JP3791326B2 - Capacitor measurement method - Google Patents

Capacitor measurement method Download PDF

Info

Publication number
JP3791326B2
JP3791326B2 JP2000344945A JP2000344945A JP3791326B2 JP 3791326 B2 JP3791326 B2 JP 3791326B2 JP 2000344945 A JP2000344945 A JP 2000344945A JP 2000344945 A JP2000344945 A JP 2000344945A JP 3791326 B2 JP3791326 B2 JP 3791326B2
Authority
JP
Japan
Prior art keywords
capacitor
power supply
ceramic capacitor
current
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000344945A
Other languages
Japanese (ja)
Other versions
JP2002151368A (en
Inventor
慶雄 川口
義一 高木
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000344945A priority Critical patent/JP3791326B2/en
Publication of JP2002151368A publication Critical patent/JP2002151368A/en
Application granted granted Critical
Publication of JP3791326B2 publication Critical patent/JP3791326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • G01R31/59Testing of lines, cables or conductors while the cable continuously passes the testing apparatus, e.g. during manufacture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Ceramic Capacitors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンデンサ測定方法に関する。
【0002】
【従来の技術】
従来より、セラミックコンデンサの信頼性を確保するために、高温絶縁抵抗選別やバーンイン(エージング)が行われている。あるいは、耐電圧測定後、分極した高誘電率材料のセラミックコンデンサの分極を解放する(非分極状態にする)ために、熱処理いわゆる熱戻し処理が行われている。
【0003】
例えば、特開平11−97299号公報に記載されている従来のセラミックコンデンサのエージング方法は、セラミックコンデンサの安定化対策として、加熱下で電圧を印加するエージング処理を行う。従って、セラミックコンデンサに電圧を印加する保持治具とセラミックコンデンサを加熱するためのヒータ等を、断熱材等で覆われた加熱炉内に設け、この加熱炉内の保持治具にセラミックコンデンサをセットするとともに、ヒータにてセラミックコンデンサを含めて加熱炉内全体を加熱していた。
【0004】
【発明が解決しようとする課題】
従って、従来の高温絶縁抵抗選別やバーンインは、セラミックコンデンサを加熱するために、加熱炉を用いる必要があり、加熱や断熱のために装置が大型化するという問題があった。
【0005】
そこで、本発明の目的は、高温絶縁抵抗選別装置やバーンイン装置等を小型化することができるコンデンサ測定方法を提供することにある。
【0008】
【課題を解決するための手段および作用】
前記目的を達成するため、本発明に係るコンデンサの測定方法は、コンデンサに交流カット手段を介して直流電源を電気的に接続するとともに、直流カット手段を介して交流電源を電気的に接続し、直流電源と交流電源がコンデンサに対して並列接続されている回路を備えた装置を用いて、コンデンサに交流電流を印加し、該コンデンサを自己発熱させて所定温度にするとともに、コンデンサに直流電流を印加しながら該直流電流の漏れ電流を測定してコンデンサの絶縁抵抗値を求めることを特徴とする。あるいは、コンデンサに交流電流を印加し、該コンデンサを自己発熱させて所定温度にするとともに、コンデンサに直流電流を印加しながら一定時間放置した後、該直流電流の漏れ電流を測定してコンデンサのバーンインスクリーニングを行う。
【0009】
コンデンサに交流電流を印加すると、コンデンサは誘電損失や電極抵抗によって自己発熱する。この自己発熱を利用して、コンデンサを所定の温度に上昇させ、高温状態のコンデンサの漏れ電流を測定したり、絶縁抵抗値を求めたりする。つまり、コンデンサのみが加熱され、高温絶縁抵抗選別装置やバーンイン装置が簡略化、小型化する。
【0010】
【発明の実施の形態】
以下、本発明に係るコンデンサ測定方法の実施の形態について添付の図面を参照して説明する。
【0011】
[第1実施形態、図1]
第1実施形態は、セラミックコンデンサの製造方法、特に、熱戻し処理方法について説明する。
【0012】
熱戻し処理は、耐電圧測定後、セラミックコンデンサを加熱してキュリー点以上にし、分極した高誘電率材料のセラミックコンデンサの分極を解放する(非分極状態にする)処理である。コンデンサの耐電圧測定時に印加される高電圧(直流電圧)によって、高誘電率のセラミック材料が分極してしまうからである。
【0013】
図1は、熱戻し処理のための電気回路を示す。熱戻し処理されるセラミックコンデンサCは、保持端子2,3にて挟着される。これら保持端子2,3は、交流電源1に電気的に接続されている。本第1実施形態の場合、交流電源1にて、周波数が100KHzの高周波電流をセラミックコンデンサCに印加する。これにより、セラミックコンデンサCを誘電損失によって自己発熱させて、セラミックコンデンサCを150℃程度に加熱する。この後、高周波電流の印加を停止し、セラミックコンデンサCを自然冷却させる。これにより、耐電圧測定時に分極したセラミックコンデンサCを非分極状態にする熱戻し処理が行われる。この結果、セラミックコンデンサCのみが加熱され、熱戻し処理装置を簡略化、小型化することができる。
【0014】
[第2実施形態、図2]
第2実施形態は、セラミックコンデンサの高温絶縁抵抗の測定方法について説明する。
【0015】
高温絶縁抵抗測定は、コンデンサに温度と電圧を印加し、将来的に絶縁抵抗不良品となる欠陥を内在したコンデンサ製品の欠陥部分を、温度及び電圧加速により早期に絶縁抵抗不良として顕在化させるために行う測定である。
【0016】
図2は、セラミックコンデンサCの高温絶縁抵抗測定のための電気回路を示す。絶縁抵抗が測定されるセラミックコンデンサCは、保持端子2,3にて挟着される。これら保持端子2,3は、交流電源1に電気的に接続されている。直流カット用デカップリングコンデンサCdは、交流電源1側に直流電圧が印加されないようにするためのものである。交流カット用インダクタ4は、直流電源6側に交流電流が流れないようにするためのものである。直流電源6は、セラミックコンデンサCに直流電圧(本第2実施形態の場合、64V)を印加するためのものである。さらに、漏れ電流検出用電流計5は、セラミックコンデンサCの絶縁抵抗の劣化を検出するために、セラミックコンデンサCに印加される直流電源6の電流値を監視するためのものである。本第2実施形態の場合、交流電源1にて、周波数が100KHzで電流値が2Armsの高周波電流を、静電容量が0.1μFの積層型セラミックコンデンサCに印加する。
【0017】
これにより、セラミックコンデンサCを誘電損失によって自己発熱させて、セラミックコンデンサCを85〜150℃程度(本第2実施形態の場合は85℃)に加熱する。この状態で、電流計5にて直流電源6の直流電流値、すなわち、セラミックコンデンサCを流れる漏れ電流値を測定する。この漏れ電流値と直流電源6の直流電圧値(64V)とからセラミックコンデンサCの(85℃における)絶縁抵抗値を算出して求めることができる。
【0018】
この結果、ヒータ等の外部の加熱装置や断熱材を用いることなく、セラミックコンデンサCを所定の温度にすることができ、高温絶縁抵抗選別装置を簡略化、小型化することができる。具体的には、装置の大きさを従来の約2/3にすることができる。
【0019】
[第3実施形態]
第3実施形態は、セラミックコンデンサのバーンインスクリーニングについて説明する。バーンインスクリーニングも、前記第2実施形態の高温絶縁抵抗測定と同様に、コンデンサに温度と電圧を印加し、将来的に絶縁抵抗不良品となる欠陥を内在したコンデンサ製品の欠陥部分を、温度及び電圧加速により早期に絶縁抵抗不良として顕在化させるために行う方法である。バーンインスクリーニングのための電気回路は、前記第2実施形態の図2と同様の回路であるので、その詳細な説明は省略する。
【0020】
交流電源1にて、周波数が100KHzで電流値が2Armsの高周波電流を、静電容量が0.1μFの積層型セラミックコンデンサCに印加する。これにより、セラミックコンデンサCを誘電損失によって自己発熱させて、85〜150℃程度(本第3実施形態の場合は85℃)に加熱する。この状態で、直流電源6にてセラミックコンデンサCに直流電圧を印加し一定時間放置した後、交流電源1からの高周波電流の印加と直流電源6からの電圧印加を停止し、セラミックコンデンサCを自然冷却させる。セラミックコンデンサCの温度が常温まで下がると、電流計5にて直流電源6の直流電流、すなわちセラミックコンデンサCを流れる漏れ電流を測定する。
【0021】
この漏れ電流と直流電源6の直流電圧値とからセラミックコンデンサCの絶縁抵抗値を求め、バーンインスクリーニング前の絶縁抵抗値と比較し、セラミックコンデンサCの絶縁抵抗の劣化の程度を検出して良品を選別する。なお、漏れ電流の測定は、セラミックコンデンサCを高温状態にしたままで行ってもよい。こうして、ヒータ等の外部の加熱装置や断熱材を用いることなく、セラミックコンデンサCを所定の温度にすることができ、バーンインスクリーニング装置を簡略化、小型化することができる。
【0022】
[他の実施形態]
なお、本発明に係るコンデンサ測定方法は、前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。特に、コンデンサを自己発熱させる目的で同様な交流電源を持つ種々の電気回路を選択することができる。
【0023】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、コンデンサに交流電流を印加したときの自己発熱を利用し、コンデンサを所定温度にするようにしたので高温絶縁抵抗選別装置やバーンイン装置などを簡略化、小型化することができる。
【図面の簡単な説明】
【図1】本発明に係るコンデンサの製造方法の一実施形態を示す電気回路図。
【図2】本発明に係るコンデンサの測定方法の一実施形態を示す電気回路図。
【符号の説明】
1…交流電源
2,3…保持端子
4…交流カット用インダクタ
5…電流計
6…直流電源
C…セラミックコンデンサ
Cd…直流カット用デカップリングコンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of measuring capacitor.
[0002]
[Prior art]
Conventionally, high-temperature insulation resistance selection and burn-in (aging) have been performed to ensure the reliability of ceramic capacitors. Alternatively, after the withstand voltage measurement, a heat treatment so-called heat return treatment is performed in order to release the polarization of the ceramic capacitor made of the polarized high dielectric constant material (to bring it into a non-polarized state).
[0003]
For example, a conventional ceramic capacitor aging method described in Japanese Patent Application Laid-Open No. 11-97299 performs an aging process in which a voltage is applied under heating as a countermeasure for stabilizing the ceramic capacitor. Therefore, a holding jig for applying a voltage to the ceramic capacitor and a heater for heating the ceramic capacitor are provided in a heating furnace covered with a heat insulating material, and the ceramic capacitor is set in the holding jig in the heating furnace. In addition, the entire interior of the heating furnace including the ceramic capacitor was heated by the heater.
[0004]
[Problems to be solved by the invention]
Therefore, conventional high-temperature insulation resistance sorting and burn-in require the use of a heating furnace in order to heat the ceramic capacitor, and there is a problem that the apparatus becomes large for heating and heat insulation.
[0005]
An object of the present invention is to provide a measuring method of a capacitor can be miniaturized high temperature insulation resistance selection apparatus and the burn-in apparatus, or the like.
[0008]
[Means and Actions for Solving the Problems]
In order to achieve the above object, the method for measuring a capacitor according to the present invention electrically connects a DC power supply to the capacitor via AC cut means, and electrically connects an AC power supply via DC cut means, Using a device having a circuit in which a DC power supply and an AC power supply are connected in parallel to a capacitor, an AC current is applied to the capacitor, the capacitor is self-heated to a predetermined temperature, and a DC current is applied to the capacitor. It is characterized by measuring the leakage current of the direct current while applying it to determine the insulation resistance value of the capacitor. Alternatively, an alternating current is applied to the capacitor to cause the capacitor to self-heat to a predetermined temperature, and after being left for a certain period of time while applying a direct current to the capacitor, the leakage current of the direct current is measured to determine the burn-in of the capacitor. Perform screening.
[0009]
When an alternating current is applied to the capacitor, the capacitor self-heats due to dielectric loss and electrode resistance. Using this self-heating, the capacitor is raised to a predetermined temperature, the leakage current of the capacitor in a high temperature state is measured, and the insulation resistance value is obtained. That is, only the capacitor is heated, and the high-temperature insulation resistance sorting device and the burn-in device are simplified and miniaturized.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
It will be described below with reference to the embodiment the accompanying drawings exemplary method of measuring capacitor according to the present invention.
[0011]
[First Embodiment, FIG. 1]
1st Embodiment demonstrates the manufacturing method of a ceramic capacitor, especially the heat return processing method.
[0012]
The heat return process is a process of heating the ceramic capacitor to a temperature above the Curie point after measuring the withstand voltage and releasing the polarization of the ceramic capacitor made of a polarized high dielectric constant material (to make it unpolarized). This is because a high dielectric constant ceramic material is polarized by a high voltage (DC voltage) applied when measuring the withstand voltage of the capacitor.
[0013]
FIG. 1 shows an electrical circuit for the heat return process. The ceramic capacitor C subjected to the heat return process is sandwiched between the holding terminals 2 and 3. These holding terminals 2 and 3 are electrically connected to the AC power source 1. In the case of the first embodiment, the AC power supply 1 applies a high-frequency current having a frequency of 100 KHz to the ceramic capacitor C. As a result, the ceramic capacitor C self-heats due to dielectric loss, and the ceramic capacitor C is heated to about 150 ° C. Thereafter, the application of the high frequency current is stopped, and the ceramic capacitor C is naturally cooled. Thereby, the heat return process which makes the ceramic capacitor C polarized at the time of withstand voltage measurement into a non-polarization state is performed. As a result, only the ceramic capacitor C is heated, and the heat return processing device can be simplified and miniaturized.
[0014]
[Second Embodiment, FIG. 2]
2nd Embodiment demonstrates the measuring method of the high temperature insulation resistance of a ceramic capacitor.
[0015]
In high-temperature insulation resistance measurement, the temperature and voltage are applied to the capacitor, and the defective part of the capacitor product that has a defect that will become a defective insulation resistance in the future is quickly revealed as an insulation resistance defect by accelerating the temperature and voltage. It is a measurement to be performed.
[0016]
FIG. 2 shows an electric circuit for measuring the high temperature insulation resistance of the ceramic capacitor C. The ceramic capacitor C whose insulation resistance is measured is sandwiched between the holding terminals 2 and 3. These holding terminals 2 and 3 are electrically connected to the AC power source 1. The DC cut decoupling capacitor Cd is for preventing a DC voltage from being applied to the AC power supply 1 side. The AC cut inductor 4 is for preventing an AC current from flowing to the DC power supply 6 side. The DC power source 6 is for applying a DC voltage (64 V in the case of the second embodiment) to the ceramic capacitor C. Further, the leak current detection ammeter 5 is for monitoring the current value of the DC power supply 6 applied to the ceramic capacitor C in order to detect the deterioration of the insulation resistance of the ceramic capacitor C. In the case of the second embodiment, the AC power supply 1 applies a high frequency current having a frequency of 100 KHz and a current value of 2 Arms to the multilayer ceramic capacitor C having a capacitance of 0.1 μF.
[0017]
Thereby, the ceramic capacitor C is self-heated by dielectric loss, and the ceramic capacitor C is heated to about 85 to 150 ° C. (85 ° C. in the case of the second embodiment). In this state, the ammeter 5 measures the direct current value of the direct current power source 6, that is, the leakage current value flowing through the ceramic capacitor C. The insulation resistance value (at 85 ° C.) of the ceramic capacitor C can be calculated from the leakage current value and the DC voltage value (64 V) of the DC power source 6.
[0018]
As a result, the ceramic capacitor C can be brought to a predetermined temperature without using an external heating device such as a heater or a heat insulating material, and the high-temperature insulation resistance selection device can be simplified and miniaturized. Specifically, the size of the apparatus can be reduced to about 2/3 of the conventional size.
[0019]
[Third Embodiment]
In the third embodiment, burn-in screening of ceramic capacitors will be described. In the burn-in screening, similarly to the high-temperature insulation resistance measurement of the second embodiment, the temperature and voltage are applied to the capacitor, and the defective portion of the capacitor product that has a defect that will become a defective insulation resistance in the future is detected by the temperature and voltage. This is a method that is performed in order to make the insulation resistance defect manifest as early as possible by acceleration. The electric circuit for burn-in screening is a circuit similar to that of FIG. 2 of the second embodiment, and thus detailed description thereof is omitted.
[0020]
The AC power supply 1 applies a high frequency current having a frequency of 100 KHz and a current value of 2 Arms to the multilayer ceramic capacitor C having a capacitance of 0.1 μF. As a result, the ceramic capacitor C is self-heated by dielectric loss and heated to about 85 to 150 ° C. (85 ° C. in the case of the third embodiment). In this state, a DC voltage is applied to the ceramic capacitor C by the DC power supply 6 and left for a certain period of time. Then, the application of the high frequency current from the AC power supply 1 and the voltage application from the DC power supply 6 are stopped, and the ceramic capacitor C is Allow to cool. When the temperature of the ceramic capacitor C drops to room temperature, the ammeter 5 measures the direct current of the direct current power source 6, that is, the leakage current flowing through the ceramic capacitor C.
[0021]
The insulation resistance value of the ceramic capacitor C is obtained from the leakage current and the DC voltage value of the DC power source 6, and compared with the insulation resistance value before the burn-in screening, and the degree of deterioration of the insulation resistance of the ceramic capacitor C is detected. Sort out. The leakage current may be measured while the ceramic capacitor C is kept at a high temperature. Thus, the ceramic capacitor C can be brought to a predetermined temperature without using an external heating device such as a heater or a heat insulating material, and the burn-in screening device can be simplified and miniaturized.
[0022]
[Other Embodiments]
In addition, the measuring method of the capacitor | condenser which concerns on this invention is not limited to the said embodiment, It can change variously within the range of the summary. In particular, various electric circuits having a similar AC power supply can be selected for the purpose of self-heating of the capacitor.
[0023]
【The invention's effect】
As is clear from the above description, according to the present invention, since the capacitor is brought to a predetermined temperature by utilizing self-heating when an alternating current is applied to the capacitor , the high-temperature insulation resistance selecting device and the burn-in device are used. Etc. can be simplified and downsized.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing an embodiment of a capacitor manufacturing method according to the present invention.
FIG. 2 is an electric circuit diagram showing one embodiment of a capacitor measuring method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power supply 2, 3 ... Holding terminal 4 ... AC cutting inductor 5 ... Ammeter 6 ... DC power supply C ... Ceramic capacitor Cd ... DC coupling decoupling capacitor

Claims (2)

コンデンサに交流カット手段を介して直流電源を電気的に接続するとともに、直流カット手段を介して交流電源を電気的に接続し、前記直流電源と前記交流電源が前記コンデンサに対して並列接続されている回路を備えた装置を用いて、
前記コンデンサに交流電流を印加し、該コンデンサを自己発熱させて所定温度にするとともに、前記コンデンサに直流電流を印加しながら該直流電流の漏れ電流を測定してコンデンサの絶縁抵抗値を求めることを特徴とするコンデンサの測定方法。
A DC power supply is electrically connected to the capacitor via the AC cut means, and an AC power supply is electrically connected via the DC cut means, and the DC power supply and the AC power supply are connected in parallel to the capacitor. Using a device with a circuit that
An alternating current is applied to the capacitor, with the capacitor by self-heating to a predetermined temperature, the determination of the insulation resistance of the capacitor by measuring the leakage current of the DC current while applying a DC current to said capacitor Characteristic capacitor measurement method.
コンデンサに交流カット手段を介して直流電源を電気的に接続するとともに、直流カット手段を介して交流電源を電気的に接続し、前記直流電源と前記交流電源が前記コンデンサに対して並列接続されている回路を備えた装置を用いて、
前記コンデンサに交流電流を印加し、該コンデンサを自己発熱させて所定温度にするとともに、前記コンデンサに直流電流を印加しながら一定時間放置した後、該直流電流の漏れ電流を測定してコンデンサのバーンインスクリーニングを行うことを特徴とするコンデンサの測定方法。
A DC power supply is electrically connected to the capacitor via the AC cut means, and an AC power supply is electrically connected via the DC cut means, and the DC power supply and the AC power supply are connected in parallel to the capacitor. Using a device with a circuit that
An alternating current is applied to the capacitor, with the capacitor by self-heating to a predetermined temperature, allowed to stand a certain time while applying a DC current to said capacitor, burn capacitor by measuring the leakage current of the DC current A method for measuring a capacitor, comprising performing screening.
JP2000344945A 2000-11-13 2000-11-13 Capacitor measurement method Expired - Lifetime JP3791326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344945A JP3791326B2 (en) 2000-11-13 2000-11-13 Capacitor measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344945A JP3791326B2 (en) 2000-11-13 2000-11-13 Capacitor measurement method

Publications (2)

Publication Number Publication Date
JP2002151368A JP2002151368A (en) 2002-05-24
JP3791326B2 true JP3791326B2 (en) 2006-06-28

Family

ID=18819065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344945A Expired - Lifetime JP3791326B2 (en) 2000-11-13 2000-11-13 Capacitor measurement method

Country Status (1)

Country Link
JP (1) JP3791326B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853316B2 (en) * 2007-02-13 2012-01-11 Tdk株式会社 Manufacturing method of electronic parts
CN108802496A (en) * 2018-06-11 2018-11-13 泰州隆基乐叶光伏科技有限公司 A kind of test method of photovoltaic module glued membrane volume resistivity
JP7515900B2 (en) 2022-02-28 2024-07-16 株式会社 東京ウエルズ Electronic Component Test Equipment

Also Published As

Publication number Publication date
JP2002151368A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
TW202028758A (en) Capacitor inspection device and capacitor inspection method that includes a variable voltage source, a current detection section, and an inspection section
JP3603640B2 (en) Screening method of multilayer ceramic capacitor
JP3791326B2 (en) Capacitor measurement method
JP4082314B2 (en) Electronic component test method and test apparatus
JP3675678B2 (en) Probe contact state detection method and probe contact state detection device
JPH1123630A (en) Apparatus for measuring resistance of electronic device
JP2001194346A (en) Nondestructive test apparatus of component,
KR101670097B1 (en) System and method for testing an electrostatic chuck
JP7416439B2 (en) Electronic component testing equipment
JPH08227826A (en) Method for screening laminated ceramic capacitor
US4659983A (en) Method and apparatus for detecting a shorted SCR
JP3760373B2 (en) Screening method for ceramic electronic components
JP2004191282A (en) Defect inspecting method and defect inspection device
JP3620636B2 (en) Selection method of multilayer ceramic capacitors
JPH11142449A (en) Resistance measuring device for electronic part
JP2003100573A (en) Method for releasing polarization of capacitor and method for measuring and selecting capacitor
JPS5819492Y2 (en) Piezoelectric sensor tester
JP4013595B2 (en) Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement
JPH09205037A (en) Screening method for multilayered ceramic capacitor
JP2004281709A (en) Method for inspection and for packing of stacked capacitor
JP4244791B2 (en) Capacitor pass / fail judgment method and pass / fail judgment device
JP2000348990A (en) Inspection device for electrolytic capacitor and inspection method using the same
CN117870912A (en) Method and device for measuring maximum current of PTC thermosensitive element
JPH0635186Y2 (en) Electronic equipment pressure resistance test equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3791326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term