JP3791311B2 - 電解水生成装置 - Google Patents

電解水生成装置 Download PDF

Info

Publication number
JP3791311B2
JP3791311B2 JP2000244980A JP2000244980A JP3791311B2 JP 3791311 B2 JP3791311 B2 JP 3791311B2 JP 2000244980 A JP2000244980 A JP 2000244980A JP 2000244980 A JP2000244980 A JP 2000244980A JP 3791311 B2 JP3791311 B2 JP 3791311B2
Authority
JP
Japan
Prior art keywords
water
cathode
hydrogen gas
concentration
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000244980A
Other languages
English (en)
Other versions
JP2001070944A (ja
Inventor
弘之 野口
康弘 才原
憲次 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000244980A priority Critical patent/JP3791311B2/ja
Publication of JP2001070944A publication Critical patent/JP2001070944A/ja
Application granted granted Critical
Publication of JP3791311B2 publication Critical patent/JP3791311B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は連続して陰極水と陽極水、即ち、電解水を生成する電解水生成装置に関するものであり、更に詳しくは、還元側の電位を有する陰極水として、活性酸素等の存在下においても還元型物質の酸化を抑制し、還元状態を維持することができ、あるいは酸化型物質を還元型物質に還元し、還元型物質を有効に再生産することができる陰極水を生成することができる電解水生成装置に関するものである。
【0002】
【従来の技術】
従来の電解水生成装置1の構造の一例を、図1により概略説明する。電解水生成装置1は電解槽2、浄水装置3、電解質供給装置6などから構成される。電解槽2は、隔膜5により、陰極12Aが配置された陰極室14と、陽極12Bが配置された陽極室18とに区画されている。一般に原水とされる水道水は、浄水装置3を通して電解槽2の陰極室14と陽極室18とに導入される。浄水装置3は、水道水中にふくまれる有機物、無機物あるいは次亜塩素酸などの臭気成分を除去するものであり、通常、抗菌活性炭フィルタ及び中空糸膜などのマイクロフィルターにて構成されている。また、浄水装置3から流出した原水は、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される。この原水の電極室流入側には、電極室上流に設けた電解質供給装置6により連続的に電解質が供給される。一般的に、電解質としては乳酸カルシウムまたはグリセロリン酸カルシウムなどのカルシウム塩が使用される。電解槽2に通水された水を陰極12Aと陽極12Bに電流を流して電気分解することにより、陰極室14に陰極水が、陽極室18に陽極水が生成する。陰極水は流出路23から、陽極水は流出路21からそれぞれ別々の経路を通って吐出される。上記中、図1においては、浄水装置3から流出した原水が、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される前段即ち上流側に電解質供給装置6を配設したものである。尚装置によっては、主として飲用等に使用される陰極水中に、電気分解による電気泳動によりカルシウムイオンのみが含有されるように、陽極室18に流入する水にのみ電解質を添加するようにして、電解質を添加した水を陽極室18に流入させ、陰極水にはカルシウムイオンのみ添加し、乳酸イオンは酸性水とともに排出する様にしたものもある。
【0003】
陰極水を生成すると同時に生成される酸性水については乳酸イオンが添加され、アストリンゼント効果を有することによりその目的に利用される。尚、図1において8A、8Bは電気化学的水質測定器を示しており、これにより各種の吐出水の水質、例えばpH、酸化還元電位、カルシウム濃度、電気伝導率等を知ることができ、装置によればこれらからの水質測定結果を基に、電解電圧や流量などの電解条件をコントロールすることもなされている。
【0004】
以上のような従来例の構造を有する電解水生成装置1においては、電解処理により製造される飲用に用いられる陰極水には、胃腸内異常発酵、慢性下痢、胃酸過多等に関する効果が期待できる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の陰極水には、一般的に還元性の電位を有する性質はあるものの、その期待される還元電位に起因する効果、即ち生体内における還元型物質の酸化の抑制による還元状態の維持、著しくは酸化型物質を還元型物質に還元し、還元型物質を有効に再生産することなどについては不明瞭であった。ここでスーパーオキサイドやヒドロキシラジカル、過酸化水素等の活性酸素の存在下においても、このような酸化反応による抑制効果の期待できる電解水を製造することができれば、それは消化器系障害の間接的な予防効果、特に粘膜障害(体内微生物に起因するもの含め)の抑制などの効果まで期待できると考えられる。
【0006】
また、酸化性、還元性の指標である酸化還元電位をモニタリングする、白金電極による手法も従来は見られたが、上記の作用・効果を及ぼす要因を測定してモニタリングし、そのモニタリングデータにより電解条件(電流密度、通過水量など)をフィードバックして上記の要因をコントロールすることができれば、常に上記効果が期待され、安定した品質の電解水の製造が可能となる。
【0007】
本発明は上記の点に鑑みてなされたものであり、還元側の電位を有する陰極水として、活性酸素等の存在下においても還元型物質の酸化を抑制し、還元状態を維持することができ、あるいは酸化型物質を還元型物質に還元し、還元型物質を有効に再生産することができる陰極水を生成することができる電解水生成装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の請求項1に係る電解水生成装置1は、陽極12Bが配設された陽極室18と、陰極12Aが配設された陰極室14と、陽極室18と陰極室14を仕切るように配設された、陽イオンと陰イオンのうち少なくとも一方を通過させ得る隔膜5とを備える電解槽2を具備し、溶存イオンを含む原水から、有隔膜電解により陽極水と陰極水を生成すると共に陰極室14にて生成される陰極水中に溶存水素ガス粒子を含ませることができる電解水生成装置1であって、原水中に酸化還元物質として、鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とするものである。
【0009】
また本発明の請求項2に係る電解水生成装置1は、請求項1の構成に加えて、酸化還元物質添加装置として、原水中に無機系化合物に加えて、酸化還元物質を添加する電解質供給装置6を具備して成ることを特徴とするものである。
【0010】
また本発明の請求項3に係る電解水生成装置1は、請求項2の構成に加えて、酸化還元物質添加装置として、原水中に無機系化合物及び酸化還元物質に加えて、界面活性剤を添加する電解質供給装置6を具備して成ることを特徴とするものである。
【0012】
また本発明の請求項に係る電解水生成装置1は、請求項1乃至3のいずれかの構成に加えて、原水中に酸化還元物質として、無機系鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とするものである。
【0013】
また本発明の請求項に係る電解水生成装置1は、請求項1乃至3のいずれかの構成に加えて、原水中に酸化還元物質として、有機系鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とするものである。
【0014】
また本発明の請求項に係る電解水生成装置1は、請求項1乃至のいずれかの構成に加えて、原水中に酸化還元物質として、水溶性生化学物質を添加する酸化還元物質添加装置を具備して成ることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0016】
先ず本発明の電解水生成装置1の基本構成の一例を、図1により説明する。
【0017】
この図1に示す電解水生成装置1は電解槽2、浄水装置3及び電解質供給装置6を備えている。電解槽2は、隔膜5により、陰極12Aが配置された陰極室14と、陽極12Bが配置された陽極室18とに区画されている。原水とされる水道水は、浄水装置3が設けられた電極室流入路4を通して電解槽2の陰極室14と陽極室18とに導入される。また、電極室流入路4の下流側には、陰極室14に直接連通する陰極室流入路20と、陽極室18に直接連通する陽極室流入路22とを分岐して設けるものであり、電極室流入路4、陰極室流入路20、陽極室流入路22にて原水流路7が構成される。電極室流入路4を通じて浄水装置3から流出した原水は、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される。この原水には、電極室の上流側に設けられた電解質供給装置6により連続的に電解質及び界面活性剤が供給される。そして電解槽2に供給された原水を陰極12Aと陽極12Bの間に電流を流して電気分解することにより、陰極室14に陰極水が、陽極室18に陽極水が生成する。陰極水は陰極室14に連通して接続された陰極室流出路23から、陽極水は陽極室18に連通して接続された陽極室流出路21からそれぞれ吐出される。上記中、図1においては、浄水装置3から流出した原水が、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される前段即ち、電極室流入路4における浄水装置3の下流側に電解質供給装置6を配設したものである。
【0018】
本発明の電解水生成装置1は、上記のような構成において、生成される陰極水中に、陰極水中の水素含有量が、理論飽和濃度より高い状態となるようにして、陰極水中に水素ガスの気泡の粒子(以下、溶存水素ガス粒子とする)を分散させると共に、溶存水素ガス粒子の粒径を5〜1000nmの範囲において分布させるように構成することが好ましいものであり、そのためには、好ましくは本発明の電解水生成装置1を下記のように構成するものである。
【0019】
陰極12A及び陽極12Bとしては、チタニウム製の基材に焼成等による白金コーティング或いは電気メッキ、化学メッキ等による白金メッキを施したものが用いられる。ここで、焼成や化学メッキ等の場合には、結晶性の白金が形成され、電気メッキの場合には、アモルファスの白金が形成されるが、陰極12Aを形成するにあたり、アモルファスの白金を適用すると、陰極水における水素ガスの発生量を増大させることができ、陰極水中の溶存水素ガス粒子の濃度を効率よく上昇させることができる。このことを証明する実験結果を図19に示す。
【0020】
図19は、焼成による結晶性の白金を用いて形成された陰極12Aを用いた場合と、電気メッキによるアモルファスの白金を用いて形成された陰極12Aとを用いた場合の、電解電流密度に対する陰極水中の水素ガス濃度の変化を示すものであり、横軸は電解電流密度を、縦軸は陰極水中の水素ガスの濃度をそれぞれ示す。ここで電解に供する原水としては、1.7mmol/リットルのNaCl溶液を用いている。図中の○は結晶性の白金を用いて形成された陰極12Aを用いた場合の水素ガスの濃度を、△は、アモルファスの白金を用いた場合の水素ガスの濃度をそれぞれ示す。図示の通り、同一の電解電流密度条件において、アモルファスの白金を用いた場合の方が、水素ガスの発生量が増大していることがわかる。
【0021】
また、隔膜5としては中性多孔質膜か、或いは陽イオン交換膜等のイオン選択透過膜が用いられる。
【0022】
ここで隔膜5として中性多孔質膜を使用する場合においては、ポリエチレン製のものや、ポリスルフォン製のものを用いることができるが、特に電気浸透速度の大きさを示す、ヴィーデマン定数の値が小さい隔膜を選定することが望ましいものであり、例えば、ヴィーデマン定数が−0.15cm3・s-1・A-1であるフッ化ビニリデンでコートしたポリエステルシートや、ヴィーデマン定数が0.21cm3.s-1・A-1であるポリテトラフルオロエチレンとポリエチレンテレフタレートを混紡したシート(それぞれ実測値)を用いることができ、このようなものを用いると、陽極水中に含まれる溶存塩素分子、次亜塩素酸、過酸化水素、溶存酸素等の成分の流入を抑制することができるものである。ここで電気浸透度をα、液の比伝導率をκ、電流値をiとすると、単位時間あたりに膜を通過する液量vは、v=α・(i/κ)で示されるものであり、ヴィーデマン定数βは、β=α/κで表されるものである。
【0023】
また隔膜5として陽イオン交換膜を使用する場合は、例えばデュ・ポン社製のナフィオン膜のような、ベース材料をポリテトラフルオロエチレンとした陽イオン交換基ペルフルオロスルホン酸膜や、旭化成製のフレミオン膜のような、陽イオン交換基ビニルエーテルとテトラフルオロエチレンの共重合体等を用いることができる。隔膜5としてこのようなイオン選択透過膜を用いると、陽極水中に含まれる溶存塩素分子、次亜塩素酸、過酸化水素、溶存酸素等の成分の流入を防止することができるものである。
【0024】
更に隔膜5としては、水素イオンと水酸化物イオンの少なくとも一方を選択的に透過するイオン交換膜を用いることもでき、この場合、陰極水における水素ガスの発生量を増大させて溶存水素ガス粒子の濃度を上昇させると共に陰極水のpHの上昇を抑制して、飲用に適した陰極水を得ることができる。すなわち、電解槽2内において原水の電解を行った場合に、陰極室14において陰極水が生成されるものであり、この陰極水中には、電解による2H2O+2e-→H2+2OH-の反応によって、水素ガスが発生すると共にpHが上昇する。ここで水素ガスの発生量を増大させて溶存水素ガス粒子の濃度を上昇させるために電解反応の進行度を大きくすると、pHが飲用に適さない値(pH10以上)まで上昇するおそれがあるが、隔膜5として水素イオンと水酸化物イオンの少なくとも一方を選択的に透過するイオン交換膜を用いると、陽極室18にて発生した水素イオンが電気浸透により隔膜5を通過して陰極室14に移動し、あるいは陰極室14にて発生した水酸化物イオンが電気浸透により隔膜5を通過して陽極室18に移動して、水酸化物イオンが水素イオンにより中和され、陰極水のpHの上昇が抑制されるものである。
【0025】
更に、隔膜5として水素イオンを選択的に透過するイオン交換膜を用いて、陰極水中に水素イオンが供給されるようにすると、陰極室14において、O2+4H++4e-→2H2Oの反応により、陰極水中の溶存酸素濃度が低減されるものであり、この場合、後述するように水質測定器8Aによって陰極水の酸化還元電位を測定する場合に、攪乱因子となる溶存酸素濃度を低減することができ、陰極水の酸化還元電位の測定精度を向上することができるものである。
【0026】
また浄水装置3は、原水として電解水生成装置1に供給される水道水等の中に含まれる有機物、無機物あるいは次亜塩素酸などの臭気成分を除去するものであり、蒸留装置、中空糸膜として形成されたろ過膜、イオン交換樹脂、活性炭等の組み合わせにより成るもので、通常、抗菌活性炭フィルタ及び中空糸膜などのマイクロフィルターにて構成されている。
【0027】
また図2のように、原水流路7に、下流側に浄水装置3としてろ過膜33を設けると共に、上流側にポンプ32を設け、また原水流路7の上流側の端部をタンク31内に配置し、イオン交換処理及び蒸留処理を行って生成された純水を、一旦、タンク31に貯水し、ポンプ32により電解槽2に供給するようにしても良い。この場合は、ろ過膜33としては、望ましくは孔径25〜50nmの、ポリエチレンやポリサルフォン等の多孔質高分子膜等により形成されるメンブランフィルターを用いると良い。ここで、浄水装置3を通過させて得られた原水は、電気伝導率を、300μS/cm以下とすることが好ましく、更に好ましくは、浄水装置3としてイオン交換膜を備えるものを使用することにより、原水の電気伝導率が20μS/cm以下になるように処理されるようにする。このようにすると、原水中の気泡成長の核となるような不純物を低減して、原水を電解して生成される陰極水中の溶存水素ガス粒子の成長を抑制し、陰極水中に粒径が小さい溶存水素ガス粒子を長時間維持できるようにすることができるものである。この原水の電気伝導率は、低ければ低いほど良いものであるが、実際上の下限は1μS/cmとなると考えられる。
【0028】
浄水装置3から流出した原水は、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される。各流入路20、22には、電極室上流に設けた電解質供給装置6により連続的に電解質が供給される。
【0029】
ここで、図1,2に示す実施形態における電解水生成装置1では、電極室流入路4における浄水装置3の下流側に、電解質供給装置6を配設したものであり、つまり浄水装置3から流出した原水が、陰極室14に直接連通した陰極室流入路20と、陽極室18に連通した陽極室流入路22とに分流される前段即ち上流側に電解質供給装置6を配設したものであるが、陽極室流入路22と、陰極室流入路20とに分流された後の下流側で、陰極室14に流入する陰極室流入路20かまたは陽極室18に流入する陽極室流入路22の少なくとも一方に、電解質供給装置6を配設しても良い。
【0030】
また電解質供給装置6としては、アルカリ金属イオンかもしくはハロゲン化合物イオン等の電解質となり得る無機系化合物を原水流路7を流れる原水に添加するものを用いるものである。このとき例えば、ナトリウム濃度が5mg/リットル以上、400mg/リットル以下になるように、規定量の塩化ナトリウムかまたは水酸化ナトリウムを加えるか、またはそれらの混合物を加えて調整するものを用いるものである。ここでナトリウム濃度が5mg/リットルに満たないと、電解に必要な最低限の電流密度を確保することが困難となり、電解効率が低下するおそれがあるものであり、また400mg/リットルを超えると、電解水を飲用として用いる場合に電解質の味を感じるようになってしまい、また溶存水素ガス粒子は一種のコロイド状態で分散しているため、塩析現象により溶存水素ガス粒子の電気二重層が電荷的に中和されてしまい、粒子状態の維持が困難となるおそれがあり、好ましくない。
【0031】
尚、電解質供給装置6として、周期表2族の元素(アルカリ土類金属)のイオンの電解質となり得る化合物を原水流路7を流れる原水に添加するものを用いても良いが、対イオンとして有機系化合物を選定する際には、食品添加物への適合性に注意する必要がある。
【0032】
また、電解質供給装置6として、塩素イオン濃度が5mg/リットル以上、400mg/リットル以下になるように、規定量の塩化ナトリウムかまたは塩化リチウム、あるいはそれらの混合物を、原水流路7を流れる原水に添加するものを用いても良いものである。ここで塩素イオン濃度が5mg/リットルに満たないと、電解に必要な最低限の電流密度を確保することが困難となり、電解効率が低下するおそれがあるものであり、また400mg/リットルを超えると、電解水を飲用として用いる場合に電解質の味を感じるようになってしまい、また溶存水素ガス粒子は一種のコロイド状態で分散しているため、塩析現象により溶存水素ガス粒子の電気二重層が電荷的に中和されてしまい、粒子状態の維持が困難となるおそれがあり、好ましくない。
【0033】
更に、電解質供給装置6として、塩素イオン濃度が20mg/リットル以上となるように、規定量の塩化カルシウムかまたは塩化ナトリウム、あるいはそれらの混合物を、原水流路7を流れる原水に添加するものを用いても良いものである。この場合、電解時に、広い電解電流密度範囲に亘って、陰極水において充分な量の水素ガスを発生させて、陰極水中に安定して溶存水素ガス粒子を発生させることができる。
【0034】
図21は、原水として、1.7mmol/リットルの塩化ナトリウム溶液と、0.57mmol/リットルの塩化カルシウム溶液(塩素イオン濃度40.4mg/リットル)を用いた場合の、電解電流密度に対する陰極水中の水素ガスの濃度を示すものであり、横軸は電解電流密度を、縦軸は陰極水中の水素ガスの濃度をそれぞれ示す。図中の○は塩化ナトリウム溶液を用いた場合の水素ガスの濃度を、△は塩化カルシウム溶液を用いた場合の水素ガスの濃度をそれぞれ示す。ここで、塩化ナトリウム溶液と塩化カルシウム溶液の濃度を異ならせているのは、両溶液のイオン強度を揃えるためである。
【0035】
図示の通り、塩化ナトリウム溶液を用いた場合は、電解電流密度を高くして電解反応の反応速度を速くすると、水素ガスの濃度が逆に低下してしまうものであるが、塩化カルシウム溶液を用いた場合は、電解電流密度を高くしても水素ガスの濃度の低下が抑制されるものであり、広い電解電流密度範囲に亘って充分な量の水素ガスが発生し、陰極水中に安定して溶存水素ガス粒子が発生しているものである。
【0036】
図22は、種々の濃度の塩化カルシウム溶液を用いた場合における、電解電流密度に対する陰極水中の水素ガスの濃度を示すものであり、横軸は電解電流密度を、縦軸は陰極水中の水素ガスの濃度をそれぞれ示す。図中の○は0.57mmol/リットル(塩素イオン濃度40.4mg/リットル)、◇は2.0mmol/リットル(塩素イオン濃度141.8mg/リットル)、×は5.0mmol/リットル(塩素イオン濃度354.5mg/リットル)、△は5.7mmol/リットル(塩素イオン濃度404.1mg/リットル)、□は15.0mmol/リットル(塩素イオン濃度1063.5mg/リットル)の濃度の塩化カルシウム溶液を用いた場合の水素ガスの濃度をそれぞれ示す。図示の通り、塩化カルシウム濃度を高くすると、電解電流密度を高くするに従って水素ガスの濃度が高くなる傾向が現れ、電解電流密度に応じた水素ガスを発生させることができるようになる。
【0037】
ここで塩素イオン濃度が20mg/リットルに満たないと、電解電流密度を高くした場合に陰極水中の水素ガスの濃度が低下する傾向が現れるようになる。また塩素イオン濃度が高くなるほど、電界電流密度を高くするに従って水素ガスの濃度が高くなる傾向が現れるが、電解水を飲用として用いる場合に電解質の味を感じないようにするためには、塩素イオン濃度の上限を1000mg/リットルとすることが好ましい。
【0038】
電解質供給装置6の、原水中の電解質の濃度を上記のように制御するための構成としては、例えば図2に示すものにおいてタンク31に規定濃度の電解質を溶解させた原水を入れておくか、あるいは電解質供給装置6に、規定の高濃度の電解質溶液を入れておき、例えば別途設けられたポンプ等により、原水流路7に高濃度の電解質溶液を随時添加していく等の構成を適用することができる。ここで電解質の添加量の計算方法としては、電解質の分子量をM[g/mol]、電解質イオンの原子量をm[g/mol]、原水流路7の流速をa[リットル/min]、電解質供給装置6からの電解質の供給量をb[ミリリットル/min]として、原水中に添加する所望の電解質イオン濃度をX[mg/リットル]とすると、電解質としての添加量は、
{(M/m)・X}・a=(M・a・X)/m [mg/min]
となり、このとき電解質の供給量がb[ミリリットル/min]であるため、
(M・a・X)/(b・m) [g/リットル]
の濃度の高濃度の電解質溶液を電解質供給装置6から原水流路7に供給するようにすれば良いものである。
【0039】
また、電解質供給装置6として、原水流路7を流れる原水に、電解質と共に、生成水中に含まれる溶存水素ガス粒子の安定化のために、界面活性剤を添加するものを用いることもできる。
【0040】
界面活性剤として、ショ糖脂肪酸エステル類を添加するものを使用し、このときその原水への添加濃度を、それぞれのCMC(クリティカル・ミセル・コンセントレーション:限界ミセル濃度)以下に制御するものを用いることが望ましい。すなわち、界面活性剤はCMC以下の濃度であれば、原水を電解する前の時点においてはミセル化せず、電解により陰極水中に溶存水素ガス粒子が発生すると、疎水コロイドである溶存水素ガス粒子を中心にして10〜100nm程度の大きさでミセル化し、溶存水素ガス粒子の状態を、より安定に維持することができるものである。ここで界面活性剤の濃度がCMC以上であると、界面活性剤は溶存水素ガス粒子が発生する前からミセル化してしまい、溶存水素ガス粒子を安定化させるためには一旦ミセル化した界面活性剤がバラバラの状態になってから更に溶存水素ガス粒子を中心にミセル化しなければならず、溶存水素ガス粒子の安定化の効率が低減するものである。また界面活性剤の添加量の下限は、1.0×10-6mol/リットルとすることが好ましい。
【0041】
具体的なショ糖脂肪酸エステル類の添加濃度としては、モノラウレートであれば、23.8×10-5mol/リットル以下、硬化牛脂脂肪酸のモノエステルであれば、1.3×10-4mol/リットル以下、モノミリステートであれば、15.5×10-5mol/リットル以下、モノパルミテートであれば、9.5×10-5mol/リットル以下、モノステアリートであれば、6.6×10-5mol/リットル以下であることが望ましいといえる。
【0042】
電解質供給装置6の、原水中の界面活性剤の濃度を上記のように制御するための構成としては、例えば図2に示すものにおいてタンク31に規定濃度の界面活性剤を溶解させた原水を入れておくか、あるいは電解質供給装置6に、規定の高濃度の界面活性剤溶液を入れておき、例えば別途設けられたポンプ等により、原水流路7に高濃度の界面活性剤溶液を随時添加していく等の構成を適用することができる。ここで界面活性剤の添加量の計算方法としては、界面活性剤の分子量をM´[mol]、原水流路7の流速をa[リットル/min]、電解質供給装置6からの界面活性剤の供給量をb´[ミリリットル/min]として、原水中に添加する所望の界面活性剤濃度をX´[mg/リットル]とすると、界面活性剤の添加量は、
(M´・X´)・a [mg/min]
となり、このとき界面活性剤の供給量がb´[ミリリットル/min]であるため、
(M´・a・X´)/b´ [g/リットル]
の濃度の高濃度の界面活性剤溶液を電解質供給装置6から原水流路7に供給するようにすれば良いものである。
【0043】
また上記のように電解槽2に導入された原水を陰極12Aと陽極12Bの間に電流を流して電気分解することにより、陰極室14に陰極水が、陽極室18に陽極水が生成することになるが、目的とする陰極水中に、陽極水が混入することは望ましくない。従って、この際の原水の供給方法として、特に隔膜5に中性多孔質膜を使用する場合では、電解部に供給される溶存イオンを含む原水は、電解槽2中において、陰極水を生成する陰極室14から陽極水を生成する陽極室18への流れが確保されるように供給させるようにする。即ち、図1又は図2中において、陽極室流入路22の内部配管径を、陰極室流入路20の内部配管径よりも小さく設定するか、もしくは陰極室流出路23の内部配管径を、陽極室流出路21の内部配管径よりも小さく設定する。このように設定することにより、陰極室14側の内部が加圧され、隔膜5を通した両電解水間の流れが、隔膜5における溶存イオンの電気浸透流に抗して、全て陰極室14側から陽極室18側に流れるようにしている。
【0044】
また本発明の電解水生成装置1としては、電気分解処理時の電流密度を、0.02〜1.2A/dm2に設定できるものを用いることが好ましく、更に好ましくは0.6〜1.2A/dm2に設定できるものを用いるものである。尚、電解槽2への原水の流速が低流速(例えば7〜20ミリリットル/min)の通水条件において電圧を印加する場合と比べ、高流速(例えば、上記低流速の場合の10〜100倍)の通水条件において電圧を印加する場合は、当然ながら印加電圧は高く設定する必要がある。
【0045】
また、陰極室流出路23や陽極室流出路21等の、電解槽2以降の配管経路の内面は、テフロン等のポリエチレンテレフタレート樹脂や可塑剤が低減された塩化ビニル樹脂等の、気体吸着作用または消泡作用のない材料にて形成することが好ましく、例えば、シリコンチューブなど、表面張力を低下させて気体の粒子を維持することを阻害する消泡作用のある材質は適さない。
【0046】
また、図2において8A、8Bは電気化学的水質測定器を示した。これは、製造した陰極水中に含有する、溶存水素ガスの濃度などを測定するものであるが、この測定器の検出原理等に関しては後述する。
【0047】
上記の実施形態において、浄水装置3による処理後、電解質添加前の原水の電気伝導率が20μS/cmとなり、また原水の流速を20ミリリットル/minとした条件で電解水生成装置1により生成された陰極水に関する種々の測定結果を以下に示す。
【0048】
溶存している粒子、即ち溶存水素ガス粒子の、動的光散乱法(DLS)により測定した粒径分布を示す典型的なグラフとして、濃度1.7mmol/リットルとなるようにNaClが添加された原水を、電解電流密度1.2A/dm2にて電解して生成した陰極水中の、溶存水素ガス粒子の、動的光散乱法(DLS)により測定した粒径分布を図7に示す。ここで動的散乱法は、陰極水にレーザ光を照射し、チンダル現象による散乱光の散乱強度と波長の揺らぎを解析処理することにより、陰極水中の粒子の粒径分布を測定したものである。図7(a)は、横軸を粒径をnm単位で示し、縦軸は散乱光の割合比率を示した、散乱強度分布を示すいわゆるg−gammaのグラフである。また図7(b)は、図7(a)のグラフを、縦軸を粒子の数平均値に換算したものである。図7(a)に示すグラフでは、2つのピークが認められ、図7(b)では、粒径の小さい範囲、即ち5〜50nmの範囲に集中していることが確認できる。粒径の小さい溶存水素ガス粒子は、後述するように還元活性が高くこのように粒径の小さい溶存水素ガス粒子の存在割合を、粒径の大きい溶存水素ガスの存在割合よりも多くすると、陰極水の還元活性を向上することができる。またこのとき粒径の大きい溶存水素ガス粒子も、粒径が小さいものほどではないが、陰極水の還元活性の向上に寄与するものである。尚、この溶存水素ガス粒子は、原水に電解質を添加したのみで、電気分解処理を行わない水に関しては、動的光散乱法(DLS)では何も検出されない。ここで粒径の小さい溶存水素ガス粒子は、電気分解時の電極表面で生成し、粒径の大きい溶存水素ガス粒子は、この小さい粒径の溶存水素ガス粒子が会合して生成されるものと推測される。
【0049】
図8は、陰極水中の溶存水素ガス粒子の粒径の平均値の時間的変動を、動的光散乱法による測定結果を基にして導出したものを示したものである。ここで図中の○は、NaCl濃度が1.57mmol/リットルとなるように電解質が添加された原水を電解電流密度0.60A/dm2で電解して生成した陰極水、△はCaCl2濃度が1.57mmol/リットルとなるように電解質が添加された原水を電解電流密度1.20A/dm2で電解して生成した陰極水、□はNaNO3濃度が1.57mmol/リットルとなるように電解質が添加された原水を電解電流密度1.20A/dm2で電解して生成した陰極水に関する測定結果をそれぞれ示すものである。このように時間的な変動を見ても、粒径の小さい範囲の分布と大きい範囲の分布は保持されており、特に電解後、8時間経過しても、溶存水素ガス粒子は10nm程度の大きさで存在し続けていることも確認できる。
【0050】
これらの溶存水素ガス粒子について、Young−Laplace式より粒子内部圧力について計算すると、100nmの時には30気圧で、水素分子の個数は3700個となる。本来、内部の圧力が高いと粒子の溶解度は大きくなり、粒子中の水素は水溶液中に拡散し、溶解していくと考えられるが、電流密度が大きい電気分解条件であれば、電極表面の水素の過飽和度が大きくなるため、溶存水素ガス粒子の粒径分布は、粒径の小さいものの分布が大きくなる傾向があると推測される。ここでYoung−Laplace式は、粒子の内部圧力をp″、粒子の外側圧力をp′、溶媒の表面張力をγ、粒子の半径をrとし、p″−p′=2γ/rで示される式である。
【0051】
尚、ここにおいて1000nm以上の粒子径であると比重が小さいため、また微小な粒子径のものと比較して浮力の掛かり方が大であるため、溶液中に安定に存在している微小な粒子径のものと2層分離を起こし、溶液外に散逸するため、溶液中に安定して存在できない。
【0052】
図9は、図8における場合と同様の条件で生成した陰極水の溶存水素ガス粒子の粒径分布測定結果から得られたヒストグラムである。ここにおいて、電解質としてはNaClを用いた。この結果より、粒径分布は大きく2つの分布に分かれることが確認され、溶存水素ガス粒子の粒径が小さい方の分布は10〜30nm、大きい方の分布は300〜l000nmに亘っている。尚、図10は塩化リチウムを電解質として用いた場合の溶存水素ガス粒子の粒径分布データ及びヒストグラムであるが、このとき原水中のLiCl濃度が1.57mmol/リットルとなるようにし、電解電流密度1.20A/dm2としたものである。このように電解質の種類によっては、分布が分かれることなく全体に分布させることもできる。
【0053】
図11は、原水中に100ppm(約10mg/リットル)の濃度となるようにNaClを添加し、電解電流密度を変化させて電解した場合の、横軸に電解の電流密度を、縦軸に溶存水素ガス粒子の粒径を示したものである。またグラフの○は粒径の大きい溶存水素ガス粒子の分布を示し、●は粒径の小さい溶存水素ガス粒子の分布を示すものである。尚、ここで縦軸に示す粒径は、全測定時間の平均値としたものである。電流密度0.02〜1.2A/dm2の範囲において、粒径の小さい分布に関しては、顕著な変化は認められないが、粒径の大きい分布に関しては、電流密度が大きくなるに伴って、小さくなり、0.6A/dm2以上で一定となる傾向が確認された。電流密度が小さいときには、電極表面の水素の過飽和度は小さく、大きな水素ガス粒子が生成することが知られており、このことにより、電流密度が小さい方が、水素ガスの粒径が大きくなると考えられる。一方、電流密度が大きく、過飽和度が大きくなると、小さな粒径の水素ガス粒子は増加するが、大きな粒径の水素ガス粒子は電解後の気泡成長によって、一定になってくるものと考えられる。つまり、溶存水素ガス粒子の、より小さな粒径分布を確保して生成するためには、電解電流密度0.02〜1.2A/dm2とすることが好ましいものであるが、更に望ましくは0.6A/dm2以上と設定することが望ましいものである。ここで電解電流密度が0.02A/dm2に満たないと、電極間に水素発生過電圧以上の電圧を印加することが困難となり、電解を進行させることが困難となるものであり、また1.2A/dm2を超えると、陰極水のpHが11を超えてしまって、飲用レベルを超えてしまうおそれがあり、いずれも好ましくない。
【0054】
図12は、陰極水中に含有する水素濃度の時間的変動を示したものであり、縦軸は陰極水中の水素の濃度を示し、横軸は時間を日の単位で示したものである。また図中の○は原水中にNaClO4を1.7mmol/リットルの濃度となるように添加したもの、△はNaClを1.7mmol/リットルの濃度となるように添加したもの、□はNa2SO4を0.57mmol/リットルの濃度となるように添加したものについての、それぞれの水素濃度を示すものである。図12に示すように、陰極水中には、飽和濃度0.74mmol/リットルに対して、7割程度の濃度で、長期間(測定データでは30日間)安定に溶存していることが確認できる。ここでこの実験で、水素濃度が飽和濃度の7割程度の濃度となっているのは、溶存酸素の影響を除くために、高純度窒素ガスをバブリングして溶存させているため、溶存窒素と溶存水素の分圧の和が1気圧になるよう、平衡状態に達したためである。
【0055】
上述のような、陰極水中の溶存水素ガス粒子の存在は、流量1.0〜3.0リットル/minのような高流量の場合(上記低流速の場合の10〜100倍)では、印加する電圧は高く設定することにより、確保することが可能となる。
【0056】
尚、原水に溶存酸素が含有された水質を供給する場合では、溶存水素ガス粒子の安定性に関して、その溶存酸素濃度が重要な因子となるため、注意が必要である。
【0057】
このようにして得られた、溶存水素ガス粒子を含有する陰極水の、還元活性についての測定結果を、図13に示した。この実験では、1.5mmol/リットルのFe(NH4)(SO42溶液中において、陰極水又は水素をバブリングすることにより飽和させた飽和水素溶液と3価の鉄イオンとを反応させてその反応速度を調べた結果を示すものである。図中の縦軸は3価の鉄イオンの反応量を、mol単位で示したものであり、3価の鉄イオンが還元されることによって発生する2価の鉄イオンを、クロム酸カリウムにて滴定することにより導出したものである。また横軸は、反応時間を時間の単位で示したものである。また図中の○は、飽和水素溶液、◇は原水中にHClを0.01mol/リットルの濃度となるように添加したものを電解電流密度0.6A/dm2で電解して得られた陰極水、●は原水中にHClを0.01mol/リットルの濃度となるように添加したものを電解電流密度1.2A/dm2で電解して得られた陰極水についての測定結果をそれぞれ示すものである。図中に示されるように、このようにして得られる陰極水は、飽和水素溶液よりも還元反応速度が大きいものであり、また電解時の電流密度が大きいと、還元速度反応が大きくなることが確認された。
【0058】
尚、図14は2価及び3価の鉄イオンそれぞれについての、スーパーオキサイド存在下におけるその消去活性を示したものである。ここにおいて、スーパーオキサイドの発生は、ヒポキサンチン(Hyp)−キサンチンオキシダーゼ(XOD)系により発生させ、発生したスーパーオキサイドとウミホタル・ルシフェリン誘導体(CLA)を反応させ、その発光強度を計測することにより調べたものであり、縦軸に発光強度、横軸に反応時間を分の単位で示したものである。また各成分は、リン酸塩緩衝剤40mmol/リットル、ヒポキサンチン0.5mmol/リットル、EDTA0.2mmol/リットル、ウミホタル・ルシフェリン誘導体1μmol/リットル、キサンチンオキシダーゼ9mU/ミリリットルの条件下で測定を行ったものである。また図中、Fe2+ without XODと示されている曲線は、キサンチンオキシダーゼを添加しない状態においての0.6mg/リットルのFe2+イオンの反応を測定したものであり、またFe2+と示されている曲線は、キサンチンオキシダーゼを添加した状態の0.6mg/リットルのFe2+イオンの反応を測定したものであり、またFe3+と示されている曲線は、キサンチンオキシダーゼを添加した状態の0.6mg/リットルのFe3+イオンの反応を測定したものである。またblankと示しているのは、鉄イオンと反応させない場合の測定結果を示したものである。
【0059】
この図中に示す測定結果より、2価の鉄イオンのみにおいても、即ち、キサンチンオキシダーゼ(XOD)の酵素活性がなくても、スーパーオキサイドの発生は認められるが、キサンチンオキシダーゼ(XOD)存在下においては、2価鉄イオンの発光強度の方が3価鉄イオンと比べて小さい。即ち、全体としてスーパーオキサイドの除去には、2価鉄イオンの方が有効であることが認められる。
【0060】
これらの反応機構を整理すると、下記の通りとなる。
Fe2++O2→Fe3++O2 - ・・・(1)
Fe2++O2 -+2H+→Fe3++H22 ・・・(2)
Fe3++O2 -→Fe2++O2 ・・・(3)
Fe2++H22+H+→Fe3++H2O+・OH ・・・(4)
Fe2++・OH+H+→Fe3++H2O ・・・(5)
2O2 -+2H+→H22+O2 ・・・(6)
2Fe3++H2→2Fe2++2H+ ・・・(7)
2価の鉄イオンのみの場合であれば、(1)式の反応が進み、スーパーオキサイドが発生するが、(2)式のように、2価鉄イオンとキサンチンオキシダーゼが存在する場合では、スーパーオキサイドが消去される。また、3価の鉄イオンとキサンチンオキシダーゼが存在する場合においても、(3)式のようにスーパーオキサイドが消去される反応が進行するが、図14に示す結果より、(1)、(3)式の反応よりも(2)式の反応速度の方が大である。
【0061】
また、(2)式の反応に続いて、(4)、(5)式の反応が進行するため、全体としては、活性酸素の消去には、2価の鉄イオンの働きが重要であると考えられる。
【0062】
先に示したように、溶存水素ガス粒子は3価の鉄と反応して、2価の鉄を再生産するため、本発明において得られる陰極水は、生体内において、活性酸素種の存在下において活性酸素を消去するために重要な役割を示す2価の鉄イオンを再生産し、生体内の活性水素を消去するのに有効なものであると考えられる。特に、一般に、容易に細胞膜を通過できる粒子の大きさは10〜20nm程度であるといわれており、溶存水素ガス粒子は、細胞膜に接触した時点で溶解し、容易に細胞膜内部に入ることが可能であると考えられるが、前述した例により製造された陰極水中に含有される溶存水素ガス粒子の場合では、その粒径分布データより、50nm以下で存在し、著しくは30nm以下の範囲における存在比率が高くなっているため、上記のような還元反応速度が大である陰極水中の溶存水素ガス粒子は、生体内においての細胞膜透過性及び還元性に関し、より有利な挙動をすることができると考えられる。
【0063】
また、生体内における各種の還元性物質、例えばビタミン類で挙げれば、レチノールや総カロテン等のビタミンA類、アスコルビン酸(ビタミンC)、トコフェノール類(ビタミンE)などの還元性物質についても、活性酸素種と反応するものであり、上記の鉄イオンの事例に準じて検討すれば、溶存水素ガス粒子含有の陰極水により、再度、還元活性を有する形に有効再生産できるといった可能性も期待される。
【0064】
また、電解水生成装置1には、原水中に上記のような、生体内においてスーパーオキサイドを還元させることができる酸化還元物質を添加することができる酸化還元物質添加装置を設けるものである。この場合、電解質供給装置6として原水中に無機系化合物、あるいは無機系化合物及び界面活性剤に加えて、酸化還元物質を添加するものを設けることにより、電解質供給装置6を酸化還元物質添加装置と兼用することができる。このようにすると、陰極水中には、生体内でスーパーオキサイドを還元することができる酸化還元物質と、スーパーオキサイドとの反応により酸化された酸化還元物質を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなる。そのため、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができる。
【0065】
この酸化還元物質としては、水溶性で、生体内においてスーパーオキサイドとの酸化還元反応によりスーパーオキサイドを還元し、また反応後の酸化還元物質が溶存水素ガス粒子によって還元されて還元活性が回復される物質を選択するものである。また、飲用に供するために、安全性に問題のないものが選択される。
【0066】
このような酸化還元物質としては、鉄化合物と、水溶性生化学物質とを挙げることができ、更に鉄化合物としては無機系鉄化合物と有機系鉄化合物とを挙げることができる。
【0067】
無機系鉄化合物としては、塩化第二鉄(FeCl2)、三二酸化鉄(Fe23)、硫酸第一鉄(FeSO3)等を例示することができ、これらは食品の鉄分補強材として用いられる安全性の高いものである。これらの無機系鉄化合物は、二価の鉄イオンの状態で生体内に吸収される。ここで塩化第二鉄及び三二酸化鉄については、三価の鉄イオンの化合物であるが、陰極水中の溶存水素ガス粒子によって還元されて2価の鉄イオンとなり、スーパーオキサイドに対して還元活性を有するものとなる。三価の鉄イオンは有機物と錯体形成反応をおこして沈殿する傾向があるため、二価の鉄イオンの状態であることは、鉄イオンを陰極水中に溶存させ得る点で有利であり、また二価の鉄イオンは生体内への吸収性が良いことが医学的に知られているので、陰極水の生体への吸収を促進することできる点でも有利である。
【0068】
また、有機系鉄化合物としては、クエン酸鉄(FeC657)、クエン酸鉄アンモニウム(Fe(NH42H(C6572)、鉄クロロフィリンナトリウム(Chlorophyll a,b−Fe)、ピロリン酸第一鉄(Fe227)、ピロリン酸第二鉄(Fe4(P273)等を挙げることができ、これらは食品の鉄分補強材として用いられる安全性の高いものである。これらの無機系鉄化合物は、二価の鉄イオンの状態で生体内に吸収される。ここでクエン酸鉄、クエン酸鉄アンモニウム、鉄クロロフィリンナトリウム及びピロリン酸第二鉄については、三価の鉄イオンの化合物であるが、陰極水中の溶存水素ガス粒子によって還元されて2価の鉄イオンとなり、スーパーオキサイドに対して還元活性を有するものとなる。特に、クエン酸やピロリン酸等を対とする化合物においては、陰極水のpHを酸性側にシフトさせる働きを有するものであり、この場合、鉄と有機物との錯体形成による沈殿の形成を防止する効果が期待できる。すなわち、上述の三価の鉄イオンと有機物との錯体形成は、アルカリ領域であるほど進行しやすいものであり、このため、陰極水のpHを酸性側にシフトさせることにより、鉄と有機物との錯体形成による沈殿を防止できるものである。尚、酸化還元物質等を添加することにより原水のpHが変動したとしても、陰極水における水素ガスの発生量はほとんど変化せず、陰極水中の溶存水素ガス粒子の発生量にはほとんど影響は及ばないものである。このことを証明する実験結果を図23に示す。
【0069】
図23は、種々のpHを有する溶液を原水として用いた場合の、電解電流密度に対する陰極水中の水素ガス濃度を示すものであり、横軸は電解電流密度を、縦軸は陰極水中の水素ガスの濃度をそれぞれ示す。図中の○は塩化カルシウムの5.7mmol/リットル溶液(pH7)、△は塩酸の10mmol/リットル溶液(pH2.1)、□は水酸化ナトリウムの10mmol/リットル溶液(pH12)をそれぞれ原水として用いた場合の水素ガス濃度を示す。図示の通り、原水のpHが変動しても陰極水における水素ガスの発生量はほどんど変化せず、陰極水中の溶存水素ガス粒子の発生量にほとんど影響を与えないことがわかる。
【0070】
また、水溶性生化学物質とは、酵素反応により生成され得る水溶性の物質であり、生体内における各種の還元性物質のうちの水溶性の物質である。このような水溶性生化学物質としては、アスコルビン酸ナトリウム(C67NaO6)等を挙げることができる。
【0071】
また、図1、2に示す電解水生成装置1には、陰極室流出路23に水質測定器8Aを設けると共に、陽極室流出路21に水質測定器8Bを設けている。陰極室流出路23に設けた水質測定器8Aは生成した陰極水中に含有する溶存水素ガスの濃度を測定するもので、陽極室流出路21に設けた水質測定器8Bは溶存酸素もしくは溶存塩素を測定するものある。陰極室流出路23に設けた水質測定器8Aに関する詳細について、図3(a)(b)を用いて説明する。
【0072】
図3(a)は、陰極水流出路23に配設された水質測定器8Aを示したものである。水質測定器8Aの容器本体45は、陰極室流出路23に連通するように設けるものであり、この容器本体45中には内部基準溶液46として飽和KCl溶液を満たしておく。ここで容器本体45には、容器本体45に形成した開口を塞ぐ蓋体48を設け、この蓋体48を開けることにより、容器本体45に内部基準用液46を入れるようにしている。また容器本体45と陰極室流出路23との間には、作用電極40を配置して、容器本体45の内部と陰極室流出路23の内部とを仕切るようにしている。ここで作用電極40は、白金42の片面に水素ガスが透過できる有機高分子膜41を設けた2層から成るものを用いるものであり、白金42を本体容器45内の内部基準溶液46側に、有機高分子膜41を陰極室流出路23内の陰極水側に配置するものである。ここで水素イオンが透過できる有機高分子膜としては、イオン選択透過膜を使用することができ、例えばデュ・ポン社製のナフィオン膜のような、ベース材料をポリテトラフルオロエチレンとした陽イオン交換基ペルフルオロスルホン酸膜や、旭化成製のフレミオン膜のような、陽イオン交換基ビニルエーテルとテトラフルオロエチレンの共重合体等を用いることができる。
【0073】
尚、図3には、水質測定器8Aを陰極水が連続的に流れる流路に設けたものを示したが、陰極室流出路23に、陰極水が滞留する滞留部を設け、この滞留部に水質測定器8Aを設けても良いものである。
【0074】
作用電極40の詳細を、図4乃至6を示して説明する。図4は、作用電極40を、有機高分子膜41の片面に、有機高分子膜41と同一寸法の白金板を接触させて添着することにより形成したものである。また図5は、作用電極40を、有機高分子膜41の片面に白金42をメッキ処理により形成したものである。また図6は、有機高分子膜41の片面に、ドーナツ状の白金板を添着することにより形成し、白金板を高分子膜の固定用として用いたものである。いずれの場合においても、白金42側を内部基準溶液46側に配置し、有機高分子膜41側を陰極室流出路23に配設している。
【0075】
また容器本体45の内部の内部基準溶液46内には、半電池である参照電極43としてAg/AgCl電極を配置している。ここにおいて、有機高分子膜41を透過した溶存水素ガス粒子は、作用電極40の白金42の表面において、下記の反応が進行し、結果として作用電極40に起電力が発生することとなる。
2→2H++2e-
また、参照電極43であるAg/AgCl電極の表面では、次の反応が進行する。
Ag+Cl-→AgCl+e-
AgCl+e-→Ag+Cl-
上記反応の結果、作用電極40と参照電極43との間に電位差を生じることとなり、この間に、溶存水素ガス粒子の濃度に比例した電流が流れることとなり、この電流を電流計49にて測定することにより、溶存水素ガス粒子の濃度を測定するものである。ここで実際には、10mAオーダーの電流が流れることとなる。
【0076】
図3(b)は、半電池反応の電極電位が既知である第3の電極、すなわち、図3(b)中における参照電極43としてAg/AgCl電極を配置して、アース代わりの電位基準とすると共に、対極44として、Ag/AgCl電極等の任意の電極を配置したものであり、また作用電極40、対極44、及び参照電極43を、ポテンシオスタット50に接続し、作用電極40と対極44との間の電位差V´を一定に保つように作用電極40と参照電極43との間の電位差Vを任意に制御し、作用電極40と参照電極43との間の電位差Vを測定することにより、作用電極40におけるH2→2H++2e-の反応に起因する電極電位を測定し、溶存水素ガス粒子の濃度を測定するものである。
【0077】
そして上記のような水質測定器8Aによる、陰極水中の溶存水素ガス粒子の濃度の測定結果により、所望の溶存水素ガス粒子濃度を有する陰極水を生成することができるように、電解条件を制御できるフィードバック機構を設けることにより、電解水生成装置1にて得られた陰極水中の溶存水素ガス粒子の濃度を、所望の濃度とするように、水質測定器8Aの測定結果を基にして電解条件を随時制御することができるものであり、また酸化性、還元性の指標である酸化還元電位をモニタリングする手法とは異なり、陰極水の生体内における還元活性に直接効果を及ぼす溶存水素ガスの溶存濃度を直接的に測定し、モニタリングすることができるため、安定した品質の電解水の製造が可能となる。
【0078】
また、陰極室流出路23に設ける水質測定器8Aとしては、図16に示すような、電気化学的原理によりpH、酸化還元電位、特定のイオンのイオン濃度を測定するものや電気伝導率を測定するものを用いることもできる。ここでは、水質測定器8Aとして電気化学的原理によりpHを測定するpHセンサ51と、電気化学的原理により酸化還元電位を測定する酸化還元電位センサ52とを備えるものを用いる。
【0079】
図16に示すように、pHセンサ51は、塩化カリウムの飽和水溶液にAg/AgCl電極を浸漬した比較電極53と、特殊ガラス電極に塩化カリウムの飽和水溶液を満たした作用電極54と、液絡部55とを備えるものであり、ハウジング56に設けた流路57に作用電極54および液絡部55を臨ませることにより流路57を通過する水の水素イオン濃度に比例した電圧が比較電極53と作用電極54との間に起電力として発生するようになっている。この起電力は適宜の増幅率を有する増幅器を用いて増幅されることによりpH値に応じた0〜5Vの電圧に変換されて検出される。
【0080】
また、酸化還元電位センサ52は、白金のような不溶性電極をガラスに封入した作用電極58を備え、作用電極58をハウジング56内の流路57に臨ませてある。酸化還元電位センサ52の比較電極はpHセンサ51の比較電極53を共用して用いており、比較電極53と作用電極58との間の相対電位差を酸化還元電位として検出する。検出された電位差は適宜の増幅率を有する増幅器により増幅され酸化還元電位に応じた0〜5Vの範囲の電圧に変換されて検出される。
【0081】
このように形成される水質測定器8Aを、流路57の二つの開口部57a,57aを陰極室流出路23の配管途中に連通させることにより流路57にて陰極室流出路23をバイパスし、流路57に流入する陰極水のpHと酸化還元電位を検出するものである。
【0082】
このよう構成される水質測定器8Aによる陰極水の測定結果に基づいて、電解槽2における電解条件をフィードバック制御することにより、陰極水中に溶存水素ガス粒子を安定して存在させるようにすることができる。以下、その理由を詳述する。
【0083】
水の電気分解による水素発生領域は、その水の酸化還元電位が、図18に示すプルべーダイアグラムにおける2H++2e-⇔H2の反応の、各pH値における反応電位を下回っている領域であるから、pHセンサ51によって陰極水のpHを測定すると共に酸化還元電位センサ52によって陰極水の酸化還元電位を測定し、陰極水の酸化還元電位がそのpH値における2H++2e-⇔H2の反応電位以下となっている場合(すなわち、酸化還元電位が水素発生領域にある場合)に、陰極水中において水素の濃度が飽和濃度に達して溶存水素ガス粒子が発生しているものである。従って、陰極水のpH値と酸化還元電位とを測定することにより、陰極水中に溶存水素ガス粒子が発生しているか否かが、判断できるものである。例えば、陰極水のpHが10である場合は、陰極水の酸化還元電位がAg/AgCl電極基準で約−770mV以下である場合に、陰極水中において水素の濃度が飽和濃度に達して溶存水素ガス粒子が発生しているものである。
【0084】
そして、この水質測定器8Aによる測定結果をフィードバックして電解槽2における電解条件を制御するようにし、水質測定器8Aによる測定結果によって、陰極水の酸化還元電位がそのpH値における水素発生領域の電位よりも高くなっていること(すなわち、陰極水中に溶存水素ガス粒子が存在しないこと)が確認されたら電解条件を変動させて、陰極水中における溶存水素ガス粒子の発生量を増大させるようにするものである。
【0085】
ここで、図16に示すような水質測定器8Aを用いて陰極水の酸化還元電位を測定する場合は、陰極水中の溶存酸素が攪乱要因となり、この溶存酸素濃度が高いと酸化還元電位を正確に測定することが困難となるが、既述のように隔膜5として水素イオンのみの選択的に透過するイオン交換膜を用いることにより陰極水中の溶存酸素濃度を低減すると、陰極水の酸化還元電位の測定精度を向上することができる。
【0086】
図15に示す電解水生成装置1は、図1の構成に加えて、原水流路7から陰極12Aを冷却するための陰極冷却流路49を設けたものである。
【0087】
図15に示す例では、陰極冷却流路49は、原水流路7を構成する陽極室流入路22から分岐し、陰極室14を通過した後、電解水生成装置1に導出されるように配設されており、陰極室14内において、陰極冷却流路49の管壁が陰極12Aに接するように陰極12Aの外面に沿って配設されている。このようにして陰極水冷却路49を設けると、原水流路7を流通する原水の一部は、陰極冷却流路49に流入し、陰極12Aの側方を流通する際に管壁を介して陰極12Aを冷却することとなる。
【0088】
このようにして陰極12Aを冷却するための陰極冷却流路49を設けると、陰極水中に発生する溶存水素ガス粒子の濃度を向上することができるものである。このことを証明する実験結果を図20に示す。
【0089】
図20は、1.7mmol/リットルの塩化ナトリウム溶液を原水として用いた場合の、陰極12Aの温度と陰極水中の溶存水素ガス粒子の濃度との関係を示すものであり、横軸は電解電流密度、縦軸は陰極水中の溶存水素ガス粒子の濃度をそれぞれ示す。図中の○は陰極12Aの温度を25℃に保った場合の溶存水素ガス粒子の濃度を、△は陰極12Aの温度を30℃に保った場合の溶存水素ガス粒子の濃度をそれぞれ示す。
【0090】
図示のように、陰極12Aの温度が低いほど、溶存水素ガス粒子の濃度が高くなるものであるが、原水の電解を継続的に行うと、陰極12Aの温度がジュール熱によって上昇し、陰極水12A中に発生する溶存水素ガス粒子の濃度が徐々に低減することとなる。
【0091】
そこで、図15に示すように、陰極冷却流路49を設けることによって、電解中の陰極12Aを冷却することにより、陰極水中に発生する溶存水素ガス粒子の濃度を向上することができるものである。
【0092】
ここで、陰極冷却流路49の管壁は、陰極12Aを効率良く冷却するために、金属等の熱伝導率の高い材質にて形成することが好ましく、例えばチタンや銅等の材質にて形成することが好ましい。
【0093】
図17は、陰極冷却流路49の他の構成の例を示すものである。
【0094】
図17(a)では、隔膜5の両側に陰極室14と陽極室18を形成して、陽極室18に陽極12Bを、陰極室14に陰極12Aをそれぞれ配設したものである。陰極12Aは中空に形成されて、この中空部分が陰極冷却流路49として形成されている。
【0095】
また図17(b)では、筒状に形成された隔膜5の内側に陰極室14を、外側に陽極室18をそれぞれ形成し、隔膜5の内側の陰極室14に陰極12Aを配設すると共に、隔膜5の外側を囲むように陽極室18に筒状の陽極12Bを配設したものである。この陰極12Aも中空に形成されて、この中空部分が陰極冷却流路49として形成されている。
【0096】
これらのようにして陰極冷却流路49を陰極12Aの内部を通過するように形成すると、陰極12Aと陰極冷却流路49との接触面積が大きくなり、陰極冷却流路49を流通する原水によって陰極12Aを効率よく冷却することができるものである。
【0097】
【発明の効果】
上記のように本発明の請求項1に係る電解水生成装置は、陽極が配設された陽極室と、陰極が配設された陰極室と、陽極室と陰極室を仕切るように配設された、陽イオンと陰イオンのうち少なくとも一方を通過させ得る隔膜とを備える電解槽を具備し、溶存イオンを含む原水から、有隔膜電解により陽極水と陰極水を生成すると共に陰極室にて生成される陰極水中に溶存水素ガス粒子を含ませることができる電解水生成装置であって、原水中に酸化還元物質を添加する酸化還元物質添加装置を具備するものであり、この溶存水素ガス粒子が、生体内において、活性酸素種により酸化された、酸化還元反応を受ける化学種の酸化反応を抑制し、還元状態を維持し、更に酸化型物質を還元型物質に還元し、還元型物質を有効に再生産することができるものであり、スーパーオキサイドやヒドロキシラジカル、過酸化水素等の活性酸素の存在下においても、このような酸化還元反応に関する制御効果が期待でき、このような陰極水を飲用に供することにより、消化器系障害、特に体内微生物に起因するもの含めた粘膜障害の抑制などの効果まで期待できるものである。
【0098】
更に、陰極水中には、生体内でスーパーオキサイドを還元することができる酸化還元物質と、スーパーオキサイドとの反応により酸化された酸化還元物質を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
また、原水中に酸化還元物質として、鉄化合物を添加する酸化還元物質添加装置を具備するものであり、陰極水中には、生体内でスーパーオキサイドを還元することができる鉄化合物と、スーパーオキサイドとの反応により酸化された鉄化合物を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
【0099】
また本発明の請求項2に係る電解水生成装置は、請求項1の構成に加えて、酸化還元物質添加装置として、原水中に無機系化合物に加えて、酸化還元物質を添加する電解質供給装置を具備するものであり、陰極水中には、生体内でスーパーオキサイドを還元することができる酸化還元物質と、スーパーオキサイドとの反応により酸化された酸化還元物質を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
【0100】
また本発明の請求項3に係る電解水生成装置は、請求項2の構成に加えて、酸化還元物質添加装置として、原水中に無機系化合物及び酸化還元物質に加えて、界面活性剤を添加する電解質供給装置を具備するものであり、陰極水中の溶存水素ガス粒子を界面活性剤により安定に維持することができるものである。
【0102】
また本発明の請求項に係る電解水生成装置は、請求項1乃至3のいずれかの構成に加えて、原水中に酸化還元物質として、無機系鉄化合物を添加する酸化還元物質添加装置を具備するものであり、陰極水中には、生体内でスーパーオキサイドを還元することができる無機系鉄化合物と、スーパーオキサイドとの反応により酸化された無機系鉄化合物を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
【0103】
また本発明の請求項に係る電解水生成装置は、請求項1乃至3のいずれかの構成に加えて、原水中に酸化還元物質として、有機系鉄化合物を添加する酸化還元物質添加装置を具備するものであり、陰極水中には、生体内でスーパーオキサイドを還元することができる有機系鉄化合物と、スーパーオキサイドとの反応により酸化された有機系鉄化合物を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
【0104】
また本発明の請求項に係る電解水生成装置は、請求項1乃至のいずれかの構成に加えて、原水中に酸化還元物質として、水溶性生化学物質を添加する酸化還元物質添加装置を具備するものであり、陰極水中には、生体内でスーパーオキサイドを還元することができる水溶性生化学物質と、スーパーオキサイドとの反応により酸化された水溶性生化学物質を還元して、再度、還元活性を有する形に再生産する溶存水素ガス粒子とが含まれることとなり、この陰極水を飲用に供することにより、陰極水中の成分のみにて、生体内のスーパーオキサイドを効率よく還元することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す概略図である。
【図2】本発明の実施の形態の他例を示す概略図である。
【図3】(a)(b)はそれぞれ本発明にて用いる水質測定器の例を示す概略断面図である。
【図4】本発明にて用いる作用電極の一例を示す斜視図である。
【図5】本発明にて用いる作用電極の他例を示す斜視図である。
【図6】本発明にて用いる作用電極の更に他例を示す斜視図である。
【図7】本発明の電解水生成装置にて生成された陰極水中の溶存水素ガス粒子の動的光散乱法による測定結果を示すグラフであり、(a)は粒径に対する光散乱強度の分布を、(b)は粒径に対する数平均値の分布をそれぞれ示したものである。
【図8】本発明の電解水生成装置にて生成された陰極水中の溶存水素ガス粒子の動的光散乱法による測定結果を示すグラフであり、粒径の平均値の経時変化を示すものである。
【図9】本発明の電解水生成装置にて生成された陰極水中の溶存水素ガス粒子の動的光散乱法による測定結果を示すグラフであり、粒径の分布を示すヒストグラムである。
【図10】本発明の電解水生成装置にて生成された陰極水中の溶存水素ガス粒子の動的光散乱法による測定結果を示すグラフであり、(a)は粒径の平均値の経時変化を、(b)は粒径の分布を示すヒストグラムをそれぞれ示すものである。
【図11】本発明の電解水生成装置にて生成された陰極水中の溶存水素ガス粒子の動的光散乱法による測定結果を示すグラフであり、電解電流密度に対する粒径の変化を示すものである。
【図12】本発明の電解水生成装置にて生成された陰極水中の溶存水素濃度の経時変化を示すグラフである。
【図13】本発明の電解水生成装置にて生成された陰極水と、Fe3+イオンとの反応速度を示すグラフである。
【図14】Fe2+イオン及びFe3+イオンと、活性酸素との反応性を示すグラフである。
【図15】本発明の実施の形態の更に他例を示す概略図である。
【図16】本発明にて用いる水質測定器の他例を示すものであり、(a)は正面の断面図、(b)は側面の断面図である。
【図17】(a)(b)はそれぞれ、陰極冷却流路の構成を説明する概略の斜視図である。
【図18】水の電気分解による酸素及び水素の発生のプルべーダイアグラムを示すグラフである。
【図19】本発明の電解水生成装置において、陰極の材質を変更した場合の電解電流密度に対する陰極水中の溶存水素ガス粒子の濃度の変化を示すグラフである。
【図20】本発明の電解水生成装置において、陰極の温度を変更した場合の電解電流密度に対する陰極水中の溶存水素ガス粒子の濃度の変化を示すグラフである。
【図21】本発明の電解水生成装置において、原水中の電解質を変更した場合の電解電流密度に対する陰極水中の溶存水素ガス粒子の濃度の変化を示すグラフである。
【図22】本発明の電解水生成装置において、電解質として塩化カルシウムを用いた場合の原水中の塩化カルシウム濃度を変更した場合の電解電流密度に対する陰極水中の溶存水素ガス粒子の濃度の変化を示すグラフである。
【図23】本発明の電解水生成装置において、原水のpH値を変更した場合の電解電流密度に対する陰極水中の溶存水素ガス粒子の濃度の変化を示すグラフである。
【符号の説明】
1 電解水生成装置
2 電解槽
5 隔膜
6 電解質供給装置
12A 陰極
12B 陽極
14 陰極室
18 陽極室

Claims (6)

  1. 陽極が配設された陽極室と、陰極が配設された陰極室と、陽極室と陰極室を仕切るように配設された、陽イオンと陰イオンのうち少なくとも一方を通過させ得る隔膜とを備える電解槽を具備し、溶存イオンを含む原水から、有隔膜電解により陽極水と陰極水を生成すると共に陰極室にて生成される陰極水中に溶存水素ガス粒子を含ませることができる電解水生成装置であって、原水中に酸化還元物質として、鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とする電解水生成装置。
  2. 酸化還元物質添加装置として、原水中に無機系化合物に加えて、酸化還元物質を添加する電解質供給装置を具備して成ることを特徴とする請求項1に記載の電解水生成装置。
  3. 酸化還元物質添加装置として、原水中に無機系化合物及び酸化還元物質に加えて、界面活性剤を添加する電解質供給装置を具備して成ることを特徴とする請求項2に記載の電解水生成装置。
  4. 原水中に酸化還元物質として、無機系鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とする請求項1乃至3のいずれかに記載の電解水生成装置。
  5. 原水中に酸化還元物質として、機系鉄化合物を添加する酸化還元物質添加装置を具備して成ることを特徴とする請求項1乃至3のいずれかに記載の電解水生成装置。
  6. 原水中に酸化還元物質として、水溶性生化学物質を添加する酸化還元物質添加装置を具備して成ることを特徴とする請求項1乃至5のいずれかに記載の電解水生成装置。
JP2000244980A 1998-11-25 2000-08-11 電解水生成装置 Expired - Fee Related JP3791311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244980A JP3791311B2 (ja) 1998-11-25 2000-08-11 電解水生成装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-333910 1998-11-25
JP33391098 1998-11-25
JP2000244980A JP3791311B2 (ja) 1998-11-25 2000-08-11 電解水生成装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33509399A Division JP3826645B2 (ja) 1998-11-25 1999-11-25 電解水生成装置

Publications (2)

Publication Number Publication Date
JP2001070944A JP2001070944A (ja) 2001-03-21
JP3791311B2 true JP3791311B2 (ja) 2006-06-28

Family

ID=26574673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244980A Expired - Fee Related JP3791311B2 (ja) 1998-11-25 2000-08-11 電解水生成装置

Country Status (1)

Country Link
JP (1) JP3791311B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249041A (zh) * 2006-08-04 2011-11-23 有限会社春天 溶解有活性氢分子的水的储存容器和供给装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154993A1 (en) * 2001-06-29 2004-08-12 Tomoyuki Yanagihara Method for antioxidation and antioxidative functional water
US20050170011A1 (en) * 2002-04-26 2005-08-04 Tomoyuki Yanagihara Method of inhibiting oxidation, water capable of inhibiting oxidation and use thereof
JP2004330146A (ja) * 2003-05-09 2004-11-25 Nippon Torimu:Kk 活性水素溶存水の製造方法、その製造方法により得られる活性水素溶存水および発癌抑制剤
JP4653945B2 (ja) * 2003-10-24 2011-03-16 ミズ株式会社 薬理機能水、およびその用途
JP2006255683A (ja) * 2005-03-18 2006-09-28 Yoshimi Sano 電気分解によるアルカリイオン水の生成方法および当該方法によって生成したアルカリイオン水
JP5238899B1 (ja) * 2012-07-13 2013-07-17 稔 菅野 殺菌水生成装置および殺菌洗浄方法
JP5907448B1 (ja) * 2015-09-03 2016-04-26 奥長良川名水株式会社 水素含有水の製造方法
JP6086165B1 (ja) * 2016-01-21 2017-03-01 奥長良川名水株式会社 水素含有水
CN112806849B (zh) * 2020-12-11 2022-12-27 武汉宝盈普济科技有限公司 一种具有饮水机功能的富氢水茶吧机及富氢水的生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249041A (zh) * 2006-08-04 2011-11-23 有限会社春天 溶解有活性氢分子的水的储存容器和供给装置

Also Published As

Publication number Publication date
JP2001070944A (ja) 2001-03-21

Similar Documents

Publication Publication Date Title
US6551492B2 (en) Electrolyzed water of anode side and process for production thereof
US11795074B2 (en) Half-cell electrochemical configurations for self-cleaning electrochlorination devices
JP3826645B2 (ja) 電解水生成装置
US8518225B2 (en) Apparatus and method for producing hydrogen-dissolved drinking water
JP3716042B2 (ja) 酸性水の製造方法及び電解槽
Kikuchi et al. Concentration of hydrogen nanobubbles in electrolyzed water
US20100310672A1 (en) Disinfectant based on aqueous; hypochlorous acid (hoci)-containing solutions; method for the production thereof and use thereof
JP3791311B2 (ja) 電解水生成装置
JP2002336856A (ja) 電解水製造装置、及び電解水の製造方法
KR101361651B1 (ko) 양극성 막을 사용하는 해수 전해 장치 및 이를 사용한 차아염소산 용액과 수소의 제조방법
JP2005058848A (ja) 洗浄・消毒・創傷治癒に用いられる水の製造方法、その製造装置、及び洗浄・消毒・創傷治癒に用いられる水
JP6366360B2 (ja) 水素分子を含有する電解還元水の製造方法およびその製造装置
JP2002301476A (ja) アスコルビルグルコサミン電解生成水、及びその製造方法
JP3363248B2 (ja) 殺菌水、その製造法及び製造装置
JP3561130B2 (ja) 過酸化水素製造用電解槽
JP6847477B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
JP4181170B2 (ja) 飲用電解水及びその製造方法
JP3205698B2 (ja) アルカリ性電解水
Grinval'd et al. Development and testing of a unit for electrochemical oxidation of products of hemodialysis
JP2689076B2 (ja) エッチング液の能力回復維持方法
JP2001079549A (ja) 電解水の製造方法、陰極側電解生成水、電解助剤および水の電気分解装置
JPH08119605A (ja) 次亜塩素酸系処理用液の製造方法
JPH0780457A (ja) 電解水の生成方法および生成装置
JP4130763B2 (ja) 非酸化性強酸性水の生成方法
JPH07185554A (ja) 電解生成水の溶存酸素濃度の低下方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees