JP3751258B2 - Reinforcement method for concrete structures - Google Patents

Reinforcement method for concrete structures Download PDF

Info

Publication number
JP3751258B2
JP3751258B2 JP2002101036A JP2002101036A JP3751258B2 JP 3751258 B2 JP3751258 B2 JP 3751258B2 JP 2002101036 A JP2002101036 A JP 2002101036A JP 2002101036 A JP2002101036 A JP 2002101036A JP 3751258 B2 JP3751258 B2 JP 3751258B2
Authority
JP
Japan
Prior art keywords
floor slab
reinforcing
groove
resin
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002101036A
Other languages
Japanese (ja)
Other versions
JP2003293324A5 (en
JP2003293324A (en
Inventor
恒二 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARTEC CO.,LTD.
Original Assignee
ARTEC CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARTEC CO.,LTD. filed Critical ARTEC CO.,LTD.
Priority to JP2002101036A priority Critical patent/JP3751258B2/en
Publication of JP2003293324A publication Critical patent/JP2003293324A/en
Publication of JP2003293324A5 publication Critical patent/JP2003293324A5/ja
Application granted granted Critical
Publication of JP3751258B2 publication Critical patent/JP3751258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート床版に補強用網体を固定させるコンクリート構造物の補強方法に関する。
【0002】
【従来の技術】
コンクリート橋梁の床版は、自動車などの車輌の動荷重が直接的にしかも繰り返し加わり、道路橋の主要部材の中でも最も過酷な荷重、応力を受ける。このため、特に床版の下面において、一方向の亀裂から縦横の亀裂が発生し、さらにはこれらの亀裂が成長して細網化し、最終的にはコンクリートの剥落などの原因となる。
【0003】
このような損傷は放置しておくと、亀裂がさらに進み鉄筋の腐食へと進展し、最終的には橋梁の破壊にまで至る。このような事態を避けるために、コンクリート橋梁の床版の下面を補修してこれを補強することが行われている。
【0004】
この補強方法の一例として、特開平8−338005号公報に記載の方法がある。これは、図5の(a)に示すように、鉄筋棒51a,51bを格子状にしてその格子点部分を溶接によって接合した補強用網鉄筋51を予め製作しておき、この補強用網鉄筋51を同図の(b)に示すようにコンクリート橋梁の床版50の下面に沿わせて配置することによって補強するようにしたものである。そして、補強用網鉄筋51は床版50に打ち込むアンカーピン式の固定具52によって固定され、この固定の後に3層の被覆層53a,53b,53cによって被覆した補強構造が施工される。
【0005】
固定具52は、そのヘッド52aに連なるピン52bの基端部分を先細りするテーパ52cとしたものである。そして、同図の(a)に示すように、固定具52のピン52bの先端を補強用網鉄筋51の格子点に接する位置で床版50に打ち込むことにより、テーパ52cが補強用網鉄筋51の互いに交差する鉄筋棒に突き当たる。これにより、同図の(a)において矢印で示す方向に補強用網鉄筋51の格子部分を押す力が作用し、補強用網鉄筋51の全体にプレストレスを負荷した状態となる。
【0006】
このような補強構造であれば、補強用網鉄筋51によって床版50が裏打ちされて床版50の強度が補強されると同時に、補強用網鉄筋51にはプレストレスが負荷されているので、床版50が荷重によって撓んだり変位したりしたときでも、補強用網鉄筋51はこれらの撓みや変位に追従可能なので、補強用網鉄筋51と既設の床版50との一体化が強化され、その補強効果が長期間にわたって維持される。
【0007】
【発明が解決しようとする課題】
上記の補強構造において、被覆層53aは床版50の下面に直接接着させることにより固定されており、床版50と被覆層53aとの間は、膨張係数や弾性係数が相違する性状の部材どうしが接着されていることになる。このため、床版50が動荷重によって繰り返して撓み変形するとき、床版50と被覆層53a,53b,53cの間の伸び変形の差によって、撓み部分でこれらの被覆層53a,53b,53cが床版50の下面から離れて浮き上がりを生じる可能性がある。また、損傷した床版50においては、通行車輌の輪荷重による撓みと亀裂開口の開閉の相乗作用により、床版50と被覆層53aの接着面に剪断力が発生して、被覆層53a,53b,53cが浮き上がりを生じる可能性がある。
【0008】
このような挙動によって被覆層53a,53b,53cの一部が床版50の下面から離れてしまうと、床版50に対する裏打ち効果がなくなる。そして、床版50から浮き上がる被覆層53a,53b,53cの広さが大きくなるに従って、床版50に対する補強効果も減退してしまうことになる。さらに、被覆層53a,53b,53cの浮き上がりによって補強用網体51の固定が不安定になり、補強効果が減退する。
【0009】
このように、従来の床版50の補強方法では、被覆層53a,53b,53cを床版50の下面に直接接着する工法であることから、コンクリート製の床版50と被覆層53a,53b,53cとの間の材質の相違、および床版50の亀裂開口の開閉が原因となって、被覆層53a,53b,53cが床版50の下面から離れて補強強度の低下を招く恐れがある。また床版全体が補強用網鉄筋51やその他の部材により覆われてしまうために施工後の床版50の経過を目視で観察することもできない。
【0010】
上記の問題は、コンクリート橋梁の床版に限った問題ではなく、ビル建築物などの他のコンクリート構造物の場合にも言えることである。また、上記の例では補強用網体として鉄製の網鉄筋を用いているが、網体の材質が合成樹脂の場合であっても同様な問題がある。
【0011】
本発明において解決すべき課題は、コンクリート構造物の補強に際して、補強用網体が床版の面上を移動しないように拘束することにより、コンクリート構造物の表面から補強用網体と被覆樹脂とが剥離するのを防止することにある。
【0012】
【課題を解決するための手段】
本発明は、コンクリート構造物の床版の表面に補強用網体を固定して床版を補強するコンクリート構造物の補強工法であって、床版の表面部に補強用網体を嵌め込む溝を形成し、この溝に補強用網体を嵌め込んで固定することを特徴とする。
【0013】
床版の表面部に補強用網体を嵌め込む溝を形成し、この溝に補強用網体を嵌め込んで固定することにより、補強用網体による補強層が床版内部に食い込んで存在する構成となる。この補強層はコンクリート構造物自体の撓みに対して高い引っ張り応力を発揮することで撓みによる変形を防ぐことができる。
【0014】
この補強用網体は、角材で形成された格子状の形状を備えることが望ましい。網体を角材で形成された格子状の形状とすることにより、補強用網体の製造および溝の施工が容易になる。また、この網体の材質としては繊維強化プラスチックの積層により成形するのが望ましい。繊維強化プラスチックは錆びなどの腐食を発生しにくく、高い引っ張り強度を備えながら軽量であるために施工時の運搬なども容易である。さらに床版に形成する溝は、コンクリートの主筋および背筋の方向と一致させることで補強用網体の引っ張り強度を最も効率的に発揮させることができる。
【0015】
ここで、床版の溝に補強用網体を嵌め込んだあと、溝の内面と補強用網体との隙間に楔形のアンカーを打ち込んで補強用網体を拘束するとともに隙間に樹脂を注入して補強用網体を床版に固定することが望ましい。溝の内面と補強用網体との隙間にアンカーを打ち込み樹脂により固定することによって、補強用網体と溝の嵌め合い寸法の精度を厳密に管理しなくとも補強用網体と溝内壁とを面接触させて強固に固定することができる。
【0016】
上記工法を実施する具体的な工程としては、切削工具により床版の表面部に補強用網体を嵌め込む溝を形成する工程と、溝を洗浄する工程と、溝に補強用網体を嵌め嵌め込んだ後、溝の内面と補強用網体との隙間に楔形のアンカーを打ち込んで補強用網体を拘束する工程と、溝を含む床版表面を樹脂で覆う工程と、補強用網体を拘束し、床版表面を樹脂で覆った状態で前記溝の隙間に樹脂を注入して補強用網体を床版に固定する工程と、床版表面を覆う樹脂を除去する工程を含むものとなる。
【0017】
溝を形成する工程と、この溝に補強用網体を嵌め嵌め込んだ後に補強用網体を拘束する工程によって、コンクリート表面に食い込んだ補強層を形成させることができる。また、溝を洗浄する工程と、溝の内面と補強用網体との隙間に樹脂を注入して補強用網体を床版に固定する工程とにより、床版に発生していた亀裂の内部に網体固定のための樹脂を浸透させて亀裂の進展を抑制することができる。また、最後に床版表面を覆う樹脂を除去することにより、コンクリート製の床版の表面が露出する構成となるので、補強後の床版の表面状態の変化を引き続き監視することができる。
【0018】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて具体的に説明する。
図1の(a)は本発明を適用したコンクリート橋梁の全体図を示し、1は鉄筋コンクリート製の床版で、床版1の両端には地覆2が形成され、床版1の下面には3列の橋桁3が設けられている。そして床版1の下面全面に補強用被覆層9が形成されている。
【0019】
図1の(b)は同図(a)のA部の拡大断面図であり、図1の(c)は同図(b)の補強用被覆層9の底面図である。床版1の内部には、上側鉄筋4aと下側鉄筋4bが配置されている。この床版1の下面1sに、鉄筋4a,4bと同一方向およびこれと直角な方向に格子状の溝11が形成され、この溝11内部に繊維強化プラスチック(FRP)製の格子筋20が嵌め込まれている(図2の(b)参照)。この格子筋20は、溝11内部にエキポシ樹脂30を充填し硬化させることによって溝11内に固定されている。
【0020】
以上の構成において、格子筋20は床版1の下面1sに形成された溝11内に嵌め込まれた状態で固定されている。しかも格子筋20と溝11の間にはエポキシ樹脂を素材とする樹脂30を介在させているので、床版1が動荷重によって繰り返して撓み変形するときでも、この床版1の変形による歪み力は溝11内の樹脂30を介して格子筋20に伝達される。
【0021】
すなわち、格子筋20は床版1の溝11の中に封止されているので、床版1が撓み変形するときには、床版1の撓み変形に対し格子筋20が床版1の溝11の側壁間の距離Dを一定に保つ作用を備えている。これにより床版1が荷重によって撓みによる変位が発生した場合でも、格子筋20の弾性域の範囲内では変位を吸収することによって床版1の面方向全体が高い引っ張り応力を備えた構成となる。さらに格子筋20が床版1の溝11から浮き上がることはない。
【0022】
次いで図2および図3を参照して、被覆層9の施工手順について説明する。
図2(a)において、1は鉄筋コンクリート製の床版であり、1sはこの床版1の下面である。この下面1sには亀裂1cが存在している。この床版1を補強するために、図2(b)に示すように、床版1の下面1s表面に、コンクリートカッターによって床版1に配筋されている主筋および背筋とそれぞれ平行な方向に幅15mm、深さ15mm程度の格子状の溝11を100mmピッチで穿つ。このあと10〜20MPaのジェット水による高圧水洗ケレンによって全面を洗浄する。この洗浄により下面1sの亀裂1c内にあるゴミなどを除去する。
【0023】
次いで、幅10mm×高さ10mmの角部材で形成し、溝11と同ピッチの格子を備えたFRP製の格子筋20を、下面1sの溝11内に嵌め込む。ここで、格子筋20の接手部分に2枚の格子筋20を配置するときには、図2(c)に示すように深い溝11aを形成し、この深い溝11aに接手用の格子筋20aを嵌め込む。これにより、連続して強度を発揮するように連結する構成となり、床版1の補強面全体を覆い、切れ間なく引っ張り強度を備えた一体のFRP製の格子筋20と同様の構成とすることができる。
【0024】
次いで、図3(a)に示すように、この床版1の溝11内部の側壁と、FRP製の格子筋20との隙間にくさびアンカー25を嵌入して格子筋20を固定する。このくさびアンカー25は、図3(c)に示すように底面は円形を形成し、上面は楕円を形成し、内部は中空となっている。この中空部25aは後述するように低粘度樹脂30注入時の注入口となる。
【0025】
次いで、図4(a)に示すように、このくさびアンカー25を嵌入した箇所以外の全部の溝に粘土状樹脂21を、格子筋20を覆うように被せていく。この粘土状樹脂21は、低粘度樹脂30が樹脂注入時に漏れないようにする目的のものなので、樹脂モルタルで施工することも可能である。さらに図4(b)に示すように、この粘土状樹脂21の上から剥離型樹脂22を吹き付けることで粘土状樹脂21からの低粘度樹脂30の漏れを防ぐ。この剥離型樹脂22の塗布方法はコテ塗りによってももちろん可能であるが、特に天井への上向きの塗布を行う場合には吹き付けによる施工が効率面で適している。
【0026】
これらの工程のあとに、図3(b)に示すようにくさびアンカー25の内部に注入器を接続し、粘土状樹脂21で密封された溝11の内部に低粘度樹脂30を注入していく。この低粘度樹脂30は粘度が低いので、溝11内の空間部に充填されるとともに床版1の亀裂1c内部の空間に浸透していく。
【0027】
また低粘度樹脂30の注入を補修面中央から行うことで注入箇所以外のアンカー25は空気抜きとして機能する。低粘度樹脂30が空気抜きのアンカー25まで到達したのを確認したあと、最初の注入アンカー25をゴム栓などで封入し、低粘度樹脂30の逆流を防いだあとに空気抜きのアンカー25から注入していくことで空気の混入を最小限にしながら全部の溝に低粘度樹脂30を注入することができる。この低粘度樹脂30としては、施工が容易である点からエキポシ樹脂などを用いることが望ましい。
【0028】
亀裂1cに浸透した低粘度樹脂30は剥離型樹脂22によって表面1sまで到達した亀裂1cから漏れることなく、コンクリート内部の亀裂1cの先端方向へ浸透していく。この浸透した低粘度樹脂30が硬化した後は、既存の亀裂1c内への水分の浸透を防ぐ。これにより、コンクリート内部の鉄筋が浸透してきた水分に起因して腐食することによって鉄筋自体の体積が膨脹して新たな亀裂を発生させることを防ぐ。またこの低粘度樹脂30を注入し硬化した後に剥離型樹脂22を剥離することにより既設のコンクリート表面が露出するので、施工後の亀裂1cの進行具合を目視観察することも可能となる。
【0029】
また既存の亀裂の内部に硬化した低粘度樹脂30が浸透した構成となるので、撓みによる引っ張りが発生した場合でも低粘度樹脂30自体の弾性力によって亀裂の引っ張りを抑制する。この引っ張りの抑制によって撓みによる変位自体を抑制することにより、変位の繰り返しによる床版1の亀裂の進行を遅らせることができる。
【0030】
また本工法はコンクリート内にアンカーを打ち込むことはないために、新たな亀裂を発生させることがなく、既存のコンクリートにも負担をかけない構成となる。
【0031】
なお、本実施例の方法は、損傷したコンクリート構造物の補修に止まらず、例えば、耐用年数が20年で設計された橋梁を耐用年数を25年に増強する場合にも適用できることはもちろんである。また、床版のみならず桁下面の補強にも同様に適用できる。特に施工中においても通過交通によって絶えず撓みが繰り返される床版や桁において最も効果を発揮するものである。
【0032】
【発明の効果】
本発明によって以下の効果を奏することができる。
(1)コンクリート構造物の床版の表面部に補強用網体を嵌め込む溝を形成し、この溝に補強用網体を嵌め込んで固定することにより補強層が床版に食い込んだ状態となり、取り付けられた既設橋梁が撓んだ場合にも、補強用網体がこの橋梁の変位に追従しながら引っ張り応力を発揮するので、補強層とコンクリートの間に隙間が生じることがなく、補強用網体と既設橋梁との一体化が図れ、長期にわたって表面の剥離防止を維持できる補強方法となる。
【0033】
(2)床版の溝に補強用網体を嵌め込んだあと、溝の内面と補強用網体との隙間に楔形のアンカーを打ち込んで補強用網体を拘束するとともに前記隙間に樹脂を注入して補強用網体を床版に固定することによって、補強用網体と溝の嵌め合い寸法の精度にかかわらずコンクリートに対する引っ張り強度を効率よく発揮する補強層となる。また、床版と補強用網体との間に樹脂を介在させることにより、補強用網体に対する剪断力が発生せず、剪断力破壊が生じない。さらにこの樹脂が床版の亀裂の補修材としても機能する。
【0034】
(3)溝を形成する工程と、前記溝を洗浄する工程と、前記溝に補強用網体を嵌め嵌め込んだ後、アンカーを打ち込んで拘束する工程と、樹脂で覆う工程と、補強用網体を拘束し、樹脂を注入して補強用網体を床版に固定する工程と、前記床版表面を覆う樹脂を除去する工程を含むものとすることで補強用網体の固定と剥離防止の施工を効率的に行うことができる。
【図面の簡単な説明】
【図1】 (a)は本発明を適用したコンクリート橋梁の全体図、(b)は(a)のA部の拡大断面図、(c)は(b)の補強用被覆層の底面図である。
【図2】 本発明の施工手順を示す説明図である。
【図3】 本発明の施工手順を示す説明図である。
【図4】 本発明の施工手順を示す説明図である。
【図5】 従来の補強構造を示す概略図である。
【符号の説明】
1 床版
1s 下面
1c 亀裂
2 地覆
3 橋桁
4a 上部鉄筋
4b 下部鉄筋
9 補強用被覆層
11 溝
20 格子筋
21 粘土状樹脂
22 剥離型樹脂
25 アンカー
30 低粘度樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reinforcing a concrete structure in which a reinforcing net is fixed to a concrete slab.
[0002]
[Prior art]
The concrete bridge floor slab is directly and repeatedly subjected to the dynamic load of a vehicle such as an automobile, and is subjected to the most severe load and stress among the main members of a road bridge. For this reason, especially in the lower surface of the floor slab, vertical and horizontal cracks are generated from cracks in one direction, and further, these cracks grow and become reticulated, and eventually cause peeling of concrete.
[0003]
If such damage is left unattended, cracks will progress further and progress to corrosion of the reinforcing bars, eventually leading to the destruction of the bridge. In order to avoid such a situation, the lower surface of the floor slab of a concrete bridge is repaired and reinforced.
[0004]
As an example of this reinforcing method, there is a method described in JP-A-8-338005. This is because, as shown in FIG. 5 (a), reinforcing reinforcing bars 51a and 51b are formed in a lattice shape and reinforcing mesh reinforcing bars 51 in which the lattice points are joined together by welding are manufactured in advance. As shown in (b) of the figure, 51 is reinforced by being arranged along the lower surface of the floor slab 50 of the concrete bridge. Then, the reinforcing mesh reinforcing bar 51 is fixed by an anchor pin type fixing tool 52 driven into the floor slab 50, and after this fixing, a reinforcing structure covered with three layers of covering layers 53a, 53b, 53c is applied.
[0005]
The fixing tool 52 has a taper 52c that tapers the proximal end portion of the pin 52b connected to the head 52a. And as shown to (a) of the figure, the taper 52c is made into the reinforcement net | network reinforcement 51 by driving the front-end | tip of the pin 52b of the fixing tool 52 into the floor slab 50 in the position which touches the lattice point of the reinforcement | strengthening net reinforcement 51. Hit the bars that cross each other. Thereby, the force which pushes the grid | lattice part of the reinforcement netting reinforcement 51 acts in the direction shown by the arrow in (a) of the figure, and it will be in the state which loaded the prestress to the whole reinforcement reinforcement.
[0006]
With such a reinforcement structure, the floor slab 50 is lined by the reinforcing mesh reinforcement 51 to reinforce the strength of the floor slab 50, and at the same time, the reinforcement mesh reinforcement 51 is prestressed. Even when the floor slab 50 bends or displaces due to a load, the reinforcing mesh reinforcing bar 51 can follow these deflections and displacements, so that the integration of the reinforcing mesh reinforcing bar 51 and the existing floor slab 50 is strengthened. The reinforcing effect is maintained over a long period of time.
[0007]
[Problems to be solved by the invention]
In the above reinforcing structure, the covering layer 53a is fixed by directly adhering to the lower surface of the floor slab 50, and members having properties having different expansion coefficients and elastic coefficients between the floor slab 50 and the covering layer 53a. Will be adhered. For this reason, when the floor slab 50 is repeatedly bent and deformed by a dynamic load, the covering layers 53a, 53b, and 53c are deformed in the bent portion due to the difference in elongation deformation between the floor slab 50 and the covering layers 53a, 53b, and 53c. There is a possibility that the slab is lifted away from the lower surface of the floor slab 50. Further, in the damaged floor slab 50, a shearing force is generated on the bonding surface of the floor slab 50 and the covering layer 53a due to a synergistic action of the bending due to the wheel load of the passing vehicle and the opening and closing of the crack opening, and the covering layers 53a and 53b. , 53c may be lifted.
[0008]
If a part of the coating layers 53a, 53b, 53c is separated from the lower surface of the floor slab 50 by such behavior, the backing effect on the floor slab 50 is lost. And the reinforcement effect with respect to the floor slab 50 will also decline as the area of the coating layers 53a, 53b, 53c which floats from the floor slab 50 becomes large. Furthermore, the reinforcement of the reinforcing net 51 becomes unstable due to the rising of the covering layers 53a, 53b, 53c, and the reinforcing effect is reduced.
[0009]
As described above, in the conventional reinforcing method of the floor slab 50, since the covering layers 53a, 53b, and 53c are directly bonded to the lower surface of the floor slab 50, the concrete floor slab 50 and the covering layers 53a, 53b, Due to the difference in material with respect to 53c and the opening and closing of the crack opening of the floor slab 50, the covering layers 53a, 53b, 53c may be separated from the lower surface of the floor slab 50 and cause a reduction in reinforcement strength. Further, since the entire floor slab is covered with the reinforcing mesh bars 51 and other members, the progress of the floor slab 50 after construction cannot be visually observed.
[0010]
The above problem is not limited to the concrete slab floor slab, but can also be said for other concrete structures such as buildings. In the above example, an iron net reinforcing bar is used as the reinforcing net, but there is a similar problem even when the net is made of synthetic resin.
[0011]
The problem to be solved in the present invention is that when reinforcing a concrete structure, the reinforcing mesh body is restrained from moving on the surface of the floor slab so that the reinforcing mesh body and the coating resin are separated from the surface of the concrete structure. It is to prevent peeling.
[0012]
[Means for Solving the Problems]
The present invention relates to a concrete structure reinforcing method for reinforcing a floor slab by fixing a reinforcing mesh to the surface of a floor slab of a concrete structure, and a groove for fitting the reinforcing mesh into the surface of the floor slab And a reinforcing net is fitted into the groove and fixed.
[0013]
A groove for fitting the reinforcing mesh is formed in the surface portion of the floor slab, and the reinforcing mesh is fitted into the groove and fixed, so that a reinforcing layer by the reinforcing mesh is bitten into the floor slab. It becomes composition. This reinforcing layer can prevent deformation due to bending by exerting a high tensile stress against the bending of the concrete structure itself.
[0014]
It is desirable that the reinforcing net has a lattice shape formed of square bars. By making the mesh body into a grid-like shape formed of square bars, it becomes easy to manufacture the reinforcing mesh body and construct the grooves. Further, it is desirable to form the net body by lamination of fiber reinforced plastic. Fiber reinforced plastics are less susceptible to corrosion such as rust, and are lightweight while having high tensile strength, so they can be easily transported during construction. Further, the grooves formed in the floor slab can be most efficiently exerted by the tensile strength of the reinforcing net by matching the direction of the main and back bars of the concrete.
[0015]
Here, after the reinforcing mesh is fitted in the groove of the floor slab, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing mesh to restrain the reinforcing mesh and inject resin into the gap. It is desirable to fix the reinforcing net to the floor slab. By anchoring the anchor into the gap between the inner surface of the groove and the reinforcing net and fixing it with resin, the reinforcing net and the inner wall of the groove can be connected without strictly controlling the accuracy of the fitting size of the reinforcing net and the groove. It can be fixed firmly by surface contact.
[0016]
As specific steps for carrying out the above method, a cutting tool is used to form a groove for fitting the reinforcing mesh on the surface of the floor slab, a step for cleaning the groove, and a reinforcing mesh is fitted into the groove. After fitting, a step of driving a wedge-shaped anchor into the gap between the inner surface of the groove and the reinforcing net body to restrain the reinforcing net body, a step of covering the floor slab surface including the groove with a resin, and a reinforcing net body And a step of injecting resin into the gap of the groove with the floor slab surface covered with resin and fixing the reinforcing net to the floor slab, and a step of removing the resin covering the floor slab surface It becomes.
[0017]
By the step of forming a groove and the step of constraining the reinforcing net after fitting and fitting the reinforcing net into the groove, a reinforcing layer biting into the concrete surface can be formed. Further, the interior of the crack generated in the floor slab is obtained by washing the groove and injecting resin into the gap between the inner surface of the groove and the reinforcing mesh to fix the reinforcing mesh to the floor slab. It is possible to suppress the progress of cracks by infiltrating the resin for fixing the mesh body. Moreover, since the surface of the concrete floor slab is exposed by removing the resin covering the surface of the floor slab at the end, the change in the surface state of the floor slab after reinforcement can be continuously monitored.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 (a) is an overall view of a concrete bridge to which the present invention is applied. 1 is a floor slab made of reinforced concrete, and a ground cover 2 is formed at both ends of the floor slab 1, and Three rows of bridge girders 3 are provided. A reinforcing covering layer 9 is formed on the entire lower surface of the floor slab 1.
[0019]
1B is an enlarged cross-sectional view of a portion A in FIG. 1A, and FIG. 1C is a bottom view of the reinforcing coating layer 9 in FIG. Inside the floor slab 1, an upper reinforcing bar 4a and a lower reinforcing bar 4b are arranged. A lattice-like groove 11 is formed on the lower surface 1s of the floor slab 1 in the same direction as the reinforcing bars 4a and 4b and in a direction perpendicular to the reinforcing bars 4a and 4b, and a lattice reinforcement 20 made of fiber reinforced plastic (FRP) is fitted inside the groove 11. (See FIG. 2 (b)). The lattice bars 20 are fixed in the grooves 11 by filling the grooves 11 with the epoxy resin 30 and curing them.
[0020]
In the above configuration, the lattice bars 20 are fixed in a state of being fitted in the grooves 11 formed on the lower surface 1 s of the floor slab 1. Moreover, since the resin 30 made of epoxy resin is interposed between the lattice bars 20 and the grooves 11, even when the floor slab 1 is repeatedly bent and deformed by a dynamic load, the distortion force due to the deformation of the floor slab 1 Is transmitted to the lattice line 20 through the resin 30 in the groove 11.
[0021]
That is, since the lattice bars 20 are sealed in the grooves 11 of the floor slab 1, when the floor slab 1 is bent and deformed, the lattice lines 20 are formed in the grooves 11 of the floor slab 1 against the deformation of the floor slab 1. The distance D between the side walls is kept constant. Thereby, even when the displacement of the floor slab 1 due to bending occurs due to the load, the entire surface direction of the floor slab 1 is provided with a high tensile stress by absorbing the displacement within the elastic range of the lattice reinforcement 20. . Further, the lattice line 20 does not float from the groove 11 of the floor slab 1.
[0022]
Next, with reference to FIG. 2 and FIG. 3, the construction procedure of the coating layer 9 will be described.
In FIG. 2A, 1 is a floor slab made of reinforced concrete, and 1 s is a lower surface of the floor slab 1. The lower surface 1s has a crack 1c. In order to reinforce the floor slab 1, as shown in FIG. 2 (b), on the surface of the lower surface 1 s of the floor slab 1 in a direction parallel to the main and back bars arranged on the floor slab 1 by a concrete cutter. A grid-like groove 11 having a width of about 15 mm and a depth of about 15 mm is drilled at a pitch of 100 mm. Thereafter, the entire surface is washed by high pressure water washing with 10 to 20 MPa jet water. By this cleaning, dust and the like in the crack 1c on the lower surface 1s are removed.
[0023]
Next, an FRP lattice 20 formed of a square member having a width of 10 mm and a height of 10 mm and having a lattice having the same pitch as the grooves 11 is fitted into the grooves 11 on the lower surface 1 s. Here, when the two lattice bars 20 are arranged at the joint portion of the lattice line 20, a deep groove 11a is formed as shown in FIG. 2 (c), and the lattice line 20a for fitting is fitted into the deep groove 11a. Include. Thereby, it becomes the structure connected so that intensity | strength may be exhibited continuously, and it is set as the structure similar to the integral FRP grid | lattice reinforcement 20 with the tensile strength which covers the whole reinforcement surface of the floor slab 1 and has no cut. it can.
[0024]
Next, as shown in FIG. 3A, a wedge anchor 25 is fitted into a gap between the side wall inside the groove 11 of the floor slab 1 and the lattice reinforcement 20 made of FRP to fix the lattice reinforcement 20. As shown in FIG. 3C, the wedge anchor 25 has a circular bottom surface, an elliptical top surface, and a hollow interior. As will be described later, the hollow portion 25a serves as an inlet when the low-viscosity resin 30 is injected.
[0025]
Next, as shown in FIG. 4A, the clay-like resin 21 is placed so as to cover the lattice line 20 in all the grooves other than the portion where the wedge anchor 25 is inserted. Since the clay-like resin 21 is intended to prevent the low-viscosity resin 30 from leaking when the resin is injected, it can be applied with resin mortar. Further, as shown in FIG. 4B, the release resin 22 is sprayed from above the clay-like resin 21 to prevent the low-viscosity resin 30 from leaking from the clay-like resin 21. Of course, the application method of the peelable resin 22 is possible by applying a trowel. However, in particular, when the coating is applied upward on the ceiling, the application by spraying is suitable in terms of efficiency.
[0026]
After these steps, an injector is connected to the inside of the wedge anchor 25 as shown in FIG. 3B, and the low viscosity resin 30 is injected into the groove 11 sealed with the clay-like resin 21. . Since this low-viscosity resin 30 has a low viscosity, it fills the space in the groove 11 and penetrates into the space inside the crack 1 c of the floor slab 1.
[0027]
Further, by injecting the low-viscosity resin 30 from the center of the repair surface, the anchors 25 other than the injection location function as air vents. After confirming that the low-viscosity resin 30 has reached the air vent anchor 25, the first injection anchor 25 is sealed with a rubber stopper, etc., and the back flow of the low-viscosity resin 30 is prevented and then injected from the air vent anchor 25. Thus, the low-viscosity resin 30 can be injected into all the grooves while minimizing air contamination. As this low-viscosity resin 30, it is desirable to use an epoxy resin or the like because it is easy to construct.
[0028]
The low-viscosity resin 30 that has penetrated into the crack 1c permeates toward the tip of the crack 1c inside the concrete without leaking from the crack 1c that has reached the surface 1s by the release resin 22. After the penetrated low viscosity resin 30 is cured, the penetration of moisture into the existing crack 1c is prevented. Thereby, it is prevented that the volume of the reinforcing bar itself is expanded due to corrosion caused by the moisture that has penetrated the reinforcing bar inside the concrete and a new crack is generated. Moreover, since the existing concrete surface is exposed by peeling the release resin 22 after injecting and curing the low viscosity resin 30, it is also possible to visually observe the progress of the crack 1c after the construction.
[0029]
Further, since the cured low-viscosity resin 30 penetrates into the existing cracks, even if a tensile due to bending occurs, the tensile of the crack is suppressed by the elastic force of the low-viscosity resin 30 itself. By suppressing the displacement itself due to the bending by suppressing the pull, the progress of the crack of the floor slab 1 due to the repetition of the displacement can be delayed.
[0030]
In addition, since this method does not drive anchors into concrete, it does not generate new cracks and does not place a burden on existing concrete.
[0031]
The method of the present embodiment is not limited to repairing a damaged concrete structure. For example, a bridge designed for a service life of 20 years can be applied to a service life of 25 years. . Further, the present invention can be similarly applied not only to the floor slab but also to the reinforcement of the underside of the girder. In particular, it is most effective for floor slabs and girders that are repeatedly bent due to passing traffic even during construction.
[0032]
【The invention's effect】
The following effects can be achieved by the present invention.
(1) A groove for fitting a reinforcing mesh body is formed on the surface portion of the floor slab of a concrete structure, and the reinforcing layer is cut into the floor slab by fitting and fixing the reinforcing mesh body in this groove. Even when the installed existing bridge is bent, the reinforcing mesh exerts tensile stress while following the displacement of the bridge, so there is no gap between the reinforcing layer and the concrete. The net body and the existing bridge can be integrated, and the reinforcement method can maintain the prevention of surface peeling for a long time.
[0033]
(2) After fitting a reinforcing mesh into the groove of the floor slab, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing mesh to restrain the reinforcing mesh and inject resin into the gap By fixing the reinforcing net to the floor slab, the reinforcing layer efficiently exhibits the tensile strength against the concrete irrespective of the accuracy of the fitting size of the reinforcing net and the groove. Further, by interposing the resin between the floor slab and the reinforcing net, no shearing force is generated on the reinforcing net and no shear force breakage occurs. Furthermore, this resin also functions as a repair material for cracks in the floor slab.
[0034]
(3) a step of forming a groove, a step of cleaning the groove, a step of fitting and inserting a reinforcing net into the groove, and then anchoring the anchor, a step of covering with a resin, and a reinforcing net Constraining the body, injecting resin to fix the reinforcing mesh to the floor slab, and removing the resin covering the floor slab surface to fix the reinforcing mesh and prevent peeling Can be performed efficiently.
[Brief description of the drawings]
1A is an overall view of a concrete bridge to which the present invention is applied, FIG. 1B is an enlarged sectional view of a portion A of FIG. 1A, and FIG. 1C is a bottom view of a reinforcing covering layer of FIG. is there.
FIG. 2 is an explanatory view showing a construction procedure of the present invention.
FIG. 3 is an explanatory view showing a construction procedure of the present invention.
FIG. 4 is an explanatory view showing a construction procedure of the present invention.
FIG. 5 is a schematic view showing a conventional reinforcing structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Floor slab 1s Lower surface 1c Crack 2 Ground cover 3 Bridge girder 4a Upper rebar 4b Lower rebar 9 Reinforcement coating layer 11 Groove 20 Lattice rebar 21 Clay-like resin 22 Peeling resin 25 Anchor 30 Low viscosity resin

Claims (2)

コンクリート構造物の床版の表面に補強用網体を固定して床版を補強するコンクリート構造物の補強工法であって、前記床版の表面部に補強用網体を嵌め込む溝を形成し、前記溝に補強用網体を嵌め込んだ後、前記溝の内面と前記補強用網体との隙間に楔形のアンカーを打ち込んで前記補強用網体を拘束するとともに前記隙間に樹脂を注入して前記補強用網体を前記床版に固定することを特徴とするコンクリート構造物の補強工法。A concrete structure reinforcing method for reinforcing a floor slab by fixing a reinforcing mesh on the surface of a floor slab of a concrete structure, wherein a groove for fitting the reinforcing mesh is formed on the surface of the floor slab. After inserting the reinforcing net into the groove, a wedge-shaped anchor is driven into the gap between the inner surface of the groove and the reinforcing net to restrain the reinforcing net and inject resin into the gap. A reinforcing method for a concrete structure, wherein the reinforcing net is fixed to the floor slab . 切削工具によりコンクリート構造物の床版の表面部に補強用網体を嵌め込む溝を形成する工程と、前記溝を洗浄する工程と、前記溝に前記補強用網体を嵌め込んだ後、前記溝の内面と前記補強用網体との隙間に楔形のアンカーを打ち込んで前記補強用網体を拘束する工程と、前記溝を含む前記床版表面を樹脂で覆う工程と、前記補強用網体を拘束し、前記床版表面を樹脂で覆った状態で前記溝の隙間に樹脂を注入して前記補強用網体を前記床版に固定する工程と、前記床版表面を覆う樹脂を除去する工程を含むコンクリート構造物の補強工法。Forming a groove for fitting a reinforcing net body surface portion of the slab of the concrete structure by a cutting tool, a step of washing the grooves, after forme because fitting the reinforcing net assembly into the groove, A step of driving a wedge-shaped anchor into a gap between the inner surface of the groove and the reinforcing net body to restrain the reinforcing net body, a step of covering the floor slab surface including the groove with a resin, and the reinforcing net Restraining the body, injecting resin into the gaps in the groove with the floor slab surface covered with resin, and fixing the reinforcing net to the floor slab, and removing the resin covering the floor slab surface Reinforcement method of concrete structure including the process to do.
JP2002101036A 2002-04-03 2002-04-03 Reinforcement method for concrete structures Expired - Fee Related JP3751258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101036A JP3751258B2 (en) 2002-04-03 2002-04-03 Reinforcement method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101036A JP3751258B2 (en) 2002-04-03 2002-04-03 Reinforcement method for concrete structures

Publications (3)

Publication Number Publication Date
JP2003293324A JP2003293324A (en) 2003-10-15
JP2003293324A5 JP2003293324A5 (en) 2004-09-09
JP3751258B2 true JP3751258B2 (en) 2006-03-01

Family

ID=29241620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101036A Expired - Fee Related JP3751258B2 (en) 2002-04-03 2002-04-03 Reinforcement method for concrete structures

Country Status (1)

Country Link
JP (1) JP3751258B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758036A (en) * 2014-01-23 2014-04-30 长安大学 Thin-wall rib-plate-type ultra-high-strength integrated concrete bridge deck plate
CN104631347A (en) * 2015-01-26 2015-05-20 北京市市政工程研究院 Strengthening method for subway station tunnel and bridge structures along subway station tunnel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810201B2 (en) * 2005-11-29 2011-11-09 千葉積水工業株式会社 Concrete structure reinforcing structure and concrete structure reinforcing method
CN106012712A (en) * 2016-07-05 2016-10-12 北京交通大学 Reinforcing method of straddle type monorail traffic rail beam
JP6948503B2 (en) * 2016-12-28 2021-10-13 国立大学法人金沢大学 How to reinforce concrete structures, concrete structures and flexible continuous fiber reinforcements
JP7022052B2 (en) * 2018-12-14 2022-02-17 株式会社竹中工務店 How to reinforce existing floors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822098B1 (en) * 1969-01-20 1973-07-03
JPH08338005A (en) * 1995-06-14 1996-12-24 Kyoryo Hozen Kk Reinforcing method for concrete bridge
JP2002129754A (en) * 2000-10-20 2002-05-09 Toray Ind Inc Reinforcing method for concrete structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758036A (en) * 2014-01-23 2014-04-30 长安大学 Thin-wall rib-plate-type ultra-high-strength integrated concrete bridge deck plate
CN103758036B (en) * 2014-01-23 2016-04-27 长安大学 Thin-walled fin-plate type super high strength concrete integrated deck plate
CN104631347A (en) * 2015-01-26 2015-05-20 北京市市政工程研究院 Strengthening method for subway station tunnel and bridge structures along subway station tunnel

Also Published As

Publication number Publication date
JP2003293324A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP6316665B2 (en) Composite structure of steel girder and precast slab and its construction method
KR101994852B1 (en) Concrete structure using reinforcing member reinforced by embedded grid, and repairing and strengthening method for the same
JP6370729B2 (en) Road bridge protective fence installation method
JP3786938B2 (en) Reinforcement method for concrete structures
JP4608376B2 (en) Reinforcing structure and reinforcing method for concrete structure
JP3751258B2 (en) Reinforcement method for concrete structures
JPH08338005A (en) Reinforcing method for concrete bridge
JP3532441B2 (en) REINFORCEMENT STRUCTURE AND METHOD FOR REINFORCING AT CONNECTION BETWEEN STRUCTURAL MATERIALS
CN106481089B (en) The maintenance and reinforcement tectosome construction method of outmoded structure
JP4137287B2 (en) High durability structure embedded formwork method
JPH11193640A (en) Repairing method of existing concrete structure and construction method of newly provided concrete structure
JP4118278B2 (en) Girder bridge repair structure
JP2007077746A (en) Reinforcing structure and reinforcing construction method of steel floor slab
JP5222666B2 (en) Reinforcement structure for residential concrete foundation
JP2002129753A (en) Reinforcing method for concrete structure
JP3582971B2 (en) Reinforcement construction method for concrete structures
JP2983466B2 (en) Reinforcement grid material
JP4194871B2 (en) Method for reinforcing concrete structures
JP2002146904A (en) Method for reinforcing concrete structure and reinforced concrete structure
JP7363374B2 (en) Repair method for concrete structures
JP3080568B2 (en) Method for reinforcing concrete bridge and fixing device used therefor
JP5041481B2 (en) Updating method and structure of existing bearing device
JP2001164504A (en) Repair execution method of joint section for viaduct
JP6995584B2 (en) Bearing replacement method for existing concrete girders
JP2021001450A (en) Wall balustrade reinforcement method and reinforcement structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Ref document number: 3751258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees