JP3786938B2 - Reinforcement method for concrete structures - Google Patents

Reinforcement method for concrete structures Download PDF

Info

Publication number
JP3786938B2
JP3786938B2 JP2003303459A JP2003303459A JP3786938B2 JP 3786938 B2 JP3786938 B2 JP 3786938B2 JP 2003303459 A JP2003303459 A JP 2003303459A JP 2003303459 A JP2003303459 A JP 2003303459A JP 3786938 B2 JP3786938 B2 JP 3786938B2
Authority
JP
Japan
Prior art keywords
concrete
reinforcing
groove
reinforcing rod
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2003303459A
Other languages
Japanese (ja)
Other versions
JP2005068931A (en
Inventor
敏明 彌永
Original Assignee
株式会社アーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アーテック filed Critical 株式会社アーテック
Priority to JP2003303459A priority Critical patent/JP3786938B2/en
Publication of JP2005068931A publication Critical patent/JP2005068931A/en
Application granted granted Critical
Publication of JP3786938B2 publication Critical patent/JP3786938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既設のコンクリート橋脚に新たに補強用棒体を埋設固定させるコンクリート構造物の補強工法に関する。   The present invention relates to a method for reinforcing a concrete structure in which a reinforcing bar is newly embedded and fixed to an existing concrete pier.
橋梁のコンクリート橋脚は、地震時の水平耐力を満足することが重要であり、耐震性の確保が必要である。従来、コンクリート橋脚の耐震補強工法として、RC(Reinforced Concrete;鉄筋コンクリート)巻立て工法、鋼板巻立て工法、炭素繊維・アラミドシート補強工法やPC(Prestressed Concrete;プレストレストコンクリート)巻立て工法などが知られている(例えば、特許文献1参照。)。   It is important for the concrete piers of the bridge to satisfy the horizontal strength in the event of an earthquake, and it is necessary to ensure earthquake resistance. Conventionally, RC (Reinforced Concrete) winding method, steel plate winding method, carbon fiber / aramid sheet reinforcing method, PC (Prestressed Concrete) winding method, etc. are known as seismic reinforcement methods for concrete piers. (For example, refer to Patent Document 1).
この中でRC巻立て工法は、橋脚内部に配筋された主鉄筋と平行に鉛直方向筋を橋脚表面に固定し、この主鉄筋と直角方向に帯鉄筋を重ねて配筋固定した後、型枠を形成しコンクリートを打設することによって補強構造が施工される。また、このRC巻立てによる補強工法の他に、コンクリート橋脚表面に主鉄筋および帯鉄筋を配筋固定した後、ポリマーモルタルを被覆する補強構造も施工されている。   The RC hoisting method is to fix the vertical reinforcement on the surface of the pier in parallel with the main reinforcement arranged inside the pier, and fix the reinforcement by overlapping the reinforcement in the direction perpendicular to the main reinforcement. A reinforcement structure is constructed by forming a frame and placing concrete. In addition to the reinforcing method by RC winding, a reinforcing structure for covering the polymer mortar after the main reinforcing bar and the belt reinforcing bar are fixed on the concrete pier surface is also constructed.
上記のようにRC巻立てによる補強構造またはポリマーモルタルによって被覆した補強構造であれば、コンクリートの巻立てまたはポリマーモルタルの被覆によって既設橋脚と橋軸方向に固定された鉄筋棒との一体化が強化され、その補強効果が長時間にわたって維持される。   If the reinforcing structure is RC-wrapped or polymer-reinforced mortar as described above, the integration of the existing pier and the reinforcing bar fixed in the direction of the bridge axis is strengthened by winding concrete or polymer mortar. The reinforcing effect is maintained for a long time.
特開平9−59934号公報(段落0002−0004)JP-A-9-59934 (paragraphs 0002-0004)
上記補強構造では、コンクリート橋脚表面に補強用鉄筋を固定した後、コンクリートの巻立てまたはポリマーモルタルの被覆を行うことによって、コンクリート橋脚の径はコンクリート巻立層またはポリマーモルタル被覆層によって著しく増大することになる。その増大厚は、コンクリート巻立て層において25cm以上、ポリマー被覆層において5cm以上となる。このため、橋脚径の増加によって建築限界を超えたり、河積阻害を発生させたりする恐れがある。また、巻立て厚さが厚くなることによって橋脚重量も大幅に増加する。   In the above reinforcing structure, after reinforcing reinforcing bars are fixed to the surface of the concrete pier, the concrete pier diameter is significantly increased by the concrete winding layer or the polymer mortar covering layer by winding concrete or polymer mortar. become. The increased thickness is 25 cm or more in the concrete winding layer and 5 cm or more in the polymer coating layer. For this reason, there is a risk that the building limit will be exceeded or the river volume will be hindered due to the increase in pier diameter. In addition, the weight of the pier is greatly increased by increasing the winding thickness.
また、コンクリート巻立て層は、橋脚表面に補強鉄筋を固定した後、型枠を形成し、これにコンクリートを打設するため、工期が長期間となる。また、ポリマーモルタル被覆層の場合は、コンクリート表面に固定した鉄筋を完全に被覆させる厚さまで被覆しなければならないため、ポリマーモルタル被覆材の使用量が膨大で施工費が高くなる。   Moreover, since a concrete winding layer forms a formwork after fixing a reinforcing bar on the surface of a bridge pier, and puts concrete into this, a construction period becomes long. Further, in the case of the polymer mortar coating layer, it is necessary to cover the reinforcing bar fixed on the concrete surface to a thickness that completely covers the reinforcing bar, so that the amount of the polymer mortar coating material used is enormous and the construction cost is high.
本発明の目的は、コンクリート構造物の補強に際して、被覆層の厚みを軽減し、また厚みを軽減することで材料使用量を減らし、補強に伴う増加重量および施工費の軽減と工期の短縮を図ることにある。   An object of the present invention is to reduce the thickness of a coating layer when reinforcing a concrete structure, and to reduce the amount of material used by reducing the thickness, thereby reducing the increased weight and construction cost associated with reinforcement and shortening the construction period. There is.
本発明のコンクリート構造物の補強工法は、コンクリート構造物の表面に補強用棒体を固定して補強するコンクリート構造物の補強工法であって、コンクリート構造物の表面部に補強用棒体を嵌め込む溝を形成し、この溝に補強用棒体を嵌め込んで固定することを特徴とする。   The method for reinforcing a concrete structure according to the present invention is a method for reinforcing a concrete structure in which a reinforcing bar is fixed to the surface of the concrete structure and is reinforced, and the reinforcing bar is fitted on the surface of the concrete structure. A groove is formed, and a reinforcing rod is fitted into the groove and fixed.
コンクリート構造物の表面部に補強用棒体を嵌め込む溝を形成し、この溝に補強用棒体を嵌め込んで固定することにより、補強用棒体による補強層がコンクリート構造物内部に食い込んで存在する構成となる。この補強層はコンクリート構造物に作用する地震時の水平荷重に対して高い引っ張り抵抗を発揮することで、水平力によるコンクリート構造物の変形を防ぐことができる。   A groove for fitting the reinforcing rod is formed in the surface portion of the concrete structure, and the reinforcing rod is fitted into this groove and fixed, so that the reinforcing layer by the reinforcing rod penetrates into the concrete structure. It becomes an existing configuration. This reinforcement layer can prevent the deformation of the concrete structure due to the horizontal force by exhibiting a high tensile resistance against the horizontal load at the time of the earthquake acting on the concrete structure.
この補強用棒体は、従来使用されている異形鉄筋で良いが、表面には防錆処置を施すことが望ましい。また、この棒体の材質としては、炭素繊維が望ましい。炭素繊維製の棒体は錆などの腐食の発生がなく、軽量ながら高い引張強度がある。また、異形鉄筋および炭素繊維以外でも、同様の強度を持つ素材であれば使用可能である。さらに、コンクリート構造物の表面部に形成する溝は、既設コンクリート構造物の主筋と方向を一致させることで、溝内に嵌め込んだ補強用棒体の引張強度を最も効率的に発揮させることができる。   The reinforcing bar may be a deformed reinforcing bar conventionally used, but it is desirable that the surface is subjected to rust prevention treatment. The material of the rod is preferably carbon fiber. Carbon fiber rods do not generate corrosion such as rust, and have high tensile strength while being lightweight. Further, materials other than deformed reinforcing bars and carbon fibers can be used as long as they have the same strength. Furthermore, the groove formed in the surface part of the concrete structure can be most efficiently exhibited the tensile strength of the reinforcing rod fitted in the groove by matching the direction with the main reinforcement of the existing concrete structure. it can.
ここで、溝に補強用棒体を嵌め込んだ後、溝の内面と補強用棒体との隙間に楔形のアンカーを打ち込んで補強用棒体を拘束するとともに隙間に樹脂を注入して補強用棒体を固定することが望ましい。この工程はフーチング部をコア削孔した後、また圧接の工程が終了した後に行うのが望ましい。溝の内面と補強用棒体との隙間に楔形アンカーを打ち込み樹脂によって固定することによって、補強用棒体と溝の嵌め合い寸法の精度を厳密に管理しなくとも補強用棒体と溝内壁とを面接触させて強固に固定することができる。   Here, after inserting the reinforcing rod into the groove, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing rod to restrain the reinforcing rod, and the resin is injected into the gap for reinforcement. It is desirable to fix the rod. This step is preferably performed after core punching of the footing portion and after the press-contacting step is completed. By inserting a wedge-shaped anchor into the gap between the inner surface of the groove and the reinforcing rod and fixing it with resin, the reinforcing rod and the inner wall of the groove can be secured without strictly controlling the accuracy of the fitting size of the reinforcing rod and the groove. Can be firmly fixed by surface contact.
上記工法を実施する具体的な工程としては、切削工具により橋脚の表面部に補強用棒体を嵌め込む溝を形成する工程と、溝に補強用棒体を嵌め込んだ後、溝の内面と補強用棒体との隙間に楔形のアンカーを打ち込んで補強用棒体を拘束する工程と、溝の内面と補強用棒体との隙間に樹脂を注入して補強用棒体を固定する工程と、表面を樹脂で被覆する工程とを含むものになる。   As a specific process for carrying out the above-mentioned construction method, a step of forming a groove for fitting the reinforcing rod body on the surface portion of the pier with a cutting tool, and an inner surface of the groove after fitting the reinforcing rod body into the groove A step of driving a wedge-shaped anchor into the gap between the reinforcing rod and restraining the reinforcing rod; a step of injecting resin into the gap between the inner surface of the groove and the reinforcing rod and fixing the reinforcing rod; And a step of coating the surface with a resin.
溝を形成する工程と、この溝に嵌め込んだ補強用棒体を楔形アンカーで拘束する工程によって、コンクリート表面に食い込んだ補強層を形成させることができる。また、溝の内面と補強用棒体との隙間に樹脂を注入して補強用棒体を固定することにより、コンクリート構造物に発生していた亀裂の内部に樹脂を浸透させて亀裂の進展を抑制することができる。   By the step of forming the groove and the step of constraining the reinforcing rod fitted in the groove with the wedge-shaped anchor, the reinforcing layer biting into the concrete surface can be formed. In addition, by injecting resin into the gap between the inner surface of the groove and the reinforcing rod body and fixing the reinforcing rod body, the resin penetrates into the cracks that have occurred in the concrete structure and the crack progresses. Can be suppressed.
本発明によって以下の効果を奏することができる。   The following effects can be achieved by the present invention.
(1)コンクリート構造物の表面に補強用棒体を固定して補強するコンクリート構造物の補強工法であって、コンクリート構造物の表面部に補強用棒体を嵌め込む溝を形成し、溝に補強用棒体を嵌め込んで固定することにより補強層がコンクリート構造物に食い込んだ状態となり、取り付けられたコンクリート構造物が地震時の水平荷重により歪んだ場合にも、補強用棒体がこのコンクリート構造物の変位に追従しながら引っ張り抵抗を発揮するので、補強層とコンクリートの間に隙間が生じることがない。このため、補強用棒体と既設コンクリート構造物とのより一層の一体化が図られ、長期に渡って補強効果が持続できる。また、補強用棒体がコンクリート構造物表面部の溝に嵌め込まれているため、被覆層の厚みを極めて薄くすることができ、材料使用量を減らすことができる。これにより、材料使用量を減らし、補強に伴う増加重量および施工費の軽減と工期の短縮を図ることができる。 (1) A method of reinforcing a concrete structure in which a reinforcing bar is fixed to the surface of a concrete structure to reinforce, and a groove for fitting the reinforcing bar is formed on the surface of the concrete structure. By inserting and fixing the reinforcing rods, the reinforcing layer bites into the concrete structure, and even when the attached concrete structure is distorted by a horizontal load during an earthquake, the reinforcing rod is Since the tensile resistance is exhibited while following the displacement of the structure, there is no gap between the reinforcing layer and the concrete. For this reason, further integration of the reinforcing rod and the existing concrete structure is achieved, and the reinforcing effect can be maintained for a long time. Moreover, since the reinforcing rod is fitted in the groove on the surface portion of the concrete structure, the thickness of the coating layer can be extremely reduced, and the amount of material used can be reduced. As a result, the amount of material used can be reduced, and the increased weight and construction cost accompanying reinforcement can be reduced and the construction period can be shortened.
(2)溝に補強用棒体を嵌め込んだ後、溝の内面と補強用棒体との隙間に楔形アンカーを打ち込んで補強用棒体を拘束するとともに隙間に樹脂を注入して補強用棒体を固定することによって、補強用棒体と溝の嵌め合い寸法の精度にかかわらず、コンクリートに対する引張強度を効率よく発揮する補強層となる。また、コンクリート構造物と補強用棒体との間に樹脂を介在させることにより、補強用棒体に対する剪断力が発生せず、剪断力破壊が生じない。さらに、この樹脂がコンクリート構造物に発生した亀裂の補修材としても作用し、コンクリート構造物の補強効果が一層向上する。 (2) After the reinforcing rod is fitted in the groove, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing rod to restrain the reinforcing rod and to inject the resin into the gap. By fixing the body, it becomes a reinforcing layer that efficiently exhibits the tensile strength against the concrete regardless of the accuracy of the fitting size of the reinforcing rod body and the groove. Further, by interposing the resin between the concrete structure and the reinforcing rod, no shearing force is generated on the reinforcing rod, and the shearing force does not break. Furthermore, this resin also acts as a repair material for cracks generated in the concrete structure, and the reinforcing effect of the concrete structure is further improved.
(3)切削工具によりコンクリート構造物の表面部に補強用棒体を嵌め込む溝を形成する工程と、溝に前記補強用棒体を嵌め込んだ後、溝の内面と補強用棒体との隙間に楔形のアンカーを打ち込んで補強用棒体を拘束する工程と、溝の内面と補強用棒体との隙間に樹脂を注入して補強用棒体を固定する工程と、表面を樹脂で被覆する工程とを含むものとすることで、補強用棒体の固定と剥離防止の施工を効率的に行うことができる。 (3) A step of forming a groove for fitting the reinforcing rod body into the surface portion of the concrete structure with a cutting tool, and after fitting the reinforcing rod body into the groove, the inner surface of the groove and the reinforcing rod body The step of constraining the reinforcing rod by inserting a wedge-shaped anchor into the gap, the step of fixing the reinforcing rod by injecting resin into the gap between the inner surface of the groove and the reinforcing rod, and covering the surface with the resin By including the process to do, the fixation of the reinforcing rod and the construction for preventing peeling can be performed efficiently.
以下、本発明の実施形態を図面に基づいて具体的に説明する。
図1の(a)は本発明を適用したコンクリート構造物としての鉄筋コンクリート製の橋脚の全体図を示し、1は鉄筋コンクリート製のフーチングで、フーチング1の上に鉄筋コンクリート製の柱部2が形成され、柱部2の上には鉄筋コンクリート製の梁部3が形成されている。そして、柱部2の表面全面に、補強用被覆層4が形成されている。
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 (a) shows an overall view of a reinforced concrete pier as a concrete structure to which the present invention is applied. A beam portion 3 made of reinforced concrete is formed on the column portion 2. A reinforcing covering layer 4 is formed on the entire surface of the column portion 2.
図1の(b)は同図(a)のA−A線断面図であり、図1の(c)は同図(b)のB部拡大図である。柱部2の内部には、柱部2の軸方向すなわち鉛直方向に鉄筋5が配置されている。この柱部2の表面には、各鉄筋5の外側であって鉄筋5と同一方向に溝6が形成され、この溝6内部に補強用棒体としての鉛直方向筋7が嵌め込まれている。鉛直方向筋7は、溝6内部にエポキシ樹脂を素材とする樹脂8を充填し硬化させることによって、溝6内に固定されている。   1B is a cross-sectional view taken along line AA in FIG. 1A, and FIG. 1C is an enlarged view of a portion B in FIG. 1B. Inside the column part 2, a reinforcing bar 5 is arranged in the axial direction of the column part 2, that is, in the vertical direction. Grooves 6 are formed on the surface of the column portion 2 in the same direction as the reinforcing bars 5 outside the reinforcing bars 5, and vertical reinforcing bars 7 as reinforcing bars are fitted in the grooves 6. The vertical stripe 7 is fixed in the groove 6 by filling the inside of the groove 6 with a resin 8 made of an epoxy resin and curing it.
以上の構成において、鉛直方向筋7は柱部2の表面に形成された溝6内に嵌め込まれた状態で固定されている。しかも鉛直方向筋7と溝6の間にはエポキシ樹脂を素材とする樹脂8を介在させているので、柱部2が地震時の水平荷重によって撓み変形するときでも、この柱部2の変形による歪み力は溝6内の樹脂8を介して鉛直方向筋7に伝達される。   In the above configuration, the vertical streak 7 is fixed in a state of being fitted in the groove 6 formed on the surface of the column part 2. Moreover, since the resin 8 made of epoxy resin is interposed between the vertical streak 7 and the groove 6, even when the column portion 2 is bent and deformed by a horizontal load at the time of an earthquake, the deformation of the column portion 2 is caused. The distortion force is transmitted to the vertical streak 7 through the resin 8 in the groove 6.
すなわち、鉛直方向筋7は柱部2の溝6の中に封止されているので、柱部2が地震時の水平荷重によって撓みによる変位が発生した場合でも、鉛直方向筋7の弾性域の範囲内では変位を吸収することによって柱部2の表面全体が高い引っ張り応力を備えた構成となる。さらに、鉛直方向筋7は、溝6内部に樹脂8によって拘束封止されているので溝6から浮き上がることはない。   That is, since the vertical streak 7 is sealed in the groove 6 of the column part 2, even if the column part 2 is displaced due to bending due to a horizontal load at the time of an earthquake, the elastic region of the vertical streak 7 Within the range, the entire surface of the column part 2 has a high tensile stress by absorbing the displacement. Further, since the vertical streak 7 is constrained and sealed by the resin 8 inside the groove 6, it does not float from the groove 6.
次に、図2から図5を参照して、補強用被覆層4の施工手順について説明する。
図2(a)において、1は鉄筋コンクリート製のフーチングであり、2は鉄筋コンクリート製の柱部2である。この橋脚の柱部2を補強するために、まず、柱部2の表面全面をチッピングまたはサンドブラストにより粗面な状態にする。なお、ウォータージェットを用いても良い。
Next, with reference to FIG. 2 to FIG. 5, the construction procedure of the reinforcing coating layer 4 will be described.
In FIG. 2A, 1 is a reinforced concrete footing, and 2 is a reinforced concrete column 2. In order to reinforce the pillar portion 2 of this pier, first, the entire surface of the pillar portion 2 is roughened by chipping or sandblasting. A water jet may be used.
次いで、図2(a)に示すように、柱部2の表面にコンクリートカッター(図示せず。)によって柱部2内部に配筋されている主筋と平行方向(鉛直方向)に幅50mm、深さ50mm程度の切れ目を入れ、この切れ目内部のコンクリートを電動ピックによってはつり取り、溝6を形成する。   Next, as shown in FIG. 2 (a), the surface of the column part 2 has a width of 50 mm and a depth in a direction parallel to the main reinforcement arranged in the column part 2 by a concrete cutter (not shown) (vertical direction). A cut having a length of about 50 mm is made, and the concrete inside the cut is suspended by an electric pick to form a groove 6.
また、図2の(a)に示すように、柱部2の下部には、フーチング1にコア削孔を行うためのコア削孔スペース9を設け、さらに柱部2の途中には、鉛直方向筋7の圧接を行うための圧接スペース10を設ける。コア削孔スペース9は、少なくともコア削孔を行うための削孔工具としてのコアドリルを収容して削孔作業を行うことが可能な大きさを有する。圧接スペース10は、少なくとも圧接工具を収容して圧接作業を行うことが可能な大きさを有する。   Further, as shown in FIG. 2A, a core drilling space 9 for performing core drilling in the footing 1 is provided in the lower part of the column part 2, and further in the vertical direction in the middle of the column part 2. A pressure contact space 10 for performing pressure contact of the muscle 7 is provided. The core drilling space 9 has a size that allows at least a core drill as a drilling tool for performing core drilling to perform a drilling operation. The press-contacting space 10 has a size capable of accommodating at least the press-contacting tool and performing the press-contacting work.
図2の(b)はコア削孔スペース9を示す同図(a)のC部拡大図であり、同図の(c)は圧接スペース10を示す同図(a)のD部拡大図である。両者のスペースとも、溝6と同様にコンクリートカッターおよび電動ピックを用いて切削する。このあと、高圧洗浄などの方法で、柱部2の表面、溝6、コア削孔スペース9、および圧接スペース10に付着したコンクリート粉塵を除去、清掃する。   FIG. 2B is an enlarged view of a portion C in FIG. 2A showing the core drilling space 9, and FIG. 2C is an enlarged view of the portion D in FIG. is there. Both spaces are cut using a concrete cutter and an electric pick in the same manner as the grooves 6. Thereafter, the concrete dust adhering to the surface of the column part 2, the groove 6, the core drilling space 9, and the pressure contact space 10 is removed and cleaned by a method such as high pressure cleaning.
次いで、図2(d)のC部拡大断面図に示すように、柱部2の下部に設けたコア削孔スペース9にコアドリル11を設置し、径60mm、深さ600mmの定着孔12を削孔する。この工程に際しては、事前にフーチング1の内部に配筋された鋼材の位置を把握しておくことが望ましい。   2 (d), a core drill 11 is installed in the core drilling space 9 provided in the lower part of the column 2 to cut the fixing hole 12 having a diameter of 60 mm and a depth of 600 mm. Make a hole. In this step, it is desirable to grasp the position of the steel material arranged in the footing 1 in advance.
次いで、図3(a)に示すように鉛直方向筋7を溝6内に仮固定した後、上の工程で設けた定着孔12内に鉛直方向筋7を差し込み、図3(b)のE部拡大断面図に示すように、エポキシ樹脂を素材とする定着材13で定着させる。そして、定着材13の硬化後、圧接スペース10内に圧接工具を装置して鉛直方向筋7の圧接を行う。   Next, as shown in FIG. 3A, after the vertical stripe 7 is temporarily fixed in the groove 6, the vertical stripe 7 is inserted into the fixing hole 12 provided in the above process, and E in FIG. As shown in the enlarged sectional view, fixing is performed with a fixing material 13 made of epoxy resin. After the fixing material 13 is cured, a pressure tool is installed in the pressure space 10 to press the vertical stripe 7.
次いで、図3(c)のF部拡大図に示すように、柱部2の溝6に仮固定した鉛直方向筋7と溝6との隙間に楔形アンカー14を打ち込み、鉛直方向筋7を拘束する。この楔形アンカー14は、図3(c)に示すように、鉛直方向筋7と溝6との隙間の両側に千鳥配置となるように設置する。なお、楔形アンカー14は、図4の(c)に示すように、底面は円形を形成し、上面は楕円を形成し、内部は中空となっている。この中空部14aは後述するように樹脂8注入時の注入口となる。   Next, as shown in an enlarged view of the F part in FIG. 3C, a wedge-shaped anchor 14 is driven into the gap between the vertical stripe 7 and the groove 6 temporarily fixed in the groove 6 of the column part 2 to restrain the vertical stripe 7. To do. As shown in FIG. 3C, the wedge-shaped anchors 14 are installed in a staggered manner on both sides of the gap between the vertical stripe 7 and the groove 6. As shown in FIG. 4C, the wedge-shaped anchor 14 has a circular bottom surface, an elliptical top surface, and a hollow interior. As will be described later, the hollow portion 14a serves as an injection port when the resin 8 is injected.
次いで、図4の(a)に示すように、この楔形アンカー14を嵌入した箇所以外の全部の溝6と鉛直方向筋7の表面の隙間に、エポキシ樹脂を素材とする粘土状樹脂からなるパテ材15を覆うように被せていく。このエポキシ樹脂のパテ材15は、溝6と鉛直方向筋7の表面の隙間を密封し、両者を一体化させるほかに、次工程の低粘度のエポキシ樹脂8が注入時に漏れないようにする目的がある。   Next, as shown in FIG. 4 (a), a putty made of a clay-like resin made of epoxy resin is formed in the gaps between all the grooves 6 other than the portion where the wedge-shaped anchor 14 is fitted and the surface of the vertical streak 7. Cover the material 15 to cover it. The epoxy resin putty material 15 seals the gap between the groove 6 and the surface of the vertical streak 7 and integrates them, and also prevents the low-viscosity epoxy resin 8 in the next process from leaking during injection. There is.
これらの工程のあとに、図4の(b)に示すように、楔形アンカー14の内部に注入器具16を接続し、パテ材15で密封された溝6内部にエポキシ樹脂を素材とする低粘度樹脂17を注入していく。この低粘度樹脂17は粘度が低いので溝6内部の隙間に充填されていくとともに、溝6を切削、はつり取る際に発生した微細な亀裂18にも浸透していく。   After these steps, as shown in FIG. 4B, the injection device 16 is connected to the inside of the wedge-shaped anchor 14, and the inside of the groove 6 sealed with the putty material 15 is made of epoxy resin as a low viscosity material. Resin 17 is poured. Since this low-viscosity resin 17 has a low viscosity, it fills in the gaps in the grooves 6 and penetrates into the fine cracks 18 generated when the grooves 6 are cut and scraped.
また、低粘度樹脂17の注入を柱部2の下部から行うことで、注入箇所以外の上部の楔形アンカー14は空気抜きとして機能する。低粘度樹脂17が直上の楔形アンカー14まで到達したのを確認し、最初の楔形アンカー14を布パッキンなどで封入して低粘度樹脂17の逆流を防いだ後、直上の楔形アンカー14から注入し、これを繰り返して柱部2の最上部の楔形アンカー14まで到達させる。これにより、空気の混入を最小限にしながら溝6内部の隙間に低粘度樹脂17を完全に充填することができる。   Further, by injecting the low-viscosity resin 17 from the lower part of the column part 2, the upper wedge-shaped anchor 14 other than the injection part functions as an air vent. After confirming that the low-viscosity resin 17 has reached the wedge-shaped anchor 14 directly above, the first wedge-shaped anchor 14 is sealed with cloth packing to prevent the low-viscosity resin 17 from flowing backward, and then injected from the wedge-shaped anchor 14 immediately above. This is repeated until the wedge-shaped anchor 14 at the top of the column part 2 is reached. Thereby, the low-viscosity resin 17 can be completely filled in the gaps in the grooves 6 while minimizing air contamination.
次いで、図5(a)に示すように、柱部2の表面内部に鉛直方向に配筋した鉛直方向筋7と直角方向すなわち水平方向に帯筋19を取り付ける。取り付けは、事前に鉛直方向筋7に付けておいた結束線で鉛直方向筋7と結束することにより行う。結束後、図5(b)に示すように、帯筋19の端部同士をフレアー溶接して連続筋とする。なお、帯筋19は従来使用されている異形鉄筋で良いが、表面に防錆処置を施すことが望ましい。また、結束線はステンレス材が望ましい。   Next, as shown in FIG. 5 (a), the vertical stripe 7 arranged in the vertical direction inside the surface of the column portion 2 is attached to the band 19 in a direction perpendicular to the horizontal direction, that is, in the horizontal direction. The attachment is performed by binding the vertical streak 7 with a binding line previously attached to the vertical streak 7. After binding, as shown in FIG. 5 (b), the ends of the band 19 are flare welded to form continuous bars. In addition, although the band 19 may be a deformed reinforcing bar conventionally used, it is desirable that the surface is subjected to rust prevention treatment. The binding wire is preferably made of stainless steel.
次いで、図5の(c)に示すように柱部2の表面に補強用被覆層4を形成する。補強用被覆層4の形成は、まず、防錆性能を持つポリマーペースト系の下地強化被覆材20を塗布し、次にポリマーセメント系被覆材21を塗布する。塗布方法は、下地強化被覆材20についてはハケ塗りまたは吹き付けとし、ポリマーセメント系被覆材21はコテ塗りまたは吹き付けとする。   Next, as shown in FIG. 5C, the reinforcing coating layer 4 is formed on the surface of the column portion 2. The reinforcing coating layer 4 is formed by first applying a polymer paste base reinforcing coating material 20 having a rust-preventing performance, and then applying a polymer cement coating material 21. The coating method is brush coating or spraying for the base reinforcing coating material 20, and the polymer cement-based coating material 21 is iron coating or spraying.
また、補強用被覆層4は、上記被覆材20,21のほかに、型枠を形成してセメントモルタルを巻き立てる方法により形成することも可能である。このとき、柱部2表面はあらかじめチッピングなどで粗面にしておくことが望ましい。なお、補強用被覆層4をRC巻立工法により形成する場合は、型枠を形成した後、高流動コンクリートを打設する。   In addition to the covering materials 20 and 21, the reinforcing covering layer 4 can be formed by a method of forming a mold and winding up cement mortar. At this time, it is desirable that the surface of the column part 2 is roughened by chipping or the like in advance. In addition, when forming the coating layer 4 for reinforcement by RC winding method, after forming a formwork, high fluidity concrete is laid.
こうして形成した補強用被覆層4の柱部2表面に露出する厚みは、従来のRC巻立て工法の約1/8、ポリマーモルタル巻立て工法の約1/3となるため、建築限界や河積阻害の制限を受ける橋脚の補強が可能となる。また、巻立て厚さを大幅に削減することができることから、被覆材の使用量も従来のポリマーモルタル巻立て工法よりも2/3ほど削減でき、施工費の大幅な削減が可能となる。   The thickness of the reinforcing covering layer 4 thus formed exposed to the surface of the column portion 2 is about 1/8 of the conventional RC winding method and about 1/3 of the polymer mortar winding method. It is possible to reinforce bridge piers that are restricted by inhibition. In addition, since the winding thickness can be greatly reduced, the amount of the coating material used can be reduced by about 2/3 as compared with the conventional polymer mortar winding method, and the construction cost can be greatly reduced.
以上のように、本発明を適用した鉄筋コンクリート製の橋脚では、柱部2の表面部に鉛直方向筋7を嵌め込む溝6を形成し、溝6に鉛直方向筋7を嵌め込んで固定することによりこの鉛直方向筋7を含む補強層が柱部2に食い込んだ状態となり、柱部2が歪んだ場合にも、鉛直方向筋7がこの柱部2の変位に追従しながら引っ張り応力を発揮するので、補強層とコンクリートの間に隙間が生じることがない。   As described above, in the pier made of reinforced concrete to which the present invention is applied, the groove 6 into which the vertical stripe 7 is fitted is formed on the surface portion of the column portion 2, and the vertical stripe 7 is fitted into the groove 6 and fixed. As a result, the reinforcing layer including the vertical streak 7 bites into the column part 2, and even when the column part 2 is distorted, the vertical streak 7 exhibits a tensile stress while following the displacement of the column part 2. Therefore, there is no gap between the reinforcing layer and the concrete.
このため、鉛直方向筋7と柱部2とのより一層の一体化が図られ、長期に渡って補強効果が持続できる。また、鉛直方向筋7が柱部2の表面部の溝6に嵌め込まれているため、被覆層の厚みを極めて薄くすることができ、材料使用量を減らすことができる。これにより、材料使用量を減らし、補強に伴う増加重量および施工費の軽減と工期の短縮を図ることができる。   For this reason, the further integration of the vertical direction stripe | line 7 and the pillar part 2 is achieved, and the reinforcement effect can be maintained over a long term. Moreover, since the vertical direction stripe | line 7 is engage | inserted in the groove | channel 6 of the surface part of the pillar part 2, the thickness of a coating layer can be made very thin and material usage-amount can be reduced. As a result, the amount of material used can be reduced, and the increased weight and construction cost accompanying reinforcement can be reduced and the construction period can be shortened.
また、溝6に鉛直方向筋7を嵌め込んだ後、溝6の内面と鉛直方向筋7との隙間に楔形アンカー14を打ち込んで鉛直方向筋7を拘束するとともに隙間に樹脂8(パテ材15および低粘度樹脂17)を注入して鉛直方向筋7を固定することによって、鉛直方向筋7と溝6の嵌め合い寸法の精度にかかわらず、コンクリートに対する引張強度を効率よく発揮する補強層となる。また、柱部2と鉛直方向筋7との間に樹脂8を介在させることにより、鉛直方向筋7に対する剪断力が発生せず、剪断力破壊が生じない。さらに、この樹脂8が柱部2に発生した亀裂の補修材としても作用し、柱部2の補強効果が一層向上する。その上、本実施形態においては、柱部2をポリマーセメント系被覆材21により被覆しているため、柱部2の表面状態の変化がそのまま表面のポリマーセメント系被覆剤21に現れる。そのため、補強後の柱部2の表面状態の変化を引き続き監視することも可能である。   Further, after the vertical stripe 7 is fitted in the groove 6, a wedge-shaped anchor 14 is driven into the gap between the inner surface of the groove 6 and the vertical stripe 7 to restrain the vertical stripe 7 and the resin 8 (putty material 15 is put in the gap. In addition, by injecting the low-viscosity resin 17) and fixing the vertical streak 7, the reinforcing layer efficiently exhibits the tensile strength against the concrete regardless of the accuracy of the fitting dimension between the vertical streak 7 and the groove 6. . In addition, by interposing the resin 8 between the column part 2 and the vertical stripe 7, no shear force is generated on the vertical stripe 7, and no shear force breakage occurs. Furthermore, the resin 8 also acts as a repair material for cracks generated in the column portion 2, and the reinforcing effect of the column portion 2 is further improved. In addition, in this embodiment, since the column part 2 is covered with the polymer cement-based coating material 21, the change in the surface state of the column part 2 appears in the polymer cement-based coating material 21 as it is. Therefore, it is also possible to continuously monitor the change in the surface state of the post-reinforced column part 2.
本発明のコンクリート構造物の補強工法は、コンクリート製の橋脚に作用する地震時の水平荷重に対する耐震補強に止まらず、橋梁のコンクリート製桁下面の補強や、他のコンクリート構造物の補強に有用である。特に、巻立て厚さの増加に制限がある橋脚や増加重量の軽減が必要な橋脚の補強に好適である。   The concrete structure reinforcement method of the present invention is useful not only for seismic reinforcement against horizontal loads during earthquakes acting on concrete piers, but also for reinforcement of the concrete underside of bridge concrete girders and other concrete structures. is there. In particular, it is suitable for reinforcing a bridge pier that has a limited increase in winding thickness or a bridge pier that needs to reduce the increased weight.
(a)は本発明を適用したコンクリート構造物としての鉄筋コンクリート製の橋脚の全体図、(b)は(a)のA−A線断面図、(c)は(b)のB部の拡大図である。(A) is an overall view of a reinforced concrete pier as a concrete structure to which the present invention is applied, (b) is a cross-sectional view taken along line AA of (a), and (c) is an enlarged view of a portion B of (b). It is. 本発明の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of this invention. 本発明の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of this invention. 本発明の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of this invention. 本発明の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of this invention.
符号の説明Explanation of symbols
1 フーチング
2 柱部
3 梁部
4 補強用被覆層
5 鉄筋
6 溝
7 鉛直方向筋
8 樹脂
9 コア削孔スペース
10 圧接スペース
11 コアドリル
12 定着孔
13 定着材
14 楔形アンカー
15 パテ材
16 注入器具
17 低粘度樹脂
18 亀裂
19 帯筋
20 下地強化被覆材
21 ポリマーセメント系被覆材
DESCRIPTION OF SYMBOLS 1 Footing 2 Column part 3 Beam part 4 Reinforcement coating layer 5 Reinforcement 6 Groove 7 Vertical direction reinforcement 8 Resin 9 Core drilling space 10 Pressure welding space 11 Core drill 12 Fixing hole 13 Fixing material 14 Wedge-shaped anchor 15 Putty material 16 Injection tool 17 Low Viscous resin 18 Crack 19 Strip 20 Base reinforcement coating 21 Polymer cement coating

Claims (2)

  1. コンクリート構造物の表面に補強用棒体を固定して補強するコンクリート構造物の補強工法であって、前記コンクリート構造物の表面部に前記補強用棒体を嵌め込む溝を形成し、前記溝に前記補強用棒体を嵌め込んだ後、前記溝の内面と前記補強用棒体との隙間に楔形のアンカーを打ち込んで前記補強用棒体を拘束するとともに前記隙間に樹脂を注入して前記補強用棒体を固定することを特徴とするコンクリート構造物の補強工法。 A reinforcing method for a concrete structure in which a reinforcing bar is fixed to a surface of a concrete structure to reinforce, and a groove for fitting the reinforcing bar is formed on a surface portion of the concrete structure. After fitting the reinforcing rod body, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing rod body to restrain the reinforcing rod body, and resin is injected into the gap to reinforce the reinforcement. Reinforcement method for concrete structures, characterized by fixing bars for construction.
  2. 切削工具によりコンクリート構造物の表面部に補強用棒体を嵌め込む溝を形成する工程と、前記溝に前記補強用棒体を嵌め込んだ後、前記溝の内面と前記補強用棒体との隙間に楔形のアンカーを打ち込んで前記補強用棒体を拘束する工程と、溝の内面と補強用棒体との隙間に樹脂を注入して補強用棒体を固定する工程と、表面を樹脂で被覆する工程とを含むことを特徴とするコンクリート構造物の補強工法。   A step of forming a groove into which the reinforcing rod is fitted in the surface portion of the concrete structure by a cutting tool; and, after fitting the reinforcing rod into the groove, the inner surface of the groove and the reinforcing rod A step of driving a wedge-shaped anchor into the gap to restrain the reinforcing rod, a step of injecting resin into the gap between the inner surface of the groove and the reinforcing rod, and fixing the reinforcing rod, A method for reinforcing a concrete structure, comprising: a covering step.
JP2003303459A 2003-08-27 2003-08-27 Reinforcement method for concrete structures Active JP3786938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303459A JP3786938B2 (en) 2003-08-27 2003-08-27 Reinforcement method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303459A JP3786938B2 (en) 2003-08-27 2003-08-27 Reinforcement method for concrete structures

Publications (2)

Publication Number Publication Date
JP2005068931A JP2005068931A (en) 2005-03-17
JP3786938B2 true JP3786938B2 (en) 2006-06-21

Family

ID=34407455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303459A Active JP3786938B2 (en) 2003-08-27 2003-08-27 Reinforcement method for concrete structures

Country Status (1)

Country Link
JP (1) JP3786938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062710A (en) * 2007-09-05 2009-03-26 Aatekku:Kk Reinforcing method for concrete structure
JP2009062772A (en) * 2007-09-07 2009-03-26 Aatekku:Kk Construction method and structure for reinforcing concrete structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608376B2 (en) * 2005-06-29 2011-01-12 智深 呉 Reinforcing structure and reinforcing method for concrete structure
JP4944807B2 (en) * 2008-01-28 2012-06-06 三井ホームリモデリング株式会社 Reinforcing structure and reinforcing method
JP5004829B2 (en) * 2008-02-29 2012-08-22 九州旅客鉄道株式会社 Seismic reinforcement method for structure and reinforcement structure
KR101112179B1 (en) 2008-11-18 2012-02-24 김지현 The Method of repair of nonstructural crack on the concrete floor
JP4732506B2 (en) * 2008-12-26 2011-07-27 株式会社ビルドランド Reinforcement method of concrete pier
JP2012167473A (en) * 2011-02-14 2012-09-06 Oriental Shiraishi Corp Reinforcement structure and reinforcement method of columnar structure
JP5367115B2 (en) * 2012-04-06 2013-12-11 株式会社アーテック Reinforcement method for concrete structures
JP5922993B2 (en) * 2012-06-12 2016-05-24 東亜建設工業株式会社 Structure and lining method using multiple fine crack type fiber reinforced cement composites
JP6108336B2 (en) * 2012-08-30 2017-04-05 清水建設株式会社 Seismic reinforcement structure
JP6108335B2 (en) * 2012-08-30 2017-04-05 清水建設株式会社 Beam-column joint structure
CN103306219B (en) * 2013-06-25 2015-07-22 福州大学 Method for quickly repairing and reinforcing post-earthquake damaged pier
JP6257372B2 (en) * 2014-02-24 2018-01-10 東急建設株式会社 Concrete groove forming apparatus and seismic strengthening method for existing concrete columns using the apparatus
CN104805775B (en) * 2015-05-07 2016-07-06 福州大学 The construction method of recovery technique after the shake of a kind of RC bridge pier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822098B1 (en) * 1969-01-20 1973-07-03
JP2001098767A (en) * 1999-10-01 2001-04-10 Yokohama Rubber Co Ltd:The Reinforcing construction method of reinforced concrete structure
JP3877145B2 (en) * 2001-12-10 2007-02-07 三菱化学産資株式会社 FRP reinforcement method for road bridge deck and road bridge deck
JP2005054532A (en) * 2003-08-07 2005-03-03 Faibekkusu Kk Reinforcing structure of concrete structure, and method of reinforcing concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062710A (en) * 2007-09-05 2009-03-26 Aatekku:Kk Reinforcing method for concrete structure
JP2009062772A (en) * 2007-09-07 2009-03-26 Aatekku:Kk Construction method and structure for reinforcing concrete structure

Also Published As

Publication number Publication date
JP2005068931A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US6219991B1 (en) Method of externally strengthening concrete columns with flexible strap of reinforcing material
CA1306095C (en) Pole repair system
US6176051B1 (en) Splice chuck for use in a post-tension anchor system
US6330776B1 (en) Structure for reinforcing concrete member and reinforcing method
US6151850A (en) Intermediate anchorage system utilizing splice chuck
US5894003A (en) Method of strengthening an existing reinforced concrete member
US6560939B2 (en) Intermediate anchor and intermediate anchorage system for a post-tension system
Alkhrdaji et al. Upgrading the transportation infrastructure: solid RC decks strengthened with FRP
JP2007247401A (en) Elastic fiber reinforced composite structural member
US8869476B2 (en) Sealing arrangement
US7676997B1 (en) Tendon tensioning anchor system having polymeric encapsulation with reduced shrinkage effects
US4604003A (en) Method and apparatus for retensioning prestressed concrete members
ES2243365T3 (en) PRETENSED CABLE RECEIVER DUCT WITH LONGITUDINAL CHANNELS.
KR20070083474A (en) Shearing force reinforcing structure and shearing force reinforcing member
CH707301B1 (en) Method for creating prestressed concrete structures by means of profiles of a shape memory alloy and structure, produced by the process.
KR100696441B1 (en) Precast Prestressed reinforced concrete bottom plate, bridge having the same, and construction method for the bridge
US4574545A (en) Method for installing or replacing tendons in prestressed concrete slabs
JP5217054B2 (en) Strand
US20160208490A1 (en) Method and apparatus for repairing post-tensioned concrete
US8333047B2 (en) Method for strengthening a structure and associated anchorage unit
CH657402A5 (en) Corrosion-protected tensionable pressure anchor.
KR101152265B1 (en) Prestressed bored pile construction method and structures
US10640977B2 (en) Concrete structure using reinforcing panel including embedded reinforcing grid and method of repairing and reinforcing the same
JP2008267132A (en) Formwork element for limiting diaphragm wall section, formwork part and method for manufacturing diaphragm wall in ground
EP2550401B1 (en) Bridge saddle and method for protecting strands from corrosion in such bridge saddle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350