JP6886756B2 - Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method - Google Patents
Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method Download PDFInfo
- Publication number
- JP6886756B2 JP6886756B2 JP2017021045A JP2017021045A JP6886756B2 JP 6886756 B2 JP6886756 B2 JP 6886756B2 JP 2017021045 A JP2017021045 A JP 2017021045A JP 2017021045 A JP2017021045 A JP 2017021045A JP 6886756 B2 JP6886756 B2 JP 6886756B2
- Authority
- JP
- Japan
- Prior art keywords
- civil engineering
- concrete
- reinforcing
- concrete deck
- protrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004567 concrete Substances 0.000 title claims description 100
- 230000002787 reinforcement Effects 0.000 title claims description 29
- 238000010276 construction Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims description 96
- 230000003014 reinforcing Effects 0.000 claims description 90
- 239000000835 fiber Substances 0.000 claims description 76
- 229920005989 resin Polymers 0.000 claims description 64
- 239000011347 resin Substances 0.000 claims description 64
- 210000003205 Muscles Anatomy 0.000 claims description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 41
- 239000004570 mortar (masonry) Substances 0.000 claims description 40
- 229920000647 polyepoxide Polymers 0.000 claims description 23
- 230000003387 muscular Effects 0.000 claims description 22
- 239000003822 epoxy resin Substances 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 239000004576 sand Substances 0.000 claims description 19
- 230000002093 peripheral Effects 0.000 claims description 16
- 239000010426 asphalt Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 239000003365 glass fiber Substances 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 229920001567 Vinyl ester Polymers 0.000 claims description 7
- 239000004760 aramid Substances 0.000 claims description 6
- 229920003235 aromatic polyamide Polymers 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 239000011528 polyamide (building material) Substances 0.000 claims description 5
- 229920002978 Vinylon Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 description 9
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- -1 polyparaphenylene benzoxazole Polymers 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 102100003908 GCHFR Human genes 0.000 description 5
- 101710038589 GCHFR Proteins 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive Effects 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229920002803 Thermoplastic polyurethane Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 229920001225 Polyester resin Polymers 0.000 description 2
- 239000004698 Polyethylene (PE) Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N Resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 210000002356 Skeleton Anatomy 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000011068 load Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000069 poly(p-phenylene sulfide) Polymers 0.000 description 2
- 229920002530 poly[4-(4-benzoylphenoxy)phenol] polymer Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- KGSFMPRFQVLGTJ-UHFFFAOYSA-N 1,1,2-triphenylethylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 KGSFMPRFQVLGTJ-UHFFFAOYSA-N 0.000 description 1
- UIERETOOQGIECD-ARJAWSKDSA-M 2-Methyl-2-butenoic acid Natural products C\C=C(\C)C([O-])=O UIERETOOQGIECD-ARJAWSKDSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000122 Acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 229920000180 Alkyd Polymers 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N Crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920001721 Polyimide Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N Silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 241000282890 Sus Species 0.000 description 1
- UIERETOOQGIECD-ONEGZZNKSA-N Tiglic acid Chemical compound C\C=C(/C)C(O)=O UIERETOOQGIECD-ONEGZZNKSA-N 0.000 description 1
- 210000003371 Toes Anatomy 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N Triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000111 anti-oxidant Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking Effects 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 231100000078 corrosive Toxicity 0.000 description 1
- 231100001010 corrosive Toxicity 0.000 description 1
- 125000000853 cresyl group Chemical class C1(=CC=C(C=C1)C)* 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003253 poly(benzobisoxazole) Polymers 0.000 description 1
- 229920002496 poly(ether sulfone) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011433 polymer cement mortar Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920003288 polysulfone Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002829 reduced Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Description
本発明は、建築土木構造を補強するために構造物の中に埋め込まれる繊維強化樹脂(以下、「FRP」ともいう。)製の筋材と、その製造方法、これを用いて構成されるコンクリート床版構造物及びその施工方法と補強方法に関する。 In the present invention, a reinforcing material made of fiber reinforced plastic (hereinafter, also referred to as "FRP") embedded in a structure to reinforce a building civil engineering structure, a manufacturing method thereof, and concrete constructed by using the same. Regarding the floor slab structure and its construction method and reinforcement method.
過日公表された高速道路の大規模更新・修繕計画によれば、多くの予算が橋梁における床版の架け替えや改修工事に割り当てられている。交通規制期間などの施工条件によって床版の架け替えが難しい場所も多く、それらの場所では床版上面から補強を施す工事により改修が行なわれる。 According to a large-scale highway renewal and repair plan announced in the past, a large amount of budget is allocated to the replacement and repair work of decks on bridges. There are many places where it is difficult to replace the deck due to construction conditions such as the traffic regulation period, and in those places repairs will be carried out by reinforcing the floor slab from the top surface.
床版上面から補強を施す工法としては、例えば床版上面にスチールファイバーコンクリートを打設し、新旧コンクリートを一体化させて床版厚の増加によって補強する上面増し厚工法が知られている。また、既設の床版の表層部を埋設された鉄筋が露出しない深さではつり、はつり部分を、プライマーを塗布しその上に樹脂モルタルを敷設するなどして処理した後、FRP製の補強筋材をはつり部分に配置し、その後、樹脂モルタルを打設して床版の表層部を復元するFRP補強工法が知られている(例えば特許文献1参照)。 As a method of reinforcing from the upper surface of the deck, for example, a method of thickening the upper surface by placing steel fiber concrete on the upper surface of the deck and integrating old and new concrete to reinforce by increasing the thickness of the deck is known. In addition, the surface layer of the existing floor slab is suspended at a depth where the embedded reinforcing bars are not exposed, and the suspended portion is treated by applying a primer and laying resin mortar on it, and then reinforcing bars made of FRP. There is known an FRP reinforcement method in which a material is placed on a suspended portion and then a resin mortar is cast to restore the surface layer portion of the deck (see, for example, Patent Document 1).
前記上面増し厚工法は、追加補強鉄筋の充填性を確保するため、10cm程度増し厚してある程度のコンクリートの厚さが必要となって床版厚が増加し、これにより死荷重の増加を招き、既存躯体の負担が増加してしまうという問題がある。路面高も変わってしまうため、伸縮装置を含めて線形の見直しを行なう必要も生じてしまう。
一方、前記FRP補強工法は、即硬化性の樹脂モルタルを使用するものの工程数が多く、各工程で養生時間を確保する必要もあるため、工期短縮が難しいという問題がある。
早期に大規模更新、修繕を施す必要がある高速道路の橋梁は総延長で数百kmにも及ぶことから、床版を強化し補強する工事には、重量増加を抑えて短い交通規制期間で確実且つ速やかに施工可能なことが要求され、これを実現する新たな工法の開発が要請されている。
In the above-mentioned top surface thickening method, in order to secure the filling property of the additional reinforcing reinforcing bar, it is necessary to increase the thickness by about 10 cm to a certain thickness of concrete, which increases the floor slab thickness, which causes an increase in dead load. , There is a problem that the burden on the existing skeleton increases. Since the road surface height also changes, it will be necessary to review the alignment including the expansion and contraction device.
On the other hand, although the FRP reinforcement method uses an instantly curable resin mortar, there are many steps and it is necessary to secure a curing time in each step, so that there is a problem that it is difficult to shorten the construction period.
Since the total length of highway bridges that need to be extensively renewed and repaired at an early stage is several hundred kilometers, the construction to strengthen and reinforce the deck can be done in a short traffic regulation period with less weight increase. It is required that construction can be carried out reliably and promptly, and the development of a new construction method that realizes this is required.
本発明は従来の技術が有するこのような問題点に鑑み、鉄筋が埋設されたコンクリート構造物を補強し改修するにあたり、構造物内部での定着性に優れた建築土木用の筋材を開発し、これを用いて高速道路の橋梁などの床版を、重量増加を抑えつつ短い工期で補強し改修することができるようにすることを課題とする。 In view of such problems of the prior art, the present invention has developed a reinforcing bar for building civil engineering having excellent fixability inside the structure when reinforcing and repairing a concrete structure in which reinforcing bars are embedded. The challenge is to use this to reinforce and repair floor slabs such as highway bridges in a short construction period while suppressing weight increase.
前記従来のFRP補強工法においては、床版上に下塗りとなる樹脂モルタル層を形成し、その上面にFRP製の補強筋材を設置し、その後、さらに樹脂モルタルを打設して補強筋を埋め戻しているため、工事全体としての養生時間は長くなり、工期の短縮化は困難である。樹脂モルタルに代えて速硬化性のモルタルを用いた場合、FRP製の補強筋材はコンクリートなどとの付着力が小さく定着性が高くないため、そのままでは十分な補強効果が得られない。 In the conventional FRP reinforcement method, a resin mortar layer as an undercoat is formed on the floor slab, an FRP reinforcing bar is installed on the upper surface thereof, and then a resin mortar is further cast to fill the reinforcing bar. Since it has been returned, the curing time of the entire construction will be long, and it will be difficult to shorten the construction period. When a fast-curing mortar is used instead of the resin mortar, the reinforcing bar made of FRP has a small adhesive force to concrete and the like and does not have high fixability, so that a sufficient reinforcing effect cannot be obtained as it is.
そこで本発明は、FRP製の筋材をその外周に定着部位となる突起部を複数設けて構成することで、コンクリートなどの構造材料との付着力を向上させ、筋材を構造材料に確実に一体化させてコンクリート構造物を有効に補強できるようにした。 Therefore, in the present invention, the FRP muscular material is configured by providing a plurality of protrusions serving as fixing portions on the outer periphery thereof to improve the adhesive force with the structural material such as concrete, and the muscular material is surely used as the structural material. It was integrated so that the concrete structure could be effectively reinforced.
すなわち、本発明の建築土木用筋材は、FRPからなる筋材であって、FRPからなる筋材本体の外周に、FRPからなる少なくとも一つの突起部を有することを特徴とするものである。
また、本発明の建築土木用筋材は、筋材本体の外周面から1mm以内の範囲に、当該筋材本体外周面から外方へ突出した突起部由来の強化繊維が存在することを特徴とするものである。
That is, the muscular material for building civil engineering of the present invention is a muscular material made of FRP, and is characterized by having at least one protrusion made of FRP on the outer periphery of the main body of the muscular material made of FRP.
Further, the muscle material for building civil engineering of the present invention is characterized in that reinforcing fibers derived from protrusions protruding outward from the outer peripheral surface of the muscle material body are present within a range of 1 mm or less from the outer peripheral surface of the muscle material body. Is what you do.
前記構成の筋材は、筋材本体を、炭素繊維強化樹脂材(以下、「CFRP」ともいう。)、アラミド繊維強化樹脂材(以下、「AFRP」ともいう。)により形成することができる。
また、突起部を、ガラス繊維強化樹脂材(以下、「GFRP」ともいう。)、CFRP、AFRP等のポリアミド繊維強化樹脂材、ポリエステル繊維強化樹脂材及びビニロン繊維強化樹脂材からなる群より選ばれる少なくとも一種からなる樹脂材を用いて形成することができる。
また、突起部が、エポキシ系樹脂又はビニルエステル系樹脂成分を含むことを特徴とする。
In the reinforcing material having the above structure, the main body of the reinforcing material can be formed of a carbon fiber reinforced resin material (hereinafter, also referred to as “CFRP”) and an aramid fiber reinforced resin material (hereinafter, also referred to as “AFRP”).
Further, the protrusion is selected from the group consisting of a glass fiber reinforced resin material (hereinafter, also referred to as "GFRP"), a polyamide fiber reinforced resin material such as CFRP and AFRP, a polyester fiber reinforced resin material, and a vinylon fiber reinforced resin material. It can be formed by using at least one kind of resin material.
Further, the protrusions are characterized by containing an epoxy resin or a vinyl ester resin component.
前記構成の筋材において、筋材の突起部が設けられた部分の径(S)と設けられていない部分の径(φ)が以下の関係式を満たす構成を有することを特徴とする。
(関係式)φ+2mm≦S≦φ+40mm
The muscular material having the above structure is characterized in that the diameter (S) of the portion where the protrusion of the muscular material is provided and the diameter (φ) of the portion where the protrusion is not provided satisfy the following relational expression.
(Relational formula) φ + 2 mm ≤ S ≤ φ + 40 mm
また、突起部の厚み(T)が1〜20mmであることを特徴とし、突起部の長さが30〜70mmであることを特徴とする。
さらに、複数設けられた突起部の、隣接する突起部同士の間隔が50〜1500mmであることを特徴とする。
またさらに、突起部中の強化繊維の含有量が80体積%以下であることを特徴とする。
Further, the thickness (T) of the protrusion is 1 to 20 mm, and the length of the protrusion is 30 to 70 mm.
Further, it is characterized in that the distance between the adjacent protrusions of the plurality of protrusions is 50 to 1500 mm.
Furthermore, the content of the reinforcing fibers in the protrusions is 80% by volume or less.
前記構成の筋材は、例えばFRP製のロッドにより筋材本体を形成し、その外周面に、炭素繊維やガラス繊維などの前記材料からなる強化繊維を巻き付け、樹脂により、筋材本体の外周面に筋材本体よりも大径の突起部を適宜な厚みで一体化させる方法により製造することができる。
或いは、FRPからなる筋材本体の外周面に、前記材料からなるプリプレグを巻き付けて硬化させ、筋材本体の外周面に筋材本体よりも大径の突起部を適宜な厚みで一体化させる方法により製造することができる。
For the muscle material having the above structure, for example, a muscle material main body is formed by a rod made of FRP, and a reinforcing fiber made of the above material such as carbon fiber or glass fiber is wound around the outer peripheral surface thereof. It can be manufactured by a method of integrating a protrusion having a diameter larger than that of the main body of the muscle material with an appropriate thickness.
Alternatively, a method in which a prepreg made of the above material is wound around the outer peripheral surface of the muscular body made of FRP and hardened, and a protrusion having a diameter larger than that of the muscular body is integrated with the outer peripheral surface of the muscular body with an appropriate thickness. Can be manufactured by
このように構成される本発明の建築土木用筋材は、コンクリート構造物を形成する場合に、構造材料内に埋め込んでコンクリート構造部を補強するための手段として用いることができる。
また、コンクリート床版構造体を形成する場合に、コンクリート床版内に埋め込んで床版を補強する手段として用いることができる。
その他、本発明の建築土木用筋材は、ビルや道路、橋梁、水路、堤防など様々なコンクリート構造の建築物や土木構造物などに、構造材料に埋め込んで補強する筋材として用いることができる。
When forming a concrete structure, the muscular material for building civil engineering of the present invention configured as described above can be used as a means for embedding in the structural material to reinforce the concrete structure portion.
Further, when forming a concrete deck structure, it can be used as a means for reinforcing the deck by embedding it in the concrete deck.
In addition, the reinforcing material for building civil engineering of the present invention can be used as a reinforcing material embedded in a structural material to reinforce various concrete structures such as buildings, roads, bridges, waterways, and embankments. ..
また、本発明は、コンクリート床版上にアスファルト舗装体を設けてなるコンクリート床版構造体の施工方法において、
前記構成の建築土木用筋材をコンクリート床版上に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、
前記モルタル又はコンクリート上にアスファルト舗装体を敷設する工程と、を有することを特徴とする。
Further, the present invention relates to a method for constructing a concrete deck structure in which an asphalt pavement is provided on a concrete deck.
The process of installing multiple reinforcements for building civil engineering with the above configuration on a concrete deck, and
The process of placing mortar or concrete on the concrete deck on which the reinforcement for building civil engineering is installed, and
It is characterized by having a step of laying an asphalt pavement body on the mortar or concrete.
さらに、本発明は、コンクリート床版上にアスファルト舗装体を設けてなる既設のコンクリート床版構造体を補強する方法において、
前記アスファルト舗装体を撤去する工程と、
前記構成の建築土木用筋材をコンクリート床版上に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、
前記モルタル又はコンクリート上にアスファルト舗装体を敷設する工程と、を有することを特徴とする。
Further, the present invention relates to a method for reinforcing an existing concrete deck structure in which an asphalt pavement is provided on a concrete deck.
The process of removing the asphalt pavement and
The process of installing multiple reinforcements for building civil engineering with the above configuration on a concrete deck, and
The process of placing mortar or concrete on the concrete deck on which the reinforcement for building civil engineering is installed, and
It is characterized by having a step of laying an asphalt pavement body on the mortar or concrete.
また、本発明は、既設のコンクリート床版構造体を補強する方法において、
既設のコンクリート床版の上面部分をその内部に配置された鉄筋が露出する深さに切除する工程と、
前記構成の建築土木用筋材を前記切除した部分の上面に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、を有することを特徴とする。
Further, the present invention relates to a method for reinforcing an existing concrete deck structure.
The process of cutting the upper surface of the existing concrete deck to the depth where the reinforcing bars placed inside it are exposed, and
A process of installing a plurality of building civil engineering muscles having the above configuration on the upper surface of the excised portion, and
It is characterized by having a step of placing mortar or concrete on a concrete deck on which the reinforcing material for building civil engineering is installed.
前記施工方法及び補強方法において、コンクリート床版は内部に鉄筋を配した鉄筋コンクリートであり、その上に或いは上部を切除した上で本発明の建築土木用筋材を設置し、且つモルタル又はコンクリートを打設して下部のコンクリート床版と一体のコンクリート床版構造物が形成される。アスファルト舗装体はその上に敷設される。
さらに、前記施工方法及び補強方法において、モルタルが速硬化モルタルであることを特徴とする。
これによれば、構造材料中に埋設される建築土木用筋材は、FRP製の筋材本体の外周に沿って複数の突起部が適宜な間隔を開けて一体化された形状に設けられているので、モルタル又はコンクリートとの界面に剥離応力が発生し難く、筋材は高い付着性でモルタル又はコンクリートに確実に一体化し、コンクリート床版が引張りや曲げを受けても筋材は引き抜け難く、構造材料の耐衝撃性や曲げ強度、耐摩耗性などの物性を向上させてコンクリート床版を有効に補強することができる。腐食しないFRP製の筋材をコンクリート表層内に埋設することで、コンクリート床版の自重の増加はなく、また、路面高の変更も不要である。
コンクリートに対して高い付着性が発揮される形状に筋材が設けられているので、例えば、速硬化性のモルタルやコンクリートを使用して短い工期でコンクリート床版構造体の施工や補強が可能となる。
また、FRP製の筋材は耐腐食性に優れており、ヤング係数が鉄の2倍以上の高弾性CFRP製の筋材であれば鉄筋の応力緩和効果が高く、コンクリート床版の強度を高めることができる。
In the above construction method and reinforcement method, the concrete deck is reinforced concrete with reinforcing bars arranged inside, and the reinforcing bar for building civil engineering of the present invention is installed on it or after cutting off the upper part, and mortar or concrete is struck. A concrete deck structure integrated with the concrete deck below is formed. The asphalt pavement is laid on it.
Further, in the above-mentioned construction method and reinforcement method, the mortar is a fast-curing mortar.
According to this, the building civil engineering reinforcement embedded in the structural material is provided in a shape in which a plurality of protrusions are integrated along the outer periphery of the FRP reinforcement body at appropriate intervals. Therefore, peeling stress is unlikely to occur at the interface with the mortar or concrete, the barbed is highly adhesive and reliably integrated with the mortar or concrete, and the barbed is difficult to pull out even if the concrete deck is pulled or bent. , It is possible to effectively reinforce concrete decks by improving physical properties such as impact resistance, bending strength, and abrasion resistance of structural materials. By burying a non-corrosive FRP bar in the concrete surface layer, the weight of the concrete deck does not increase, and there is no need to change the road surface height.
Since the reinforcement is provided in a shape that exhibits high adhesion to concrete, for example, it is possible to construct and reinforce a concrete deck structure in a short construction period using fast-curing mortar or concrete. Become.
In addition, FRP reinforcing bars have excellent corrosion resistance, and CFRP reinforcing bars with a Young's modulus of twice or more that of iron have a high stress relaxation effect on the reinforcing bars and increase the strength of the concrete deck. be able to.
以下、本発明の好適な実施の形態を、図面を参照して説明する。なお、図示した建築土木用筋材の形態やこれを用いて強化する構造物の形態は本発明を限定するものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It should be noted that the form of the illustrated muscle for building civil engineering and the form of the structure to be reinforced by using the same do not limit the present invention.
図1は本発明の一実施形態の建築土木用筋材(以下、単に「筋材」ともいう。)の外観、図2はその要部拡大断面を示している。
図示した筋材1は、適宜な径(φ)及び長さのFRP製、好ましくは高弾性のCFRP製又はAFRP製のロッドである筋材本体2の外周に、一つ以上の、FRP製、好ましくはGFRP製、CFRP製又はAFRP製、より好ましくはGFRP製の突起部3を一体に設けて形成したものでる。
FIG. 1 shows the appearance of a muscle material for building civil engineering according to an embodiment of the present invention (hereinafter, also simply referred to as “muscle material”), and FIG. 2 shows an enlarged cross section of a main part thereof.
The illustrated reinforcement 1 is made of one or more FRP, preferably one or more, on the outer periphery of the reinforcement body 2, which is a rod made of FRP, preferably highly elastic CFRP or AFRP, having an appropriate diameter (φ) and length. It is preferably formed by integrally providing protrusions 3 made of GFRP, CFRP or AFRP, and more preferably made of GFRP.
詳しくは、筋材本体2は適宜な径(φ)及び長さに形成され、その外周に、筋材本体2よりも大径で外方へ突出した複数の突起部3を、隣接する突起部3,3同士で互いに所定の間隔を開けた位置に一体に定着させてある。
突起部3の定着方法は、特に限定されないが、例えば筋材本体2の外周面にプリプレグを適宜な厚み(T)で直に巻き付け硬化させることにより行うことができる。或いは、筋材本体2の外周面に強化繊維を、例えば帯状に適宜な厚み(T)に直に巻き付け、これに樹脂を浸して硬化させたり、予め樹脂を含浸させた強化繊維を筋材本体2の外周面に、例えば帯状に適宜な厚み(T)に直に巻き付け、これを硬化させたりすることにより行うことができ、これによりFRP製ロッドである筋材本体2の外周にその外周面から1mm以内の範囲に強化繊維が存在する、リング形の強化繊維塊である突起部3が一体に固着される。
Specifically, the muscular body 2 is formed to have an appropriate diameter (φ) and length, and a plurality of protrusions 3 having a diameter larger than that of the muscular body 2 and projecting outward are formed on the outer periphery thereof. 3 and 3 are integrally fixed at positions separated from each other by a predetermined distance.
The method for fixing the protrusion 3 is not particularly limited, but it can be performed, for example, by directly winding a prepreg around the outer peripheral surface of the muscle material body 2 with an appropriate thickness (T) and curing the prepreg. Alternatively, the reinforcing fiber is directly wound around the outer peripheral surface of the reinforcing material body 2 to, for example, a strip shape to an appropriate thickness (T), and the resin is dipped in the reinforcing fiber to be cured, or the reinforcing fiber impregnated with the resin in advance is applied to the reinforcing fiber main body. This can be done by directly winding the outer peripheral surface of 2 in a strip shape, for example, to an appropriate thickness (T) and hardening the outer peripheral surface thereof, thereby surrounding the outer peripheral surface of the fiber body 2 which is an FRP rod. The protrusion 3 which is a ring-shaped reinforcing fiber mass in which the reinforcing fibers are present within 1 mm from the ground is integrally fixed.
突起部3に用いる強化繊維としては、無機繊維、有機繊維、金属繊維等の強化繊維を1種又は2種以上用いることができる。
無機繊維としては、ガラス繊維、炭素繊維、ボロン繊維、炭化ケイ素繊維、アルミナ繊維等が例示される。有機繊維としては、ポリパラフェニレンベンズオキサゾール繊維(PBO繊維)、高強力ポリエチレン繊維やポリプロピレン繊維、アラミド繊維、脂肪族ポリアミド繊維、半芳香族ポリアミド繊維等のポリアミド繊維、ポリエステル繊維、ビニロン繊維やこれらを延伸配向強化した自己強化繊維等が例示される。金属繊維としては、アルミ繊維、アルミナ繊維、SUS繊維、銅繊維等が例示される。中でも、ガラス繊維、炭素繊維、ポリアミド繊維、ポリエステル繊維、ビニロン繊維が好ましく、ガラス繊維、炭素繊維、アラミド繊維がより好ましく、コストの点からガラス繊維がより好ましい。
As the reinforcing fiber used for the protrusion 3, one type or two or more types of reinforcing fiber such as an inorganic fiber, an organic fiber, and a metal fiber can be used.
Examples of the inorganic fiber include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, alumina fiber and the like. Examples of organic fibers include polyparaphenylene benzoxazole fiber (PBO fiber), high-strength polyethylene fiber and polypropylene fiber, aramid fiber, aliphatic polyamide fiber, polyamide fiber such as semi-aromatic polyamide fiber, polyester fiber, vinylon fiber and these. Examples thereof include self-reinforcing fibers with reinforced draw orientation. Examples of the metal fiber include aluminum fiber, alumina fiber, SUS fiber, copper fiber and the like. Among them, glass fiber, carbon fiber, polyamide fiber, polyester fiber and vinylon fiber are preferable, glass fiber, carbon fiber and aramid fiber are more preferable, and glass fiber is more preferable from the viewpoint of cost.
強化繊維の形態としては、フィラメント、ステープル及びフラットヤーン、チョップド繊維等の何れであってもよく、これら1種又は2種以上からなる織物、編物、不織布として用いることも好ましい。中でも、フィラメント、織物が好ましい。なお、フィラメントの形態は、長繊維(連続繊維)であり、ステープルはフィラメントを収束したステープル・トウを切断して綿状にした短繊維であり、通常繊維長は35〜100mm程度である。フラットヤーンは、熱可塑性樹脂等のフィルムを短冊状にカット(スリット)し、延伸することにより強度を持たせた平らな糸である。 The form of the reinforcing fiber may be any of filaments, staples and flat yarns, chopped fibers and the like, and it is also preferable to use it as a woven fabric, knitted fabric or non-woven fabric composed of one or more of these. Of these, filaments and woven fabrics are preferable. The form of the filament is a long fiber (continuous fiber), and the staple is a short fiber obtained by cutting a staple toe in which the filament is converged into a cotton-like shape, and the fiber length is usually about 35 to 100 mm. A flat yarn is a flat yarn obtained by cutting (slitting) a film such as a thermoplastic resin into a strip shape and stretching the film to give it strength.
好ましく用いられる織物は、その織り組織として、平織、綾織、朱子織、模紗織、斜紋織、二重織、嬬子織等を挙げることができる。その中でも、繊維束間に樹脂が含浸しやすい平織り、朱子織が好適である。織物の目付は、繊維束間の樹脂の含浸性を考慮すると30〜500g/m2が好ましく、50〜400g/m2がより好ましい。目付が30gより少なくなると、織物強度が低下するため突起部3による補強効果が得られ難くなり、目付が500g/m2を超えると、繊維束間が狭くなって繊維束間へ樹脂が含浸し難くなり、筋材本体2と突起部3の付着力が低下する場合がある。 Examples of the woven fabric preferably used include plain weave, twill weave, red weave, satin weave, diagonal pattern weave, double weave, satin weave and the like. Among them, plain weave and satin weave, in which resin is easily impregnated between fiber bundles, are preferable. The basis weight of the woven fabric is preferably 30 to 500 g / m 2 and more preferably 50 to 400 g / m 2 in consideration of the impregnation property of the resin between the fiber bundles. When the basis weight is less than 30 g, the strength of the woven fabric is lowered and it becomes difficult to obtain the reinforcing effect by the protrusions 3. When the basis weight exceeds 500 g / m 2 , the fiber bundles are narrowed and the resin is impregnated between the fiber bundles. It becomes difficult, and the adhesive force between the muscle material main body 2 and the protrusion 3 may decrease.
突起部3を構成する繊維強化樹脂材に含まれる炭素繊維、ガラス繊維、アラミド繊維等の強化繊維の含有量は、繊維強化樹脂材中の80体積%以下であることが好ましく、5〜75体積%であることがより好ましく、30〜75体積%であることがさらに好ましく、40〜75体積%であることが特に好ましく、50〜70体積%であることが最も好ましい。 The content of the reinforcing fibers such as carbon fiber, glass fiber, and aramid fiber contained in the fiber reinforced resin material constituting the protrusion 3 is preferably 80% by volume or less in the fiber reinforced resin material, and is 5 to 75 volumes. %, More preferably 30 to 75% by volume, particularly preferably 40 to 75% by volume, and most preferably 50 to 70% by volume.
筋材本体2の外周に突起部3を固定するための、突起部由来の強化繊維に含ませる樹脂としては、特に限定されず、熱硬化性樹脂、熱可塑性樹脂、湿気硬化性樹脂、電子線硬化性樹脂等が挙げられる。中でも、熱硬化性樹脂が好ましく、エポキシ系樹脂、ビニルエステル系樹脂、ウレタン樹脂、ウレア樹脂がより好ましく、エポキシ系樹脂やビニルエステル系樹脂成分を含む熱硬化性樹脂を用いることが、筋材自体を製造しやすい点、筋材本体との接着性の点からさらに好ましい。 The resin contained in the reinforcing fiber derived from the protrusion for fixing the protrusion 3 on the outer periphery of the reinforcing material main body 2 is not particularly limited, and is a thermosetting resin, a thermoplastic resin, a moisture-curable resin, and an electron beam. Curable resin and the like can be mentioned. Among them, a thermosetting resin is preferable, an epoxy resin, a vinyl ester resin, a urethane resin, and a urea resin are more preferable, and it is preferable to use a thermosetting resin containing an epoxy resin or a vinyl ester resin component. It is more preferable from the viewpoint of easy production and adhesion to the main body of the reinforcing material.
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、ウレア樹脂、アルキド樹脂、ポリイミド樹脂等が挙げられる。 Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, urethane resin, urea resin, alkyd resin, and polyimide resin.
熱可塑性樹脂としては、ポリエチレン、ポリプロピレン及び環状ポリオレフィン等のオレフィン系樹脂、ポリブチレンテレフタレート及びポリエチレンテレフタレート等のポリエステル樹脂、ポリスチレン、ABS樹脂及びAS樹脂等のスチレン系樹脂、ポリ塩化ビニル、ポリ酢酸ビニル、アクリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル、ポリフェニレンスルファイド(PPS)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、ウレタン樹脂等が挙げられる。 Examples of the thermoplastic resin include olefin resins such as polyethylene, polypropylene and cyclic polyolefin, polyester resins such as polybutylene terephthalate and polyethylene terephthalate, styrene resins such as polystyrene, ABS resin and AS resin, polyvinyl chloride and polyvinyl acetate. Acrylic resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether, polyphenylene sulfide (PPS), polysulfone, polyether sulfone, amorphous polyarylate, liquid crystal polymer, polyether ether ketone (PEEK), urethane resin, etc. Can be mentioned.
湿気硬化性樹脂としては、湿気でイソシアネート基が生成してくる樹脂であるウレタン樹脂、変性シリコーン樹脂等が挙げられる。 Examples of the moisture-curable resin include urethane resin and modified silicone resin, which are resins in which isocyanate groups are generated by moisture.
突起部3に好ましく用いられるエポキシ樹脂は、特に限定されるものではなく、ビスフェノール型エポキシ樹脂、アミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、イソシアネート変性エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等の中から1種以上を選択して用いることができる。 The epoxy resin preferably used for the protrusion 3 is not particularly limited, and is a bisphenol type epoxy resin, an amine type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a resorcinol type epoxy resin, and a phenol aralkyl type epoxy. Select one or more from resins, naphthol aralkyl type epoxy resins, dicyclopentadiene type epoxy resins, epoxy resins having a biphenyl skeleton, isocyanate-modified epoxy resins, tetraphenylethane type epoxy resins, triphenylmethane type epoxy resins, etc. Can be used.
突起部3に好ましく用いられるビニルエステル系樹脂としては、エポキシ化合物とα,β−不飽和モノカルボン酸とをエステル化させることで得られるエポキシ(メタ)アクリレートが、好ましく挙げられる。α,β−不飽和モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、チグリン酸および桂皮酸等が挙げられ、これらの2種以上を併用してもよい。ビニルエステル樹脂の具体例としては、例えば、ビスフェノール型エポキシ化合物(メタ)アクリレート変性物(ビスフェノールA型エポキシ化合物のエポキシ基と(メタ)アクリル酸のカルボキシル基とが反応して得られる末端(メタ)アクリレート変性樹脂等)等が含まれ、これらの変性物は必要に応じてスチレン等のモノマーに溶解したものでもよい。ビニルエステル樹脂の市販品としては、日本ユピカ製「ネオポール」、昭和電工社製「リポキシ」等が挙げられる。 As the vinyl ester resin preferably used for the protrusion 3, epoxy (meth) acrylate obtained by esterifying an epoxy compound and α, β-unsaturated monocarboxylic acid is preferably mentioned. Examples of the α, β-unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, tiglic acid, cinnamic acid and the like, and two or more of these may be used in combination. Specific examples of the vinyl ester resin include, for example, a bisphenol type epoxy compound (meth) acrylate modified product (the terminal (meth) obtained by reacting the epoxy group of the bisphenol A type epoxy compound with the carboxyl group of (meth) acrylic acid. (Acrylate-modified resin, etc.) and the like are included, and these modified products may be dissolved in a monomer such as styrene, if necessary. Examples of commercially available vinyl ester resins include "Neopole" manufactured by Japan U-Pica Company and "Lipoxy" manufactured by Showa Denko KK.
突起部3に用いる繊維強化樹脂材は、本発明の目的を損なわない範囲で、樹脂及び強化繊維以外の他の成分を含んでいてもよい。他の成分としては、例えば、硬化剤、硬化促進剤、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤、耐衝撃性改質剤、難燃剤、離型剤、滑剤、ブロッキング防止剤、帯電防止剤、強化繊維以外の無機充填材等の各種添加剤が挙げられる。 The fiber-reinforced resin material used for the protrusion 3 may contain components other than the resin and the reinforcing fibers as long as the object of the present invention is not impaired. Other components include, for example, curing agents, curing accelerators, UV absorbers, light stabilizers, heat stabilizers, antioxidants, impact resistant modifiers, flame retardants, mold release agents, lubricants, blocking inhibitors. , Antistatic agents, various additives such as inorganic fillers other than reinforcing fibers.
本発明においては、コンクリート等の被定着物との付着応力度の観点、及び筋材自体を製造しやすい点から、樹脂成分を強化繊維織物に含浸せしめた強化繊維織物プリプレグ、樹脂成分を強化繊維に含浸させたフィラメントを用いることが好ましい。
プリプレグの製造は、従来公知の方法を採用することができ、例えば、樹脂成分を、当該樹脂成分の良溶媒に溶解して低粘度化し含浸させるウェット法、樹脂成分を加熱により低粘度化し含浸させるホットメルト法等が挙げられる。強化繊維織物プリプレグとしては、特に、ガラス繊維織物とエポキシ系樹脂を用いたプリプレグが好ましい。用いるプリプレグの厚みは、好ましくは0.01〜2mm、より好ましくは0.05〜1mm、さらに好ましくは0.1〜0.7mmである。
フィラメントに樹脂を含浸させる方法も、従来公知の方法を採用すればよい。
In the present invention, the prepreg of the reinforced fiber woven fabric in which the resin component is impregnated in the reinforced fiber woven fabric and the reinforced fiber made of the resin component are used from the viewpoint of the degree of adhesion stress with the object to be fixed such as concrete and the viewpoint that the reinforcing material itself can be easily manufactured. It is preferable to use a filament impregnated with.
A conventionally known method can be adopted for the production of the prepreg. For example, a wet method in which the resin component is dissolved in a good solvent of the resin component to reduce the viscosity and impregnate the resin component, or a method in which the resin component is reduced in viscosity and impregnated by heating is applied. Examples include the hot melt method. As the prepreg of the reinforced fiber woven fabric, a prepreg using a glass fiber woven fabric and an epoxy resin is particularly preferable. The thickness of the prepreg used is preferably 0.01 to 2 mm, more preferably 0.05 to 1 mm, still more preferably 0.1 to 0.7 mm.
As a method of impregnating the filament with a resin, a conventionally known method may be adopted.
筋材本体2の径と長さ、突起部3の径と長さや筋材本体2に一体化する個数、配置間隔などの筋材1の形成条件は、これを用いて補強する施工場所に応じて適宜に設定することができる。 The conditions for forming the muscle material 1, such as the diameter and length of the muscle material body 2, the diameter and length of the protrusions 3, the number of pieces integrated with the muscle material body 2, and the arrangement interval, depend on the construction site to be reinforced using this. Can be set as appropriate.
十分な補強効果を得るため、以下の形成条件に設定することが好ましい。
すなわち、筋材本体2は、その径(φ)が5〜20mmに設定されていることが好ましく、7〜15mmに設定されていることがより好ましい。
In order to obtain a sufficient reinforcing effect, it is preferable to set the following formation conditions.
That is, the diameter (φ) of the muscle material body 2 is preferably set to 5 to 20 mm, and more preferably 7 to 15 mm.
また、筋材本体2の外周面に一体化された突起部3の厚み(T)は、1〜20mmに設定されていることが好ましく、1.5〜15mmに設定されていることがより好ましく、2〜10mmに設定されていることがさらに好ましい。
より好ましくは、筋材本体2の径(φ)との関係で、突起部3が設けられた部分の径(S)と設けられていない部分の径(φ)が、(φ+2mm≦S≦φ+40mm)の範囲となるように突起部3の厚み(T)が設定されていることが好ましく、さらには、(φ+4mm≦S≦φ+30mm)、よりさらには(φ+6mm≦S≦φ+20mm)に設定されていることが好ましい。
Further, the thickness (T) of the protrusion 3 integrated with the outer peripheral surface of the muscle material body 2 is preferably set to 1 to 20 mm, more preferably 1.5 to 15 mm. It is more preferably set to 2 to 10 mm.
More preferably, in relation to the diameter (φ) of the muscular body 2, the diameter (S) of the portion where the protrusion 3 is provided and the diameter (φ) of the portion where the protrusion 3 is not provided are (φ + 2 mm ≦ S ≦ φ + 40 mm. ), The thickness (T) of the protrusion 3 is preferably set to (φ + 4 mm ≦ S ≦ φ + 30 mm), and further set to (φ + 6 mm ≦ S ≦ φ + 20 mm). Is preferable.
突起部3の長さは、30〜70mmに設定されていることが好ましく、40〜60mmであることがより好ましい。長さが30mmよりも小さいと、筋材本体2から突起部3が取り外れやすく、70mmを超える長さであると、筋材1を含むコンクリート床版上に打設されたモルタルやコンクリート等が割裂破壊を起こす可能性があるため好ましくない。 The length of the protrusion 3 is preferably set to 30 to 70 mm, more preferably 40 to 60 mm. If the length is smaller than 30 mm, the protrusion 3 can be easily removed from the barbed body 2, and if the length exceeds 70 mm, mortar, concrete, etc. cast on the concrete deck containing the barbed material 1 will be formed. It is not preferable because it may cause split fracture.
また、隣接する突起部3,3同士の間隔は、50〜1500mmに設定されていることが好ましく、より好ましくは100〜1000mm、さらに好ましくは150〜700mm、特に好ましくは200〜500mmに設定することができる。隣接する突起部3,3同士の間隔が50mmよりも小さいと、隣り合う突起部3の間へのモルタルやコンクリートの充填が不十分となる可能性があり、一方、間隔が1000mmを超えると、一つの突起部3に応力が集中しやすく筋材1が破断してしまう可能性があるため好ましくない。なお、隣接する突起部3,3同士の間隔とは、複数の突起部3のうちの一の突起部3の端部と、これに隣接する他の突起部3の端部との距離をいう。 The distance between the adjacent protrusions 3 and 3 is preferably set to 50 to 1500 mm, more preferably 100 to 1000 mm, further preferably 150 to 700 mm, and particularly preferably 200 to 500 mm. Can be done. If the distance between the adjacent protrusions 3 and 3 is smaller than 50 mm, the filling of mortar or concrete between the adjacent protrusions 3 may be insufficient, while if the distance exceeds 1000 mm, the distance between the adjacent protrusions 3 and 3 may be insufficient. It is not preferable because stress tends to concentrate on one protrusion 3 and the muscle member 1 may break. The distance between the adjacent protrusions 3 and 3 means the distance between the end of one of the plurality of protrusions 3 and the end of the other protrusions 3 adjacent thereto. ..
なお、上記の好ましい設定範囲において、径、長さ、間隔等が、測定箇所によって異なる場合は、それらの平均値が採用される。 If the diameter, length, interval, etc. differ depending on the measurement location in the above preferable setting range, the average value thereof is adopted.
また、突起部3は、その表面に珪砂が存在していてもよい。珪砂は、例えば、突起部3に用いる樹脂成分の硬化が完了しないうちに、珪砂を突起部3の表面に散布することより、付着させることができる。これにより、散布した珪砂が突起部3の表面に保持、固着されることとなり、コンクリート等の被定着物との付着性がより良好となるという利点がある。なお、散布された珪砂は、突起部3に保持されていることが好ましいが、その全てが保持されている必要はなく、突起部3に保持されていない珪砂が存在していてもよい。 Further, silica sand may be present on the surface of the protrusion 3. The silica sand can be attached, for example, by spraying the silica sand on the surface of the protrusion 3 before the curing of the resin component used for the protrusion 3 is completed. As a result, the sprayed silica sand is held and fixed to the surface of the protrusion 3, which has an advantage that the adhesiveness to the object to be fixed such as concrete is improved. The sprayed silica sand is preferably held by the protrusion 3, but it is not necessary that all of the sprayed silica sand is held, and silica sand that is not held by the protrusion 3 may be present.
突起部3の表面に存在する珪砂としては、粒子径0.05〜2.5mmのものが好ましく、0.1〜2mmのものがより好ましく、0.2〜1.5mmのものがさらに好ましく使用でき、一般の珪砂3号(粒子径1.2〜2.4mm)、珪砂4号(粒子径0.6〜1.2mm)又は珪砂5号(粒子径0.3〜0.8mm)等が、散布時の飛散が少なく好ましい。 The silica sand existing on the surface of the protrusion 3 preferably has a particle size of 0.05 to 2.5 mm, more preferably 0.1 to 2 mm, and even more preferably 0.2 to 1.5 mm. Can be made of general silica sand No. 3 (particle size 1.2 to 2.4 mm), silica sand No. 4 (particle size 0.6 to 1.2 mm) or silica sand No. 5 (particle size 0.3 to 0.8 mm), etc. , It is preferable that there is little scattering during spraying.
また、珪砂の材質は、天然にて石英砂の状態で存在する物を採取し、水洗・乾燥篩い分けした天然珪砂、岩石状珪砂を人工的に粉砕し篩い分けした人造珪砂や、ガラス粉砕品等を使うことができるが、コストや入手し易さを基準に選定することができる。しかし、散布時の飛散を防ぐため、予めメーカーで篩い分けして製品化しているものを使うことが好ましい。これらの珪砂は、各々単独又は2種以上を組み合わせて使用することができる。 In addition, the material of silica sand is natural silica sand that is naturally present in the state of quartz sand, washed with water and sieved, artificial silica sand that is artificially crushed and sieved from rock-like silica sand, and glass crushed products. Etc. can be used, but it can be selected based on cost and availability. However, in order to prevent scattering during spraying, it is preferable to use a product that has been screened and commercialized by the manufacturer in advance. These silica sands can be used alone or in combination of two or more.
突起部3表面における珪砂の付着量は、その粒子径によって適宜調整することが好ましいが、例えば、珪砂5号を使用する場合は、0.3〜2kg/m2であることが好ましく、0.5〜1.6kg/m2であることがより好ましい。このような付着量とすることにより、コンクリート等の被定着物との付着性が向上しやすくなるため好ましい。 The amount of silica sand adhering to the surface of the protrusion 3 is preferably adjusted appropriately according to the particle size thereof. For example, when silica sand No. 5 is used, it is preferably 0.3 to 2 kg / m 2, and 0. More preferably, it is 5 to 1.6 kg / m 2. Such an adhesion amount is preferable because the adhesion to an object to be fixed such as concrete can be easily improved.
本発明においては、このような突起部3を、FRP製の筋材本体2に、好ましくは複数設けることにより、突起部3にかかる引張力が分散され、筋材本体2が折れたり突起部4が取れ外れたりすることがなく、筋材本体2と突起部3を確実に一体化させて、コンクリート構造物を有効に補強することができる。 In the present invention, by providing a plurality of such protrusions 3 on the FRP muscular body 2, preferably, the tensile force applied to the protrusions 3 is dispersed, and the muscular body 2 is broken or the protrusions 4 are provided. The muscular body 2 and the protrusion 3 can be reliably integrated to effectively reinforce the concrete structure without being removed.
例えば、後述する高速道路の橋梁の床版の補強工事に用いる場合、径12mmのCFRP製の筋材本体2の外周に、厚さ3mm、長さ50mmのGFRP製の複数の突起部3を、隣接する突起部3,3同士を100mm程度の間隔を開けた位置で筋材本体2に一体に固着して構成された筋材1を用いることができる。 For example, when used for reinforcement work of a deck of a highway bridge, which will be described later, a plurality of GFRP protrusions 3 having a thickness of 3 mm and a length of 50 mm are formed on the outer periphery of a CFRP muscular body 2 having a diameter of 12 mm. It is possible to use the muscle material 1 configured by integrally fixing the adjacent protrusions 3 and 3 to the muscle material main body 2 at positions separated by about 100 mm.
このように構成された筋材1は、図3に示されるような高速道路の橋梁におけるコンクリート床版4を補強するための改修工事の際に、以下のようにしてコンクリート構造体に埋め込むことでコンクリート床版4を補強することができる。 The barbed material 1 configured in this way is embedded in the concrete structure as follows during the repair work for reinforcing the concrete deck 4 in the bridge of the highway as shown in FIG. The concrete deck 4 can be reinforced.
改修対象のコンクリート床版4は、図4(A)に示されるように、内部に鉄筋5が配されたコンクリート構造体であり、これを補強する改修工事においては、先ず、同図(B)に示されるように、内部の上側に配された鉄筋5が露出する深さまでコンクリート床版4の表面を切除する。
コンクリート床版4の上面にアスファルト舗装体(図示せず)が敷設されている場合はこれを除去しておく。なお、コンクリート床版4の上部の切除した部分の処理は適宜に行なわれる。
As shown in FIG. 4 (A), the concrete deck 4 to be repaired is a concrete structure in which reinforcing bars 5 are arranged inside, and in the repair work for reinforcing this, first, FIG. 4 (B) As shown in, the surface of the concrete deck 4 is cut to a depth where the reinforcing bars 5 arranged on the upper side of the inside are exposed.
If an asphalt pavement (not shown) is laid on the upper surface of the concrete deck 4, remove it. The cut-out portion of the upper part of the concrete deck 4 is appropriately treated.
次いで、同図(C)に示されるように、前記図1に示された筋材1を、前記コンクリート床版4の切除した部分の上面に、複数本を平行に設置する。この際、筋材1は、コンクリート床版4を支える橋体6の橋軸方向直角方向に向くように配置する。 Next, as shown in FIG. 1C, a plurality of the muscle members 1 shown in FIG. 1 are installed in parallel on the upper surface of the cut portion of the concrete deck 4. At this time, the barbage 1 is arranged so as to face in the direction perpendicular to the bridge axis direction of the bridge body 6 that supports the concrete deck 4.
そして、同図(D)に示されるように、例えば、速硬化性のモルタル7を筋材1が設置された前記切除した部分に対して切除前と略同じ厚みとなるように打設し硬化させることで、改修工事が完了する。コンクリート床版4の上面にアスファルト舗装体が敷設されていた場合は、モルタル7が硬化した後、アスファルト舗装体を敷設して工事が完了する。 Then, as shown in FIG. 3D, for example, a fast-curing mortar 7 is cast into the excised portion where the muscle material 1 is installed so as to have substantially the same thickness as before excision and cured. By letting them do, the repair work is completed. When the asphalt pavement is laid on the upper surface of the concrete deck 4, the asphalt pavement is laid after the mortar 7 is hardened, and the construction is completed.
これによれば、筋材1は、FRP製の筋体本体2の外周に沿って複数の突起部3を適宜な間隔を開けて一体化した形状に設けられているので、筋材1は高い付着性でモルタル7に確実に一体化し、コンクリート床版4が引張りや曲げを受けても筋材1は引き抜け難く、構造材料の耐衝撃性や曲げ強度、耐摩耗性などの物性を向上させてコンクリート床版1を有効に補強することができる。コンクリート床版4の上部の切除した部分に速硬化性のモルタル7を打設して筋材1を埋め戻すことで、コンクリート床版4をその厚みを増すことなく、短い工期で補強することが可能である。
なお、上記の例では、速硬化モルタル7を使用した場合として説明したが、速硬化モルタルに代えて、セメントモルタル、ポリマーセメントモルタル等の無機系モルタル及びエポキシ樹脂モルタル等の有機系モルタル等の従来公知のモルタル並びにコンクリート等を使用することもできる。
According to this, since the muscle material 1 is provided in a shape in which a plurality of protrusions 3 are integrated with an appropriate interval along the outer periphery of the muscle body body 2 made of FRP, the muscle material 1 is expensive. It is firmly integrated with the mortar 7 due to its adhesiveness, and even if the concrete deck 4 is pulled or bent, the muscular material 1 is difficult to pull out, improving the physical properties such as impact resistance, bending strength, and abrasion resistance of the structural material. The concrete deck 1 can be effectively reinforced. By placing a fast-curing mortar 7 in the excised portion of the upper part of the concrete deck 4 and backfilling the barbed material 1, the concrete deck 4 can be reinforced in a short construction period without increasing its thickness. It is possible.
In the above example, the case where the fast-curing mortar 7 is used has been described, but instead of the fast-curing mortar, conventional inorganic mortars such as cement mortars and polymer cement mortars and organic mortars such as epoxy resin mortars have been used. Known mortar, concrete and the like can also be used.
次に、本発明の筋材1のコンクリート構造物に埋め込み、付着性能を試験した実施例について説明する。 Next, an example of embedding the reinforcement 1 of the present invention in the concrete structure and testing the adhesion performance will be described.
〔実験1〕
(実施例1)
径(φ)8mmの高弾性CFRP製の筋材本体2の外周面に、プリプレグ(日本理科工業社製ガラスエポキシプリプレグ「LA24NR」(ガラス繊維朱子織物にエポキシ樹脂を含浸させたプリプレグ。厚み0.24mm、目付300g/m2)を巻き付け、突起部最表面に珪砂5号を散布(0.5kg/m2)して硬化させ、厚み(T)3mm、長さ50mmのGFRPからなる突起部3を一体に設けた筋材1を形成した。
[Experiment 1]
(Example 1)
A prepreg (glass epoxy prepreg "LA24NR" manufactured by Nippon Rika Kogyo Co., Ltd.) (a prepreg in which a glass fiber brocade fabric is impregnated with epoxy resin. Thickness 0. 24 mm, grain 300 g / m 2 ) is wrapped around it, and silica sand No. 5 is sprayed (0.5 kg / m 2 ) on the outermost surface of the protrusion to harden it, and the protrusion 3 is made of GFRP with a thickness (T) of 3 mm and a length of 50 mm. Was formed integrally with the muscle member 1.
(実施例2)
突起部3の厚み(T)を4.5mmに設定する以外、実施例1と同じ条件で筋材1を形成した。
(Example 2)
The muscle material 1 was formed under the same conditions as in Example 1 except that the thickness (T) of the protrusion 3 was set to 4.5 mm.
(比較例1)
径10mmの鉄筋を筋材として用いた。
(Comparative Example 1)
A reinforcing bar having a diameter of 10 mm was used as the reinforcing bar.
両実施例と比較例の筋材は各々3本製作し、これらを図5に示される試験体となるように型枠に設置した後、コンクリートを型枠内に流し込み、筋材が一体に埋め込まれた、縦横100mm×100mm、高さ160mmの寸法であって下部中央に径20mm、長さ50mmの細孔を備えたコンクリートブロック試験体を形成した。両実施例における筋材1の定着長(L)は110mmとした。なお、コンクリートブロックの強度は21N/mm2である。
各試験体のコンクリートブロックから露出した筋材の端部に鋼製スリーブを定着させ、鋼製スリーブを下向きにした試験体を支持した状態で、鋼製スリーブの端部を下方へ引っ張って鋼製スリーブを下方へ引き抜く方向に力を加え、筋材がコンクリートブロックから離脱した時の最大引張り強度(Pmax)を測定した。
測定された最大引張り強度から付着応力度を導出し、各実施例と比較例の3本の試験体の平均値を求めた。その結果を表1に示す。
Three bars of both Examples and Comparative Examples were produced, and these were installed in the formwork so as to be the test piece shown in FIG. 5, and then concrete was poured into the formwork and the bars were integrally embedded. A concrete block test piece having dimensions of 100 mm × 100 mm in length and width and 160 mm in height and having pores of 20 mm in diameter and 50 mm in length was formed in the center of the lower part. The fixation length (L) of the muscle material 1 in both examples was 110 mm. The strength of the concrete block is 21 N / mm 2 .
With the steel sleeve fixed to the end of the barbed material exposed from the concrete block of each test piece and supporting the test piece with the steel sleeve facing down, the end of the steel sleeve is pulled downward to make steel. A force was applied in the direction of pulling the sleeve downward, and the maximum tensile strength (Pmax) when the barb was separated from the concrete block was measured.
The degree of adhesive stress was derived from the measured maximum tensile strength, and the average value of the three test pieces of each Example and Comparative Example was obtained. The results are shown in Table 1.
実験1の測定結果によれば、コンクリートブロックに対する筋材の付着応力度は、実施例1、2ともに、比較例1を上回る、高い付着性が得られることを確認できた。
なお、実施例1,2では、鉄筋を用いていないため、改修後にもセメントに含まれる水分による錆等の腐食が発生する虞はない。
According to the measurement results of Experiment 1, it was confirmed that the degree of adhesion stress of the muscular material to the concrete block was higher than that of Comparative Example 1 in both Examples 1 and 2.
Since the reinforcing bars are not used in Examples 1 and 2, there is no possibility that corrosion such as rust will occur due to the moisture contained in the cement even after the repair.
〔実験2]
(実施例3)
図6に示される、縦横が160mm×250mm、長さが1850mmの大きさのコンクリート製の梁8を形成した。梁8は、その内部に鉄筋9を長さ方向(9a:鉄筋径6mm)と高さ方向(9b:鉄筋径10mm)に複数配し、鉄筋9の下側には本発明の筋材1を埋め込んだ。また、梁8の内部にはその中央部の鉄筋9と筋材1付近にひずみゲージを埋め込んだ。
筋材1は、梁8の両端部間の長さを有する高弾性CFRP製の筋材本体2の外周面に、実験1と同様の方法で複数の突起部3が一体に設けて形成されており、各部の寸法は、筋材本体2の径(φ)を8mm、突起部3の厚み(T)を3mm、突起部3の長さを50mm、突起部3の配置間隔を150mm(梁中央部以外)と300mm(梁中央部)に設定した。
梁8は、同一条件で2体を作製し、これを後述する試験体とした。
[Experiment 2]
(Example 3)
A concrete beam 8 having a length and width of 160 mm × 250 mm and a length of 1850 mm, as shown in FIG. 6, was formed. A plurality of reinforcing bars 9 are arranged inside the beam 8 in the length direction (9a: reinforcing bar diameter 6 mm) and in the height direction (9b: reinforcing bar diameter 10 mm), and the reinforcing bar 1 of the present invention is placed below the reinforcing bar 9. Embedded. Further, a strain gauge was embedded in the vicinity of the reinforcing bar 9 and the reinforcing bar 1 in the central portion of the beam 8.
The bar 1 is formed by integrally providing a plurality of protrusions 3 on the outer peripheral surface of the bar body 2 made of highly elastic CFRP having a length between both ends of the beam 8 in the same manner as in Experiment 1. The dimensions of each part are as follows: the diameter (φ) of the reinforcement body 2 is 8 mm, the thickness (T) of the protrusion 3 is 3 mm, the length of the protrusion 3 is 50 mm, and the arrangement interval of the protrusions 3 is 150 mm (beam center). It was set to (other than the part) and 300 mm (center part of the beam).
Two beams 8 were produced under the same conditions, and these were used as test bodies described later.
(実施例4)
突起部3の厚み(T)を4.5mmに設定した筋材1を用いる以外、実施例3と同じ条件で梁8を形成した。梁8は1体のみ作製した。
(Example 4)
The beam 8 was formed under the same conditions as in Example 3 except that the muscle member 1 having the thickness (T) of the protrusion 3 set to 4.5 mm was used. Only one beam 8 was manufactured.
(比較例2)
鉄筋9のみを埋設し、本発明の筋材1は埋め込まない以外、実施例3と同じ条件で梁8を形成した。梁8は2体を作製した。
(Comparative Example 2)
The beam 8 was formed under the same conditions as in Example 3 except that only the reinforcing bar 9 was embedded and the reinforcing bar 1 of the present invention was not embedded. Two beams 8 were produced.
(比較例3)
筋材1に代えて、これと同長さで径(φ)が8mmのFRP製のロッドを埋め込む以外、実施例3と同じ条件で梁8を形成した。梁8は1体を作製した。
(Comparative Example 3)
The beam 8 was formed under the same conditions as in Example 3 except that a rod made of FRP having the same length and a diameter (φ) of 8 mm was embedded instead of the bar 1. One beam 8 was manufactured.
前記実施例及び比較例の梁8について、図6に示されるように、その下部両端を支持台10,10で支持した状態でその上面中央をプレス機11で押圧して、梁8が破壊した時の最大引張り強度(Pmax)を測定した。
また、梁8の最大引張り強度(Pmax)時の変位(δ)を測定するとともに、最大引張り強度(Pmax)時の鉄筋と筋材1のひずみの大きさをそれぞれ測定した。
その結果を表2に示す。
As shown in FIG. 6, the beam 8 of the above-described embodiment and the comparative example was broken by pressing the center of the upper surface of the beam 8 with a press machine 11 in a state where both lower ends thereof were supported by the support bases 10 and 10. The maximum tensile strength (Pmax) at the time was measured.
Further, the displacement (δ) of the beam 8 at the maximum tensile strength (Pmax) was measured, and the strain magnitudes of the reinforcing bar and the bar 1 at the maximum tensile strength (Pmax) were measured, respectively.
The results are shown in Table 2.
実験2の測定結果によれば、実施例3及び4では、筋材1のひずみが鉄筋降伏ひずみ(1700μ)及び筋材1の保証ひずみ(2700μ)よりも高いことを確認することができた。 According to the measurement results of Experiment 2, in Examples 3 and 4, it was confirmed that the strain of the reinforcing bar 1 was higher than the yield strain of the reinforcing bar (1700μ) and the guaranteed strain of the reinforcing bar 1 (2700μ).
1 筋材、2 筋材本体、3 突起部、4 コンクリート床版、5 鉄筋、6 橋体、7 モルタル、8 梁、9 鉄筋、10 支持台、11 プレス機
1 Reinforcing bar, 2 Reinforcing bar body, 3 Protrusions, 4 Concrete deck, 5 Reinforcing bar, 6 Bridge body, 7 Mortar, 8 Beam, 9 Reinforcing bar, 10 Support stand, 11 Press machine
Claims (16)
前記筋材本体の外周に定着された突起部は、
エポキシ系樹脂又はビニルエステル系樹脂成分を含み、
その長さが30〜70mmであり、
且つ隣接する突起部同士の間隔が50〜1500mmであることを特徴とする建築土木用筋材。 The outer periphery of the muscle material body made of fiber reinforced resin material, the projections of the plurality of ring-shaped made of a fiber reinforced resin material, by fixing together at spaced intervals between the ends in adjacent protrusions together position form In the construction and civil engineering reinforcements
The protrusions fixed on the outer circumference of the muscular body are
Contains epoxy resin or vinyl ester resin component
Its length is 30-70 mm
A muscular material for construction and civil engineering, characterized in that the distance between adjacent protrusions is 50 to 1500 mm.
(関係式)φ+2mm≦S≦φ+40mm The method according to any one of claims 1 to 3, wherein the diameter (S) of the portion provided with the protrusion of the muscle material and the diameter (φ) of the portion not provided have the configuration satisfying the following relational expression. Described building civil engineering reinforcement.
(Relational formula) φ + 2 mm ≤ S ≤ φ + 40 mm
請求項1から7の何れかに記載の建築土木用筋材をコンクリート床版上に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、
前記モルタル又はコンクリート上にアスファルト舗装体を敷設する工程と、を有することを特徴とするコンクリート床版構造体の施工方法。 In the construction method of the concrete deck structure in which the asphalt pavement is provided on the concrete deck,
A step of installing a plurality of building civil engineering reinforcements according to any one of claims 1 to 7 on a concrete deck, and
The process of placing mortar or concrete on the concrete deck on which the reinforcement for building civil engineering is installed, and
A method for constructing a concrete deck structure, which comprises a step of laying an asphalt pavement on the mortar or concrete.
前記アスファルト舗装体を撤去する工程と、
請求項1から7の何れかに記載の建築土木用筋材をコンクリート床版上に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、
前記モルタル又はコンクリート上にアスファルト舗装体を敷設する工程と、を有することを特徴とするコンクリート床版構造体の補強方法。 In a method of reinforcing an existing concrete deck structure in which an asphalt pavement is provided on a concrete deck,
The process of removing the asphalt pavement and
A step of installing a plurality of building civil engineering reinforcements according to any one of claims 1 to 7 on a concrete deck, and
The process of placing mortar or concrete on the concrete deck on which the reinforcement for building civil engineering is installed, and
A method for reinforcing a concrete deck structure, which comprises a step of laying an asphalt pavement on the mortar or concrete.
既設のコンクリート床版の上面部分をその内部に配置された鉄筋が露出する深さに切除する工程と、
請求項1から7の何れかに記載の建築土木用筋材を前記切除した部分の上面に複数本設置する工程と、
前記建築土木用筋材が設置されたコンクリート床版上にモルタル又はコンクリートを打設する工程と、を有することを特徴とするコンクリート床版構造体の補強方法。 In the method of reinforcing the existing concrete deck structure,
The process of cutting the upper surface of the existing concrete deck to the depth where the reinforcing bars placed inside it are exposed, and
A step of installing a plurality of building civil engineering muscles according to any one of claims 1 to 7 on the upper surface of the excised portion.
A method for reinforcing a concrete deck structure, which comprises a step of placing mortar or concrete on a concrete deck on which a reinforcement for building civil engineering is installed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017021045A JP6886756B2 (en) | 2017-02-08 | 2017-02-08 | Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017021045A JP6886756B2 (en) | 2017-02-08 | 2017-02-08 | Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018127807A JP2018127807A (en) | 2018-08-16 |
JP6886756B2 true JP6886756B2 (en) | 2021-06-16 |
Family
ID=63173720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017021045A Active JP6886756B2 (en) | 2017-02-08 | 2017-02-08 | Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6886756B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112922380A (en) * | 2021-01-13 | 2021-06-08 | 上海久坚加固科技股份有限公司 | Method for reinforcing silo structure by adhering high-strength glass fiber composite material in circumferential direction |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62140115U (en) * | 1986-02-28 | 1987-09-04 | ||
JPS63247457A (en) * | 1987-04-02 | 1988-10-14 | Metsuku Lab Kk | Concrete reinforcing bar material |
JPH0617075B2 (en) * | 1989-11-02 | 1994-03-09 | 日本石油株式会社 | Fiber-reinforced plastic rod having ridges on its surface and method for producing the same |
JP2828574B2 (en) * | 1993-11-11 | 1998-11-25 | フクビ化学工業株式会社 | Method of manufacturing reinforcing bars made of resin-impregnated fiber composite |
US6416693B1 (en) * | 1996-07-01 | 2002-07-09 | William D. Lockwood | Method of strengthening an existing reinforced concrete member |
JP2002129754A (en) * | 2000-10-20 | 2002-05-09 | Toray Ind Inc | Reinforcing method for concrete structure |
US20020170651A1 (en) * | 2001-05-15 | 2002-11-21 | Edwards Christopher M. | Method for reinforcing cementitious structures |
JP3877145B2 (en) * | 2001-12-10 | 2007-02-07 | 三菱化学産資株式会社 | FRP reinforcement method for road bridge deck and road bridge deck |
JP2003176508A (en) * | 2001-12-10 | 2003-06-24 | Mitsubishi Kagaku Sanshi Corp | Frp reinforcing construction method for concrete structure |
JP4084618B2 (en) * | 2002-08-30 | 2008-04-30 | 三井住友建設株式会社 | Concrete reinforcement method |
JP6399680B2 (en) * | 2013-07-18 | 2018-10-03 | 新日鉄住金マテリアルズ株式会社 | Caisson with cutable temporary wall for shield excavation |
-
2017
- 2017-02-08 JP JP2017021045A patent/JP6886756B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018127807A (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103180258B (en) | Enhancement bar and manufacture method thereof | |
US5702816A (en) | Reinforcing structural rebar and method of making the same | |
JP3546009B2 (en) | Structural members that reinforce products made of hardening structural materials | |
Alkhrdaji et al. | Upgrading the transportation infrastructure: solid RC decks strengthened with FRP | |
KR102096032B1 (en) | Anchor pin for placing shotcrete and fixing textile grid, and shotcrete construction method for reinforcing textile grid using the same | |
US5613334A (en) | Laminated composite reinforcing bar and method of manufacture | |
KR100769474B1 (en) | Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure | |
JP4194894B2 (en) | Method for reinforcing concrete structures | |
US20180030669A1 (en) | Road basket | |
JP2002348749A (en) | Woven fabric of reinforcing fiber, and concrete structure reinforced with the same | |
JP6886756B2 (en) | Reinforcement for construction and civil engineering, its manufacturing method, concrete structure using this, concrete slab structure and its construction method and reinforcement method | |
KR101043809B1 (en) | Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same | |
US5981050A (en) | Composite shape forming structure for sealing and reinforcing concrete and method for making same | |
KR101104613B1 (en) | Reinforcing method of concrete structures using fiber composites for reinforcing | |
US20160214336A1 (en) | Carriers for composite reinforcement systems and methods of use | |
JP3415107B2 (en) | Method for reinforcing concrete structure and reinforcing structure | |
JP7149090B2 (en) | FRP lattice material with protrusions | |
JP2007321419A (en) | Reinforcing method for overhang floor slab by use of fiber reinforced reinforcing material | |
JP4580361B2 (en) | How to prevent falling pieces of structure | |
JP6835510B2 (en) | Reinforcement material for building civil engineering, concrete structure using this, concrete slab structure and its construction method and reinforcement method | |
Sawant et al. | Strengthening of RCC beam-using different glass fiber | |
JP2004011226A (en) | Repair panel | |
JP4084618B2 (en) | Concrete reinforcement method | |
KR100464553B1 (en) | Reinforcement Structure of Construction | |
Lanivschi | State of the art for strengthening masonry with fibre reinforced polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6886756 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |