JP3877145B2 - FRP reinforcement method for road bridge deck and road bridge deck - Google Patents

FRP reinforcement method for road bridge deck and road bridge deck Download PDF

Info

Publication number
JP3877145B2
JP3877145B2 JP2001375938A JP2001375938A JP3877145B2 JP 3877145 B2 JP3877145 B2 JP 3877145B2 JP 2001375938 A JP2001375938 A JP 2001375938A JP 2001375938 A JP2001375938 A JP 2001375938A JP 3877145 B2 JP3877145 B2 JP 3877145B2
Authority
JP
Japan
Prior art keywords
road bridge
bridge deck
reinforcing
concrete
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001375938A
Other languages
Japanese (ja)
Other versions
JP2003176633A (en
Inventor
謙介 谷木
修弘 久部
光晴 手塚
正一 佐藤
Original Assignee
三菱化学産資株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学産資株式会社 filed Critical 三菱化学産資株式会社
Priority to JP2001375938A priority Critical patent/JP3877145B2/en
Publication of JP2003176633A publication Critical patent/JP2003176633A/en
Application granted granted Critical
Publication of JP3877145B2 publication Critical patent/JP3877145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、道路橋床版のFRP補強工法に関するものであり、詳しくは、高弾性率の繊維強化プラスチック製補強筋によって補強することにより、高強度化および疲労耐久性の向上を図った道路橋床版のFRP補強工法に関するものである。
【0002】
【従来の技術】
例えば、道路橋鉄筋コンクリート床版においては、活荷重の変更、あるいは、実際の通行車両の大型化、通行量の増加による疲労損傷を防止するため、補強筋の補充による補強が必要とされる。道路橋床版などのコンクリート構造物の補強においては、通常、鉄筋が完全に露出する深さまでコンクリート表面をはつった後、既存の鉄筋に添わせて追加の補強筋を配置し、そして、はつり(削り)部分をコンクリートで埋め戻している。
【0003】
これに対し、コンクリート構造物に対する昨今の補強工法では、軽量で施工性に優れ、しかも、耐久性に優れた繊維強化プラスチック製の補強筋が補充用の補強筋として使用される傾向にある。また、コンクリート構造物の補修などにおいては、工期を短縮する観点から、補修部分に樹脂モルタルも使用されている。
【0004】
【発明が解決しようとする課題】
ところで、道路橋床版などの補強は、コンクリート表面からの削り代が深いため、工期が長く、また、修復施工にて上記の樹脂モルタルを使用せんとすると、多くの量が必要となり、工事費が極めて高くなる。一方、工期を短縮し、工事費を低減するには、補強部分の削り代を浅くすることもことも考えられるが、はつり代を浅くした場合には、補修後の樹脂モルタル(マトリックス)の厚さも薄く、実際、その変形のために使用に耐えられない。
【0005】
本発明は、上記の実情に鑑みなされたものであり、その目的は、鉄筋が埋設されたコンクリート構造物である道路橋床版を補強するための道路橋床版のFRP補強工法であって、施工が容易で且つ工期を短縮でき、しかも、工事費を十分に低減でき、そして、高強度化および疲労耐久性の向上を十分に図ることが出来る道路橋床版のFRP補強工法を提供することにある。
【0006】
【課題を解決するための手段】
本発明においては、コンクリート表面に形成した削溝に補強筋を配置することによりコンクリート構造物である道路橋床版を補強するにあたり、工期を短縮するために削溝の深さを浅くし、これにより、高級であるが施工容易な樹脂モルタルをマトリックスとして使用する。そして、削溝の深さを浅くすることによる樹脂モルタルの変形を特定の弾性率の繊維強化プラスチック製補強筋によって防止する。
【0007】
すなわち、本発明の要旨は、鉄筋が埋設されたコンクリート構造物である道路橋床版を補強するための道路橋床版のFRP補強工法であって、鉄筋が露出しない深さで路側帯部分のコンクリート表面をはつることにより、鉄筋に沿った削溝をコンクリート表面に形成し、次いで、弾性率が100〜1000GPaの繊維から成る繊維強化プラスチック製の補強筋を追加補強筋として前記の削溝に配置した後、既存のコンクリート表面と面一に前記の削溝に樹脂モルタルを打設することを特徴とする道路橋床版のFRP補強工法に存する。また、本発明の他の要旨は、鉄筋が埋設されたコンクリート構造物であり且つFRP補強工法により補強された道路橋床版であって、鉄筋が露出しない深さで路側帯部分のコンクリート表面をはつることにより鉄筋に沿ってコンクリート表面に形成された削溝に対し、弾性率が100〜1000GPaの繊維から成る繊維強化プラスチック製の補強筋が追加補強筋として配置され、既存のコンクリート表面と面一に前記の削溝に打設された樹脂モルタルによって前記の追加補強筋が埋設されていることを特徴とする道路橋床版に存する。
【0008】
【発明の実施の形態】
本発明に係る道路橋床版のFRP補強工法の一実施形態を図面に基づいて説明する。図1は、本発明に係る道路橋床版のFRP補強工法の適用例としての道路橋床版の一部を示す平面図であり、分図(b)は、分図(a)におけるA部の拡大図である。図2は、道路橋床版のFRP補強工法による補強構造を図1中のII−II線に沿って破断して示す部分的な縦断面図であり、図3は、道路橋床版のFRP補強工法による補強構造を図1中のIII−III線に沿って破断して示す部分的な縦断面図である。以下、実施形態の説明においては、道路橋床版のFRP補強工法を「補強工法」と略記する。
【0009】
本発明の補強工法は、鉄筋が埋設されコンクリート構造物である道路橋鉄筋コンクリート床版補強するための補強工法であり、斯かる補強工法は、活荷重の変更、通行車両の大型化、通行量の増加などに対応するための道路橋床版の補強において、工期を短縮でき、工事費を十分に低減できる。本発明の補強工法は、図1(a)に示す様に、例えば、道路橋床版の橋軸と平行な路側帯部分に適用される。図1に示す道路橋床版においては、矢印の方向が車輌の走行方向である。
【0010】
本発明の補強工法によって道路橋床版を補強するには、先ず、図1(b)及び図3に示す様に、補強すべき路側帯部分に対し、鉄筋(2)が露出しない深さでコンクリート(1)の表面をはつることにより、鉄筋(2)に沿った削溝(3)をコンクリート(1)表面に形成する。すなわち、コンクリート(1)の表面を浅くはつることにより、例えば、橋軸に直交する方向に延びる鉄筋(2)と平行に削溝(3)を設ける(図2及び図3参照)。
【0011】
削溝(3)の大きさは、道路橋床版の規模によっても異なるが、例えば、削溝(3)の深さは20〜40mm程度、削溝(3)の幅は15〜30mm程度とされ、また、片方の路側帯補強部分における削溝(3)の長さは橋幅の10〜20%程度に相当する長さとされる。削溝(3)の配列ピッチ(後述する追加補強筋(4)の配列ピッチ)は、追加補強筋(4)の断面積にもよるが、鉄筋(2)の配列ピッチと同様に、通常は100〜300mm程度である。
【0012】
上記の様に削溝(3)を形成した後は、図1(b)〜図3に示す様に、削溝(3)に追加補強筋(4)として繊維強化プラスチック製の棒状の補強筋を配置する。その場合、本発明においては、鉄筋(2)の強度を補完し且つ後述の樹脂モルタル(5)の変形を防止するため、弾性率が100〜1000GPa、好ましくは400〜1000GPaであって且つ補強筋の長さ方向に引き揃えられた連続繊維から成る繊維強化プラスチック製の補強筋を使用することが重要である。上記の弾性率の連続繊維を使用した場合、補強筋そのものの弾性率は、65〜650GPa、好ましくは260〜650GPaである。
【0013】
補強繊維の弾性率を上記の範囲に規定する理由は次の通りである。すなわち、弾性率が100GPa未満の場合は、構成される補強筋が柔軟になるため、削溝に打設される後述の樹脂モルタルの変形を十分に防止できず、樹脂モルタルに亀裂を生じる場合がある。一方、弾性率が1000GPaを越える場合は、構成される補強筋としての引張強度が不足する。上記の高弾性の繊維としては、特に限定されるものではないが、炭素繊維が好適に使用される。
【0014】
なお、上記の繊維強化プラスチックを形成するためのマトリックス樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シアネート樹脂などの熱硬化性樹脂が挙げられる。また、繊維強化プラスチックの製造方法としては、補強繊維を一方向に引き揃え、これらの繊維に未硬化のマトリックス樹脂を含浸してプリプレグを形成した後、斯かるプリプレグをマンドレルに積層捲回して硬化するシートワインド法、補強繊維を樹脂に含浸しながら直接マンドレルに捲回して硬化するフィラメントワインド法、補強繊維に樹脂を含浸して連続的に金型で硬化する引き抜き成形法などが挙げられる。
【0015】
追加補強筋(4)の断面形状は、図示する様な円形の他、楕円形、方形などの種々の形状に設計可能である。追加補強筋(4)の太さは、前述の配列ピッチ等を勘案して決定されるが、通常、円形断面の場合で5〜15mm程度とされる。
【0016】
本発明においては、上記の様に削溝(3)に追加補強筋(4)を配置した後、図2及び図3に示す様に、既存のコンクリート(1)の表面と面一に、すなわち、コンクリート(1)のはつっていない部位の表面と同一面となる様に、削溝(3)に樹脂モルタル(5)を打設する。これにより、床版のコンクリート(1)表面を復元する。
【0017】
樹脂モルタル(5)としては、特許第3187753号、特許第3165590号の各公報などに開示されている公知の各種樹脂モルタルを使用することが出来る。樹脂モルタルは、セメントを含む微粒子及び珪石粉を混合した骨材としての粉末成分と、バインダとしての接着剤系樹脂とから成る組成物であり、短時間に強度が得られ、硬化までの時間制御が可能であり、しかも、硬化した際の体積変化が少ないなどの優れた特性を有する。
【0018】
上記の様な樹脂モルタルは、例えば、次の様にして調製される。すなわち、先ず、水分散可能な変性ポリアミドアミン及び/またはポリアミンの存在下、液状のビスフェノールA型又はビスフェノールA/F型のエポキシ樹脂を水に乳化させてエポキシ樹脂エマルションとなし、次いで、このエポキシ樹脂エマルションに、セメント、珪砂、その他の骨材、充填材などが含まれる粉末成分を配合する。上記の骨材としては、粒度50〜500μ程度の人工または天然の粒子が使用され、充填材としては、鉱物繊維、ベントナイト等が使用される。また、増粘剤などの各種添加剤が必要に応じて配合される。
【0019】
上記の様に、樹脂モルタル(5)によって床版のコンクリート(1)表面を復元した後は、図3に示す様に、通常の施工仕様に従って、床版の表面に防水層(6)及びアスファルト層(7)を付設することにより路面を構成する。施工後の樹脂モルタル(5)の表面は、既存のコンクリート(1)表面と略同等の付着性を発揮するため、防水層(6)やアスファルト層(7)の施工が容易である。
【0020】
本発明の補強工法においては、上記の様に、特定の弾性率の繊維から成る繊維強化プラスチック製補強筋を追加補強筋(4)として使用するため、施工後の樹脂モルタル(5)の変形や亀裂の発生を有効に防止できる。すなわち、樹脂モルタルの弾性率は、一般的にはバインダ樹脂の弾性率が小さいためにコンクリートの弾性率の1/10程度であり、補強部分(はつり部分)に樹脂モルタルを使用せんとした場合、樹脂モルタルの変形や亀裂を防止するには、十分な厚さで打設しなければならない。これに対し、本発明においては、樹脂モルタル(5)に埋設する追加補強筋(4)として高弾性の繊維から成る繊維強化プラスチック製補強筋を適用したことにより、樹脂モルタル(5)の薄くしたことによる変形などを防止している。
【0021】
また、本発明の補強工法においては、深さの浅い削溝(3)を形成し、取扱い容易な樹脂モルタル(5)によって追加補強筋(4)を埋設するため、施工が容易で且つ工期を短縮でき、しかも、樹脂モルタル(5)の使用量が少ないため、工事費を一層低減できる。更に、本発明の補強工法においては、高弾性の繊維から成る繊維強化プラスチック製補強筋を追加補強筋(4)として使用するため、通常の繊維強化プラスチック製補強筋を使用する場合に比べ、追加補強筋(4)の使用量を低減でき、それによっても工事費をより一層低減できる。
【0022】
そして、本発明の補強工法によれば、樹脂モルタル(5)の高い接着性により、当該樹脂モルタル、および、高弾性の繊維から成る繊維強化プラスチック製の追加補強筋(4)をコンクリート(1)に一体化できるため、道路橋床版(コンクリート構造物)の強度を高め、疲労耐久性を向上させることが出来る。
【0023】
更に、本発明の補強工法においては、鉄筋に比べて耐久性に優れた繊維強化プラスチック製補強筋を追加補強筋(4)として使用し、当該追加補強筋の埋設深さを浅くする(所謂かぶりを少なくする)ため、最初の削溝(3)のはつり施工において既存の鉄筋(2)が支障になることがない。また、追加補強筋(4)は、樹脂モルタル(5)に埋設されるため、防水層(6)の改装工事の際にも損傷する虞がない。
【0024】
【発明の効果】
以上説明した様に、本発明によれば、深さの浅い削溝を形成し、取扱い容易な樹脂モルタルによって追加補強筋を埋設するため、施工が容易で且つ工期を短縮でき、しかも、樹脂モルタルの使用量が少ないため、工事費を一層低減できる。そして、樹脂モルタル、および、高弾性の繊維から成る繊維強化プラスチック製の追加補強筋をコンクリートに一体化できるため、道路橋床版の強度を高め、疲労耐久性を向上させることが出来る。
【図面の簡単な説明】
【図1】 本発明に係る道路橋床版のFRP補強工法の適用例としての道路橋床版の一部を示す平面図
【図2】 道路橋床版のFRP補強工法による補強構造を図1中のII−II線に沿って破断して示す部分的な縦断面図
【図3】 道路橋床版のFRP補強工法による補強構造を図1中のIII−III線に沿って破断して示す部分的な縦断面図
【符号の説明】
1:コンクリート
2:鉄筋
3:削溝
4:追加補強筋
5:樹脂モルタル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to FRP Retrofit for road bridge slab, particularly, by reinforced by fiber reinforced plastic reinforcement high modulus, road bridge with improved high strength and fatigue resistance The present invention relates to an FRP reinforcement method for floor slabs .
[0002]
[Prior art]
For example, in a road bridge reinforced concrete slab, reinforcement by reinforcement of reinforcing bars is required to prevent fatigue damage due to changes in live load, actual size of a passing vehicle, and increase in traffic. In the reinforcement of concrete structures such as road bridge decks, the concrete surface is usually squeezed to the depth at which the reinforcing bars are completely exposed, then additional reinforcing bars are placed along the existing reinforcing bars, and The (shaving) part is backfilled with concrete.
[0003]
On the other hand, in the recent reinforcement method for a concrete structure, there is a tendency that a reinforcing bar made of fiber reinforced plastic that is light and excellent in workability and excellent in durability is used as a reinforcing bar for supplementation. In repairing concrete structures, resin mortar is also used for repairs from the viewpoint of shortening the construction period.
[0004]
[Problems to be solved by the invention]
By the way, reinforcement of road bridge decks, etc. has a long machining period due to the deep cutting allowance from the concrete surface, and if the above resin mortar is not used for restoration work, a large amount is required, and construction costs Becomes extremely high. On the other hand, in order to shorten the construction period and reduce the construction cost, it may be possible to reduce the cutting allowance of the reinforcing part, but if the hanger is reduced, the thickness of the resin mortar (matrix) after repair is reduced. It is also thin and, in fact, cannot be used due to its deformation.
[0005]
The present invention has been made in view of the above circumstances, and its purpose is an FRP reinforcing method for a road bridge deck for reinforcing a road bridge deck that is a concrete structure in which reinforcing bars are embedded, To provide an FRP reinforcement method for a road bridge deck that is easy to construct, can shorten the construction period, can sufficiently reduce construction costs, and can sufficiently increase strength and improve fatigue durability. It is in.
[0006]
[Means for Solving the Problems]
In the present invention, in reinforcing a road bridge deck as a concrete structure by arranging reinforcing bars in the grooves formed on the concrete surface, the depth of the grooves is reduced in order to shorten the construction period. Therefore, a high-grade but easy-to-install resin mortar is used as a matrix. And the deformation | transformation of the resin mortar by making the depth of a groove groove shallow is prevented by the fiber reinforced plastic reinforcement bar | burr of a specific elastic modulus.
[0007]
That is, the gist of the present invention is an FRP reinforcement method for a road bridge deck that reinforces a road bridge deck that is a concrete structure in which reinforcing bars are embedded . By grinding the concrete surface, a groove along the reinforcing bar is formed on the concrete surface, and then a reinforcing fiber made of fiber reinforced plastic made of fibers having an elastic modulus of 100 to 1000 GPa is added to the groove as an additional reinforcing bar. After placement, the present invention resides in an FRP reinforcement method for a road bridge deck, in which a resin mortar is placed in the groove in the same plane as an existing concrete surface. Another gist of the present invention is a road bridge deck that is a concrete structure in which reinforcing bars are embedded and is reinforced by the FRP reinforcement method. Reinforcing bars made of fiber reinforced plastic made of fibers with a modulus of elasticity of 100 to 1000 GPa are arranged as additional reinforcing bars for the grooves formed on the concrete surface along the reinforcing bars. The road bridge deck slab is characterized in that the additional reinforcing bars are buried by a resin mortar placed in the groove.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an FRP reinforcing method for a road bridge deck according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a part of a road bridge deck as an application example of the FRP reinforcing method for a road bridge deck according to the present invention, and a partial diagram (b) is a portion A in the partial diagram (a). FIG. FIG. 2 is a partial longitudinal sectional view showing a reinforcing structure of a road bridge deck slab by FRP reinforcement method along a line II-II in FIG. 1, and FIG. 3 is an FRP of a road bridge deck . It is a partial longitudinal cross-sectional view which shows the reinforcement structure by a reinforcement construction method fractured | ruptured along the III-III line in FIG. Hereinafter, in the description of the embodiment, the FRP reinforcing method for the road bridge deck is abbreviated as “reinforcing method”.
[0009]
Retrofit of the present invention is a reinforcing method for reinforcing a road bridge reinforced concrete slab is concrete structure reinforcement is embedded, such reinforcing construction method, changes in live load, size of the passing vehicles, traffic In the reinforcement of road bridge decks to cope with the increase in volume, the construction period can be shortened and the construction cost can be reduced sufficiently. As shown in FIG. 1A, the reinforcing method of the present invention is applied to, for example, a roadside belt portion parallel to the bridge axis of a road bridge deck. In the road bridge deck shown in FIG. 1, the direction of the arrow is the traveling direction of the vehicle.
[0010]
In order to reinforce a road bridge deck by the reinforcing method of the present invention, first, as shown in FIGS. 1 (b) and 3, at a depth at which the reinforcing bars (2) are not exposed to the roadside belt portion to be reinforced. By grinding the surface of the concrete (1), a groove (3) along the reinforcing bar (2) is formed on the surface of the concrete (1). That is, by grinding the surface of the concrete (1) shallowly, for example, the groove (3) is provided in parallel with the reinforcing bar (2) extending in the direction orthogonal to the bridge axis (see FIGS. 2 and 3).
[0011]
The size of the groove (3) varies depending on the scale of the road bridge deck, for example, the depth of the groove (3) is about 20 to 40 mm, and the width of the groove (3) is about 15 to 30 mm. In addition, the length of the groove (3) in one of the road side band reinforcing portions is a length corresponding to about 10 to 20% of the bridge width. The arrangement pitch of the grooves (3) (the arrangement pitch of the additional reinforcing bars (4) to be described later) depends on the cross-sectional area of the additional reinforcing bars (4), but is usually the same as the arrangement pitch of the reinforcing bars (2). It is about 100 to 300 mm.
[0012]
After the groove (3) is formed as described above, as shown in FIGS. 1 (b) to 3, a rod-shaped reinforcing bar made of fiber-reinforced plastic is added to the groove (3) as an additional reinforcing bar (4). Place. In that case, in the present invention, in order to supplement the strength of the reinforcing bar (2) and prevent deformation of the resin mortar (5) described later, the elastic modulus is 100 to 1000 GPa, preferably 400 to 1000 GPa, and the reinforcing bar It is important to use a reinforcing bar made of fiber reinforced plastic consisting of continuous fibers aligned in the length direction. When continuous fibers having the above elastic modulus are used, the elastic modulus of the reinforcing bar itself is 65 to 650 GPa, preferably 260 to 650 GPa.
[0013]
The reason why the elastic modulus of the reinforcing fiber is defined in the above range is as follows. In other words, when the elastic modulus is less than 100 GPa, the reinforcing bars to be configured are flexible, so that deformation of a resin mortar described later placed in the groove cannot be sufficiently prevented, and the resin mortar may crack. is there. On the other hand, when the elastic modulus exceeds 1000 GPa, the tensile strength as a reinforcing bar constituted is insufficient. Although it does not specifically limit as said highly elastic fiber, A carbon fiber is used suitably.
[0014]
In addition, as a matrix resin for forming said fiber reinforced plastic, thermosetting resins, such as an epoxy resin, a phenol resin, unsaturated polyester resin, and cyanate resin, are mentioned. In addition, as a method for producing fiber reinforced plastics, reinforcing fibers are aligned in one direction, these fibers are impregnated with an uncured matrix resin to form a prepreg, and then the prepreg is laminated on a mandrel and cured. A sheet wind method, a filament wind method in which a reinforcing fiber is impregnated into a resin and wound directly on a mandrel and cured, and a pultrusion method in which a reinforcing fiber is impregnated with a resin and continuously cured in a mold.
[0015]
The cross-sectional shape of the additional reinforcing bar (4) can be designed in various shapes such as an ellipse and a rectangle in addition to a circle as shown in the figure. The thickness of the additional reinforcing bar (4) is determined in consideration of the above-described arrangement pitch and the like, but is usually about 5 to 15 mm in the case of a circular cross section.
[0016]
In the present invention, after the additional reinforcing bar (4) is arranged in the groove (3) as described above, as shown in FIGS. 2 and 3, it is flush with the surface of the existing concrete (1), that is, Then, the resin mortar (5) is placed in the groove (3) so as to be flush with the surface of the portion of the concrete (1) that is not worn. Thereby, the concrete (1) surface of the floor slab is restored.
[0017]
As the resin mortar (5), various known resin mortars disclosed in Japanese Patent Nos. 3187773 and 3165590 can be used. Resin mortar is a composition consisting of a powder component as an aggregate mixed with fine particles containing cement and silica powder, and an adhesive resin as a binder. Strength is obtained in a short time, and the time until curing is controlled. In addition, it has excellent characteristics such as a small volume change when cured.
[0018]
The resin mortar as described above is prepared, for example, as follows. That is, first, a liquid bisphenol A type or bisphenol A / F type epoxy resin is emulsified in water in the presence of a water-dispersible modified polyamidoamine and / or polyamine to form an epoxy resin emulsion, and then the epoxy resin. A powder component containing cement, silica sand, other aggregates, fillers, and the like is blended in the emulsion. As the above-mentioned aggregate, artificial or natural particles having a particle size of about 50 to 500 μm are used, and as the filler, mineral fiber, bentonite or the like is used. Moreover, various additives, such as a thickener, are mix | blended as needed.
[0019]
After restoring the concrete (1) surface of the floor slab with the resin mortar (5) as described above, the waterproof layer (6) and asphalt are applied to the surface of the floor slab according to normal construction specifications as shown in FIG. A road surface is formed by attaching the layer (7). Since the surface of the resin mortar (5) after construction exhibits substantially the same adhesion as the existing concrete (1) surface, the waterproof layer (6) and the asphalt layer (7) can be easily constructed.
[0020]
In the reinforcing method of the present invention, as described above, since the fiber reinforced plastic reinforcing bar made of fibers having a specific elastic modulus is used as the additional reinforcing bar (4), the deformation of the resin mortar (5) after construction or Generation of cracks can be effectively prevented. That is, the elastic modulus of the resin mortar is generally about 1/10 of the elastic modulus of the concrete because the elastic modulus of the binder resin is small, and when the resin mortar is used for the reinforcing portion (hanging portion), In order to prevent deformation and cracking of the resin mortar, it must be cast with a sufficient thickness. In contrast, in the present invention, the resin mortar (5) is thinned by applying a fiber reinforced plastic reinforcing bar made of highly elastic fibers as the additional reinforcing bar (4) embedded in the resin mortar (5). The deformation by things is prevented.
[0021]
Further, in the reinforcing method of the present invention, the shallow groove (3) is formed, and the additional reinforcing bar (4) is embedded by the easy-to-handle resin mortar (5). Further, the construction cost can be further reduced because the amount of the resin mortar (5) used is small. Furthermore, in the reinforcing method of the present invention, since a fiber reinforced plastic reinforcing bar made of highly elastic fibers is used as the additional reinforcing bar (4), it is added as compared with the case of using a normal fiber reinforced plastic reinforcing bar. The amount of reinforcing bars (4) used can be reduced, and the construction cost can be further reduced.
[0022]
And according to the reinforcement construction method of the present invention, due to the high adhesiveness of the resin mortar (5), the resin mortar and the additional reinforcing bars (4) made of fiber reinforced plastic made of highly elastic fibers are made into concrete (1). Therefore, the strength of the road bridge deck (concrete structure) can be increased and the fatigue durability can be improved.
[0023]
Further, in the reinforcing method of the present invention, a reinforcing fiber made of fiber reinforced plastic having excellent durability compared to a reinforcing bar is used as the additional reinforcing bar (4), and the embedment depth of the additional reinforcing bar is made shallow (so-called fogging). Therefore, the existing reinforcing bar (2) is not hindered in the hanging construction of the first groove (3). Further, since the additional reinforcing bars (4) are embedded in the resin mortar (5), there is no possibility of damage during the renovation work of the waterproof layer (6).
[0024]
【The invention's effect】
As described above , according to the present invention , a shallow groove is formed, and additional reinforcing bars are embedded with easy-to-handle resin mortar. Therefore, construction is easy and the construction period can be shortened, and the resin mortar The construction cost can be further reduced due to the small amount of use. And since the additional reinforcement reinforcement made from the fiber reinforced plastic which consists of a resin mortar and a highly elastic fiber can be integrated with concrete, the intensity | strength of a road bridge deck can be raised and fatigue durability can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing a part of a road bridge deck as an application example of an FRP reinforcement method for a road bridge deck according to the present invention. FIG. 2 shows a reinforcement structure of a road bridge deck by a FRP reinforcement method. Fig. 3 is a partial longitudinal sectional view taken along line II-II in Fig. 3. Fig. 3 shows a reinforcement structure of a road bridge deck by FRP reinforcement method, broken along line III-III in Fig. 1. Partial longitudinal section [Explanation of symbols]
1: Concrete 2: Reinforcing bar 3: Groove groove 4: Additional reinforcing bar 5: Resin mortar

Claims (3)

鉄筋(2)が埋設されたコンクリート構造物である道路橋床版を補強するための道路橋床版のFRP補強工法であって、鉄筋(2)が露出しない深さで路側帯部分のコンクリート(1)表面をはつることにより、鉄筋(2)に沿った削溝(3)をコンクリート(1)表面に形成し、次いで、弾性率が100〜1000GPaの繊維から成る繊維強化プラスチック製の補強筋を追加補強筋(4)として削溝(3)に配置した後、既存のコンクリート(1)表面と面一に削溝(3)に樹脂モルタル(5)を打設することを特徴とする道路橋床版のFRP補強工法。Rebar (2) is a FRP Retrofit for road bridge deck for reinforcing road bridge deck is a concrete structure embedded, in the side strip portions at a depth rebar (2) is not exposed concrete ( 1) Grooves (3) along the reinforcing bars (2) are formed on the surface of the concrete (1) by gripping the surface, and then reinforcing bars made of fiber reinforced plastic made of fibers having an elastic modulus of 100 to 1000 GPa after placing Kezumizo (3) as an additional reinforcement (4), characterized by pouring a resin mortar (5) in Kezumizo (3) to an existing concrete (1) flush with the surface of the road FRP reinforcement method for bridge deck . 追加補強筋(4)として、炭素繊維強化プラスチック製の補強筋を使用する請求項1に記載の道路橋床版のFRP補強工法。The FRP reinforcing method for a road bridge deck according to claim 1, wherein a reinforcing bar made of carbon fiber reinforced plastic is used as the additional reinforcing bar (4). 鉄筋(2)が埋設されたコンクリート構造物であり且つFRP補強工法により補強された道路橋床版であって、鉄筋(2)が露出しない深さで路側帯部分のコンクリート(1)表面をはつることにより鉄筋(2)に沿ってコンクリート(1)表面に形成された削溝(3)に対し、弾性率が100〜1000GPaの繊維から成る繊維強化プラスチック製の補強筋が追加補強筋(4)として配置され、既存のコンクリート(1)表面と面一に削溝(3)に打設された樹脂モルタル(5)によって追加補強筋(4)が埋設されていることを特徴とする道路橋床版。A road bridge deck slab that is a concrete structure with a reinforcing bar (2) embedded and reinforced by FRP reinforcement method. Thus, a reinforcing bar made of fiber reinforced plastic made of fibers having an elastic modulus of 100 to 1000 GPa is added to the groove (3) formed on the surface of the concrete (1) along the reinforcing bar (2). A road bridge characterized in that an additional reinforcing bar (4) is embedded by a resin mortar (5) placed in a groove (3) flush with existing concrete (1) surface Floor slab.
JP2001375938A 2001-12-10 2001-12-10 FRP reinforcement method for road bridge deck and road bridge deck Expired - Fee Related JP3877145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375938A JP3877145B2 (en) 2001-12-10 2001-12-10 FRP reinforcement method for road bridge deck and road bridge deck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375938A JP3877145B2 (en) 2001-12-10 2001-12-10 FRP reinforcement method for road bridge deck and road bridge deck

Publications (2)

Publication Number Publication Date
JP2003176633A JP2003176633A (en) 2003-06-27
JP3877145B2 true JP3877145B2 (en) 2007-02-07

Family

ID=19184231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375938A Expired - Fee Related JP3877145B2 (en) 2001-12-10 2001-12-10 FRP reinforcement method for road bridge deck and road bridge deck

Country Status (1)

Country Link
JP (1) JP3877145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337728A (en) * 2010-07-22 2012-02-01 上海申继交通科技有限公司 Novel composite maintaining method of hinged joint of bridge
JP2018109268A (en) * 2016-12-28 2018-07-12 国立大学法人金沢大学 Method to reinforce concrete structure, concrete structure and flexible continuous fiber reinforcement material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084618B2 (en) * 2002-08-30 2008-04-30 三井住友建設株式会社 Concrete reinforcement method
JP3786938B2 (en) * 2003-08-27 2006-06-21 株式会社アーテック Reinforcement method for concrete structures
JP4565876B2 (en) * 2004-04-16 2010-10-20 アイカ工業株式会社 Method for reinforcing concrete structures
JP4836614B2 (en) * 2006-03-08 2011-12-14 株式会社竹中土木 Method for reinforcing concrete structures
JP4944807B2 (en) * 2008-01-28 2012-06-06 三井ホーム株式会社 Reinforcing structure and reinforcing method
JP4909918B2 (en) * 2008-02-07 2012-04-04 育弘 松崎 Method for reinforcing structural frame and structural frame
JP5553981B2 (en) * 2008-09-29 2014-07-23 公益財団法人鉄道総合技術研究所 Cutting reinforcement for tunnel lining concrete structures
KR101112179B1 (en) 2008-11-18 2012-02-24 김지현 The Method of repair of nonstructural crack on the concrete floor
JP4886874B2 (en) * 2010-04-13 2012-02-29 一弘 田中 Reinforcement repair method of Otani stone structure
CN201753531U (en) * 2010-07-16 2011-03-02 吴智深 Concrete structure reinforced by prestress FRP ribs
JP5772086B2 (en) * 2011-03-10 2015-09-02 東レ株式会社 Reinforced structure of existing concrete slab
JP6783592B2 (en) * 2016-09-01 2020-11-11 積水化学工業株式会社 Step slope
CN107012799A (en) * 2017-01-22 2017-08-04 中南大学 A kind of novel bridge and structural strengthening method based on dovetail groove self-locking mechanism
JP6886756B2 (en) * 2017-02-08 2021-06-16 三菱ケミカルインフラテック株式会社 Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337728A (en) * 2010-07-22 2012-02-01 上海申继交通科技有限公司 Novel composite maintaining method of hinged joint of bridge
CN102337728B (en) * 2010-07-22 2015-01-14 上海申继交通科技有限公司 Novel composite maintaining method of hinged joint of bridge
JP2018109268A (en) * 2016-12-28 2018-07-12 国立大学法人金沢大学 Method to reinforce concrete structure, concrete structure and flexible continuous fiber reinforcement material

Also Published As

Publication number Publication date
JP2003176633A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
JP3877145B2 (en) FRP reinforcement method for road bridge deck and road bridge deck
CN107653777B (en) The preparation method of crash bearer
JP3762787B1 (en) Reinforcing structure of existing floor slab and method of reinforcing existing floor slab
US3829228A (en) Pavement expansion joint and joint seal
CN203420221U (en) Orthotropic steel plate-fiber grating reinforced concrete combined bridge deck structure
JP2007321419A (en) Reinforcing method for overhang floor slab by use of fiber reinforced reinforcing material
JP2003176508A (en) Frp reinforcing construction method for concrete structure
JPH08218326A (en) Reinforcing method of floor plate of elevated bridge
CN113605260B (en) Method for reinforcing stone arch bridge by adopting steel fiber self-stress concrete
JP6835510B2 (en) Reinforcement material for building civil engineering, concrete structure using this, concrete slab structure and its construction method and reinforcement method
CN107178040B (en) A kind of bridge structure reinforces mold and reinforcement means
JPH08120604A (en) Paving body
JP4084618B2 (en) Concrete reinforcement method
JP2002146904A (en) Method for reinforcing concrete structure and reinforced concrete structure
JP7306053B2 (en) Joint structure of precast floor slab and construction method of joint
JPH06240615A (en) Elastic sheet on road surface and laying thereof
JP2945543B2 (en) Permeable concrete and pavement method of permeable concrete
KR20080098219A (en) Speed bump for road and how to construct one
JP6886756B2 (en) Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method
JP3903017B2 (en) How to repair pillows
KR20200082038A (en) Method for Repairing Bridge Deck using High Strength Concrete Precast
CN114197305B (en) Novel UHPC-steel bridge deck structure with RFB structure glue joint
US20080034692A1 (en) Expansion Joint Assembly
JPH0218081Y2 (en)
JP6829417B2 (en) Primer for repairing concrete structure floor slab and concrete structure floor slab repair method using the primer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Ref document number: 3877145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees