JP3785223B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP3785223B2
JP3785223B2 JP17061296A JP17061296A JP3785223B2 JP 3785223 B2 JP3785223 B2 JP 3785223B2 JP 17061296 A JP17061296 A JP 17061296A JP 17061296 A JP17061296 A JP 17061296A JP 3785223 B2 JP3785223 B2 JP 3785223B2
Authority
JP
Japan
Prior art keywords
hole
outer layer
electric circuit
copper
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17061296A
Other languages
Japanese (ja)
Other versions
JPH09331155A (en
Inventor
直人 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP17061296A priority Critical patent/JP3785223B2/en
Publication of JPH09331155A publication Critical patent/JPH09331155A/en
Application granted granted Critical
Publication of JP3785223B2 publication Critical patent/JP3785223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は多層プリント配線板の製造方法に関し、さらに詳しくは、インタスティシャルバイアホールを備える多層プリント配線板の製造方法に関する。
【0002】
【従来の技術】
多層プリント配線板のうち、4層プリント配線板の代表例を説明すると、4層プリント配線板は、銅張積層板を使用して内層の電気回路を形成した内層回路基材の両面にプリプレグを外層回路基材として使用し、外層電気回路用銅箔を積層し、固着し、貫通孔または非貫通孔を形成し、銅めっきを施し、外層回路用銅箔および銅めっき層をエッチングするなどして外層の電気回路を形成するようにしている。また、内層の電気回路と外層の電気回路はインタスティシャルバイアホール(Interstitial Via Hole.以下、「IVH」と記す。)により、電気的に接続されている。
【0003】
次に、図1に代表的な4層プリント配線板の断面図を示す。4層プリント配線板1は、内層回路基材2とその両面に積層された外層回路基材3,4とから構成されている。この4層プリント配線板1は3種類のIVH、すなわちIVH1とIVH2とIVH3とを有している。
【0004】
これらIVHにおいて、IVH3は本発明とは直接関係しないので、その説明を省略し、IVH1とIVH2とについて説明する。
【0005】
IVH1は、外層回路基材3に非貫通孔を設け、外層回路基材3の外層の電気回路31と内層回路基材2の第1の電気回路21とを銅めっき層5で電気的に接
続するようにしたものである。電気回路31は、銅箔31aと銅めっき層5とから構成される。また、電気回路21は、銅箔21aとその表面に形成された銅めっき層21bとから構成される。しかし、電気回路21は銅めっき層21bを形成することなく、銅箔21aのみであってもよい。
【0006】
IVH2は、外層回路基材3と内層回路基材2とに非貫通孔を設け、外層回路基材3の電気回路31と、内層回路基材2の第1の電気回路21と、内層回路基材2の第2の電気回路22とを銅めっき層5で電気的に接続するように構成したものである。この場合、第1の電気回路21は、銅めっき層5で一緒に電気的に接続しないようにしてもよい。また、電気回路22は電気回路21と同様に、銅箔22aとその表面に形成された銅めっき層22bとから構成される。しかし、電気回路22は銅めっき層22bを構成することなく、銅箔22aのみであって
もよい。
【0007】
上記の構造を有する4層プリント配線板1において、IVH1の非貫通孔およびIVH2の非貫通孔は、レーザー光を照射して形成することが多い。レーザー光源としては、炭酸レーザーやエキシマレーザーなどのように、そのレーザー光が銅を溶かさずに内層回路基材2と外層回路基材3,4のみを溶かす特性を備えたものを用いることが一般的である。なお、レーザー光は、銅箔31aを予め所定の口径で除去した位置に照射する。
【0008】
次に、銅を溶かさないレーザー光を用いて、IVH1を製造する従来の方法を図4にもとづいて説明する。なお、IVH2はIVH1の変形例であるので、IVH2を製造する従来の方法については説明を省略する。
【0009】
IVH1の製造方法について説明すると、レーザー光で非貫通孔を形成するのに際し、従来は、図4(a)に示すように銅箔31aの開口径T1よりもレーザー光を照射する幅(以下、「レーザー光幅」と記す。)W2の方が大きいものであった。このため、例えば、直径150μmの非貫通孔を形成しようとする場合には、150μmの開口径T1に対して、これを上回る例えば500μm幅W2のレーザー光を照射しなければならなかった。レーザー光は、銅箔31aの開口径T1に規制された照射幅のもとで外層回路基材3に到達し、外層回路基材3を蒸散させ、最終的には内層回路基材2の第1の電気回路21の表面まで到達する。その結果、外層回路基材3に形成される非貫通孔の開口径T2も150μmとなり、結果的に図4(a)に示すように非貫通孔6の開口径はT1=T2=150μmとなって形成されることになる。
【0010】
上記のようにして形成した非貫通孔6の内壁面3aには荒れ(凹凸や傷など)が生じていて、また、溶解した外層回路基材3の残滓も非貫通孔6内に残留している。内壁面3aの荒れや外層回路基材3の残滓があると、後工程で非貫通孔6内に良好な銅めっきを施せない。そのため、前処理として非貫通孔6内を有機溶剤で洗浄して、内壁面3aの荒れや外層回路基材3の残滓を化学的に溶解して除去している。その後、銅めっきを施すことにより、図4(b)に示すような銅めっき層5を備えるIVH1が形成されていた。
【0011】
【発明が解決しようとする課題】
しかし、上記の従来の製造方法によると、非貫通孔6の開口径T2が銅箔31aの開口径T1の幅に規制されているので、銅めっきの前処理の洗浄で非貫通孔6内に有機溶剤を流し込む際に滞留する空気の抜けを悪くしていた。よって、洗浄に十分な有機溶剤を非貫通孔6内に流し込むことが困難であるという問題があった。
【0012】
また、同前処理では、内壁面3a自体も溶解してしまうので、T1=T2であった非貫通孔6の開口径T2が、開口径T21となり、T1<T21となってしまっていた。また、上述の非貫通孔6の形状では、有機溶剤の円滑な排出が困難であり、有機溶剤が非貫通孔6内に残留しやすかった。その結果、内壁面3a自体の溶解も大きいものであった。最終的に、銅めっきを行なう前に得られる非貫通孔6は、銅箔31aが外層回路基材3から庇状に張り出したオーバーハング状の形状(図4(b)参照。)を有していた。
【0013】
非貫通孔6は、上記の形状を有するので、めっき液の流し込みが円滑にはいかず、非貫通孔6内の銅めっき層5に薄い部分や存在しない部分ができていた。さらには、内壁面3aから銅めっき層5が剥離したり剥落しやすかった。上述のように、良好な銅めっき層5を非貫通孔6内に形成することができなかったので、IVHの電気的な信頼性を損なってしまっていた。
【0014】
本発明は上記の課題に鑑み、電気的に信頼性の優れたIVHを備えた多層プリント配線板の製造方法を提供することを目的としたものである。
【0015】
【課題を解決するための手段】
本発明の製造方法は、非貫通孔を形成する際に、銅箔の開口部に、その開口径よりも照射幅が小さく、かつ銅を溶かさないレーザー光を照射し、被照射面を溶解して底面に電気回路を露出させて銅箔の開口径よりも小さい口径の非貫通孔を形成し、その後、非貫通孔内に銅を溶解することのない有機溶剤をその開口縁の溶解を最も促進させながら流し込んで化学的に洗浄して非貫通孔をその開口縁が削られた断面形状ほぼV字状に形成した後、銅めっき層を設けることによりIVHを形成したことを特徴としたものである。
【0016】
【発明の実施の形態】
本発明に係るIVHの製造方法の代表例を図2(a),(b)にもとづいて説明する。図2(a),(b)は、図1のIVH1を形成する際の工程を拡大して示した図である。
【0017】
図2(a)は、本発明に係るIVH1の非貫通孔6を形成した状態を示すが、例えば、レーザー光の光幅W1を150μmで照射し、非貫通孔6を形成する場合に、銅箔31aの開口径T11をレーザー光幅W1よりも大きな口径、例えば、250μmで形成しておき、レーザー光を照射すると、レーザー光は、外層回路基材3に到達し、外層回路基材3を蒸散させ、最終的には内層回路基材2の第1の電気回路21の表面まで到達する。その結果、外層回路基材3に形成される非貫通孔6の開口径T22もレーザー光幅W1と同じ150μmとなる。よって、非貫通孔6の開口径はT22(150μm)<T11(250μm)となり、階段状の形状となった非貫通孔6が得られる。本発明に使用されるレーザー光源としては、従来から用いられてきた銅を溶かさずに回路基材のみを溶解することのできるレーザー光源ならば全て用いることができる。
【0018】
次に、従来の製造方法と同様に、外層回路基材3の内壁面3aの荒れと外層回路基材3の残滓を除去するために、非貫通孔6内を銅を溶解することのない有機溶剤で化学的に洗浄する。有機溶剤としては、濃硫酸や過マンガン酸カリウムなどを挙げることができる。この場合、有機溶剤は、開口径T11よりも小さな開口径T22を有する階段状の形状の非貫通孔6内に流し込まれることになるので、外層回路基材3の開口端縁の溶解が最も促進される。そのため、外層回路基材3の開口端縁が削られて図2(b)に示すようにほぼV字状を呈する断面形状を備えた非貫通孔6が形成される。したがって、非貫通孔6内から有機溶剤などを円滑に排出することができる。
【0019】
上記の洗浄処理を終えた後、従来と同様に銅めっき層5を形成し、第1の電気回路21と銅箔31aとを電気的に接続させたIVH1(図2(b)参照。)を形成する。
【0020】
一方、図3(a),(b)は、本発明に係る製造方法により形成した図1のI
VH2の工程を拡大して示したものである。IVH2は、IVH1の変形例であり、レーザー光の照射は図2に示した本発明に係るIVH1と同様の条件のもとで行なわれる。図3に示したIVH2は、4層以上の電気回路を積層した多層プリント配線板の3層以上の電気回路相互を1つの非貫通孔で電気的に接続させたIVHを形成する際に適用される。
【0021】
図3(a)は、本発明に係るIVH2の非貫通孔7を形成した状態を示すが、例えば、レーザー光の光幅W1を150μmで照射し、非貫通孔7を形成する場合に、銅箔31aの開口径T11をレーザー光幅W1よりも大きな口径、例えば、250μmで形成しておくとともに、内層回路基材2の第1の電気回路21にもレーザー光幅W1よりも大きな口径で、かつ銅箔31aの開口径T11と同等以下の口径の、例えば200μmで開口径T3を形成しておき、レーザー光を照射すると、レーザー光は、外層回路基材3と内層回路基材2とを蒸散させ、内層回路基材2の第2の電気回路22の表面まで到達する。その結果、外層回路基材3と内層回路基材2とに形成される非貫通孔7の開口径T22,T4もレーザー光幅W1と同じ150μmとなる。よって、非貫通孔7の開口径はT11(250μm)>T3(200μm)>T22(150μm)=T4(150μm)となり、断面形状で銅箔31aと第1の電気回路21とが、外層回路基材3と内層回路基材2よりも凹んだ段差を有する非貫通孔7が得られる。
【0022】
次に、外層回路基材3の内壁面3aの荒れおよび外層回路基材3の残滓ならびに内層回路基材2の内壁面2aの荒れおよび内層回路基材2の残滓を除去するために、非貫通孔7内を銅を溶解することのない有機溶剤で化学的に洗浄する。この場合、有機溶剤は、本発明に係るIVH1と同様に、開口径T11よりも小さな開口径T22を有する階段状の形状の非貫通孔6内に流し込まれることになるので、外層回路基材3の両開口端縁および内層回路基材2の開口端縁の溶解が最も促進される。そのため、外層回路基材3の両開口端縁と内層回路基材2の開口端縁とが削られて、図3(b)に示すようにほぼV字状を呈する断面形状を備えた非貫通孔7が形成される。
【0023】
上記の洗浄処理を終えた後、従来と同様に銅めっき層5を形成し、銅箔31aと第1の電気回路21と第2の電気回路22とを相互に電気的に接続させたIVH2(図3(b)参照。)を形成する。なお、この場合、従来のIVH2と同様に第1の電気回路21は、銅めっき層5で一緒に電気的に接続しないようにしてもよい。
【0024】
【発明の効果】
以上述べたように本発明に係る製造方法おいては、IVHの非貫通孔を形成する際に、外層側に位置する銅箔の開口径よりも小径のレーザー光をその銅箔の開口径に照射してその照射面とほぼ同径のIVHの非貫通孔を形成している。
【0025】
本発明に係る非貫通孔は、銅を溶解することのない有機溶剤で洗浄する場合に回路基材の開口端縁が最も溶解を促進されるため、非貫通孔の断面形状もその開口縁が削られたほぼV字状となり、非貫通孔内に有機溶剤を円滑に供給することができる。しかも、非貫通孔内の有機溶剤と回路基材の残滓とを円滑に排出することができるので、洗浄効果を高めることができる。
【0026】
さらに、非貫通孔が断面形状でほぼV字状を呈するので、めっき液の流し込みも円滑に行なうことができ、銅めっき層の薄い部分や銅めっき層の存在しない部分ができないばかりでなく、均等な厚さを備えた銅めっき層を形成できる。さらには、非貫通孔の内壁面から銅めっき層が剥離したり剥落することもなくなり、電気的に信頼性の高い多層プリント配線板を提供することができる。
【図面の簡単な説明】
【図1】 IVHを備える標準的な4層プリント配線板の要部構造を示す模式図である。
【図2】 図1との対応のもとで本発明に係る製造方法の一例についての工程を(a),(b)として拡大して示す説明図である。
【図3】 図1との対応のもとで本発明に係る製造方法の他例についての工程を(a),(b)として拡大して示す説明図である。
【図4】 図2に相当する従来方法についての工程を(a),(b)として拡大して示す説明図である。
【符号の説明】
1 4層プリント配線板
2,3,4 回路基材
2a,3a 内壁面
6,7 非貫通孔
21,22,31 電気回路
21a,22a,31a 銅箔
21b,22b,5 銅めっき層
[0001]
BACKGROUND OF THE INVENTION
Relates to a manufacturing method of the present invention is a multilayer printed wiring board, and more particularly, to a method for manufacturing a multilayer printed circuit board comprising interstitial via holes.
[0002]
[Prior art]
Among the multilayer printed wiring boards, a representative example of a four-layer printed wiring board will be explained. The four-layer printed wiring board has a prepreg on both sides of an inner layer circuit base material in which an inner layer electric circuit is formed using a copper-clad laminate. Used as an outer layer circuit base material, laminated and fixed copper foil for outer layer electric circuit, formed through hole or non-through hole, applied copper plating, etched copper foil for outer layer circuit and copper plating layer, etc. Thus, an outer layer electric circuit is formed. The inner layer electric circuit and the outer layer electric circuit are electrically connected by an interstitial via hole (hereinafter referred to as “IVH”).
[0003]
Next, FIG. 1 shows a sectional view of a typical four-layer printed wiring board. The four-layer printed wiring board 1 includes an inner layer circuit substrate 2 and outer layer circuit substrates 3 and 4 laminated on both surfaces thereof. The four-layer printed wiring board 1 has three types of IVH, that is, IVH1, IVH2, and IVH3.
[0004]
In these IVHs, since IVH3 is not directly related to the present invention, the description thereof will be omitted, and IVH1 and IVH2 will be described.
[0005]
The IVH 1 is provided with a non-through hole in the outer layer circuit base material 3, and electrically connects the outer layer electric circuit 31 of the outer layer circuit base material 3 and the first electric circuit 21 of the inner layer circuit base material 2 with the copper plating layer 5. It is what you do. The electric circuit 31 includes a copper foil 31 a and a copper plating layer 5. The electric circuit 21 includes a copper foil 21a and a copper plating layer 21b formed on the surface thereof. However, the electric circuit 21 may be only the copper foil 21a without forming the copper plating layer 21b.
[0006]
The IVH 2 is provided with non-through holes in the outer layer circuit base 3 and the inner layer circuit base 2, the electric circuit 31 of the outer layer circuit base 3, the first electric circuit 21 of the inner layer circuit base 2, and the inner layer circuit base. The second electric circuit 22 of the material 2 is configured to be electrically connected by the copper plating layer 5. In this case, the first electric circuit 21 may not be electrically connected together by the copper plating layer 5. Similarly to the electric circuit 21, the electric circuit 22 includes a copper foil 22a and a copper plating layer 22b formed on the surface thereof. However, the electric circuit 22 may be only the copper foil 22a without forming the copper plating layer 22b.
[0007]
In the four-layer printed wiring board 1 having the above structure, the non-through holes of IVH1 and the non-through holes of IVH2 are often formed by irradiating laser light. As the laser light source, it is common to use a laser light source such as a carbonic acid laser or an excimer laser, which has a characteristic that the laser light dissolves only the inner layer circuit substrate 2 and the outer layer circuit substrates 3 and 4 without melting copper. Is. The laser beam is applied to a position where the copper foil 31a has been previously removed with a predetermined aperture.
[0008]
Next, a conventional method for manufacturing IVH1 using laser light that does not dissolve copper will be described with reference to FIG. Since IVH2 is a modification of IVH1, description of the conventional method for manufacturing IVH2 is omitted.
[0009]
The IVH1 manufacturing method will be described. In forming a non-through hole with laser light, conventionally, as shown in FIG. 4 (a), the width of laser light irradiation (hereinafter referred to as the opening diameter T1 of the copper foil 31a). Written as “laser beam width.” W2 was larger. For this reason, for example, when a non-through hole with a diameter of 150 μm is to be formed, a laser beam having a width of, for example, 500 μm and a width W2 larger than the opening diameter T1 of 150 μm has to be irradiated. The laser light reaches the outer layer circuit base 3 under the irradiation width regulated by the opening diameter T1 of the copper foil 31a, evaporates the outer layer circuit base 3, and finally the first of the inner layer circuit base 2 1 to the surface of the electric circuit 21. As a result, the opening diameter T2 of the non-through hole formed in the outer layer circuit substrate 3 is also 150 μm, and as a result, the opening diameter of the non-through hole 6 is T1 = T2 = 150 μm as shown in FIG. Will be formed.
[0010]
The inner wall surface 3a of the non-through hole 6 formed as described above is rough (irregularities, scratches, etc.), and the remaining residue of the outer layer circuit substrate 3 remains in the non-through hole 6. Yes. If the inner wall surface 3a is rough or the outer layer circuit substrate 3 remains, good copper plating cannot be applied to the non-through holes 6 in a later step. Therefore, as a pretreatment, the inside of the non-through hole 6 is washed with an organic solvent to chemically dissolve and remove the roughness of the inner wall surface 3a and the residue of the outer layer circuit substrate 3. Then, IVH1 provided with the copper plating layer 5 as shown in FIG.4 (b) was formed by performing copper plating.
[0011]
[Problems to be solved by the invention]
However, according to the conventional manufacturing method, the opening diameter T2 of the non-through hole 6 is regulated to the width of the opening diameter T1 of the copper foil 31a. The air that stays when the organic solvent was poured in was poorly removed. Therefore, there is a problem that it is difficult to flow an organic solvent sufficient for cleaning into the non-through hole 6.
[0012]
Further, in the pretreatment, the inner wall surface 3a itself is also dissolved, so that the opening diameter T2 of the non-through hole 6 where T1 = T2 becomes the opening diameter T21, and T1 <T21. Further, in the shape of the non-through hole 6 described above, it was difficult to smoothly discharge the organic solvent, and the organic solvent was likely to remain in the non-through hole 6. As a result, the inner wall surface 3a itself was greatly dissolved. Finally, the non-through hole 6 obtained before copper plating has an overhang shape (see FIG. 4B) in which the copper foil 31a projects from the outer layer circuit base material 3 in a bowl shape. It was.
[0013]
Since the non-through hole 6 has the above-described shape, the plating solution did not flow smoothly, and a thin portion or a non-existing portion was formed in the copper plating layer 5 in the non-through hole 6. Furthermore, the copper plating layer 5 was easily peeled off or peeled off from the inner wall surface 3a. As described above, since the satisfactory copper plating layer 5 could not be formed in the non-through hole 6, the electrical reliability of the IVH was impaired.
[0014]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a multilayer printed wiring board having an electrically reliable IVH.
[0015]
[Means for Solving the Problems]
The method of manufacturing the onset Ming, when forming a non-through-hole, the opening of the copper foil, and irradiated the smaller irradiation width than the opening diameter, and the laser beam does not dissolve the copper, dissolved the irradiated surface Then, an electric circuit is exposed on the bottom surface to form a non-through hole having a diameter smaller than the opening diameter of the copper foil, and then an organic solvent that does not dissolve copper is dissolved in the non-through hole. It was characterized in that the IVH was formed by providing a copper plating layer after forming the non-through hole into a substantially V-shaped cross-sectional shape with its opening edge cut off by pouring while being most promoted and chemically washed. Is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A representative example of the IVH manufacturing method according to the present invention will be described with reference to FIGS. 2 (a) and 2 (b) are enlarged views showing the steps for forming IVH1 in FIG.
[0017]
FIG. 2A shows a state in which the non-through hole 6 of IVH1 according to the present invention is formed. For example, when the non-through hole 6 is formed by irradiating the laser beam with a light width W1 of 150 μm, FIG. The opening diameter T11 of the foil 31a is formed with a diameter larger than the laser beam width W1, for example, 250 μm, and when the laser beam is irradiated, the laser beam reaches the outer layer circuit substrate 3 and the outer layer circuit substrate 3 It evaporates and finally reaches the surface of the first electric circuit 21 of the inner layer circuit substrate 2. As a result, the opening diameter T22 of the non-through hole 6 formed in the outer layer circuit base 3 is also 150 μm, which is the same as the laser beam width W1. Therefore, the opening diameter of the non-through hole 6 is T22 (150 μm) <T11 (250 μm), and the non-through hole 6 having a stepped shape is obtained. As the laser light source used in the present invention, any laser light source that can dissolve only the circuit substrate without dissolving copper conventionally used can be used.
[0018]
Next, in order to remove the roughness of the inner wall surface 3a of the outer layer circuit base material 3 and the residue of the outer layer circuit base material 3, as in the conventional manufacturing method, the organic material that does not dissolve copper in the non-through holes 6 Chemically wash with solvent. Examples of the organic solvent include concentrated sulfuric acid and potassium permanganate. In this case, since the organic solvent is poured into the step-shaped non-through hole 6 having an opening diameter T22 smaller than the opening diameter T11, dissolution of the opening edge of the outer layer circuit base 3 is most accelerated. Is done. Therefore, the opening edge of the outer layer circuit base material 3 is scraped to form a non-through hole 6 having a substantially V-shaped cross section as shown in FIG. Accordingly, the organic solvent or the like can be smoothly discharged from the non-through hole 6.
[0019]
After finishing the above-described cleaning treatment, IVH1 (see FIG. 2B) in which the copper plating layer 5 is formed as in the conventional case and the first electric circuit 21 and the copper foil 31a are electrically connected to each other is obtained. Form.
[0020]
On the other hand, FIGS. 3A and 3B show I in FIG. 1 formed by the manufacturing method according to the present invention.
The process of VH2 is expanded and shown. IVH2 is a modification of IVH1, and laser light irradiation is performed under the same conditions as those of IVH1 according to the present invention shown in FIG. The IVH2 shown in FIG. 3 is applied when forming an IVH in which three or more layers of electric circuits of a multilayer printed wiring board in which four or more layers of electric circuits are laminated are electrically connected by one non-through hole. The
[0021]
FIG. 3A shows a state in which the non-through hole 7 of IVH2 according to the present invention is formed. For example, when the non-through hole 7 is formed by irradiating the laser beam with a light width W1 of 150 μm, FIG. The opening diameter T11 of the foil 31a is formed with a diameter larger than the laser light width W1, for example, 250 μm, and the first electric circuit 21 of the inner layer circuit substrate 2 also has a diameter larger than the laser light width W1, In addition, when the opening diameter T3 is formed with a diameter equal to or smaller than the opening diameter T11 of the copper foil 31a, for example, 200 μm, and the laser light is irradiated, the laser light causes the outer layer circuit base 3 and the inner layer circuit base 2 to pass through. It evaporates and reaches the surface of the second electric circuit 22 of the inner layer circuit substrate 2. As a result, the opening diameters T22 and T4 of the non-through holes 7 formed in the outer layer circuit substrate 3 and the inner layer circuit substrate 2 are also 150 μm, which is the same as the laser beam width W1. Therefore, the opening diameter of the non-through hole 7 is T11 (250 μm)> T3 (200 μm)> T22 (150 μm) = T4 (150 μm), and the copper foil 31a and the first electric circuit 21 in the cross-sectional shape are the outer layer circuit base. A non-through hole 7 having a step which is recessed from the material 3 and the inner layer circuit substrate 2 is obtained.
[0022]
Next, in order to remove the roughness of the inner wall surface 3a of the outer layer circuit substrate 3 and the residue of the outer layer circuit substrate 3, and the roughness of the inner wall surface 2a of the inner layer circuit substrate 2 and the residue of the inner layer circuit substrate 2, The inside of the hole 7 is chemically cleaned with an organic solvent that does not dissolve copper. In this case, the organic solvent is poured into the step-shaped non-through hole 6 having an opening diameter T22 smaller than the opening diameter T11, like the IVH1 according to the present invention. The dissolution of both the opening edges of the inner layer and the opening edge of the inner layer circuit base 2 is most promoted. Therefore, both the opening edge of the outer-layer circuit base material 3 and the opening edge of the inner-layer circuit base material 2 are shaved, and the non-penetration provided with a substantially V-shaped cross section as shown in FIG. A hole 7 is formed.
[0023]
After finishing the above-described cleaning process, the copper plating layer 5 is formed in the same manner as in the prior art, and the IVH2 (which connects the copper foil 31a, the first electric circuit 21, and the second electric circuit 22 to each other) ( 3B) is formed. In this case, the first electric circuit 21 may not be electrically connected together by the copper plating layer 5 like the conventional IVH 2.
[0024]
【The invention's effect】
As described above, in the manufacturing method according to the present invention, when forming the IVH non-through hole, a laser beam having a diameter smaller than the opening diameter of the copper foil located on the outer layer side is set to the opening diameter of the copper foil. Irradiated to form IVH non-through holes having the same diameter as the irradiated surface .
[0025]
In the non-through hole according to the present invention, when the edge of the opening of the circuit substrate is most easily dissolved when washed with an organic solvent that does not dissolve copper, the cross-sectional shape of the non-through hole also has an opening edge. The shape is substantially V-shaped so that the organic solvent can be smoothly supplied into the non-through hole. Moreover, since the organic solvent in the non-through holes and the residue of the circuit base material can be smoothly discharged, the cleaning effect can be enhanced.
[0026]
Furthermore, since the non-through hole is substantially V-shaped in cross-sectional shape, the plating solution can be poured smoothly, and not only a thin portion of the copper plating layer or a portion where the copper plating layer does not exist can be uniformly formed. A copper plating layer having an appropriate thickness can be formed. Furthermore, the copper plating layer is not peeled off or peeled off from the inner wall surface of the non-through hole, and a multilayer printed wiring board with high electrical reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a main part structure of a standard four-layer printed wiring board provided with IVH.
FIGS. 2A and 2B are explanatory views showing enlarged steps (a) and (b) of an example of the manufacturing method according to the present invention in correspondence with FIG.
FIGS. 3A and 3B are explanatory views showing, as enlarged (a) and (b), steps of another example of the manufacturing method according to the present invention in correspondence with FIG.
FIG. 4 is an explanatory diagram showing enlarged steps (a) and (b) of a conventional method corresponding to FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 4 layer printed wiring board 2, 3, 4 Circuit base material 2a, 3a Inner wall surface 6,7 Non-through-hole 21, 22, 31 Electrical circuit 21a, 22a, 31a Copper foil 21b, 22b, 5 Copper plating layer

Claims (1)

外層電気回路用銅箔の開口に同開口径よりも小径のレーザー光を照射して回路基材にその内径が照射幅とほぼ同径の非貫通孔を形成し、非貫通孔内に銅を溶解することのない有機溶剤をその開口縁の溶解を最も促進させながら流し込んで化学的に洗浄して非貫通孔をその開口縁が削られた断面形状ほぼV字状に形成し、しかる後に非貫通孔内に銅めっき層を形成して外層の電気回路と内層の電気回路とを電気的に接続したインタスティシャルバイアホールを製造することを特徴とした多層プリント配線板の製造方法 The opening of the copper foil for the outer layer electric circuit is irradiated with a laser beam having a diameter smaller than the opening diameter to form a non-through hole whose inner diameter is substantially the same as the irradiation width in the circuit substrate, and copper is placed in the non-through hole. An organic solvent that does not dissolve is poured into the opening edge while promoting the dissolution of the opening edge and is chemically washed to form a non-through hole in a substantially V-shaped cross-sectional shape with the opening edge cut away. A method of manufacturing a multilayer printed wiring board , comprising: forming an interstitial via hole in which a copper plating layer is formed in a through-hole and electrically connecting an outer layer electric circuit and an inner layer electric circuit .
JP17061296A 1996-06-10 1996-06-10 Manufacturing method of multilayer printed wiring board Expired - Lifetime JP3785223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17061296A JP3785223B2 (en) 1996-06-10 1996-06-10 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17061296A JP3785223B2 (en) 1996-06-10 1996-06-10 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH09331155A JPH09331155A (en) 1997-12-22
JP3785223B2 true JP3785223B2 (en) 2006-06-14

Family

ID=15908095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17061296A Expired - Lifetime JP3785223B2 (en) 1996-06-10 1996-06-10 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3785223B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336829B1 (en) * 1998-04-10 2002-05-16 모기 쥰이찌 Fabricating method of multilayered wiring substrate
JP2000022337A (en) * 1998-06-30 2000-01-21 Matsushita Electric Works Ltd Multilayer wiring board and its manufacture
MY128333A (en) 1998-09-14 2007-01-31 Ibiden Co Ltd Printed wiring board and its manufacturing method
JP2009200356A (en) * 2008-02-22 2009-09-03 Tdk Corp Printed wiring board and manufacturing method therefor
CN102497724A (en) * 2011-11-16 2012-06-13 金悦通电子(翁源)有限公司 PCB with high reliability and processing method thereof
JP2013058777A (en) * 2012-11-06 2013-03-28 Tdk Corp Method for manufacturing printed wiring board
JP5644849B2 (en) * 2012-12-27 2014-12-24 大日本印刷株式会社 Magnetic head suspension
CN111508893B (en) 2019-01-31 2023-12-15 奥特斯(中国)有限公司 Component carrier and method for producing a component carrier

Also Published As

Publication number Publication date
JPH09331155A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
JPH0590756A (en) Production of rigid/flexible board
JP3785223B2 (en) Manufacturing method of multilayer printed wiring board
JPH1187931A (en) Manufacture of printed circuit board
JP3935353B2 (en) Manufacturing method of flexible build-up wiring board
JP4456834B2 (en) Laser processing method and metal foil with carrier used therefor
JPH1187886A (en) Production of printed wiring board
JP4244414B2 (en) Manufacturing method of multilayer printed wiring board
JP2001189559A (en) Method of manufacturing built-up printed wiring board
JP4040783B2 (en) Blind hole forming method for printed circuit board
JP2000200975A (en) Manufacture of multilayer wiring substrate
JPH1117340A (en) Method for forming blind through-hole
JPH11121900A (en) Production of circuit board
JP7154147B2 (en) Method for manufacturing printed wiring board
WO2024084994A1 (en) Printed wiring board
JP2005327978A (en) Wet desmear treatment method
JP2004200260A (en) Method for manufacturing flexible rigid build-up multilayer wiring board
KR20060131045A (en) Reverse treated foil and pcb manufacturing method thereof
JP2002016356A (en) Method of manufacturing patter using very thin copper foil
JP3756655B2 (en) Manufacturing method of build-up multilayer substrate
JPH09130049A (en) Method of forming via hole by build-up method of multilayer printed wiring board, and multilayer printed wiring board manufactured by it
JP2005340785A (en) Printed circuit board, processing method of printed circuit board, and manufacturing method of printed circuit board
JP2002217536A (en) Pretreatment method for plating to non-through hole or through-hole in printed wiring board
JPH04356993A (en) Manufacture of printed circuit board
JP2647007B2 (en) Manufacturing method of printed wiring board
JP2000124605A (en) Method for manufacturing printed-circuit board for forming via with laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term