第1の推定手段で推定された吸入圧力の飽和温度から前記圧縮機の吸入冷媒過熱度を推定する第2の推定手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0083】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異なる場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。この結果、推定された吸入圧力の飽和温度が修正され、これに伴い目標吐出温度も修正されるため、運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0084】
この結果省エネ運転が可能となり、蒸発器が乾き室内機から結露水が飛散するといった問題や液バックといった圧縮機の信頼性低下問題を回避することができる。
【0085】
また自動的に配管長を推定することで、施工者が電気回路上に設けたスイッチ等で、手動で配管長を設定する必要がなくなり、スイッチ等が不要となることでコストダウンが可能となり、更に配管長の設定ミスや設定忘れによる室内機から結露水が飛散するといった問題や液バックといった圧縮機の信頼性低下問題も回避することができる。
【0086】
更に吸入圧力を直接検知する圧力センサの変わりにコストの安い温度センサで済むため、製品のコストを下げることができる。
【0087】
また請求項4記載の本発明は、室内熱交換器のガス側配管のガス温度を検出する第5の温度検出手段と、前記第5の温度検出手段により検出されたガス温度と第1の温度検出手段により検出された蒸発温度に基づき室内冷媒過熱度を検出する室内冷媒過熱度検出手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記室内冷媒過熱度検出手段により検出された室内冷媒過熱度が所定範囲から外れた場合に予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0088】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異る場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。
【0089】
この結果目標吐出温度が修正され、室内冷媒過熱度も修正されるため、運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0090】
また請求項5記載の本発明は、第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定値となるよう電動膨張弁の開度を制御する膨張弁制御手段を備えたものである。
【0091】
このように高精度に推定された吸入圧力の飽和温度を使って吸入冷媒過熱度を制御するため、運転条件が変化しても高精度に実際の吸入冷媒過熱度を適正過熱度に制御することができる。
【0092】
これにより運転効率が良くなり省エネ運転が可能となるとともに、液バックといった圧縮機の信頼性低下問題を回避することができる。
【0093】
また請求項6記載の本発明は、第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲内にあり、かつ第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えたものである。
【0094】
このように、予め記憶されている配管長が実際に据付られている配管長と大きく異なる場合でも自動的に配管長を修正するため、修正を行う度に実際の配管長に近づくことになる。この結果、推定された吸入圧力の飽和温度が修正され、これに伴い運転条件や施工条件が変化しても実際の吸入冷媒過熱度は適正過熱度近傍へと修正される。
【0095】
また請求項7記載の本発明は、配管長修正手段により修正された配管長が所定配管長から外れた場合、据付配管長が適切ではない旨を使用者に知らせる異常検出手段を備えたものである。
【0096】
このように、実際に据付られている配管長が適正配管長から逸脱され、システムの運転に不具合が生じやすい場合に使用者にその旨を知らせることができ、この結果システムの重大な損傷等を間逃れることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における空気調和機を示す構成図
【図2】本発明の実施の形態2における空気調和機を示す構成図
【図3】同吐出温度制御の一例を示すフローチャート
【図4】同吸入過熱度制御時の冷凍サイクル挙動を示すモリエル線図
【図5】同吸入過熱度制御の一例を示すフローチャート
【図6】同冷媒循環量と配管長の圧損関係を示すグラフ
【図7】吐出温度制御時の冷凍サイクル挙動を示すモリエル線図
【符号の説明】
1 室外機
2 室内機
3 圧縮機
5 室外熱交換器
6 電動膨張弁
7 室内熱交換器
8 接続配管
9 吐出温度センサ
10 室外熱交換器温度センサ
11 室内熱交換器温度センサ
12 吸入温度センサ
13 室内ガス温度センサ
Ha、Hb 配管長
Tea、Teb 蒸発温度

Claims (7)

  1. 容量可変形圧縮機と室外熱交換器と弁開度を制御可能な電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する室内機と、前記室外機と前記室内機を接続する接続配管を有する空気調和機において、前記接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記第1の温度検出手段により検出された蒸発温度と前記記憶手段に記憶されている配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えた空気調和機。
  2. 容量可変形圧縮機と室外熱交換器と弁開度を制御可能な複数の電動膨張弁とを有する室外機と、室内熱交換器と前記室内熱交換器の温度を検出する第1の温度検出手段とを有する複数の室内機とを接続配管により並列に接続したマルチタイプの空気調和機において、前記各室内機への各接続配管の配管長を予め記憶する記憶手段と、冷房運転時に前記各室内機の前記第1の温度検出手段により検出された各蒸発温度と前記記憶手段に記憶されている各接続配管の配管長と前記圧縮機の回転数とに基づいて前記圧縮機の吸入圧力の飽和温度を推定する第1の推定手段と、室外熱交換器の温度を検出する第2の温度検出手段と、圧縮機の吐出温度を検出する第3の温度検出手段と、前記第2の温度検出手段により検出された凝縮温度と前記第1の推定手段により推定された吸入圧力の飽和温度に基づいて圧縮機の目標吐出温度を算出する目標吐出温度算出手段と、前記電動膨張弁の開度を制御することにより、前記目標吐出温度を目指して、前記第3の温度検出手段により検出される吐出温度を変更させる膨張弁制御手段とを備えた空気調和機。
  3. 圧縮機の吸入温度を検出する第4の温度検出手段と、前記第4の温度検出手段により検出された吸入温度と第1の推定手段で推定された吸入圧力の飽和温度から前記圧縮機の吸入冷媒過熱度を推定する第2の推定手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えた請求項1または2記載の空気調和機。
  4. 室内熱交換器のガス側配管のガス温度を検出する第5の温度検出手段と、前記第5の温度検出手段により検出されたガス温度と第1の温度検出手段により検出された蒸発温度に基づき室内冷媒過熱度を検出する室内冷媒過熱度検出手段と、第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲内にあり、かつ前記室内冷媒過熱度検出手段により検出された室内冷媒過熱度が所定範囲から外れた場合に予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えた請求項1または2記載の空気調和機。
  5. 第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定値となるよう電動膨張弁の開度を制御する膨張弁制御手段を備えたことを特徴とする請求項1または2記載の空気調和機。
  6. 第2の推定手段により推定された圧縮機の吸入冷媒過熱度が所定範囲内にあり、かつ第3の温度検出手段により検出された吐出温度が目標吐出温度算出手段により算出された目標吐出温度に対し所定範囲から外れた場合に、予め記憶手段に記憶されている配管長を修正する配管長修正手段を備えた請求項5記載の空気調和機。
  7. 配管長修正手段により修正された配管長が所定配管長から外れた場合、据付配管長が適切ではない旨を使用者に知らせる異常検出手段を備えたことを特徴とする請求項3、4及び6いずれかに記載の空気調和機。
JP2002096519A 2002-03-29 2002-03-29 空気調和機 Expired - Fee Related JP3791443B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096519A JP3791443B2 (ja) 2002-03-29 2002-03-29 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096519A JP3791443B2 (ja) 2002-03-29 2002-03-29 空気調和機

Publications (2)

Publication Number Publication Date
JP2003294294A JP2003294294A (ja) 2003-10-15
JP3791443B2 true JP3791443B2 (ja) 2006-06-28

Family

ID=29239535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096519A Expired - Fee Related JP3791443B2 (ja) 2002-03-29 2002-03-29 空気調和機

Country Status (1)

Country Link
JP (1) JP3791443B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397168A (zh) * 2020-03-24 2020-07-10 珠海格力电器股份有限公司 空调系统的控制方法、装置、控制设备、介质和空调系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835341B2 (en) 2013-01-28 2017-12-05 Daikin Industries, Ltd. Air conditioner
CN114110994B (zh) * 2020-08-25 2023-04-11 广东美的制冷设备有限公司 基于配管长度的空调系统节流控制方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397168A (zh) * 2020-03-24 2020-07-10 珠海格力电器股份有限公司 空调系统的控制方法、装置、控制设备、介质和空调系统

Also Published As

Publication number Publication date
JP2003294294A (ja) 2003-10-15

Similar Documents

Publication Publication Date Title
WO2020115935A1 (ja) 空気調和システム
TW571060B (en) Air conditioner
JP3849467B2 (ja) 空気調和機
AU2007232984B2 (en) Outdoor unit
US20210231332A1 (en) Air-conditioning apparatus and method of determining operation condition
JP2007192422A (ja) 多室形空気調和機
JP2009058222A (ja) 室外機
JP3885300B2 (ja) 空気調和装置
KR20180093342A (ko) 공기조화기의 제어방법
KR101203995B1 (ko) 공기조화기 및 그 제상운전방법
JP3791444B2 (ja) 空気調和機
JP3849468B2 (ja) 空気調和機
JP7067864B2 (ja) 空気調和機
JP2013137165A (ja) 冷凍装置
JP3791443B2 (ja) 空気調和機
KR20100036786A (ko) 공기조화기 및 그 운전 방법
JP3290251B2 (ja) 空気調和機
JP2004225929A (ja) 空気調和装置及び空気調和装置の制御方法
JP5989534B2 (ja) 冷凍システム装置および空気調和機
JP4298388B2 (ja) 空気調和装置及び空気調和装置の制御方法
KR20060122504A (ko) 공기조화기의 실내열교환기 결빙방지제어방법
KR100565995B1 (ko) 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법
JPH1038398A (ja) 電動式膨脹弁の制御装置
JP2663792B2 (ja) 空気調和装置の運転制御装置
KR20100064836A (ko) 공기조화기 및 그 운전 방법

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R151 Written notification of patent or utility model registration

Ref document number: 3791443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees