JP3791053B2 - Conductive adhesive and electronic component mounting apparatus - Google Patents

Conductive adhesive and electronic component mounting apparatus Download PDF

Info

Publication number
JP3791053B2
JP3791053B2 JP17190596A JP17190596A JP3791053B2 JP 3791053 B2 JP3791053 B2 JP 3791053B2 JP 17190596 A JP17190596 A JP 17190596A JP 17190596 A JP17190596 A JP 17190596A JP 3791053 B2 JP3791053 B2 JP 3791053B2
Authority
JP
Japan
Prior art keywords
adhesive
silane coupling
coupling agent
conductive adhesive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17190596A
Other languages
Japanese (ja)
Other versions
JPH09328671A (en
Inventor
一秀 佐藤
幸男 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17190596A priority Critical patent/JP3791053B2/en
Publication of JPH09328671A publication Critical patent/JPH09328671A/en
Application granted granted Critical
Publication of JP3791053B2 publication Critical patent/JP3791053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【技術分野】
本発明は,シリコーン樹脂と導電性フィラー等よりなる導電性接着剤及びこれを用いた電子部品搭載装置に関する。
【0002】
【従来技術】
従来,導電回路を設けたアルミナ基板に対し,導電性接着剤を介して電子部品を接着してなる電子部品搭載装置がある(後述の図6参照)。
上記電子回路と上記電子部品との間の電気的接合は,上記導電性接着剤により確保される。そのため,上記導電性接着剤は導電性に優れていることが要求される。
このような導電性接着剤には,従来,特開昭61−228074号,特開平1−294784号に示すされるものが提案されていた。
【0003】
【解決しようとする課題】
このような導電性接着剤では,導電性フィラーの粒径及び形状の改良をすることによって,導電性を向上させている。しかし,このような導電性接着剤において,たとえ,耐熱性の良好なシリコーン樹脂と導電性フィラーを採用したとしても,いまだ,十分な初期導電性を得ることができない。さらには,高温放置後の高温での十分な導電性を得ることができないという問題が生じる。
【0004】
本発明は,上記問題に鑑み,導電性に優れ,かつ耐熱性を有する導電性接着剤及びこれを用いた電子部品搭載装置を提供しようとするものである。
【0005】
【課題の解決手段】
そこで,本発明者らは,導電性,耐熱性に優れた導電性接着剤について鋭意研究を重ねたところ,接着硬化後の弾性率が導電性と相関関係にあることを見出した。
そもそも,導電性接着剤の導電性は,導電性フィラーの接触によりなる。そして,この導電性フィラーの接触は,樹脂の導電性フィラーの拘束力に起因している。
【0006】
そこで,我々発明者らは,導電性フィラーの拘束力として,弾性率と導電性との関係を測定したところ,後述する図1に示すごとく,硬化後の接着剤の弾性率と抵抗値との間に相関関係があることを見出したのである。即ち,弾性率が高くなるにつれて,導電性フィラーの拘束力が増加し,体積抵抗率を急激に減少させることができ,導電性を急激に向上させることができることを見出したのである。
【0007】
請求項1の発明は,シリコーン樹脂と導電性フィラーとからなる接着剤主体に対して,シランカップリング剤を添加してなると共に,
体積抵抗率が3×10-3Ωcm以下,接着硬化後の弾性率が50MPa以上であり,
かつ上記シランカップリング剤は,エポキシ基またはメタクリロキシ基を含有するシランカップリング剤の1種または2種以上を用いてなることを特徴とする導電性接着剤にある。
【0008】
上記シランカップリング剤として,エポキシ基を含有するものとしてはγ−グリシドキシプロピルトリメトキシシラン,β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン,γ−グリシドキシプロピルメチルジエトキシシラン,γ−グリシドキシプロピルトリエトキシシラン等がある。
【0009】
また,メタクリロキシ基を含有するものとしてはγ−メタクリロキシプロピルトリエトキシシラン,γ−メタクリロキシプロピルメチルジメトキシシラン,γ−メタクリロキシプロピルトリメトキシシラン等がある。
そして,これらシランカップリング剤の1種または2種以上を用いる。
【0010】
上記体積抵抗率は,上記導電性接着剤が硬化した後,常温において測定した値である(後述の実施形態例1参照)。
上記体積抵抗率が3×10-3Ωcmより大きい場合には,導電性接着剤として充分な導電性が発揮されないおそれがある。
【0011】
なお,上記体積抵抗率の下限は,上記導電性接着剤に含有される導電性フィラーの体積抵抗率に等しい。
従って,上記導電性フィラーとして,例えば,Agを使用する場合には,銀の体積抵抗率,1.6×10-6Ωcmが上記導電性接着剤の体積抵抗率の下限となる。
【0012】
上記弾性率が,50MPa未満である場合には,導電性接着剤の抵抗値が増大し,導電性接着剤としての役割が果たせなくなるおそれがある。
また,上記弾性率の上限は6GPaであることが好ましい。
上記弾性率が6GPaよりも大きい場合には,被着体である電子部品の特性変動やクラック発生,または導電性接着剤のクラックが発生するおそれがある。
【0013】
また,上記シリコーン樹脂としては,例えば,オルガノポリシロキサン等を使用することができる。
上記導電性フィラーとしては,例えば,Ag,C,Ni,Cu,Au等を使用することができる。
また,上記接着剤主体には,硬化促進を目的とし,例えば,Pt系等の触媒を添加することができる。
【0014】
また,本発明においては,上記特定のシランカップリング剤を添加しているので,導電性接着剤の抵抗値が熱処理の前後において変化しない。従って,本発明の導電性接着剤は耐熱性にも優れている。
【0015】
以上のように,本発明によれば,導電性に優れ,かつ耐熱性を有する導電性接着剤を提供することができる。
【0016】
なお,本発明の導電性接着剤は,メタノールまたはエタノール等のアルコールと混合して使用または保管することができる。
即ち,本発明にかかる導電性接着剤はシランカップリング剤が添加されているため,硬化反応が速い。一方,上記メタノールまたはエタノール等アルコールとの混合により,この硬化反応が遅延する。そのため,接着作業が容易となる。また,上記導電性接着剤の保存安定性も高くなる。
【0017】
次に,請求項2の発明のように,上記接着剤主体(100重量%)に対してシランカップリング剤は,1〜8重量%添加してなることが好ましい。
上記シランカップリング剤の添加量が1重量%未満である場合には,弾性率が小さく,導電性が向上しないおそれがある。一方,上記シランカップリング剤の添加量が8重量%を越えた場合には,導電性フィラーの含有率が減少してしまい,導電性が低下するおそれがある。
【0018】
なお,本発明にかかる導電性接着剤は,後述するごとく電子部品搭載装置における導電回路と電子部品との間の接着に使用する他,導電回路そのものに使用したり,電磁波シールド材として使用することができる。
【0019】
次に,請求項3は,導電回路を設けた基板に導電性接着剤を介して電子部品を接着してなる電子部品搭載装置において,
上記導電性接着剤はシリコーン樹脂と導電性フィラーとからなる接着剤主体に対して,シランカップリング剤を添加してなると共に,
体積抵抗率が3×10-3Ωcm以下,接着硬化後の弾性率が50MPa以上であり,
かつ上記シランカップリング剤は,エポキシ基またはメタクリロキシ基を含有するシランカップリング剤の1種または2種を用いてなることを特徴とする電子部品搭載装置にある。
【0020】
本発明の電子部品搭載装置には,上述した優れた導電性を有する導電性接着剤が使用されている。このため,電子部品と導電回路との間の優れた導通を得ることができる。
また,上記電子部品搭載装置を作製する際に,例えば後述する蓋体の接着等のように加熱工程を行うことがある。上記導電性接着剤は,上述したごとく耐熱性に優れているため,上記加熱工程に伴う不良品の発生を防止することができる。以上のように,本発明によれば,導電性に優れ,かつ耐熱性を有する電子部品装置を提供することができる。
【0021】
また,請求項4の発明のように,上記接着剤主体(100重量%)に対してシランカップリング剤は,1〜8重量%添加してなることが好ましい。その理由は,上記と同様である。
【0022】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる導電性接着剤及びその性質,性能につき,図1〜図5を用いて説明する。
本例の導電性接着剤は,シリコーン樹脂と導電性フィラーと触媒とからなる接着剤主体に対して,シランカップリング剤を添加してなる。
そして,上記導電性接着剤は硬化してゴム状となった状態における室温での体積抵抗率が3×10-3Ωcm以下,弾性率が50MPa以上である。
【0023】
また,本例において,上記シランカップリング剤はγ−グリドキシプロピルトリメトキシシランであり,このものはエポキシ基を含有しているものである。
上記導電性フィラーはAg,上記触媒はPt系である。
【0024】
上記導電性接着剤の弾性率と抵抗値との関係につき,図1を用いて説明する。即ち,同図は導電性接着剤の弾性率を徐々に変えた場合の抵抗値の変化を示している。上記弾性率は接着剤主体100重量%に対し,シランカップリング剤を各種の割合(重量%)で添加することにより調整したものである。
【0025】
また,同図において試料aはシリコーン樹脂100重量部に対し導電性フィラーを400重量部添加し,更に触媒を10ppm重量部混合した接着剤主体100重量%に対し,シランカップリング剤を上記のごとく添加したものである。
また,試料bはシリコーン樹脂100重量部に対し導電性フィラーを560重量部添加したものである。その他は試料aと同様である。
【0026】
次に,上記抵抗値の測定方法につき説明する。
まず,導電性接着剤よりなるシート状のダンベルの作製方法につき説明する。上記抵抗値はこのダンベルを用いて測定する。
図3(a),(b)に示すごとく,幅50mm×長さ50mmのセラミック基板30を準備する。そして,その片面の全面にテフロン粘着テープ31[トップ(名古屋科学機器)製,4082−03]を貼った。
【0027】
次に,上記テフロン粘着テープ31を貼った面に,厚さ50μmのメンディングテープ32[住友スリーエム株式会社製,810−1−12]を,6枚重ね,厚さ300μmとし,図3に示すごとく,4ヶ所に貼着した。この時,メンディングテープ32同士の間隙39を5mmとした。
【0028】
次に,上記間隙39にピストン攪拌した導電性接着剤を塗布し,幅10mm以上のスキージ用ヘラを用いて印刷を行った。次いで,上記6枚重ねのメンディングテープ32を剥した。
【0029】
次に,上記セラミック基板30を温度150℃に保持されたシリコーン樹脂硬化専用恒温槽に投入し,セラミック基板30上の導電性接着剤を硬化させた。恒温槽投入1時間後に,上記セラミック基板30を取出した。
そして,硬化した導電性接着剤を上記セラミック基板30より剥がし,シート状のダンベル(幅5mm×長さ40mm×厚さ0.3mm)とした。
【0030】
次に,上記ダンベルを用いた抵抗値の測定方法につき説明する。
図4に示すごとく,温度調整可能な熱板49の上に50mm×50mmのセラミック基板41を配置する。
次いで,上記セラミック基板41の上に上記方法(図3)で作製したダンベル2を載置する。
次いで,上記ダンベル2の上に,下面の左右にそれぞれ電極42を設けた測定治具44を載置した。そして,上記測定治具44の電極42と導通した導線43に対し,デジタルマルチメーター40を接続した。
【0031】
上記測定治具44における2枚の電極42間の距離,即ち測定ギャップaは5mm,電極42の大きさは幅8mm×長さ8mm,また測定治具44の重さは,上記抵抗値の測定に当たって,ダンベル2に対し110gの加圧力を加えることが可能な重さとした。
また,上記測定は3回行い,測定値の平均をとって抵抗値とした。
【0032】
また,上記弾性率の測定方法につき説明する。
上述の方法(図3)にて製作したダンベル2の両端を,図5に示すごとく,チャック50にて,チャック間距離bを10mmとなるように固定し,これを測定周波数10Hzで,粘弾性スペクトロメータ[岩本製作所(株)製,VES−HC]を用いて測定した。
なお,同図において符号53は固定用ボルトである。
【0033】
以上の測定を,試料a,試料bについて図1に示した。
同図によれば,弾性率の増大と共に抵抗値が激減することが分かった。
【0034】
次に,図2を用いて,接着剤主体(100重量%)に対するシランカップリング剤の添加量(重量%)と弾性率,抵抗値との間の関係を説明する。
同図において,上記試料aにかかる接着剤主体に対し,シランカップリング剤の添加量を種々に変えたものを準備し,弾性率及び抵抗値は上述と同様の方法にて測定した。これらの値を図2にプロットした。
【0035】
同図によれば,シランカップリング剤の添加量を,接着剤主体に対し1〜8重量%添加することにより,抵抗値が0.1Ω以下,弾性率が50MPa以上となる導電性接着剤を得られることが分かる。
弾性率増加により導電性が向上するのは前述の様に導電性フィラーの接触が良好となるためである。この場合,およそ弾性率50MPaの付近を境として,導電性フィラーの接触は急激に良好となる。
なお,本例の測定法における上記抵抗値0.1Ωは,体積抵抗率に換算すると3×10-3Ωcmである。
【0036】
実施形態例2
本例は,本発明の導電性接着剤にかかる試料1,試料2を比較試料C1〜C4と比較説明したものである。
表1に示すごとく,試料1,2,比較試料C1〜C4は,それぞれ同成分の接着剤主体(100重量%)に対し,シランカップリング剤の量(重量%)を変えて添加したものである。
試料1はエポキシ基を含有するシランカップリング剤を,試料2はメタクリロキシ基を含有するシランカップリング剤を添加した導電性接着剤である。
【0037】
また,比較試料C1はシランカップリング剤を含有しない導電性接着剤である。比較試料C2はアミノ基を含有するシランカップリング剤を,比較試料C3はビニル基を含有するシランカップリング剤を添加した導電性接着剤である。
また,比較試料C4はエポキシ基を含有するシランカップリング剤を添加した導電性接着剤である。ただし,シランカップリング剤の添加量が試料1と比較して極めて少ない。
【0038】
また,各試料1,2,比較試料C1〜C4の弾性率は,上記実施形態例1に示したように,導電性接着剤より作製したダンベルを用いて,実施形態例1と同様の方法にて測定した値を,表1の弾性率,『初期』の欄にそれぞれ記した。また,得られたダンベルを熱処理した後に同様に測定した弾性率を,表1の弾性率の『熱処理後』の欄に記した。
なお,上記熱処理は,ダンベルを温度365℃に設定したN2 連続炉に2回(計20分)投入することにより行った。
【0039】
また,各試料1,2,比較試料C1〜C4の抵抗値は,上記のごとく作製したダンベルを用いて,実施形態例1と同様の方法にて測定した。その値を,表1の抵抗値の『初期』の欄にそれぞれ記した。
ただし,上記測定はRT(室温)及び上記ダンベルを温度150℃に保持した状態でそれぞれ行った。
【0040】
温度150℃におけるダンベルの抵抗値の測定は,上記図4に示すごとく,ダンベル2を熱板49の上に配置した後,上記熱板49の温度を高め,セラミック基板41の表面温度を150℃に昇温し,この状態のままダンベル2を3分間放置し,ダンベル2を昇温させた。その後,上記室温での測定と同様にしてダンベル2の抵抗値を測定した。
一方,同様に,上述の熱処理を施したダンベルについてRT及び温度150℃において抵抗値を測定し,表1の抵抗値,『熱処理後』の欄に記した。
【0041】
同表に示すごとく,試料1及び試料2の抵抗値は初期においても,熱処理後においてもほぼ同じ値で,常に優れた導電性を有していることが分かった。
また,比較試料C1,C3,C4は,初期のRTにおける抵抗値が試料1,試料2と比較して非常に大きく,導電性について大きく劣っていることが分かった。更に,比較試料C1,C3,C4の温度150℃における抵抗値はRTにおける抵抗値よりも更に大きく,温度が高まることにより,導電性が更に悪化することが分かった。
【0042】
その上,熱処理後の抵抗値についても,比較試料C1,C3,C4の抵抗値は試料1,試料2と比較して非常に大きく,導電性について大きく劣っていることが分かった。更に,比較試料C1,C3については,温度150℃における抵抗値は4MΩを越えオーバーロード(表中のOL)の状態となり,導電性が失われてしまうことが分かった。
また,比較試料C4の温度150℃における抵抗値は,比較試料C1,C3よりは低いが,試料1,試料2に比べると大きく劣っていることが分かった。
また,比較試料C2については,そもそも硬化しなかったことから,接着剤として使用不能であることが分かった。
【0043】
以上により,本発明にかかるシランカップリング剤を接着剤主体に添加することにより得られた導電性接着剤は,優れた耐熱性と導電性とを有していることが分かった。また,シランカップリング剤であっても,ビニル基含有のもの,またアミノ基含有のものでは,本発明にかかる効果を得ることができないことが分かった。
【0044】
【表1】

Figure 0003791053
【0045】
実施形態例3
本例は実施形態例2の試料1にかかる導電性接着剤を使用した電子部品搭載装置につき図6を用いて説明する。
図6に示すごとく,上記電子部品搭載装置10は,導電回路12を設けた多層基板19に,導電性接着剤1を介して電子部品11を接着してなる。
上記多層基板19には,導電パッド12,スルーホール15,内層回路14,外層回路120よりなる回路が形成されている。多層基板19は,アルミナ基板190を積層接着することにより構成されている。
【0046】
なお,上記電子部品搭載装置10の製造に当たっては,多層基板19に形成された搭載凹部190の導電パッド12に対し導電性接着剤1を塗布し,その上に電子部品11を載置し,150℃に加熱して,接着硬化させる。
上記電子部品11の硬化後には,導電回路125と電子部品11との間をボンディングワイヤー13にて接続する。
【0047】
最後に,上記搭載凹部190を窒素ガスで充填しつつ,搭載凹部190の上端に封着用ガラス109を介して蓋体100を積層固定する。
上記積層固定は300℃程度の温度雰囲気にて,封着用ガラス109を溶融させて行った。
【0048】
本例の電子部品搭載装置10においては,導電性と耐熱性に優れた導電性接着剤1を用いて電子部品11を取付けてある。このため,上記蓋体100の積層固定の際に加熱されても,導電性接着剤1がその導電性を失うことがない。
【図面の簡単な説明】
【図1】実施形態例1における,導電性接着剤の抵抗値と弾性率との関係を示す線図。
【図2】実施形態例1における,導電性接着剤の弾性率及び抵抗値とシランカップリング剤の添加量との関係を示す線図。
【図3】実施形態例1における,導電性接着剤の抵抗値の測定の際に使用したダンベルの製造方法を示す説明図。
【図4】実施形態例1における,導電性接着剤の抵抗値の測定方法の説明図。
【図5】実施形態例1における,導電性接着剤の弾性率の測定方法の説明図。
【図6】実施形態例3における,電子部品搭載装置の断面説明図。
【符号の説明】
1...導電性接着剤,
10...電子部品搭載装置,
11...電子部品,[0001]
【Technical field】
The present invention relates to a conductive adhesive comprising a silicone resin and a conductive filler and an electronic component mounting apparatus using the same.
[0002]
[Prior art]
Conventionally, there is an electronic component mounting apparatus in which an electronic component is bonded to an alumina substrate provided with a conductive circuit via a conductive adhesive (see FIG. 6 described later).
The electrical connection between the electronic circuit and the electronic component is ensured by the conductive adhesive. For this reason, the conductive adhesive is required to have excellent conductivity.
As such a conductive adhesive, those shown in JP-A-61-228074 and JP-A-1-294784 have been proposed.
[0003]
[Problems to be solved]
In such a conductive adhesive, the conductivity is improved by improving the particle size and shape of the conductive filler. However, in such a conductive adhesive, even if a heat-resistant silicone resin and a conductive filler are used, sufficient initial conductivity cannot be obtained yet. Furthermore, there arises a problem that sufficient conductivity at a high temperature after being left at a high temperature cannot be obtained.
[0004]
In view of the above problems, the present invention intends to provide a conductive adhesive having excellent conductivity and heat resistance, and an electronic component mounting apparatus using the same.
[0005]
[Means for solving problems]
Accordingly, the present inventors have conducted extensive research on conductive adhesives having excellent conductivity and heat resistance, and found that the elastic modulus after adhesive curing is correlated with the conductivity.
In the first place, the conductivity of the conductive adhesive is based on the contact of the conductive filler. The contact of the conductive filler is caused by the restraining force of the resin conductive filler.
[0006]
Therefore, the inventors measured the relationship between the elastic modulus and the conductivity as the binding force of the conductive filler. As shown in FIG. 1 to be described later, the relationship between the elastic modulus and the resistance value of the cured adhesive was obtained. They found that there was a correlation between them. That is, it has been found that as the elastic modulus increases, the binding force of the conductive filler increases, the volume resistivity can be rapidly decreased, and the conductivity can be rapidly improved.
[0007]
The invention of claim 1 is obtained by adding a silane coupling agent to an adhesive main body composed of a silicone resin and a conductive filler,
The volume resistivity is 3 × 10 −3 Ωcm or less, and the elastic modulus after adhesive curing is 50 MPa or more.
And the said silane coupling agent exists in the electrically conductive adhesive characterized by using 1 type, or 2 or more types of the silane coupling agent containing an epoxy group or a methacryloxy group.
[0008]
As the silane coupling agent, those containing an epoxy group include γ-glycidoxypropyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane and the like.
[0009]
Examples of those containing a methacryloxy group include γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-methacryloxypropyltrimethoxysilane.
One or more of these silane coupling agents are used.
[0010]
The volume resistivity is a value measured at room temperature after the conductive adhesive is cured (see Example 1 described later).
When the volume resistivity is larger than 3 × 10 −3 Ωcm, there is a possibility that sufficient conductivity as a conductive adhesive may not be exhibited.
[0011]
The lower limit of the volume resistivity is equal to the volume resistivity of the conductive filler contained in the conductive adhesive.
Therefore, for example, when Ag is used as the conductive filler, the volume resistivity of silver, 1.6 × 10 −6 Ωcm, is the lower limit of the volume resistivity of the conductive adhesive.
[0012]
When the elastic modulus is less than 50 MPa, the resistance value of the conductive adhesive increases, and the role as the conductive adhesive may not be achieved.
The upper limit of the elastic modulus is preferably 6 GPa.
When the elastic modulus is larger than 6 GPa, there is a possibility that characteristic fluctuations and cracks of the electronic parts as adherends or cracks of the conductive adhesive may occur.
[0013]
Moreover, as said silicone resin, organopolysiloxane etc. can be used, for example.
For example, Ag, C, Ni, Cu, Au, or the like can be used as the conductive filler.
In addition, for the purpose of accelerating curing, for example, a Pt-based catalyst or the like can be added to the adhesive main body.
[0014]
In the present invention, since the specific silane coupling agent is added, the resistance value of the conductive adhesive does not change before and after the heat treatment. Therefore, the conductive adhesive of the present invention is excellent in heat resistance.
[0015]
As described above, according to the present invention, a conductive adhesive having excellent conductivity and heat resistance can be provided.
[0016]
The conductive adhesive of the present invention can be used or stored by mixing with alcohol such as methanol or ethanol.
That is, the conductive adhesive according to the present invention has a fast curing reaction since a silane coupling agent is added. On the other hand, this curing reaction is delayed by mixing with the alcohol such as methanol or ethanol. Therefore, the bonding work becomes easy. In addition, the storage stability of the conductive adhesive is increased.
[0017]
Next, as in the invention of claim 2, it is preferable to add 1 to 8% by weight of the silane coupling agent with respect to the adhesive main body (100% by weight).
When the addition amount of the silane coupling agent is less than 1% by weight, the elastic modulus is small and the conductivity may not be improved. On the other hand, when the addition amount of the silane coupling agent exceeds 8% by weight, the content of the conductive filler decreases, and the conductivity may decrease.
[0018]
The conductive adhesive according to the present invention is used not only for bonding between a conductive circuit and an electronic component in an electronic component mounting apparatus as described later, but also for a conductive circuit itself or as an electromagnetic shielding material. Can do.
[0019]
Next, claim 3 is an electronic component mounting apparatus in which an electronic component is bonded to a substrate provided with a conductive circuit via a conductive adhesive.
The conductive adhesive is formed by adding a silane coupling agent to an adhesive mainly composed of a silicone resin and a conductive filler,
The volume resistivity is 3 × 10 −3 Ωcm or less, and the elastic modulus after adhesive curing is 50 MPa or more.
And the said silane coupling agent exists in the electronic component mounting apparatus characterized by using 1 type or 2 types of the silane coupling agent containing an epoxy group or a methacryloxy group.
[0020]
The electronic component mounting apparatus of the present invention uses the above-described conductive adhesive having excellent conductivity. For this reason, excellent conduction between the electronic component and the conductive circuit can be obtained.
Moreover, when producing the said electronic component mounting apparatus, a heating process may be performed like the adhesion | attachment of the cover body mentioned later, for example. Since the conductive adhesive is excellent in heat resistance as described above, it is possible to prevent the occurrence of defective products due to the heating process. As described above, according to the present invention, an electronic component device having excellent conductivity and heat resistance can be provided.
[0021]
Further, as in the invention of claim 4, it is preferable to add 1 to 8% by weight of the silane coupling agent with respect to the adhesive main body (100% by weight). The reason is the same as above.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A conductive adhesive according to an embodiment of the present invention and its properties and performance will be described with reference to FIGS.
The conductive adhesive of this example is obtained by adding a silane coupling agent to an adhesive mainly composed of a silicone resin, a conductive filler, and a catalyst.
The conductive adhesive has a volume resistivity at room temperature of 3 × 10 −3 Ωcm or less and a modulus of elasticity of 50 MPa or more in a cured and rubbery state.
[0023]
In this example, the silane coupling agent is γ-gridoxypropyltrimethoxysilane, which contains an epoxy group.
The conductive filler is Ag, and the catalyst is Pt.
[0024]
The relationship between the elastic modulus and resistance value of the conductive adhesive will be described with reference to FIG. That is, this figure shows a change in resistance value when the elastic modulus of the conductive adhesive is gradually changed. The elastic modulus is adjusted by adding a silane coupling agent in various proportions (% by weight) to 100% by weight of the adhesive.
[0025]
Further, in the same figure, sample a is obtained by adding 400 parts by weight of a conductive filler to 100 parts by weight of a silicone resin, and further adding a silane coupling agent as described above to 100% by weight of an adhesive mainly containing 10 ppm by weight of a catalyst. It is what was added.
Sample b is obtained by adding 560 parts by weight of a conductive filler to 100 parts by weight of silicone resin. Others are the same as the sample a.
[0026]
Next, a method for measuring the resistance value will be described.
First, a method for producing a sheet-like dumbbell made of a conductive adhesive will be described. The resistance value is measured using this dumbbell.
As shown in FIGS. 3A and 3B, a ceramic substrate 30 having a width of 50 mm and a length of 50 mm is prepared. Then, Teflon adhesive tape 31 [Top (Nagoya Scientific Instruments), 4082-03] was pasted on the entire surface of one side.
[0027]
Next, on the surface on which the Teflon adhesive tape 31 is affixed, six sheets of mending tape 32 (Sumitomo 3M Limited, 810-1-12) having a thickness of 50 μm are stacked to a thickness of 300 μm, as shown in FIG. As you can see, it was stuck in four places. At this time, the gap 39 between the mending tapes 32 was set to 5 mm.
[0028]
Next, a conductive adhesive with piston stirring was applied to the gap 39, and printing was performed using a squeegee spatula having a width of 10 mm or more. Next, the six-layered mending tape 32 was peeled off.
[0029]
Next, the ceramic substrate 30 was placed in a thermostat dedicated to curing a silicone resin maintained at a temperature of 150 ° C., and the conductive adhesive on the ceramic substrate 30 was cured. The ceramic substrate 30 was taken out after 1 hour from the introduction of the constant temperature bath.
Then, the cured conductive adhesive was peeled off from the ceramic substrate 30 to form a sheet-like dumbbell (width 5 mm × length 40 mm × thickness 0.3 mm).
[0030]
Next, a method for measuring the resistance value using the dumbbell will be described.
As shown in FIG. 4, a 50 mm × 50 mm ceramic substrate 41 is disposed on a temperature-adjustable hot plate 49.
Next, the dumbbell 2 produced by the above method (FIG. 3) is placed on the ceramic substrate 41.
Next, a measuring jig 44 provided with electrodes 42 on the left and right sides of the lower surface was placed on the dumbbell 2. A digital multimeter 40 was connected to the conductive wire 43 that was in electrical communication with the electrode 42 of the measuring jig 44.
[0031]
The distance between the two electrodes 42 in the measurement jig 44, that is, the measurement gap a is 5 mm, the size of the electrode 42 is 8 mm wide × 8 mm long, and the weight of the measurement jig 44 is the measurement of the resistance value. In this case, a weight capable of applying a pressure of 110 g to the dumbbell 2 was used.
The above measurement was performed three times, and the average of the measured values was taken as the resistance value.
[0032]
A method for measuring the elastic modulus will be described.
As shown in FIG. 5, both ends of the dumbbell 2 manufactured by the above method (FIG. 3) are fixed with a chuck 50 so that the distance b between chucks is 10 mm, and this is viscoelastic at a measurement frequency of 10 Hz. The measurement was performed using a spectrometer [Iwamoto Seisakusho Co., Ltd., VES-HC].
In the figure, reference numeral 53 denotes a fixing bolt.
[0033]
The above measurement is shown in FIG. 1 for sample a and sample b.
According to the figure, it was found that the resistance value drastically decreases as the elastic modulus increases.
[0034]
Next, the relationship between the addition amount (wt%) of the silane coupling agent with respect to the adhesive main body (100 wt%), the elastic modulus, and the resistance value will be described with reference to FIG.
In the same figure, the adhesive mainly applied to the sample a was prepared by changing the addition amount of the silane coupling agent in various ways, and the elastic modulus and resistance value were measured by the same method as described above. These values are plotted in FIG.
[0035]
According to the figure, a conductive adhesive having a resistance value of 0.1Ω or less and an elastic modulus of 50 MPa or more by adding 1 to 8% by weight of the silane coupling agent with respect to the adhesive main body. You can see that
The reason why the conductivity is improved by the increase in the elastic modulus is that the contact of the conductive filler becomes good as described above. In this case, the contact of the conductive filler is rapidly improved with the elastic modulus of about 50 MPa as a boundary.
The resistance value 0.1Ω in the measurement method of this example is 3 × 10 −3 Ωcm in terms of volume resistivity.
[0036]
Embodiment 2
In this example, Sample 1 and Sample 2 according to the conductive adhesive of the present invention are compared with Comparative Samples C1 to C4.
As shown in Table 1, Samples 1 and 2 and Comparative Samples C1 to C4 were added by changing the amount (% by weight) of the silane coupling agent with respect to the adhesive component (100% by weight) of the same component. is there.
Sample 1 is a conductive adhesive to which a silane coupling agent containing an epoxy group is added, and sample 2 is a conductive adhesive to which a silane coupling agent containing a methacryloxy group is added.
[0037]
Comparative sample C1 is a conductive adhesive that does not contain a silane coupling agent. Comparative sample C2 is a conductive adhesive to which an amino group-containing silane coupling agent is added, and comparative sample C3 is a vinyl group-containing silane coupling agent.
Comparative sample C4 is a conductive adhesive to which a silane coupling agent containing an epoxy group is added. However, the amount of silane coupling agent added is very small compared to Sample 1.
[0038]
In addition, the elastic modulus of each of the samples 1 and 2 and the comparative samples C1 to C4 is the same as that of the first embodiment using a dumbbell made of a conductive adhesive as shown in the first embodiment. The values measured in the above are shown in the elastic modulus and “initial” columns of Table 1, respectively. The elastic modulus measured in the same manner after heat-treating the obtained dumbbells is shown in the column of “After heat treatment” of the elastic modulus in Table 1.
The heat treatment was performed by placing the dumbbell twice (total 20 minutes) in a N 2 continuous furnace set at a temperature of 365 ° C.
[0039]
In addition, the resistance values of Samples 1 and 2 and Comparative Samples C1 to C4 were measured by the same method as in Example 1 using the dumbbells produced as described above. The values are shown in the “initial” column of the resistance values in Table 1, respectively.
However, the above measurement was performed with RT (room temperature) and the dumbbell held at a temperature of 150 ° C., respectively.
[0040]
As shown in FIG. 4, the measurement of the resistance value of the dumbbell at a temperature of 150 ° C. is performed by placing the dumbbell 2 on the hot plate 49 and then increasing the temperature of the hot plate 49 to increase the surface temperature of the ceramic substrate 41 to 150 ° C. The dumbbell 2 was left for 3 minutes in this state, and the dumbbell 2 was heated. Thereafter, the resistance value of the dumbbell 2 was measured in the same manner as the measurement at the room temperature.
On the other hand, similarly, the resistance values of the dumbbells subjected to the above-described heat treatment were measured at RT and a temperature of 150 ° C., and the resistance values in Table 1 are listed in the “After heat treatment” column.
[0041]
As shown in the table, it was found that the resistance values of Sample 1 and Sample 2 were almost the same both in the initial stage and after the heat treatment, and always had excellent conductivity.
In addition, it was found that the comparative samples C1, C3, and C4 had a very large resistance value at the initial RT compared to the samples 1 and 2, and the conductivity was greatly inferior. Further, it was found that the resistance values of the comparative samples C1, C3, and C4 at a temperature of 150 ° C. were larger than the resistance value at RT, and the conductivity further deteriorated as the temperature increased.
[0042]
In addition, the resistance values of the samples C1, C3, and C4 after the heat treatment were much larger than those of the samples 1 and 2, and the conductivity was greatly inferior. Furthermore, for the comparative samples C1 and C3, it was found that the resistance value at a temperature of 150 ° C. exceeded 4 MΩ and was in an overload state (OL in the table), and the conductivity was lost.
Further, it was found that the resistance value of the comparative sample C4 at a temperature of 150 ° C. is lower than that of the comparative samples C1 and C3, but greatly inferior to that of the sample 1 and the sample 2.
In addition, it was found that Comparative Sample C2 was not cured in the first place, so that it could not be used as an adhesive.
[0043]
From the above, it was found that the conductive adhesive obtained by adding the silane coupling agent according to the present invention to the adhesive main body has excellent heat resistance and conductivity. Moreover, even if it was a silane coupling agent, it turned out that the effect concerning this invention cannot be acquired by the thing containing a vinyl group and an amino group.
[0044]
[Table 1]
Figure 0003791053
[0045]
Embodiment 3
In this example, an electronic component mounting apparatus using a conductive adhesive according to Sample 1 of Embodiment 2 will be described with reference to FIG.
As shown in FIG. 6, the electronic component mounting apparatus 10 is formed by adhering an electronic component 11 to a multilayer substrate 19 provided with a conductive circuit 12 via a conductive adhesive 1.
On the multilayer substrate 19, a circuit comprising the conductive pads 12, the through holes 15, the inner layer circuit 14, and the outer layer circuit 120 is formed. The multilayer substrate 19 is configured by laminating and bonding an alumina substrate 190.
[0046]
In manufacturing the electronic component mounting apparatus 10, the conductive adhesive 1 is applied to the conductive pads 12 of the mounting recesses 190 formed in the multilayer substrate 19, and the electronic component 11 is placed on the conductive pad 12. Heat to ° C to cure.
After the electronic component 11 is cured, the conductive circuit 125 and the electronic component 11 are connected by the bonding wire 13.
[0047]
Finally, the lid 100 is laminated and fixed to the upper end of the mounting recess 190 via the sealing glass 109 while filling the mounting recess 190 with nitrogen gas.
The lamination fixing was performed by melting the sealing glass 109 in a temperature atmosphere of about 300 ° C.
[0048]
In the electronic component mounting apparatus 10 of this example, the electronic component 11 is attached using the conductive adhesive 1 excellent in conductivity and heat resistance. For this reason, even if it heats in the case of lamination | stacking fixation of the said cover body 100, the electroconductive adhesive agent 1 does not lose the electroconductivity.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the resistance value and the elastic modulus of a conductive adhesive in Embodiment 1;
2 is a diagram showing the relationship between the elastic modulus and resistance value of a conductive adhesive and the amount of silane coupling agent added in Embodiment 1. FIG.
FIG. 3 is an explanatory view showing a method for manufacturing a dumbbell used in measuring the resistance value of the conductive adhesive in the first embodiment.
4 is an explanatory diagram of a method for measuring a resistance value of a conductive adhesive in Embodiment 1. FIG.
5 is an explanatory diagram of a method for measuring the elastic modulus of a conductive adhesive in Embodiment 1. FIG.
6 is a cross-sectional explanatory view of an electronic component mounting apparatus in Embodiment 3. FIG.
[Explanation of symbols]
1. . . Conductive adhesive,
10. . . Electronic component mounting equipment,
11. . . Electronic components,

Claims (4)

シリコーン樹脂と導電性フィラーとからなる接着剤主体に対して,シランカップリング剤を添加してなると共に,
体積抵抗率が3×10-3Ωcm以下,接着硬化後の弾性率が50MPa以上であり,
かつ上記シランカップリング剤は,エポキシ基またはメタクリロキシ基を含有するシランカップリング剤の1種または2種以上を用いてなることを特徴とする導電性接着剤。
A silane coupling agent is added to the adhesive mainly composed of silicone resin and conductive filler,
The volume resistivity is 3 × 10 −3 Ωcm or less, and the elastic modulus after adhesive curing is 50 MPa or more.
And the said silane coupling agent uses 1 type, or 2 or more types of the silane coupling agent containing an epoxy group or a methacryloxy group, The conductive adhesive characterized by the above-mentioned.
請求項1において,上記シランカップリング剤は,接着剤主体に対して1〜8重量%添加してなることを特徴とする導電性接着剤。2. The conductive adhesive according to claim 1, wherein the silane coupling agent is added in an amount of 1 to 8% by weight with respect to the adhesive main body. 導電回路を設けた基板に導電性接着剤を介して電子部品を接着してなる電子部品搭載装置において,
上記導電性接着剤はシリコーン樹脂と導電性フィラーとからなる接着剤主体に対して,シランカップリング剤を添加してなると共に,
体積抵抗率が3×10-3Ωcm以下,接着硬化後の弾性率が50MPa以上であり,
かつ上記シランカップリング剤は,エポキシ基またはメタクリロキシ基を含有するシランカップリング剤の1種または2種を用いてなることを特徴とする電子部品搭載装置。
In an electronic component mounting apparatus in which an electronic component is bonded to a substrate provided with a conductive circuit via a conductive adhesive.
The conductive adhesive is formed by adding a silane coupling agent to an adhesive mainly composed of a silicone resin and a conductive filler,
The volume resistivity is 3 × 10 −3 Ωcm or less, and the elastic modulus after adhesive curing is 50 MPa or more.
And the said silane coupling agent uses 1 type or 2 types of the silane coupling agent containing an epoxy group or a methacryloxy group, The electronic component mounting apparatus characterized by the above-mentioned.
請求項3において,上記シランカップリング剤は,接着剤主体に対して1〜8重量%添加してなることを特徴とする電子部品搭載装置。4. The electronic component mounting apparatus according to claim 3, wherein the silane coupling agent is added in an amount of 1 to 8% by weight with respect to the adhesive main body.
JP17190596A 1996-06-10 1996-06-10 Conductive adhesive and electronic component mounting apparatus Expired - Lifetime JP3791053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17190596A JP3791053B2 (en) 1996-06-10 1996-06-10 Conductive adhesive and electronic component mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17190596A JP3791053B2 (en) 1996-06-10 1996-06-10 Conductive adhesive and electronic component mounting apparatus

Publications (2)

Publication Number Publication Date
JPH09328671A JPH09328671A (en) 1997-12-22
JP3791053B2 true JP3791053B2 (en) 2006-06-28

Family

ID=15932006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17190596A Expired - Lifetime JP3791053B2 (en) 1996-06-10 1996-06-10 Conductive adhesive and electronic component mounting apparatus

Country Status (1)

Country Link
JP (1) JP3791053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852858B1 (en) 2005-08-16 2006-12-06 株式会社日立製作所 Semiconductor radiation detector, radiation detection module and nuclear medicine diagnostic apparatus
CN102382606B (en) * 2011-09-19 2013-10-30 常州合润新材料科技有限公司 Graphene filling isotropic high-performance conducting adhesive and preparation method thereof
JP6870258B2 (en) 2016-09-23 2021-05-12 日亜化学工業株式会社 Conductive adhesives and conductive materials
WO2021019932A1 (en) * 2019-07-29 2021-02-04 株式会社村田製作所 Crystal vibrator, electronic component, and electronic device

Also Published As

Publication number Publication date
JPH09328671A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
TW463334B (en) Semiconductor module and a method for mounting the same
JP3520776B2 (en) Electronic components
US5679457A (en) Thermally conductive interface for electronic devices
JP4304508B2 (en) Adhesive composition, adhesive composition for circuit connection, connector and semiconductor device
US20090186219A1 (en) Elecrically conductive adhesive
EP2819158B1 (en) Thermally conductive dielectric interface
TWI229695B (en) Adhesives
JP2006278014A (en) Anisotropic conductive structure
JPH10242606A (en) Metal base board
JP2002012653A (en) Curable resin composition and metal-base circuit board using the same
KR20130109070A (en) Adhesive sheet for manufacturing semiconductor device and manufacturing method of semiconductor device
WO2020222301A1 (en) Connection structure, manufacturing method for connection structure, connection material, and coated conductive particle
JPH11329069A (en) Anisotropic conductive adhesive film
JP3791053B2 (en) Conductive adhesive and electronic component mounting apparatus
JP2007150224A (en) Metal base circuit board
JP4536240B2 (en) Curable resin composition and metal base circuit board using the same
JP2001345349A (en) Connection material and connection structure
JPH01164099A (en) Heat-dissipating shield sheet
JP2748615B2 (en) Conductive adhesive
JP2004356145A (en) Component mounting flexible circuit board
JP2004356144A (en) Component mounting flexible circuit board
JPH09298260A (en) Heat radiation plate
JP2005294497A (en) Electric double-layer capacitor and battery
JP2020184530A (en) Connection structure, manufacturing method thereof, connection material, and coated conductive particles
JP4378788B2 (en) IC chip connection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term