JP2002129754A - Reinforcing method for concrete structure - Google Patents

Reinforcing method for concrete structure

Info

Publication number
JP2002129754A
JP2002129754A JP2000320567A JP2000320567A JP2002129754A JP 2002129754 A JP2002129754 A JP 2002129754A JP 2000320567 A JP2000320567 A JP 2000320567A JP 2000320567 A JP2000320567 A JP 2000320567A JP 2002129754 A JP2002129754 A JP 2002129754A
Authority
JP
Japan
Prior art keywords
concrete structure
concrete
reinforcing
fiber
exterior material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000320567A
Other languages
Japanese (ja)
Inventor
Tamio Watanabe
多美男 渡辺
Shinjiro Uni
眞二郎 宇仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000320567A priority Critical patent/JP2002129754A/en
Publication of JP2002129754A publication Critical patent/JP2002129754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing method for a concrete structure, which brings about a reduction in the amount of waste and the amount of the restoration finishing material associated with execution and the minimization of the generation of dust, noise and vibrations so as to enable an improvement in workability by confining the removal area of a covering material and a concrete material to that of a required section in the concrete structure having the covering material without increasing the application of load to the whole of the concrete structure and the outside dimensions thereof. SOLUTION: The reinforcing method for the concrete structure is characterized by embedding a fiber reinforced plastic in the reinforced place of the concrete structure for the purpose of integrating it with the concrete structure during the reinforcement of the concrete structure composed of at least one kind of concrete selected from a reinforcing bar and reinforced concrete.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート構造
物の補強方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for reinforcing a concrete structure.

【0002】[0002]

【従来の技術】従来、コンクリート構造物を補強しよう
とする場合、補強対象部にコンクリートを増し厚する工
法が知られている。
2. Description of the Related Art Conventionally, when a concrete structure is to be reinforced, a method of increasing the thickness of concrete at a portion to be reinforced is known.

【0003】[0003]

【発明が解決しようとする課題】こうした施工方法にお
いては、コンクリートの増し厚分の自重量が大きく、そ
の分補強効果が軽減されてしまったり、また、局部的補
強効果の見返りとして、それらを支える柱の負担荷重が
増え、ひいては該コンクリート構造物全体としての荷重
負荷が増大し、耐震性能などに悪影響を与えることが知
られている。また、コンクリート増し厚体積分の該コン
クリート構造物の内部スペースが減少することや、床補
強の場合などでは既存床と段差が生じてしまう問題もあ
った。さらに、外装材やコンクリート材を全面にわたっ
て除去する必要があるため、施工時に発生する大量の廃
棄物や粉塵、および、振動や騒音が環境面で大きな問題
となるとともに、復旧仕上げのため新たに大量の外装材
やコンクリート材が必要となるなど、材料面や作業面で
多大な負荷が生じていた。
In such a construction method, the self-weight of the increased thickness of the concrete is large, and the reinforcing effect is reduced by that much, and these are supported in return for the local reinforcing effect. It is known that the load imposed on the column increases, and eventually the load imposed on the concrete structure as a whole increases, which adversely affects seismic performance and the like. In addition, there is also a problem that the internal space of the concrete structure corresponding to the increased thickness of the concrete structure is reduced, and in the case of floor reinforcement, a step is generated from the existing floor. Furthermore, since it is necessary to remove the exterior materials and concrete material over the entire surface, the large amount of waste and dust generated during construction, vibration and noise pose a major environmental problem, and a large amount of new A large load has been generated in terms of materials and work, such as the need for exterior materials and concrete materials.

【0004】本発明は、かかる従来技術の背景に鑑み、
該コンクリート構造物全体の荷重負荷や外形寸法を増大
させることなく該コンクリート構造物を補強することが
でき、また、外装材やコンクリート材の除去面積を必要
部分に限定することで、施工に伴う廃棄物量や復旧仕上
げ材量を大幅に低減するとともに、粉塵、騒音、振動の
発生を必要最小限に押さえ、作業性を大幅に改善するこ
とができるコンクリート構造物の補強方法を提供せんと
するものである。
[0004] In view of the background of the prior art, the present invention provides
The concrete structure can be reinforced without increasing the load and external dimensions of the entire concrete structure, and by limiting the area for removing the exterior material and the concrete material to a necessary portion, the disposal accompanying the construction can be performed. The aim is to provide a method of reinforcing concrete structures that can significantly reduce the amount of materials and restoration materials, minimize the generation of dust, noise, and vibration, and greatly improve workability. is there.

【0005】[0005]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、本発明のコンクリート構造物の補強方法
は、コンクリート構造物を補強するに際し、該コンクリ
ート構造物の少なくとも一部を除去して形成された補強
箇所部分に、繊維強化プラスチックと、JIS A-5758に基
づいて測定される20℃において垂直ダレのない接着剤
とを埋め込んだ後、該接着剤を硬化させて、該コンクリ
ート構造物と該繊維強化プラスチックを一体化して補強
することを特徴とするものである。
The present invention employs the following means in order to solve the above-mentioned problems. That is, in the method of reinforcing a concrete structure of the present invention, when reinforcing a concrete structure, a fiber-reinforced plastic and a JIS A-5758 are provided at a reinforcing portion formed by removing at least a part of the concrete structure. After embedding an adhesive having no vertical sag at 20 ° C. measured based on the above, the adhesive is cured, and the concrete structure and the fiber reinforced plastic are integrated and reinforced. It is.

【0006】[0006]

【発明の実施の形態】本発明は、前記課題、つまり該コ
ンクリート構造物全体の荷重負荷や外形寸法を増大させ
ることなく該コンクリート構造物を補強することがで
き、また、外装材やコンクリート材の除去を必要部分に
限定することで、施工に伴う廃棄物量や復旧仕上げ材量
を大幅に低減させるとともに、粉塵、騒音、振動の発生
を必要最小限に押さえ、作業性を大幅に改善することが
できるコンクリート構造物の補強方法について鋭意検討
し、該コンクリート構造物の特定な箇所に、特定な繊維
強化プラスチック(以下、単にFRPという)と特定な
接着剤とを埋め込んでから該接着剤を硬化させて、該コ
ンクリート構造物と該繊維強化プラスチックを一体化し
補強してみたところ、かかる課題を一挙に解決すること
を究明したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of reinforcing a concrete structure without increasing the above-mentioned problems, that is, without increasing the load and external dimensions of the entire concrete structure. By limiting the removal to the necessary parts, the amount of waste and the amount of finishing materials involved in construction can be significantly reduced, and the generation of dust, noise, and vibration can be minimized, greatly improving workability. A concrete method of reinforcing a concrete structure that can be performed is intensively studied, and a specific fiber reinforced plastic (hereinafter, simply referred to as FRP) and a specific adhesive are embedded in a specific portion of the concrete structure, and then the adhesive is cured. When the concrete structure and the fiber reinforced plastic were integrated and reinforced, it was found that such a problem could be solved at once. .

【0007】すなわち、本発明は、既存のコンクリート
構造物の主に床スラブの補強において、該補強箇所にF
RPと接着剤とを埋め込んで該接着剤を硬化させて、該
コンクリート構造物と該FRPを一体化して補強したも
のである。
That is, according to the present invention, in the reinforcement of a floor slab mainly of an existing concrete structure, F
The concrete structure and the FRP are integrated and reinforced by embedding RP and an adhesive and curing the adhesive.

【0008】本発明でいうコンクリート構造物とは、鉄
筋および鉄骨から選ばれた少なくとも1種の鋼材とコン
クリート材とで構成されてた構造物、すなわち鉄筋コン
クリートまたは鉄骨コンクリートを意味するものであ
り、外装材とは、かかるコンクリート構造物を保護し、
美観を整える目的で、該コンクリート構造物の外表面に
設けられるものである。
[0008] The concrete structure referred to in the present invention means a structure composed of at least one kind of steel material selected from a reinforcing bar and a steel frame and a concrete material, that is, reinforced concrete or steel frame concrete. The material protects such a concrete structure,
It is provided on the outer surface of the concrete structure for the purpose of improving aesthetic appearance.

【0009】また、本発明のFRP固着させるために使
用する接着剤としては、JIS A-5758に基づいて測定され
る垂直ダレが、20℃においてダレのないものを使用す
る。すなわち、それだけ高粘度の接着剤を用いるもので
ある。
Further, as the adhesive used for fixing the FRP of the present invention, an adhesive having a vertical sag measured at JIS A-5758 and no sagging at 20 ° C. is used. That is, an adhesive having such a high viscosity is used.

【0010】かかる接着剤としては、好ましくはエポキ
シ樹脂にシリカ系の微細骨材を充填した主剤と変性脂肪
族ポリアミンにシリカ系の微細骨材を充填した硬化剤か
らなり、規定の割合で混合後硬化する常温硬化型の接着
剤である。その力学的特性は、JIS K 7113に基づいて測
定される引張強さが20℃/7日養生で20N/mm2
上、JIS K 7208に基づいて測定される圧縮弾性係数が2
0℃/7日養生で4000N/mm2以上、JIS K 6850に
基づいて測定される引張せん断強さが20℃/7日養生
で10N/mm2以上であるものが好ましく使用される。
[0010] The adhesive preferably comprises a main agent in which an epoxy resin is filled with silica-based fine aggregate and a curing agent in which modified aliphatic polyamine is filled with silica-based fine aggregate. It is a room temperature curing type adhesive that cures. Its mechanical properties are as follows: the tensile strength measured based on JIS K 7113 is 20 N / mm 2 or more after curing at 20 ° C. for 7 days, and the compressive elastic modulus measured based on JIS K 7208 is 2
Those having a tensile shear strength of 4000 N / mm 2 or more after curing at 0 ° C. for 7 days and a tensile shear strength of 10 N / mm 2 or more measured at 20 ° C. for 7 days based on JIS K 6850 are preferably used.

【0011】かかるFRPとは、コンクリート構造物と
一体化することで補強効果が得られる補強材料のことで
あり、かかるFRPに使用される繊維としては、無機系
繊維としては、炭素繊維やガラス繊維等、有機系繊維と
しては、アラミド繊維等、さらにまたウイスカーとして
は、セラミックス繊維や金属繊維等が使用される。ま
た、かかるFRPに使用される樹脂としては、エポキシ
樹脂等に代表される熱硬化性樹脂や、ポリエチレン等に
代表される熱可塑性樹脂が使用される。
[0011] The FRP is a reinforcing material that can obtain a reinforcing effect by being integrated with a concrete structure. The fibers used in the FRP include carbon fibers and glass fibers as inorganic fibers. Aramid fibers and the like are used as organic fibers, and ceramic fibers and metal fibers are used as whiskers. As the resin used for such FRP, a thermosetting resin represented by an epoxy resin or the like, or a thermoplastic resin represented by polyethylene or the like is used.

【0012】本発明のFRPとしては、硬化物におい
て、引張強さ100MPa以上で、かつ、引張弾性率1
0GPa以上である特性を有するものが、力学的特性の
上から好ましく使用される。
As the FRP of the present invention, the cured product has a tensile strength of 100 MPa or more and a tensile modulus of 1
Those having characteristics of 0 GPa or more are preferably used from the viewpoint of mechanical characteristics.

【0013】本発明の補強箇所部分は、該コンクリート
構造物の少なくとも一部を除去して形成されるものであ
るが、その場合、該コンクリート構造物が外装材で保護
されている場合には、表面の該外装材から除去し、さら
に必要ならコンクリート材をも除去して、補強箇所に、
FRPと接着剤とを埋め込む部分を形成するものであ
る。かかる外装材としては、モルタル、タイル、ボード
および塗装材から選ばれた少なくとも1種を使用するこ
とができる。
The reinforcing portion according to the present invention is formed by removing at least a part of the concrete structure. In this case, when the concrete structure is protected by the exterior material, Remove from the exterior material of the surface, and if necessary, remove the concrete material,
It forms a portion for embedding the FRP and the adhesive. As the exterior material, at least one selected from mortar, tile, board, and coating material can be used.

【0014】この埋め込み部分に充填されるFRPは、
簾状、格子状または網目状などの形状で埋め込まれる。
この場合、FRPを埋め込んだ後、新たに外装材やコン
クリート材等で復旧仕上げする施工方法を採用すること
ができる。
The FRP to be filled into the buried portion is
It is embedded in the shape of a screen, grid, or mesh.
In this case, it is possible to adopt a construction method in which after the FRP is embedded, a new finishing process is performed using an exterior material, a concrete material, or the like.

【0015】かかるFRP埋め込み部分を形成する際
に、該コンクリート構造物の少なくとも一部を除去する
が、その場合、該コンクリート構造物、つまり、外装材
やコンクリート材を、溝状に除去するのが、除去施工効
率の上から好ましく、さらにかかる溝の断面形状は、別
に制約されないが、好ましくは角形、V形、半円形また
はこれらの組合せ形状にするのが、FRPを接着剤によ
り貼り付ける作業効率の上からよい。また、かかる溝の
寸法は、FRPが完全に埋め込まれる寸法であって、か
つ、復旧仕上げ材が固着可能な寸法であればよいが、好
ましくは2〜50mm程度大きめに形成したものであるの
がよい。なお、コンクリート構造物を補強するにあたっ
ては、補強材であるFRPをコンクリート構造物と接着
剤で一体化する必要があり、FRPを埋め込むだけで
は、一体化が不十分な場合は、該接着剤の他に、さらに
専用樹脂、専用モルタルや専用セメント等を使って、コ
ンクリート構造物にFRPを十分に接着させる方法を採
用するのが好ましい。
When forming the FRP embedded portion, at least a part of the concrete structure is removed. In this case, it is necessary to remove the concrete structure, that is, the exterior material and the concrete material in a groove shape. It is preferable from the viewpoint of removal work efficiency. Further, the cross-sectional shape of the groove is not particularly limited, but is preferably a square, a V-shape, a semicircle or a combination thereof, and the work efficiency of attaching the FRP with an adhesive Good from above. In addition, the dimension of such a groove may be a dimension in which the FRP is completely embedded and a dimension to which the restoration finishing material can be fixed, but is preferably formed larger by about 2 to 50 mm. Good. When reinforcing a concrete structure, it is necessary to integrate the FRP, which is a reinforcing material, with the concrete structure with an adhesive. In addition, it is preferable to employ a method in which the FRP is sufficiently adhered to the concrete structure using a special resin, a special mortar, a special cement, or the like.

【0016】かかるFRPとしては、断面寸法が好まし
くは100×100mm以下のサイズの棒状で、断面形状
が好ましくは長方形のフラットバーや円形の丸棒のもの
を使用することができるが、コンクリート構造物との接
着力を高めるため、断面形状が任意の多角形形状のもの
や、H型のもの、更には梯子状のもの、さらには任意の
突起を持たせたものなどを好ましく使用することができ
る。
As the FRP, a rod having a cross-sectional size of preferably 100 × 100 mm or less and a cross-sectional shape of preferably a flat bar or a round bar can be used. In order to increase the adhesive force with the substrate, those having an arbitrary polygonal cross-sectional shape, an H-shaped one, a ladder-like one, and a one having an arbitrary projection can be preferably used. .

【0017】かかる溝を形成する場合、該コンクリート
構造物の溝掘方法としては、専用の溝掘装置を使用して
もよいし、除去部分の輪郭部にディスクカッター等で切
り込みを入れ、その内側をハツリ機等を使って除去する
方法等を採用することができる。いずれにしても、溝内
面の仕上がり状態が良好で、特に溝下面を平滑に加工す
ることができる手段であるのが好ましい。また、直線状
のFRPを格子状や網目状に埋め込む場合には、該FR
P同士を交差させる方法も採用することができる。
In the case of forming such a groove, as a method of digging the concrete structure, a dedicated digging device may be used, or a cut is made in a contour portion of a removed portion with a disk cutter or the like, and the inside thereof is cut. And the like can be adopted using a filing machine or the like. In any case, it is preferable that the inner surface of the groove has a good finish, and that the lower surface of the groove can be processed particularly smoothly. When a linear FRP is embedded in a lattice or mesh,
A method of intersecting P may be adopted.

【0018】本発明の一例としては図1に示すように、
鉄筋2が配筋されたコンクリート材1に対し外層材3の
うち溝4部分のみを除去し、溝4の底面であるコンクリ
ート材表面を露出させ、表面を平滑に仕上げ、接着剤5
を塗布してから、その上にFRP6を貼り付け後、新た
に復旧仕上げ用外装材7で復旧仕上げすることで、施工
対象面積を必要最小限にすることが出来る。
As an example of the present invention, as shown in FIG.
For the concrete material 1 on which the reinforcing bars 2 are arranged, only the groove 4 portion of the outer layer material 3 is removed, the concrete material surface which is the bottom surface of the groove 4 is exposed, the surface is finished smoothly, and the adhesive 5
Is applied, the FRP 6 is pasted thereon, and the restoration finish is newly performed with the exterior finishing material 7 for restoration, so that the construction target area can be minimized.

【0019】図2は、補強材であるFRPをコンクリー
ト構造物に埋め込む場合の平面レイアウトの例を示すも
のである。8に簾状、9に格子状、10に網目状の一例
を示す。
FIG. 2 shows an example of a planar layout when FRP as a reinforcing material is embedded in a concrete structure. 8 shows an example of a blind, 9 shows a lattice, and 10 shows a mesh.

【0020】このような施工方法により、該コンクリー
ト構造物全体への荷重負荷や外形寸法を増大させること
なく該コンクリート構造物を補強することができ、ま
た、外装材やコンクリートの除去を必要部分に限定する
ことで、施工に伴う廃棄物量や復旧仕上げ材量を大幅に
低減するとともに、粉塵、騒音、振動の発生を必要最小
限に押さえ、作業性を大幅に改善することができる上
に、効率的に施工することができたものである。
According to such a construction method, the concrete structure can be reinforced without increasing the load applied to the entire concrete structure and the external dimensions, and the exterior material and concrete need to be removed at a necessary portion. By limiting, the amount of waste and the amount of finishing materials required for construction can be greatly reduced, dust, noise and vibration are minimized, and workability can be greatly improved. It was able to be constructed in a special way.

【0021】[0021]

【実施例】以下の実施例によって本発明をさらに詳細に
説明する。 実施例1 補強対象としてはコンクリート構造物である鉄筋コンク
リート3階建ビルの2階床スラブとし、それぞれの範囲
が3m×5mで構造的かつ強度的に同等の2ヶ所を選定
した。該2ヶ所の床はそれぞれコンクリートの厚みが1
20mmで、その上が30mmのモルタル外装材で仕上げら
れておりコンクリート内部には直径9mmの鉄筋が上下2
段で格子状に200〜600mmピッチで入っており、そ
れぞれ補強対象範囲に新たに載荷荷重が6.75t増加
することを前提に、一方をコンクリートの増し厚工法
で、もう一方をFRPの一種である炭素繊維強化プラス
チック(以下、単にCFRPという)で断面寸法が1mm
×50mmの成形板(東レ(株)製トレカラミネートTL5
10)の埋込工法で補強効果が同一レベルの補強を実施
した。
The present invention will be described in more detail with reference to the following examples. Example 1 Two-story slabs of a reinforced concrete three-story building, which is a concrete structure, were selected as reinforcement objects, and two sites each having a size of 3 m × 5 m and having the same structural and strength were selected. Each of the two floors has a concrete thickness of 1
20mm, the top of which is finished with mortar exterior material of 30mm. Inside the concrete is a 9mm diameter reinforcing bar.
Assuming that the applied load is newly increased by 6.75 tons in the area to be reinforced, one of them is a concrete thickening method and the other is a kind of FRP. A carbon fiber reinforced plastic (hereinafter simply referred to as CFRP) with a cross-sectional dimension of 1 mm
× 50mm molded plate (Traya laminate TL5 manufactured by Toray Industries, Inc.)
Reinforcement with the same level of reinforcement effect was carried out by the embedding method of 10).

【0022】構造計算の結果、該補強効果を得るために
は、従来工法であるコンクリート増し厚工法の場合、補
強対象範囲3m×5mの床上の全ての外装材を取り除い
たコンクリート全面に直径9mmの鉄筋が1段で格子状に
220〜300mmピッチで入ったコンクリートを60mm
の厚さで増し厚する必要があるが、改良工法である本発
明のCFRP成形板の埋込工法の場合、該CFRP成形
板を外装材を取り除いたコンクリート上面に、格子状に
300mmピッチで貼り付ければ十分であることが判明し
た。
As a result of the structural calculation, in order to obtain the reinforcing effect, in the case of the concrete thickening method, which is a conventional method, the concrete having a diameter of 9 mm is applied to the entire surface of the concrete from which all the exterior materials on the floor having a reinforcing area of 3 m × 5 m are removed. 60mm of concrete with rebars in one stage and 220-300mm pitch
However, in the case of the improved method of embedding the CFRP molded plate of the present invention, the CFRP molded plate is stuck on the upper surface of the concrete from which the exterior material has been removed in a grid pattern at a pitch of 300 mm. It turned out to be sufficient.

【0023】そこで以下のように両工法で施工し、比較
検討を実施した。
Therefore, the construction was carried out by both methods as follows, and a comparative study was carried out.

【0024】従来工法の場合、厚さ30mmの外装材およ
び外装材との境界部2mmのコンクリート材を補強対象範
囲3m×5mの全面に渡って全て取り除き、直径9mmの
鉄筋を1段で格子状に220〜300mmピッチで配筋し
たコンクリートを60mmの厚さで増し打ち施工後、その
上の全面を新たな外装材で30mmに仕上げた。改良工法
の場合、部分的に外装材および外装材との境界部のコン
クリート材を除去するだけでよく、今回、格子状に30
0mmピッチで深さ32mm(外装材30mm,コンクリート
材2mm)、幅60mmの角溝を掘り、該CFRP成形板を
専用エポキシ系接着剤(日本シーカ(株)製シーカデュア
30)を使ってコンクリート材表面に貼り付け、復旧仕
上げ用外装材として樹脂モルタルで埋め戻した。なお、
今回、厚さ2mmでコンクリート材を除去したのは、コン
クリート材の地肌を確実に露出させるためのものであ
り、その除去厚さは外装材を除去した際のコンクリート
材表面の状態や外装材の厚みのばらつきにより適宜設定
される。(ここで使用する実施例の接着剤は、JIS A-57
58に基づいて測定される20℃において垂直ダレのない
ものである。) 両工法での施工の結果、従来工法ではコンクリート増し
厚に伴う負担荷重の増加が2.16tであるのに対し、
改良工法の場合負担荷重の増加はなく、コンクリート構
造物への荷重負荷を増大することなく効率的に補強する
ことが可能であった。また従来工法の場合、既存の床面
と90mmの段差ができスロープを作る必要があった。
In the case of the conventional method, the exterior material having a thickness of 30 mm and the concrete material having a boundary portion of 2 mm with the exterior material are entirely removed over the entire area of 3 m × 5 m to be reinforced, and a reinforcing bar having a diameter of 9 mm is formed in a grid in one step. The concrete laid at a pitch of 220 to 300 mm was additionally reinforced with a thickness of 60 mm, and the entire surface thereof was finished to 30 mm with a new exterior material. In the case of the improved construction method, it is only necessary to partially remove the exterior material and the concrete material at the boundary with the exterior material.
Dig a square groove with a depth of 32 mm (exterior material 30 mm, concrete material 2 mm) and width 60 mm at a pitch of 0 mm, and use the CFRP molded plate with a special epoxy adhesive (Seakadur 30 manufactured by Nippon Sika Co., Ltd.) And backfilled with resin mortar as an exterior material for restoration finish. In addition,
The reason for removing the concrete material with a thickness of 2 mm this time is to ensure that the surface of the concrete material is exposed. The thickness of the removed material depends on the condition of the surface of the concrete material when the exterior material is removed and the thickness of the exterior material. It is set appropriately according to the variation in thickness. (The adhesive used in the examples is JIS A-57
No vertical sag at 20 ° C. measured according to 58. ) As a result of construction in both construction methods, the increase in the burden load due to the increased thickness of the concrete in the conventional construction method is 2.16t,
In the case of the improved construction method, there was no increase in the load, and it was possible to efficiently reinforce the concrete structure without increasing the load. In addition, in the case of the conventional method, there is a need to make a slope with a step of 90 mm from the existing floor surface.

【0025】施工面では、従来工法に対して改良工法の
ほうが施工対象面積が1/3程度となるため、外装材除
去による廃棄物量や復旧仕上げ用外装材の使用量が1/
3程度と少なく、外装材除去時の粉塵、騒音、振動の発
生も必要最小限に止めることができ、作業負荷も大幅に
軽減できることが判明した。 実施例2 CFRP成形板埋込工法による改良工法の補強効果の確
認および従来工法であるコンクリート増し厚工法との比
較で補強効果に差が無いことを確認するため、直径13
mmで長さ4.8mの鉄筋4本を長手方向に上下2段の2
50mmピッチで配筋した、幅0.5m、長さ4.8m、
厚さ150mmの鉄筋コンクリートを厚さ30mmのモルタ
ル外装材で仕上げたものを、1体はブランクとして無補
強とし、1体を従来工法で、もう1体を改良工法で補強
し、これら3体の試験体でそれぞれ強度実験を行い補強
効果を比較することとした。
In terms of construction, the area of the object to be constructed by the improved method is about 1/3 that of the conventional method.
It was found that the generation of dust, noise, and vibration during the removal of the exterior material could be minimized, and the work load could be significantly reduced. Example 2 In order to confirm the reinforcing effect of the improved method by the CFRP molded plate embedding method and to confirm that there is no difference in the reinforcing effect compared with the conventional concrete thickening method, a diameter of 13 was used.
4 bars of 4.8 m in length in the longitudinal direction
0.5m wide, 4.8m long, arranged at 50mm pitch
A reinforced concrete with a thickness of 150 mm finished with a mortar exterior material with a thickness of 30 mm, one body was unreinforced as a blank, one body was reinforced by the conventional method, and the other body was reinforced by the improved method. A strength test was performed on each body to compare the reinforcing effect.

【0026】従来工法の場合、厚さ30mmの外装材およ
び外装材との境界部2mmのコンクリート材を0.5m×
4.8mの全面に渡り全て取り除き、直径10mmで長さ
4.8mの鉄筋3本を1段で長手方向に150mmピッチ
で配筋したコンクリートを70mmの厚さで増し打ち施工
後、その上の全面を新たな外装材で30mmに仕上げた。
改良工法の場合、長手方向4.8mに150mmピッチで
深さ32mm(外装材30mm,コンクリート材2mm)、幅
60mmの角溝を3本掘り、断面寸法が1mm×50mmの該
CFRP成形板(東レ(株)製トレカラミネートTL51
0)で長さが4.8mのもの3本を該専用エポキシ系接
着剤(日本シーカ(株)製シーカデュア30)を使って溝
底面のコンクリート表面に貼り付け、復旧仕上げ用外装
材として樹脂モルタルで埋め戻した。なお、今回、厚さ
2mmでコンクリート材を除去したのは、コンクリート材
の地肌を確実に露出させるためのものであり、その除去
厚さは外装材を除去した際のコンクリート材表面の状態
や外装材の厚みのばらつきにより適宜設定される。(こ
こで使用する実施例の接着剤は、JIS A-5758に基づいて
測定される20℃において垂直ダレのないものであ
る。) 載荷試験の結果、無補強試験体が荷重約0.8tで破壊
したのに対し、従来工法及び改良工法で補強した試験体
はともに約1.4tで破壊し、改良工法は従来工法と同
程度の補強効果があることが確認できた。なお、本試験
で得られたデータは計算値ともよく一致していた。
In the case of the conventional method, a 30 mm thick exterior material and a concrete material having a boundary portion of 2 mm between the exterior material and 0.5 mm ×
After removing all 4.8m of the whole surface, concrete with 10mm diameter and 4.8m long reinforcing bars arranged in a single step at a pitch of 150mm in the longitudinal direction with a thickness of 70mm was added. The entire surface was finished to 30 mm with new exterior materials.
In the case of the improved construction method, three square grooves with a depth of 32 mm (exterior material 30 mm, concrete material 2 mm) and a width of 60 mm were dug at 4.8 m in the longitudinal direction at a pitch of 150 mm, and a 60 mm wide groove was used. Torayca Laminate TL51
0) and 4.8 m in length were attached to the concrete surface at the bottom of the groove using the special epoxy adhesive (Seakadur 30 manufactured by Nippon Sika Co., Ltd.). Backfilled with The reason for removing the concrete material with a thickness of 2 mm this time is to ensure that the surface of the concrete material is exposed. The thickness of the removed material depends on the condition of the concrete material surface when the exterior material is removed and the exterior material. It is set appropriately according to the variation in the thickness of the material. (The adhesive used in the examples used herein has no vertical sag at 20 ° C. measured based on JIS A-5758.) As a result of the loading test, the unreinforced test specimen was subjected to a load of about 0.8 t. On the other hand, the test pieces reinforced by the conventional method and the improved method were broken at about 1.4 tons, and it was confirmed that the improved method had the same reinforcing effect as the conventional method. The data obtained in this test was in good agreement with the calculated values.

【0027】以上の実施例1,2の結果より、改良工法
は従来工法と比較してコンクリート構造物の荷重負荷や
外形寸法を増大させることなく同等の補強効果が得られ
ることが確認できたと同時に、除去材の廃棄物量や復旧
用外装材使用量が少なくて済み、外装材除去時の粉塵、
騒音、振動の発生も必要最小限に止めることができ、か
つ、作業負荷も大幅に軽減されるなど、極めて有効な工
法であることが確認できた。
From the results of Examples 1 and 2 above, it was confirmed that the improved construction method can obtain the same reinforcement effect without increasing the load and the external dimensions of the concrete structure as compared with the conventional construction method. In addition, the amount of waste materials to be removed and the amount of exterior materials used for restoration are small,
It was confirmed that the method was extremely effective, as the generation of noise and vibration was minimized and the work load was significantly reduced.

【0028】[0028]

【発明の効果】本発明によれば、従来工法と比べ、コン
クリート構造物の荷重負荷や外観寸法を増大させること
なく、施工に伴う廃棄物量および復旧仕上げ用外装材や
コンクリート材の量を大幅に低減することができるとと
もに、粉塵、騒音、振動の発生も必要最小限に押さえる
ことができ、作業性を大幅に改善することができるもの
である。
According to the present invention, compared with the conventional construction method, the amount of waste and the amount of exterior finishing materials and concrete materials for rehabilitation finishing can be greatly reduced without increasing the load and the external dimensions of the concrete structure. It is possible to reduce the amount of dust, noise and vibration to the minimum necessary, and to greatly improve the workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の改良工法の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the improved method of the present invention.

【図2】FRPの埋め込みパターンの例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of an FRP embedding pattern.

【符号の説明】[Explanation of symbols]

1:コンクリート材 2:鉄筋 3:外装材 4:溝 5:接着剤 6:FRP 7:復旧仕上げ用外装材 8:FRP埋め込み簾状パターン 9:FRP埋め込み格子状パターン 10:FRP埋め込み網目状パターン 1: Concrete material 2: Rebar 3: Exterior material 4: Grooves 5: Adhesive 6: FRP 7: Restoration finish exterior material 8: FRP embedded blind pattern 9: FRP embedded grid pattern 10: FRP embedded mesh pattern

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】コンクリート構造物を補強するに際し、該
コンクリート構造物の少なくとも一部を除去して形成さ
れた補強箇所部分に、繊維強化プラスチックと、JIS A-
5758に基づいて測定される20℃において垂直ダレのな
い接着剤とを埋め込んだ後、該接着剤を硬化させて、該
コンクリート構造物と該繊維強化プラスチックを一体化
して補強することを特徴とするコンクリート構造物の補
強方法。
When reinforcing a concrete structure, fiber-reinforced plastic and JIS A-
After embedding an adhesive having no vertical sag at 20 ° C. measured based on 5758, the adhesive is cured, and the concrete structure and the fiber reinforced plastic are integrated and reinforced. How to reinforce concrete structures.
【請求項2】該コンクリート構造物が、外装材で保護さ
れているものである請求項1記載のコンクリート構造物
の補強方法。
2. The method for reinforcing a concrete structure according to claim 1, wherein the concrete structure is protected by an exterior material.
【請求項3】該外装材が、モルタル、タイル、ボードお
よび塗装材から選ばれた少なくとも1種である請求項2
記載のコンクリート構造物の補強方法。
3. The exterior material is at least one selected from mortar, tile, board, and coating material.
A method for reinforcing a concrete structure as described in the above.
【請求項4】該繊維強化プラスチックが、引張強さ10
0MPa以上で、かつ、引張弾性率10GPa以上の力
学的特性を有するものである請求項1〜3のいずれかに
記載のコンクリート構造物の補強方法。
4. The fiber-reinforced plastic has a tensile strength of 10%.
The method for reinforcing a concrete structure according to any one of claims 1 to 3, wherein the method has mechanical properties of 0 MPa or more and a tensile modulus of 10 GPa or more.
【請求項5】該繊維強化プラスチックが、炭素繊維、ガ
ラス繊維、アラミド繊維、セラミックス繊維および金属
繊維から選ばれた少なくとも1種の繊維で構成されたも
のである請求項1〜4のいずれかに記載のコンクリート
構造物の補強方法。
5. The fiber reinforced plastic according to claim 1, wherein said fiber reinforced plastic is made of at least one kind of fiber selected from carbon fiber, glass fiber, aramid fiber, ceramic fiber and metal fiber. A method for reinforcing a concrete structure as described in the above.
【請求項6】該補強箇所部分が、少なくとも該外装材が
溝状に除去されて形成されているものである請求項2ま
たは3記載のコンクリート構造物の補強方法。
6. The method for reinforcing a concrete structure according to claim 2, wherein the reinforcing portion is formed by removing at least the exterior material in a groove shape.
JP2000320567A 2000-10-20 2000-10-20 Reinforcing method for concrete structure Pending JP2002129754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320567A JP2002129754A (en) 2000-10-20 2000-10-20 Reinforcing method for concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320567A JP2002129754A (en) 2000-10-20 2000-10-20 Reinforcing method for concrete structure

Publications (1)

Publication Number Publication Date
JP2002129754A true JP2002129754A (en) 2002-05-09

Family

ID=18798832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320567A Pending JP2002129754A (en) 2000-10-20 2000-10-20 Reinforcing method for concrete structure

Country Status (1)

Country Link
JP (1) JP2002129754A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293324A (en) * 2002-04-03 2003-10-15 Aatekku:Kk Reinforcement method for concrete structure
JP2004092120A (en) * 2002-08-30 2004-03-25 Sumitomo Mitsui Construction Co Ltd Concrete reinforcing work method
JP2005307439A (en) * 2004-04-16 2005-11-04 Aica Kogyo Co Ltd Reinforcing method for concrete structure
JP2010516921A (en) * 2007-01-31 2010-05-20 シーカ・テクノロジー・アーゲー Method for affixing flooring to the floor
JP2010242494A (en) * 2009-04-03 2010-10-28 Fj Aschwanden Ag Reinforcing member for absorbing stress in concrete slab in region of supporting member
JP2010275769A (en) * 2009-05-28 2010-12-09 Nanba Kenchiku Kenkyushitsu:Kk Fibrous floating-tile-retaining material and tile-exfoliation preventing construction method
JP2012098072A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Flow detector
JP2013079517A (en) * 2011-10-04 2013-05-02 Sho-Bond Corp Concrete surface reinforcing structure and method and net-like reinforcement material made of fiber-reinforced resin
CN103993752A (en) * 2014-05-26 2014-08-20 中国矿业大学 Method for repairing and reinforcing concrete structure under severe environment
CN103352585B (en) * 2013-07-10 2015-12-02 西南科技大学 The method of antiarch method reinforced concrete beam
JP2018109268A (en) * 2016-12-28 2018-07-12 国立大学法人金沢大学 Method to reinforce concrete structure, concrete structure and flexible continuous fiber reinforcement material
JP2018127807A (en) * 2017-02-08 2018-08-16 三菱ケミカルインフラテック株式会社 Reinforcement material for civil engineering and construction, its manufacturing method, concrete structure using the same, and concrete floor slab structure and its construction method and reinforcement method
CN109138490A (en) * 2018-11-01 2019-01-04 河北工业大学 A kind of method and its masonry using NSM-TRC reinforcing masonry structure
JP2019210751A (en) * 2018-06-07 2019-12-12 株式会社竹中土木 Reinforcement structure of concrete structure, and reinforcing method of concrete structure
JP2020094438A (en) * 2018-12-14 2020-06-18 株式会社竹中工務店 Method for reinforcing existing floor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073586A (en) * 1998-08-28 2000-03-07 Nippon Steel Corp Reinforcing method, frp reinforcing tape and reinforcing adhesive for concrete structural member
JP2000220302A (en) * 1999-02-03 2000-08-08 Mitsubishi Rayon Co Ltd Repairing and reinforcing method for structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073586A (en) * 1998-08-28 2000-03-07 Nippon Steel Corp Reinforcing method, frp reinforcing tape and reinforcing adhesive for concrete structural member
JP2000220302A (en) * 1999-02-03 2000-08-08 Mitsubishi Rayon Co Ltd Repairing and reinforcing method for structure

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293324A (en) * 2002-04-03 2003-10-15 Aatekku:Kk Reinforcement method for concrete structure
JP2004092120A (en) * 2002-08-30 2004-03-25 Sumitomo Mitsui Construction Co Ltd Concrete reinforcing work method
JP2005307439A (en) * 2004-04-16 2005-11-04 Aica Kogyo Co Ltd Reinforcing method for concrete structure
JP4565876B2 (en) * 2004-04-16 2010-10-20 アイカ工業株式会社 Method for reinforcing concrete structures
JP2010516921A (en) * 2007-01-31 2010-05-20 シーカ・テクノロジー・アーゲー Method for affixing flooring to the floor
JP2010242494A (en) * 2009-04-03 2010-10-28 Fj Aschwanden Ag Reinforcing member for absorbing stress in concrete slab in region of supporting member
JP2010275769A (en) * 2009-05-28 2010-12-09 Nanba Kenchiku Kenkyushitsu:Kk Fibrous floating-tile-retaining material and tile-exfoliation preventing construction method
US8720268B2 (en) 2010-10-29 2014-05-13 Mitsubishi Electric Corporation Flow rate detection device having anti-undercurrent material
JP2012098072A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Flow detector
JP2013079517A (en) * 2011-10-04 2013-05-02 Sho-Bond Corp Concrete surface reinforcing structure and method and net-like reinforcement material made of fiber-reinforced resin
CN103352585B (en) * 2013-07-10 2015-12-02 西南科技大学 The method of antiarch method reinforced concrete beam
CN103993752A (en) * 2014-05-26 2014-08-20 中国矿业大学 Method for repairing and reinforcing concrete structure under severe environment
CN103993752B (en) * 2014-05-26 2016-06-01 中国矿业大学 A kind of restoring and fastening method for concrete structure under severe environment
JP2018109268A (en) * 2016-12-28 2018-07-12 国立大学法人金沢大学 Method to reinforce concrete structure, concrete structure and flexible continuous fiber reinforcement material
JP2018127807A (en) * 2017-02-08 2018-08-16 三菱ケミカルインフラテック株式会社 Reinforcement material for civil engineering and construction, its manufacturing method, concrete structure using the same, and concrete floor slab structure and its construction method and reinforcement method
JP2019210751A (en) * 2018-06-07 2019-12-12 株式会社竹中土木 Reinforcement structure of concrete structure, and reinforcing method of concrete structure
CN109138490A (en) * 2018-11-01 2019-01-04 河北工业大学 A kind of method and its masonry using NSM-TRC reinforcing masonry structure
JP2020094438A (en) * 2018-12-14 2020-06-18 株式会社竹中工務店 Method for reinforcing existing floor
JP7022052B2 (en) 2018-12-14 2022-02-17 株式会社竹中工務店 How to reinforce existing floors

Similar Documents

Publication Publication Date Title
JP2002129754A (en) Reinforcing method for concrete structure
JP3546009B2 (en) Structural members that reinforce products made of hardening structural materials
KR101948856B1 (en) 3d-fiber reinforced composite material, reinforcement structure of concrete column and reinforcement method using the same
JP2007070859A (en) Base isolation construction method and base isolation structure of building
JP2017507259A (en) Method for manufacturing concrete member, prefabricated structural element for concrete member, and concrete member
JP2019002251A (en) Precast concrete floor slab connection structure and connection method
JP6255206B2 (en) Construction method of reinforcement structure
KR100432318B1 (en) use a carbon point the existing structure of repair & reinforcement method or construction
JPH08201582A (en) Radiation shield body and its construction method
JP2004011226A (en) Repair panel
KR101963446B1 (en) Method and structure for a tunnel
JP2004092120A (en) Concrete reinforcing work method
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
Lanivschi State of the art for strengthening masonry with fibre reinforced polymers
KR940002454A (en) Repair method of concrete structure
JP7455931B1 (en) Precast board manufacturing method and precast board
JP2976779B2 (en) Precast concrete slab and manufacturing method thereof
JP2004316320A (en) Method of reinforcing borehole peripheral part for existing concrete structure
Daniel et al. The Specifics of Use of Composite Materials in Consolidation of Historical Monuments
JP3640381B2 (en) Structure construction method
JP3845404B2 (en) Cross-section repair and peeling prevention combined construction method
KR101711843B1 (en) A Truss Deck Slab Mixed with Reinforcement for Concrete
KR20060009764A (en) Block for waterproof and manufacturing thereof and carrying out method
KR20220130312A (en) Concrete column member reinforcement method using precast fabric reinforced cementitious matrix
JPH05311857A (en) Work execution of earth floor in construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629